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Abstract 

Bovine mastitis is one of the biggest concerns in the dairy industry, where it affects sustainable 

milk production, farm economy and animal health. Most of the mastitis pathogens are bacterial 

in origin and accurate diagnosis of them enables understanding the epidemiology, outbreak 

prevention and rapid cure of the disease. This thesis aimed to provide a diagnostic solution that 

couples Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) mass 

spectroscopy coupled with machine learning (ML), for detecting bovine mastitis pathogens at 

the subspecies level based on their phenotypic characters. 

In Chapter 3, MALDI-TOF coupled with ML was performed to discriminate bovine mastitis-

causing Streptococcus uberis based on transmission routes; contagious and environmental. S. 

uberis isolates collected from dairy farms across England and Wales were compared within 

and between farms. The findings of this chapter suggested that the proposed methodology has 

the potential of successful classification at the farm level. 

In Chapter 4, MALDI-TOF coupled with ML was performed to show proteomic differences 

between bovine mastitis-causing Escherichia coli isolates with different clinical outcomes 

(clinical and subclinical) and disease phenotype (persistent and non-persistent). The findings 

of this chapter showed that phenotypic differences can be detected by the proposed methodol-

ogy even for genotypically identical isolates.  

In Chapter 5, MALDI-TOF coupled with ML was performed to differentiate benzylpenicillin 

signatures of bovine mastitis-causing Staphylococcus aureus isolates. The findings of this 

chapter presented that the proposed methodology enables fast, affordable and effective diag-

nostic solution for targeting resistant bacteria in dairy cows. 

Having shown this methodology successfully worked for differentiating benzylpenicillin re-

sistant and susceptible S. aureus isolates in Chapter 5, the same technique was applied to other 

mastitis agents Enterococcus faecalis and Enterococcus faecium and for profiling other anti-

microbials besides benzylpenicillin in Chapter 6. The findings of this chapter demonstrated 

that MALDI-TOF coupled with ML allows monitoring the disease epidemiology and provides 

suggestions for adjusting farm management strategies.  

Taken together, this thesis highlights that MALDI-TOF coupled with ML is capable of dis-

criminating bovine mastitis pathogens at subspecies level based on transmission route, clinical 



iii 
 

outcome and antimicrobial resistance profile, which could be used as a diagnostic tool for bo-

vine mastitis at dairy farms. 
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CHAPTER 1 INTRODUCTION 

1.1 Bovine Mastitis 

Bovine mastitis is the inflammation of one or more mammary quarters (Zadoks et al., 2011). 

In the literature, the term intramammary infection (IMI) is often used instead of bovine masti-

tis; however, they are not the same according to definitions by the International Dairy Federa-

tion. IMI corresponds to the presence of the infection and should be used to talk about bovine 

mastitis agents rather than the inflammation itself; for instance, IMI cannot be classified as 

clinical and subclinical but mastitis can (Berry and Meaney, 2006). 137 different agents includ-

ing bacteria, yeast and algae have been known to cause bovine mastitis, which makes it differ-

ent from many other diseases (Watts, 1988). However, 75% of the bovine mastitis cases in the 

UK are caused by bacterial pathogens according to VIDA (Veterinary Investigation Diagnosis 

Analysis) annual reports between 2012 and 2019 (Surveillance Intelligence Unit, 2020). Hence, 

the current work has only focused on bacterial agents. To analyse and better understand the 

disease, mastitis pathogens have been historically categorized based on their transmission 

routes as contagious and environmental (Blowey and Edmondson, 2010). Contagious mastitis 

pathogens include Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalac-

tiae, Mycoplasma spp., Corynebacterium bovis etc. (Fox and Gay, 1993). The main reservoir 

of the contagious pathogens is the udder of the cow, and they are transmitted between animals 

mainly during the milking process. Meanwhile, environmental pathogens are acquired from the 

surrounding habitat of the cows and mainly transmitted during the period between milking 

sessions (see Figure 1-1). Environmental mastitis pathogens involve Streptococcus uberis, 

Escherichia coli, Klebsiella spp., Enterococcus spp., Enterobacter spp., Serratia spp., Pseudo-

monas spp. etc. (Smith and Hogan, 1993). However, mastitis pathogens do not always follow 

the same transmission route. Recently, it has been found that S. agalactiae, a longstanding 

contagious mastitis pathogen, showed environmental characteristics, and S. uberis, a 

longstanding environmental mastitis pathogen, showed contagious transmission (Jørgensen et 

al., 2016; Davies et al., 2016). There are also other mastitis pathogens such as Staphylococcus 

chromogenes, Staphylococcus epidermis, Staphylococcus similans etc., whose transmission 

route has not been elucidated yet. 
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Figure 1-1. Classification of mastitis pathogens due to transmission route as environmen-

tal and contagious. The main reservoir of the environmental mastitis can be anything that sur-

rounds the living habitat of the cows including water, pasture, bedding material, calving pads, ma-

nure etc., on the other hand, contagious mastitis is transmitted between cows mostly during the 

milking through milking equipment or milkers’ hand. However, flies are also the vector for carrying 

the disease between cows. This figure was generated in BioRender.com. 

Another classification of bovine mastitis agents is as major and minor pathogens, where the 

former cause more severe inflammation and higher somatic cell count (SCC) and are mainly 

associated with clinical mastitis while the latter cause mild inflammation and lower SCC and 

are mainly associated with the incidence of subclinical mastitis (Reyher et al., 2012). Moreo-

ver, owing to bacteriocins, which are antimicrobial peptides synthesized by bacteria to compete 

against other bacteria (Nascimento et al., 2005), some beneficial effects of minor pathogens 

over major pathogens have been observed (Reyher et al., 2012). Minor pathogens include Co-

agulase-negative staphylococci (CNS), non-aureus staphylococci, C. bovis etc.; however, mi-

nor pathogen characteristic of CNS has recently been challenged (Pyörälä and Taponen, 2009). 

Major mastitis pathogens are E. coli, S. aureus, S. uberis, S. agalactiae, S. dysgalactiae etc., 

which are responsible for about 80% of the bovine mastitis cases in the UK (Bradley, 2002). 

In the following sections of this study, detailed information will be provided only for the major 

mastitis agents E. coli, S. aureus and S. uberis; and for the most commonly isolated enterococci 

from bedding materials E. faecalis and E. faecium (Gagnon et al., 2020).  
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 Streptococcus uberis 

Streptococcus uberis is a gram-positive, catalase-negative coccus that appears in chains 

(Oliver, Pighetti and Almeida, 2011). S. uberis has been traditionally accepted as an environ-

mental mastitis pathogen; however, contagious transmission outbreaks have also been shown 

in British and Dutch dairies (Davies et al., 2016; Zadoks et al., 2003). Dairy cow skin, bovine 

faeces, bedding material and farm environment are major sources of S. uberis IMIs (Unnerstad 

et al., 2009). The incidence of S. uberis appears to be higher in tie-stall barns compared to free-

stall barns (Riekerink et al., 2008). Moreover, pasture-based systems have also long suffered 

from S. uberis IMI (Lopez-Benavides et al., 2007; Olde Riekerink, Barkema and Stryhn, 2007; 

Shum et al., 2009; McDougall, 2003). Interestingly, the presence of S. uberis in the environ-

ment has been shown to positively correlate with the presence of cows which was concluded 

to result from the shedding of the bacterium in bovine faeces (Zadoks, Tikofsky and Boor, 

2005). Prevalence of S. uberis contamination is observed to vary between seasons and geo-

graphic locations, high during winter but low in summer in New Zealand and Germany (Lopez-

Benavides et al., 2007; Tenhagen et al., 2009) but the opposite in Norway and the US (Østerås, 

Sølverød and Reksen, 2006; Todhunter, Smith and Hogan, 1995; Zadoks, Tikofsky and Boor, 

2005).  

Although S. uberis IMI can occur in any cow from lactating to dry cows or from heifers to 

multiparous cows (Oliver, Pighetti and Almeida, 2011), it has been reported as more prevalent 

in older cows, before calving, during lactation and prior to drying off (Jayarao et al., 1999; 

Tenhagen et al., 2006; Phuektes et al., 2001; Zadoks et al., 2001). However, another study 

found no significant difference in S. uberis-mastitis cases according to the age of the animal 

(Petrovski et al., 2009). Some of the S. uberis IMIs that were acquired during the dry period 

were seen to develop mastitis in the next lactation (Krömker et al., 2014). The risk of S. uberis 

IMI has also been shown to be higher in those quarters that had already experienced it (Zadoks 

et al., 2001). 

The trend of S. uberis IMIs from clinical and subclinical bovine mastitis diagnosed cows in the 

UK between the years of 2012 and 2019 is shown in Figure 1-2, based on the data from VIDA 

annual reports (Surveillance Intelligence Unit, 2020). It is seen to fluctuate through these years 

with an overall average of 19.90% and 20.78% in the latest report (year 2019). It should be 

noted that VIDA annual reports do not state the prevalence in the UK as submissions were 

made voluntarily. However, in a comprehensive survey of English and Welsh dairy farms in 
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2004-2005, S. uberis was isolated in 23.5% and 13.8% of clinical and subclinical mastitis cases, 

respectively (Bradley et al., 2007). Moreover, the prevalence of S. uberis was found to be 

22.1% and 9.0% in France (Botrel et al., 2010) and Finland (Vakkamäki et al., 2017), respec-

tively, whereas the incidence of S. uberis derived clinical mastitis was 18.2% in Belgium 

(Verbeke et al., 2014). 

 

Figure 1-2. The trend of Streptococcus uberis IMIs from clinical and subclinical bovine 

mastitis diagnosed cows in the UK between the years of 2012 and 2019. On average, S. 

uberis was isolated from 19.90% of the dairy cows diagnosed with bovine mastitis in these years. 

The graph was generated based on the data from VIDA (Veterinary Investigation Diagnosis Analysis) 

annual reports between 2012 and 2019 (Surveillance Intelligence Unit, 2020), which do not indicate 

prevalence or incidence. This figure was generated in GraphPad Prism v8. 

Several clonal complexes, each comprised of a central sequence type (ST) and any closely 

related STs with a few single-locus variants around it, are shown to be related to the clinical 

and subclinical mastitis outcome (Tomita et al., 2008). Strain-specific pathogenicity of S. 

uberis has been observed across dairy cows; and pathogen factors (i.e. strain type, virulence, 

antimicrobial-resistance etc.) were concluded to be more important than host factors such as 

breed, parity, teat anatomy etc. (Tassi et al., 2013). However, differences in terms of gene 

content between S. uberis strains could not be associated with its virulence or clinical outcome 

(Hossain et al., 2015). S. uberis 0140J strain is a well-annotated bovine mastitis model organ-

ism (Ward et al., 2009). Genomic differences between 0140J strain and additional twelve S. 

uberis strains isolated from dairy cows diagnosed with either clinical or subclinical bovine 

mastitis in the UK were compared (Hossain et al., 2015). It was found that there was no obvious 

gene gain/loss between the strains that cause clinical or subclinical bovine mastitis. Moreover, 
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the EF20 strain, which was a previously isolated clinical case, was actually shown to be non-

virulent. It was concluded that rather than pathogen factors (i.e. virulence) alone, interaction 

with host factors (i.e. host genetic and immune status) influence the clinical status of bovine 

mastitis (Hossain et al., 2015), which has recently been shown in vivo experiments as well 

(Archer et al., 2020). 

When the S. uberis 0140J strain was first annotated the following proteins were suggested as 

virulence factors: fibronectin-binding protein, hemolysin-like protein, C5a peptidase precursor, 

sortase A, lactoferrin binding protein, collagen-like surface-anchored protein, S. uberis adhe-

sion molecule (SUAM) and plasminogen activator (PauA) (Ward et al., 2009). However, the 

genes encoding these proteins were found to be present in the non-virulent EF20 strain as well. 

Enriched pathway comparison between virulent and non-virulent strains showed that; F0F1-

type ATP synthase, fructose and mannose inducible PTS, bacterial checkpoint-control related 

cluster and phage replication were some of the subsystems (Hossain et al., 2015).  

Although the virulence factors were present in both clinical and subclinical strains, genes en-

coding lactoferrin binding protein and collagen-like surface-anchored protein, whose negative 

mutant strains were previously shown to lose infection ability (Leigh et al., 2010), were highly 

variable in terms of DNA sequence alignment. Hence, variation in certain genes may play a 

role in the infection potential of these strains (Hossain et al., 2015). The hyaluronic acid capsule 

was another factor that was considered to be related to the infection ability of S. uberis 0140J 

in cattle (Ward et al., 2009). However, other strains missing the hyaluronic acid capsule have 

already been shown to cause bovine mastitis (Field et al., 2003). Another important difference 

between virulent 0140J and non-virulent EF-20 strains were bacteriocins which were not pre-

sent in the latter. This was concluded as a disadvantage for the non-virulent EF20 strain in 

competing with other bovine mastitis-causing strains. 

Several attempts have been made for the prevention of S. uberis IMI by killed and live bacterial 

vaccines; however, these studies have not provided successful immunization against this mas-

titis pathogen (Finch et al., 1997; Finch et al., 1994). Moreover, researchers have offered sev-

eral virulence factors that could be potential vaccine targets. Mice vaccinated with fructose-

biphosphate aldolase (FBA) and elongation factor Ts (EFTs), which are present both in the 

cytoplasm and cell wall of the organism, showed significant immunological response against 

bovine mastitis-causing S. uberis (Collado et al., 2016). SUAM and PauA proteins have been 

suggested as vaccine antigens against S. uberis IMIs as their encoding genes were highly 
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prevalent and conversed. SUAM plays a role in bacterial adhesion, internalization and persis-

tence of the organism in mammary (Almeida et al., 2006) and vaccine studies gave remarkable 

results in vitro conditions (Prado et al., 2011; Almeida et al., 2015). In another study with mice, 

a subunit vaccine containing SUAM was shown to induce a humoral immune response against 

S. uberis (Perrig et al., 2017). The role of PauA in S. uberis has been shown to be associated 

with colonization in the mammary gland (Ward et al., 2003). Vaccination with PauA protected 

the cows against S. uberis IMIs, which carry this gene; however mastitis-causing S. uberis 

strains with no PauA or modified SUAM encoding genes were also observed (Tassi et al., 

2015; Gilchrist et al., 2013; Perrig et al., 2015). 

 Escherichia coli 

Escherichia coli is a gram-negative, rod-shaped and facultative anaerobic coliform bacterium 

(Tenaillon et al., 2010). E. coli is accepted as one of the major environmental mastitis patho-

gens (Smith and Hogan, 1993). E. coli is omnipresent in the farm environment and the main 

reservoirs include dairy manure, bedding material, soil, used pasture etc. (Klaas and Zadoks, 

2018). Mastitis control plans such as the Five Point Plan (more details are given in section 1.2) 

in the UK have focused on contagious mastitis pathogens and have been successful in decreas-

ing clinical cases caused by them (Bradley, 2002). However, this control plan did not affect the 

environmental transmission route and environmental pathogens have been commonly discov-

ered in well-managed farms (Hogan et al., 1989). 

E. coli, like other environmental pathogens, frequently causes clinical mastitis rather than sub-

clinical mastitis. The trend of E. coli IMIs from clinical and subclinical bovine mastitis diag-

nosed cows in the UK between the years of 2012 and 2019 is shown in Figure 1-3, based on 

data from VIDA annual reports (Surveillance Intelligence Unit, 2020). It is seen to have fluc-

tuated through these years with an overall average of 21.66% and 26.27% in the latest report 

(year 2019). In an earlier comprehensive survey of English and Welsh dairy farms, E. coli was 

isolated in 19.8% and 3.0% of clinical and subclinical mastitis cases, respectively (Bradley et 

al., 2007). In Canada, 8.4% of the clinical mastitis cases were found to be E. coli originated 

(Riekerink et al., 2008). US studies also showed E. coli as one of the most frequently isolated 

mastitis pathogen, although coliform mastitis is less common in pasture-based dairy systems 

like in New Zealand (Oliveira, Hulland and Ruegg, 2013; Compton et al., 2007). Regional 

differences regarding the prevalence of E. coli mastitis have also been observed in a recent 

Chinese study (Yu et al., 2020). 
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Figure 1-3. The trend of Escherichia coli IMIs from clinical and subclinical bovine mastitis 

diagnosed cows in the UK between the years of 2012 and 2019. On average, E. coli was 

isolated from 21.66% of the dairy cows diagnosed with bovine mastitis in these years was. The 

graph was generated based on the data from VIDA (Veterinary Investigation Diagnosis Analysis) 

annual reports between 2012 and 2019 (Surveillance Intelligence Unit, 2020), which do not indicate 

prevalence or incidence. This figure was generated in GraphPad Prism v8. 

Acquisition of E. coli in dairy cows is greater at transition periods which are following drying 

off, just before and just after calving period due to concentration changes of the immune cells, 

the incomplete formation of keratin plug, milk cessation, physical changes in the mammary 

gland and decrease of antimicrobial level through dry cow therapy (Bradley and Green, 2004). 

Although new intramammary infections were acquired during these periods, clinical signs 

could be seen through the lactation period. E. coli has been widely accepted as a transient 

organism that is not mammary adapted (Fairbrother et al., 2015). However, the persistence of 

E. coli pathogens for up to 100 days has been shown in other studies (Bradley and Green, 2000; 

Bradley and Green, 2001a). 

E. coli is a predominant mastitis pathogen for well-managed dairy farms with low SCC 

(Bradley and Green, 2001a; Bradley and Green, 2000; Barkema et al., 1998). Incidence of E. 

coli mastitis causes a significant reduction in milk quantity and yield, especially in high pro-

ducing cows (Schukken et al., 2012; Gröhn et al., 2004). It has also been shown to result in an 

increased risk of culling especially in late occurring infections (Gröhn et al., 2005). The out-

come of E. coli mastitis can differ from mild to severe inflammation as a result of the lipopol-

ysaccharides (LPS) present in the bacterial cell wall (Günther et al., 2017). Some of the clinical 

E. coli cases can be so severe that cow welfare is hugely affected including swollen quarters, 
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high fever, dehydration, lack of appetite or even death of the animal (Burvenich et al., 2003). 

The severity of the disease is decided mainly by host factors where the performance of neutro-

phils play an important role (Burvenich et al., 2003). Most of the time host immune system can 

eliminate the infection (Ruegg, 2010); however, there are recorded recurrent and persistent 

mastitis cases caused by E. coli (Dogan et al., 2006; Döpfer et al., 1999). During severe in-

flammation of E. coli mastitis, systemic administration of fluoroquinolone or cephalosporins 

is recommended as there is a serious risk of bacteraemia (Suojala, Kaartinen and Pyörälä, 2013; 

Erskine, Wagner and DeGraves, 2003; Wenz et al., 2001).  

In a study with 82 bovine mastitis associated E. coli strains from dairy cows in Switzerland, 

the most prevalent virulence factors were found to be traT (a lipoprotein involved in serum 

resistance), fyuA (ferric yersiniabactin uptake protein) and iutA (aerobactin siderophore 

receptor) (Nüesch-Inderbinen et al., 2019). In another study with 63 bovine mastitis associated 

E. coli strains from Israeli dairy cows, lpfA (long polar fimbriae), astA (heat-stable enterotoxin 

1) and iss (increased serum survival) were found to be the most prevalent virulence factors 

(Blum and Leitner, 2013). 

E. coli J5 vaccine, which is made from a mutant E. coli strain, was created to combat coliform 

mastitis in dairy farms. E. coli J5 strain is used in vaccine formulation as it stimulates antibody 

production against a wide variety of coliform bacteria. The exact mechanism of the J5 vaccine 

is currently not known, although antibody production against LPS has long been suggested 

(Dosogne, Vangroenweghe and Burvenich, 2002). Vaccination against E. coli IMI was shown 

to reduce the incidence of clinical coliform mastitis cases in early studies (Gonzalez et al., 

1989). However, later studies did not observe any significant reduction in the occurrence of E. 

coli mastitis but did show a decrease in the severity of the disease (Wilson et al., 2007a; Gurjar 

et al., 2013). In the experimental trials from New York state, dairy cows injected with J5 coli-

form vaccines have been shown to have less milk loss and culling rates and to recover their 

milk yield performance quicker than uninjected cows (Wilson et al., 2009; Wilson et al., 

2007b; Wilson et al., 2008). 

 Staphylococcus aureus 

Staphylococcus aureus is a gram-positive, haemolytic, round-shaped, mainly catalase-positive 

and facultative aerobe bacterium (Masalha et al., 2001). S. aureus is accepted as one of the 

major mastitis pathogens due to its consequences on both cow and bulk milk SCC, milk quan-

tity and quality (Keefe, 2012). The main reservoir of S. aureus is the udder of the cow; thus, 
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there is a highly contagious transmission between the animals of the herd particularly during 

the milking process (Myllys et al., 1997). Moreover, heifers were also shown to be a significant 

source of S. aureus infection in dairy farms where horn flies were found to spread the infection 

between animals (Oliver et al., 2005; Anderson et al., 2012). In some studies, the farms with 

effective fly control measures decreased the risk of S. aureus infection (Ryman et al., 2013; 

Piepers et al., 2011). 

The trend of coagulase-positive staphylococci (CPS) IMIs from clinical and subclinical bovine 

mastitis diagnosed cows in the UK between the years of 2012 and 2019 is shown in Figure 1-4, 

based on data from VIDA annual reports (Surveillance Intelligence Unit, 2020). It is seen to 

fluctuate through these years with an overall average of 11.29% and 8.71% in the latest report 

(year 2019). In VIDA annual reports, the organisms were not specified at the species level, but 

S. aureus is known as the most common CPS isolated from dairy cows with bovine mastitis 

(Boireau et al., 2018). The exact figures about S. aureus can be obtained from a relatively old 

but comprehensive survey of English and Welsh dairy farms, where it was found in 5.2% and 

3.3% of subclinical and clinical mastitis cases, respectively (Bradley et al., 2007). However, 

the prevalence of S. aureus mastitis was quite high in some countries such as 43% in the US 

(Keefe, 2012), 74% in Canada (Riekerink et al., 2010), 62.6% in Ethiopia (Abebe et al., 2016), 

36.3% in Egypt (Algammal et al., 2020). Moreover, it was found to be the main pathogen in 

relatively early studies from European countries like Switzerland and the Netherlands 

(Poelarends et al., 2001; Schaellibaum, 1999). Moreover, there were differences in the preva-

lence of S. aureus mastitis between dairy herds of the same country or even the same region 

which was concluded to be the result of different combinations of virulence factors (Piccinini, 

Borromeo and Zecconi, 2010). 
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Figure 1-4. The trend of coagulase-positive staphylococci (CPS) IMIs from clinical and 

subclinical bovine mastitis diagnosed cows in the UK between the years of 2012 and 2019.  

On average, CPS, which includes S. aureus, was isolated from 11.29% of the dairy cows diagnosed 

with bovine mastitis in these years. The graph was generated based on the data from VIDA (Veter-

inary Investigation Diagnosis Analysis) annual reports between 2012 and 2019 (Surveillance 

Intelligence Unit, 2020), which do not indicate prevalence or incidence. This figure was generated in 

GraphPad Prism v8. 

The severity and outcome of the disease were shown to be associated with strain type of S. 

aureus (Le Maréchal et al., 2011; Haveri et al., 2007). Those with the genetic materials for 

biofilm formation can result in chronic mastitis (Cucarella et al., 2004). The treatment success 

of S. aureus infection relies on the host, pathogen and treatment procedure (Barkema, 

Schukken and Zadoks, 2006). Parity, days in milk, the infection site (rear or front quarter), 

SCC, number of the infected mammary quarter count as host factors; strain type and resistance 

profile as pathogen factors; type, route, initiation and duration of the antimicrobial therapy as 

treatment procedure were found to be highly affecting the cure rate (Barkema, Schukken and 

Zadoks, 2006). For instance, multiparity has been found to be negatively correlated with the 

treatment success in many studies (Deluyker, Van Oye and Boucher, 2005; Sol et al., 2000) 

and low SCC levels were associated with a higher chance of cure (Deluyker, Van Oye and 

Boucher, 2005; Dingwell et al., 2003). Moreover, the cure rate was higher in the front quarters 

(Deluyker, Van Oye and Boucher, 2005; Dingwell et al., 2003) and lower amongst the cows 

infected by multiple quarters (Østerås, Edge and Martin, 1999). Additionally, several studies 

(Deluyker, Van Oye and Boucher, 2005; Sol et al., 2000) have proved an increase in the cure 

rates during long term treatments. S. aureus IMI result in parenchyma deformation; thus, intra-

mammary and/or systemic antimicrobial administration is suggested (Erskine, Wagner and 
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DeGraves, 2003). It is not wise to follow the same routine for every S. aureus infection, because 

the treatment of some cases is not possible. Chronic S. aureus infections generally do not re-

spond to antimicrobial therapy, as the drug cannot be diffused efficiently due to several reasons 

such as fibrosis of the intramammary tissue, micro-abscesses, penetration of the bacteria with 

mammary epithelial cells and immune cells (Mullarky et al., 2001; Erskine, Wagner and 

DeGraves, 2003; Dego, Van Dijk and Nederbragt, 2002). Besides chronicity, the penicillin-

resistant S. aureus strains and multiparous cows are also not recommended to be treated but 

culled (Barkema, Schukken and Zadoks, 2006). 

Virulence factors and antimicrobial resistance (AMR) genes of S. aureus strains isolated from 

bovine mastitis cases are well studied, these studies were gathered in a very recent review 

(Pérez et al., 2020a). Biofilm adhesin polysaccharides (icaA and icaD) play a role in adherence 

to mammary gland epithelium followed by colonizing and persisting there (Otto, 2013). Staph-

ylococcal enterotoxins (sea, seb, sec, sed and see) cause inflammation and mammary tissue 

damage by inducing cytokine secretion (Fang et al., 2019). Toxic shock syndrome toxin 1 (tst) 

also leads to inflammatory reactions in the mammary gland (Kuroishi et al., 2003). S. aureus 

α- and β- hemolysins (hla and hlb) play a role in the invasion of the mammary gland and caus-

ing persistent infection (Dinges, Orwin and Schlievert, 2000). Leukotoxin bicomponent pore-

forming complexes (lukMF’) fight against host immune defence and helps rapid colonization 

in the mammary gland (Schlotter et al., 2012). In a recent study with clinical mastitis milk 

samples from 6 countries (Argentina, Brazil, Germany, Italy, the US and South Africa); hla, 

hlb and sea were found to be the most prevalent virulence genes with values of 100%, 84.6% 

and 65.6%, respectively (Monistero et al., 2020). 

As a rule of thumb, the prevention of mastitis is more effective than treatment especially for 

contagious pathogens like S. aureus. Several approaches such as live attenuated, inactivated, 

subunit and toxoid have been applied to develop a vaccine against S. aureus IMIs (Pereira et 

al., 2011). Currently, there are two commercially available vaccines for the prevention of S. 

aureus intramammary infections, which are Lysigin® (Boehringer Ingelheim Vetmedica Inc) 

- lysed whole-cell vaccine of three most prevalent serotypes of S. aureus- in the US and Start-

vac® (Hipra) – a polyvalent inactivated vaccine - in Europe and Canada (Misra et al., 2018). 

However, they do not provide full protection for every S. aureus strain (Ma, Cocchiaro and 

Lee, 2004; Scali et al., 2015). Some studies showed significant intramammary reductions in 

the case of vaccination compared to the control group (Nickerson et al., 1999). In another study, 

no significant difference was observed in terms of prevention but the severity and duration of 
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infection were significantly affected (Middleton et al., 2006). Similar results were observed 

under the field conditions in the UK, where no significant difference in the incidence and prev-

alence of bovine mastitis was found but a significant reduction in the severity of the clinical 

cases was seen (Bradley et al., 2015). Another study with Swedish dairy herds also showed 

that there was no significant difference between commercial polyvalent vaccinated cows and 

the control group in terms of preventing mastitis problems due to S. aureus (Landin et al., 

2015).  

Control of S. aureus is also important for one health approach as livestock-associated methi-

cillin-resistant strains (LA-MRSA) have been detected in dairy farms. The first bovine mastitis 

related LA-MRSA was detected more than a decade ago in Hungary (Juhász-Kaszanyitzky et 

al., 2007), then in other European countries such as UK, Denmark, Belgium and Germany 

(Vanderhaeghen et al., 2010; Spohr et al., 2011; Kreausukon et al., 2012; García-Álvarez et 

al., 2011). Zoonotic transmission of LA-MRSA is a huge public risk, starting from dairy farm-

ers and their household (Cuny, Wieler and Witte, 2015), on the other hand, the anthroponotic 

transmission of S. aureus should not be discarded as infected livestock were shown earlier 

(Messenger, Barnes and Gray, 2014; Price et al., 2012). Moreover, the host shift of a clonal 

complex of MRSA from human to bovine was shown (Sakwinska et al., 2011). 

 Enterococcus spp.  

Enterococcus species are gram-positive, catalase and oxidase-negative, non-spore-forming and 

facultative anaerobic cocci (Ben Braïek and Smaoui, 2019). They cause enteric disorders in 

animals (Teixeira et al., 2001); moreover, they also cause bovine mastitis. The main Entero-

coccus species isolated from mastitis cases are Enterococcus faecalis, Enterococcus faecium 

and Enterococcus durans (Rossitto et al., 2002; Cameron et al., 2016). Enterococcus species 

are present in dairy farms especially in organic bedding material, bulk milk tanks or skin of the 

cows and show environmental transmission route in dairy farms (Rossitto et al., 2002; Cheng 

and Han, 2020; Petersson-Wolfe et al., 2008). Enterococcus species can cause both clinical 

and subclinical mastitis (Wu et al., 2016). 

There is limited information available about pathogenicity, shedding profile and immune re-

sponse trigger of Enterococcus species (Klaas and Zadoks, 2018). Under in vitro conditions, 

bacterial growth differences were observed between E. faecium and E. faecalis which were 

collected at various stage of the lactation cycle (Petersson-Wolfe, Wolf and Hogan, 2007). 
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Dairy cows at early lactation were shown to be more susceptible to E. faecium IMI, compared 

to late lactation cows (Petersson-Wolfe, Wolf and Hogan, 2009). 

Enterococcus spp. were found to be the reason for 3.1% and 2.4% of the subclinical and clinical 

cases in France, respectively (Botrel et al., 2010). Moreover, Enterococcus IMIs varied from 

3.3% to 15.6% amongst Turkish dairies (Erbas et al., 2016; Gürler et al., 2015). They were 

recovered from 12.8%, 16.7% and 19.4% of the bovine milk samples in Canada, Czechia and 

Lithuania, respectively (Cameron et al., 2016; Cervinkova et al., 2013; Klimienė et al., 2011). 

In a study with Belgian dairy cows, Enterococcus (26%) was found to be the second most 

commonly isolated genus from subclinical intramammary infections (Devriese et al., 1999). 

Similarly, Enterococcus was found to be the predominant agent (28%) related to clinical mas-

titis in Uganda (Kateete et al., 2013). However, it was not that common in Poland (2.8%), 

Slovakia (3.1%), Sudan (2.5%) (Krukowski et al., 2020; Ibtisam et al., 2010; Idriss et al., 

2014). Two nationwide studies in Norway and Sweden found only one and five positive En-

terococcus infections, respectively (Østerås, Sølverød and Reksen, 2006; Persson, Nyman and 

Grönlund-Andersson, 2011). In most of the countries, such as Poland (Różańska et al., 2019), 

Turkey (Kuyucuoğlu, 2011), Czechia (Cervinkova et al., 2013), Canada (Cameron et al., 

2016), Iraq (Hamzah and Kadim, 2018) etc., E. faecalis was found to be the most predominant 

species in Enterococcus spp., whereas E. faecium was in Uganda (Kateete et al., 2013) and E. 

durans in Lithuania (Klimienė et al., 2011).  

The high resistance profile amongst Enterococcus species is believed to be a result of horizon-

tal gene transfer (Hershberger et al., 2005) which has been shown in vitro (Eaton and Gasson, 

2001) and in vivo studies (Lester et al., 2006). Pathogenicity of E. faecalis is associated with 

biofilm formation (Elhadidy and Zahran, 2014). It has also been shown that no matter where 

E. faecalis is isolated, in either mastitis cases, milk or bedding material, they can form biofilms 

and result in persistent infections (Elhadidy and Elsayyad, 2013; Elhadidy and Zahran, 2014). 

Moreover, endocarditis-specific antigen (efaA), enterococcal surface protein (esp), gelatinase 

(gelE), hyaluronidase (hyl), cytolysin (cylA) and collagen-binding cell wall protein (ace) were 

found to be the virulence factors. EfaA is a homolog of adhesin proteins in Streptococci (Waters 

et al., 2003). Gelatinase plays a role in hydrolyzing biological (e.g. collagen and fibrin) and 

antibacterial peptides and hence enables bacterial mitigation and spread (Franz et al., 2011; 

Waters et al., 2003; Schmidtchen et al., 2002). Hyaluronidase has been reported to be associ-

ated with adhesion, colonization, tissue damage and spread (Laverde Gomez et al., 2011). En-

terococcal surface protein has been shown to participate in adhesion, biofilm formation and 
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immune response evasion (Tendolkar, Baghdayan and Shankar, 2003; Araújo and Ferreira, 

2013). Cytolysin is an enterococci bacteriocin and plays a role in lysing target bacteria cells by 

forming a pore in their cytoplasmic membrane (Ben Braïek and Smaoui, 2019). Generally, 

virulence factors are more prevalent in E. faecalis than E. faecium (Ben Braïek and Smaoui, 

2019). The virulence factors of the E. faecium strains associated with bovine mastitis were 

found to be cytolysin (cylA), cell wall adhesins (efaAfm) and gelatinase (gelE1) (Montironi et 

al., 2020). However, the pathogenicity of Enterococcus spp. cannot be explained only with the 

presence of the virulence genes as AMR genes have also been shown playing a significant role 

(Franz et al., 2011). 

AMR of Enterococcus species such as vancomycin resistance is a growing concern within one 

health approach (Alemayehu and Hailemariam, 2020). Vancomycin-resistant enterococci 

(VRE) were detