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Abstract

Artificial Neural Networks for online learning problems

are often implemented with synaptic plasticity to achieve

adaptive behaviour. A common problem is that the over-

all learning dynamics are emergent properties strongly de-

pendent on the correct combination of neural architectures,

plasticity rules and environmental features. Which com-

plexity in architectures and learning rules is required to

match specific control and learning problems is not clear.

Here a set of homosynaptic plasticity rules is applied to

topologically unconstrained neural controllers while op-

erating and evolving in dynamic reward-based scenarios.

Performances are monitored on simulations of bee foraging

problems and T-maze navigation. Varying reward locations

compel the neural controllers to adapt their foraging strate-

gies over time, fostering online reward-based learning. In

contrast to previous studies, the results here indicate that

reward-based learning in complex dynamic scenarios can

be achieved with basic plasticity rules and minimal topolo-

gies.

1. Introduction

Synaptic plasticity is considered a fundamental work-

ing mechanism of memory and learning in biological neural

networks. Although growing experimental data support this

hypothesis, the richness of neural dynamics involved with

synaptic modification, and the various forms of plasticity

found in brains result in a complex system to understand

[8]. Various computational models of synaptic mechanisms

have been formalised to describe specific neural dynamics

and analyse their properties [11, 3, 7]. Aspects like synaptic

stability, competitive growth, heterosynaptic growth, time-

dependency and other have been included in computational

models. The analysis of the computational features of a

rule, however, – when considered on an open-loop single

synapse or neuron – reveals properties at the cellular level,

but does not disclose the potential of such rule at system

level, i.e. when the rule acts in a closed-loop synergy with

activations patterns, neural architectures and environmental

stimuli. The system level dynamics of learning and memory

is an emergent property that originates from a combination

of plasticity rules, neural architectures and sensory-motor

signals. Therefore, the growth of a single synapse when

isolated might not be descriptive of the system dynamics

that brings about learning and memory.

To overcome this problem, recent work in the fields of

Robotics, Artificial Life and Neural Networks focus on

the integration of learning rules into embodied neural con-

trollers. Unfortunately, the emergent properties of learning

and memory make it difficult to hand-design neural archi-

tectures for adaptive and learning robots and agents, and

consequently evolutionary techniques are commonly used

[6, 1, 5]. Even with the current limitation of evolutionary

algorithms and scalability problems, experiments in sim-

ple settings have provided remarkable examples of learning

networks that implement homosynaptic and heterosynaptic

plasticity (or neuromodulation) [6, 12], resulting in various

advantages of plastic networks as adaptivity, noise toler-

ance, better transferability from simulation to hardware, and

learning capabilities.

Despite the cited examples of learning plastic networks,

there is still a lack of understanding on which plasticity rule

and neural architecture are required and can be coupled to

solve certain learning problems. This is mainly due to the

unclear mapping from local unsupervised plasticity mech-

anisms and system level effects. To address this issue, in

this paper the analysis of both architectures and plasticity

rules is carried out when networks operate and evolve in

reward-based environments. The chosen simulated envi-

ronments are inspired by natural foraging problems and are

implemented here as bee-foraging uncertain scenarios and

T-maze navigation and learning problems. In these scenar-

ios, different plasticity rules are tested with evolving archi-

tectures. Plasticity rules do not include synaptic normal-

ization, competitive growth or heterosynaptic mechanisms
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(neuromodulation) [4] to reduce the complexity of models

and find the minimal required mechanisms. Evolutionary

runs are performed to observe the emergence of learning

and memory dynamics that allow for high performing neu-

ral controllers. In contrast to previous studies [9, 10], the

results indicate that complex learning problems in uncertain

stochastic environments can be solved with simple homosy-

naptic plasticity rules and minimal architectures.

The next section outlines the plasticity rules used for this

study and the learning problems employed to evolve and

test learning networks. Section 3 describes the implemen-

tation details of the evolutionary algorithm. Sections 4 and

5 present the results and the analysis before the conclusion.

2. Synaptic Plasticity and Learning Scenarios

Recent studies have employed the following plasticity

rule where the weight update δ is a function of pre- and

postsynaptic activities

δji = η · [Aojoi + Boj + Coi + D] (1)

where oj and oi are the pre- and postsynaptic neuron out-

puts, η, A, B, C, and D are tunable parameters [10, 13, 12].

According to Equation 1, the update of a synaptic weight

occurs as a function of 1) correlated activity weighted on

parameter A, 2) presynaptic activity weighted on parame-

ter B, 3) postsynaptic activity weighted on parameter C, 4)

independently of pre- and postsynaptic activity based on pa-

rameter D. The last term (parameter D) is a constant weight

decay or increase that, when combined with neuromodu-

lation [12], results in pure heterosynaptic update. As het-

erosynaptic plasticity is not considered here, only A, B and

C will be used to form the following 7 particular rules

δji = η · Aojoi (2)

δji = η · Boj (3)

δji = η · Coi (4)

δji = η · [Aojoi + Boj ] (5)

δji = η · [Aojoi + Coi] (6)

δji = η · [Boj + Coi] (7)

δji = η · [Aojoi + Boj + Coi] (8)

The first three rules use correlation, pre- and postsynaptic

mechanisms separately and independently. The next three

rules are linear combinations of two of the previous ones.

The last rule is a combination of all terms. These seven

rules represent particular instances of the general rule of

Equation 1 when some of the parameters are clamped to 0.

The purpose is to test the minimal sufficient dynamics for

solving the proposed problems. Equations 2-8 are unsta-

ble as growth in synaptic weight due to neural activity leads
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Figure 1. T-maze: An agent navigates the cor-
ridors, makes a choice at the turning point
and reaches the end collecting a reward pro-
portional to the size of the token.

Figure 2. Simulated bee on a flower field.

to a positive feedback. More complex models like the Oja

rule [11] and the BCM rule [3] implement synaptic normal-

ization and competitive growth. In this study, the synaptic

growth is limited by a saturation value.

2.1 Dynamic Reward-based Scenarios

Two learning problems have been utilized here. In the

T-maze represented in Figure 1, an agent performs a num-

ber of trips (trials) from the home location to the maze-

ends. Different maze-ends yield different amounts of re-

wards. The purpose of the agent is to visit repeatedly the

maze-end with the higher reward in order to maximise the

reward during a lifetime. To reach a maze-end, the agent en-

counters a turning point upon which a choice between left

and right turn will be taken. An extended version of this

problem can be specified by requiring to the agent to return

home after the reward has been collected.

From an evolutionary perspective, if the position of the

high reward was fixed to one location, say left, such infor-

mation will be encoded in the genome, allowing the agent
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Figure 3. Inputs and output of neural net-
works. (a) T-maze agent: the Turn input is 1
when a turning point is encountered. Maze-

End goes to 1 at the end of the maze. Home

becomes 1 at the home location. The Re-

ward input returns the amount of reward col-
lected at the maze-end, it remains 0 during

navigation. One output determines the ac-
tions of turning left (if less than -1/3), right (if
greater than 1/3) or straight navigation oth-
erwise. (b) The bee receives the percent-

ages of the different colours seen under the
cone view, where blue and yellow are flower-
colours, grey is the colour outside the field.
Upon landing, the reward input gives the

amount of nectar (reward) contained in the
flower. During the flight, one output neuron
decides whether to maintain the current fly-
ing direction, or change to a new random di-

rection. Inputs and internal neural transmis-
sion are affected by 2% noise.

to exploit the correct maze-end without need for learning

or exploration. When, on the other hand, the location of

the high reward is uncertain, and changes with a certain fre-

quency during an agent’s lifetime, the correct sequence of

actions to achieve the high reward will change, compelling

the agent to adapt its policy according to external reward in-

formation. This scenario requires the capability of learning

new actions and retain them during the exploration and ex-

ploitation of the maze. Such environmental characteristics

will result in better performance when an agent is capable

Table 1. Rewarding policies. P indicates the
probability of the reward.

Scenario
Reward of the high

rewarding flower

Reward of the low

rewarding flower

1 1.0 0.2

2 0.7
1.0 with P=0.2

0 with P=0.8

3
1.6 with P=0.75

0 with P=0.25

0.8 with P=0.75

0 with P=0.25

4
0.8 with P=0.75

0 with P=0.25

0.8 with P=0.25

0 with P=0.75

of learning and memory.

Figure 2 illustrates a simulated flying bee on a flower

field with uncertain reward conditions. The bee [10, 13]

equipped with one cyclopean eye (10 degrees cone view)

flies and repeatedly lands on a flower field with flowers of

two different colours. One colour yields a high quantity of

nectar, whilst the other colour yields a low quantity. During

the bee’s lifetime, the two flowers are inverted, compelling

the bee to change colour preference in order to maximise

the total reward (nectar) intake. Although one of the two

flowers yield on average a higher reward, the content of

each single flower can be either a deterministic value or a

stochastic value. When flowers provide stochastic rewards,

the higher rewarding flower can be identified only by aver-

aging the samples on more trials. Here, two problems were

devised, one with deterministic rewards (scenario 1), and

a more complex problem with stochastic rewards (scenar-

ios 2-4) as illustrated in Table 1. When the bee is tested

on scenario 1, a lifetime is composed of 100 flights (or tri-

als), when the bee is exposed to all 4 scenarios, each sce-

narios is presented consecutively to the bee whose lifetime

is therefore extended to 400 trials. At the 50th flight ± 15

of each scenario, the high and low rewarding flowers switch

colours. Switching points between scenarios are also af-

fected by a variability of ± 15 trials. At each scenario

switch, the high and low rewarding flower switch colour

with probability 0.5. See [13] for further implementation

details.

Figure 3 shows the input/output signals used by the neu-

ral controllers. The bee is simulated in a continuos 3D

space, whereas the agent in the T-maze is in discrete space.

In conclusion, four experiments are carried out: two ex-

periments with the agent in the T-maze, without and with

homing behaviour, and two experiments with the foraging

bee with deterministic and stochastic reward conditions.



3. Evolutionary Method

A basic Evolution Strategy [2] was employed here to

evolve topologies, weights and plasticity rules of neural net-

works. A matrix of real-valued weights encoded the net-

work weights wij . The parameters for the plasticity rule

A, B, C and η were separately encoded and evolved in the

range [-1,1] for A-C, and [-100,100] for η. Genes in the

range [-1,1] are mapped into phenotypical values with a

cubic function: this produces a bias towards small values

initially. Phenotytical weights were in the range [-10,10].

Insertion, duplication and deletion of neurons were applied

with probability 0.01, 0.01 and 0.02 respectively.

A Gaussian mutation with standard deviation 0.02 was

applied to all genes, and an additional Gaussian mutation

(with a larger standard deviation of 0.2) was applied with

a small probability of 0.02. One point crossover on the

weight matrix was applied with probability 0.1. A spatial

tournament selection mechanism was implemented by di-

viding the array of the population in adjacent segments of

size 5 (with random offset at each generation). A popula-

tion of a 150 individuals was employed with 2000 gener-

ations as termination criterion. To foster the synthesis of

minimal neural architectures, after generation 1000, the al-

gorithm continued the evolutionary process with no inser-

tion and duplication of neurons, but maintaining deletion.

4. Results

One set of experiments for each learning rule of Equa-

tions 2-8 and each problem was executed. To provide sta-

tistically significant data, each set included 30 independent

evolutionary runs.

Figure 4(top) shows the median fitness progress over the

30 independent runs for the controllers in the T-maze with-

out homing. Four rules out of 7 (C, AC, BC and ABC)

allowed to solve the problem maximising the performance

in the majority of runs. Rules A, B and AB alone did not

allow the solution of the problem. Figure 4(bottom) shows

the fitness progress in the T-maze with homing. In this case,

the problem is more difficult because the agent needs to re-

member the way back home after collecting the reward, and

failure to do so result in a penalty of 0.3. However, even in

this problem, three rules AC, BC and ABC allowed to solve

the problem. One rule (C) reached good performance with

some difficulty, while rules A, B, and AB failed as in the

previous problem.

Figure 5(top) shows the median of fitness values over the

30 independent runs for the bee controllers in scenario 1.

Three rules (B,C and BC) failed to solve the problem, two

rules (A and AB) achieved good performance. ABC and

AC gave the best performance. Figure 5(bottom) shows the

fitness progress when the bee performs continuously over
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Figure 4. Fitness for each plastic rule with the

agent in the maze (top graph) and maze with
homing (bottom graph).

the all 4 scenarios. In this case, only the rule ABC appeared

to maximise the performance.

5 Analysis

Generally, although different rules performed differently

according to the problem, optimal solutions were discov-

ered in the majority of runs. Not surprisingly, the general

rule ABC allowed good performances, but interestingly the

graphs show that other simpler rules (Equations 2-7) also

allowed to solve some of the problems. The bee problems

appear to benefit particularly from the correlation Hebbian

term (A). This can be explained with the fact that the ac-

tion of choosing a flower colour (i.e. keep the output sig-

nal high to maintain the flying direction) is continuous dur-

ing the flight and landing. Upon landing the input for the

flower colour can be correlated to the reward intake. The

T-maze problems instead seem to benefit mainly from the

postsynaptic rule C, but not from the correlation term A.

This could be explained by the fact that the reward intake

in the maze occurs with a certain delay from the action of

choosing the maze-end. After the turning point, the agent

needs to navigate straight and lowers the output to values

less than 1/3 before reaching the maze-end and collecting

the reward: as a consequence the action taken for turning

cannot be directly correlated at the reward intake.
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Figure 5. Fitness for each plastic rule with the

foraging bee experiment in scenario 1 (top
graph) and in scenarios 1-4 (bottom graph).

Although different problems seem to benefit differently

from the proposed rules, a number of plasticity rules re-

sulted in the evolution of successful controllers. This fact

suggests that these kinds of reward-based learning prob-

lem do not necessitate more complex learning rules as it

was suggested in previous studies [9, 10]. The hand de-

signed neural architecture proposed in [10] employed the

four-parameter rule of equation 1 with the addition of neu-

romodulatory plasticity, and solved scenario 1 and 2; on the

other hand, the solutions that were discovered here achieve

optimal performances in all 4 deterministic and stochastic

scenarios with less complex rules and without neuromodu-

latory dynamics.

A possible explanation for that is that allowing the evo-

lutionary search to exploit minimal rules and topologies re-

sulted in the discovery of better solutions than the hand-

crafted modulatory architecture in [10]. Although neuro-

modulation was also employed on the bee foraging problem

in [13] showing optimal performances, the results showed

here indicate that neuromodulation is not an essential re-

quirement. These results confirm the data shown in a recent

study [12] where neuromodulation is shown not to bring

an advantage in the single T-maze. The simulations show

that this set of rules can implement operant reward learning

without the use of a reinforcement learning algorithm [14].

Nr of neurons Nr of connections

Problem Rule Mean Std Mean Std

1)

C 1.10 0.30 3.36 0.76

AC 1.03 0.18 1.70 0.91

BC 1.07 0.25 2.26 0.74

ABC 1.03 0.18 2.6 0.85

2)

C 1.83 0.64 5.46 2.36

AC 1.36 0.49 2.83 0.98

BC 1.07 0.25 2.23 0.78

ABC 1.36 0.49 2.83 1.08

3) ABC 1.2 0.61 6.37 5.68

4) ABC 1 0 4.63 1.0

Table 2. Mean and standard deviation of num-

ber of neurons and connections in evolved
networks that solved the proposed problems.

5.1 Neural Architectures

The topologies of networks that solved the problems

were analysed to discover common features and minimal

structures. The networks in the population after the first

1000 generations displayed a wide variety of topologies and

varying number of neurons. However, the further 1000 gen-

erations without neuron insertion and duplication resulted

in a considerable reduction of the number of neurons with-

out decrement in performance as confirmed by the fitness

graphs of Figures 4 and 5.

Surprisingly, the inspection of neural controllers re-

vealed that all four problems could be solved with remark-

ably small neural networks of one output neuron and no hid-

den neurons. Table 2 shows the mean and average number

of neurons and connections of the best networks from the

30 runs in each problem. Interestingly, a further analysis

revealed that the number of neurons has a level of correla-

tion with the specific rules being available during evolution.

For example, in the T-maze with homing, rule C developed

well performing networks with one inner neuron plus the

output, contrary to other rules which required no inner neu-

rons. In the bee foraging problem, rule B resulted in good

performances only when deploying 2, 3 or even 4 inner neu-

rons. The ABC rule which evolved the networks with best

performances did not require inner neurons.

Figures 6 and 7 provide examples of minimal architec-

tures for learning networks in the T-maze with homing nav-

igation and in the 4-scenario foraging bee problem. As

indicated in Table 2, these surprisingly simple structures

emerge constantly from evolutionary runs and solve the

problems with optimal performance. Therefore, although

neural networks are difficult to hand design, the small archi-

tectures that evolved in these experiments suggest that es-

sential reward-based learning based on few sensory-motors
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Figure 6. Example of a network that controls

the agent in the T-maze. This network is capa-
ble of identifying the higher rewarding maze-
end and adapt its preference when its loca-
tion changes. Although the inputs ”maze

start” and ”maze end” are available to the
network, the algorithm performed feature se-
lection by evolving 0-valued weights.
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Figure 7. Example of a network that controls
the bee. This network is capable of identify-
ing the higher rewarding flower and adapt its
preference according to the reward given in

4 different deterministic and stochastic sce-
narios.

signals can be implemented in very compact structures and

can be evolved with basic search algorithms.

6. Conclusion

This work indicates that basic types of reward-based

learning problem in dynamic scenarios can be solved with

remarkably small neural architectures and simple plasticity

rules. Although more complex problems involving a longer

sequence of actions (like a double T-maze) might require

additional heterosynaptic dynamics, basic operant condi-

tioning as in the single T-mazes and in the simulated bee for-

aging problems can be achieved with basic rules and archi-

tectures. Consequently, although more analysis is required

to uncover the precise neural and plasticity dynamics, the

learning in the dynamic, reward-based scenarios simulated

here does not appear to require neuromodulated plasticity

or large neural topologies.

The methodology of testing different rules on freely

evolvable neural architectures while operating in the re-

quired environment appeared to provide surprisingly sim-

ple solutions to apparently complex problems. The valida-

tion of learning rules and architectures finalised to learning

was implicitly guaranteed by the coupled simulation of net-

works and uncertain environments. The methodology offers

a valid tool to outline relations between a variety of learn-

ing problems and minimal plasticity rules and topologies to

solve them.
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