230 research outputs found

    Radial Basis Function Neural Networks : A Review

    Get PDF
    Radial Basis Function neural networks (RBFNNs) represent an attractive alternative to other neural network models. One reason is that they form a unifying link between function approximation, regularization, noisy interpolation, classification and density estimation. It is also the case that training RBF neural networks is faster than training multi-layer perceptron networks. RBFNN learning is usually split into an unsupervised part, where center and widths of the Gaussian basis functions are set, and a linear supervised part for weight computation. This paper reviews various learning methods for determining centers, widths, and synaptic weights of RBFNN. In addition, we will point to some applications of RBFNN in various fields. In the end, we name software that can be used for implementing RBFNNs

    Black box and mechanistic modelling of electronic nose systems

    Get PDF
    Electronic nose systems have been in existence for around 20 years or more. The ability to mimic the function of the mammalian olfactory system is a very tempting goal. Such devices would offer the possibility of rapid chemical screening of samples. To gain a detailed insight into the operation of such systems it is proposed to carry out a systems modelling analysis. This thesis reports such an analysis using black box and mechanistic models. The nature and construction of electronic nose systems are discussed. The challenges presented by these systems in order to produce a truly electronic nose are analysed as a prelude to systems modelling. These may be summarised as time and environmental dependent behaviour, information extraction and computer data handling. Model building in general is investigated. It is recognised that robust parameter estimation is necessary to build good models of electronic nose systems. A number of optimisation algorithms for parameter estimation are proposed and investigated, these being gradient search, genetic algorithms and the support vector method. It is concluded that the support vector method is most robust, although the genetic algorithm approach shows promise for initial parameter value estimation. A series of investigations are reported that involve the analysis of biomedical samples. These samples are of blood, urine and bacterial cultures. The findings demonstrate that the nature of such samples, such as bacterial content and type, may be accurately identified using an electronic nose system by careful modelling of the system. These findings also highlight the advantages of data set reduction and feature extraction. A mechanistic model embodying the operating principles of carbon black-polymer sensors is developed. This is validated experimentally and is used to investigate the environmental dependencies of electronic nose systems. These findings demonstrate a clear influence of environmental conditions on the behaviour of carbon black-polymer sensors and these should be considered when designing future electronic nose systems. The findings in this thesis demonstrate that careful systems modelling and analysis of electronic nose systems allows a greater understanding of such systems

    Implementation of machine learning for the evaluation of mastitis and antimicrobial resistance in dairy cows

    Get PDF
    Bovine mastitis is one of the biggest concerns in the dairy industry, where it affects sustainable milk production, farm economy and animal health. Most of the mastitis pathogens are bacterial in origin and accurate diagnosis of them enables understanding the epidemiology, outbreak prevention and rapid cure of the disease. This thesis aimed to provide a diagnostic solution that couples Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) mass spectroscopy coupled with machine learning (ML), for detecting bovine mastitis pathogens at the subspecies level based on their phenotypic characters. In Chapter 3, MALDI-TOF coupled with ML was performed to discriminate bovine mastitis-causing Streptococcus uberis based on transmission routes; contagious and environmental. S. uberis isolates collected from dairy farms across England and Wales were compared within and between farms. The findings of this chapter suggested that the proposed methodology has the potential of successful classification at the farm level. In Chapter 4, MALDI-TOF coupled with ML was performed to show proteomic differences between bovine mastitis-causing Escherichia coli isolates with different clinical outcomes (clinical and subclinical) and disease phenotype (persistent and non-persistent). The findings of this chapter showed that phenotypic differences can be detected by the proposed methodology even for genotypically identical isolates. In Chapter 5, MALDI-TOF coupled with ML was performed to differentiate benzylpenicillin signatures of bovine mastitis-causing Staphylococcus aureus isolates. The findings of this chapter presented that the proposed methodology enables fast, affordable and effective diag-nostic solution for targeting resistant bacteria in dairy cows. Having shown this methodology successfully worked for differentiating benzylpenicillin resistant and susceptible S. aureus isolates in Chapter 5, the same technique was applied to other mastitis agents Enterococcus faecalis and Enterococcus faecium and for profiling other antimicrobials besides benzylpenicillin in Chapter 6. The findings of this chapter demonstrated that MALDI-TOF coupled with ML allows monitoring the disease epidemiology and provides suggestions for adjusting farm management strategies. Taken together, this thesis highlights that MALDI-TOF coupled with ML is capable of dis-criminating bovine mastitis pathogens at subspecies level based on transmission route, clinical outcome and antimicrobial resistance profile, which could be used as a diagnostic tool for bo-vine mastitis at dairy farms

    Implementation of machine learning for the evaluation of mastitis and antimicrobial resistance in dairy cows

    Get PDF
    Bovine mastitis is one of the biggest concerns in the dairy industry, where it affects sustainable milk production, farm economy and animal health. Most of the mastitis pathogens are bacterial in origin and accurate diagnosis of them enables understanding the epidemiology, outbreak prevention and rapid cure of the disease. This thesis aimed to provide a diagnostic solution that couples Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) mass spectroscopy coupled with machine learning (ML), for detecting bovine mastitis pathogens at the subspecies level based on their phenotypic characters. In Chapter 3, MALDI-TOF coupled with ML was performed to discriminate bovine mastitis-causing Streptococcus uberis based on transmission routes; contagious and environmental. S. uberis isolates collected from dairy farms across England and Wales were compared within and between farms. The findings of this chapter suggested that the proposed methodology has the potential of successful classification at the farm level. In Chapter 4, MALDI-TOF coupled with ML was performed to show proteomic differences between bovine mastitis-causing Escherichia coli isolates with different clinical outcomes (clinical and subclinical) and disease phenotype (persistent and non-persistent). The findings of this chapter showed that phenotypic differences can be detected by the proposed methodology even for genotypically identical isolates. In Chapter 5, MALDI-TOF coupled with ML was performed to differentiate benzylpenicillin signatures of bovine mastitis-causing Staphylococcus aureus isolates. The findings of this chapter presented that the proposed methodology enables fast, affordable and effective diag-nostic solution for targeting resistant bacteria in dairy cows. Having shown this methodology successfully worked for differentiating benzylpenicillin resistant and susceptible S. aureus isolates in Chapter 5, the same technique was applied to other mastitis agents Enterococcus faecalis and Enterococcus faecium and for profiling other antimicrobials besides benzylpenicillin in Chapter 6. The findings of this chapter demonstrated that MALDI-TOF coupled with ML allows monitoring the disease epidemiology and provides suggestions for adjusting farm management strategies. Taken together, this thesis highlights that MALDI-TOF coupled with ML is capable of dis-criminating bovine mastitis pathogens at subspecies level based on transmission route, clinical outcome and antimicrobial resistance profile, which could be used as a diagnostic tool for bo-vine mastitis at dairy farms

    Cheminformatics Tools to Explore the Chemical Space of Peptides and Natural Products

    Get PDF
    Cheminformatics facilitates the analysis, storage, and collection of large quantities of chemical data, such as molecular structures and molecules' properties and biological activity, and it has revolutionized medicinal chemistry for small molecules. However, its application to larger molecules is still underrepresented. This thesis work attempts to fill this gap and extend the cheminformatics approach towards large molecules and peptides. This thesis is divided into two parts. The first part presents the implementation and application of two new molecular descriptors: macromolecule extended atom pair fingerprint (MXFP) and MinHashed atom pair fingerprint of radius 2 (MAP4). MXFP is an atom pair fingerprint suitable for large molecules, and here, it is used to explore the chemical space of non-Lipinski molecules within the widely used PubChem and ChEMBL databases. MAP4 is a MinHashed hybrid of substructure and atom pair fingerprints suitable for encoding small and large molecules. MAP4 is first benchmarked against commonly used atom pairs and substructure fingerprints, and then it is used to investigate the chemical space of microbial and plants natural products with the aid of machine learning and chemical space mapping. The second part of the thesis focuses on peptides, and it is introduced by a review chapter on approaches to discover novel peptide structures and describing the known peptide chemical space. Then, a genetic algorithm that uses MXFP in its fitness function is described and challenged to generate peptide analogs of peptidic or non-peptidic queries. Finally, supervised and unsupervised machine learning is used to generate novel antimicrobial and non-hemolytic peptide sequences

    2019 Oklahoma Research Day Full Program

    Get PDF
    Oklahoma Research Day 2019 - SWOSU Celebrating 20 years of Undergraduate Research Successes

    Pertanika Journal of Science & Technology

    Get PDF

    Development Of Database And Computational Methods For Disease Detection And Drug Discovery

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore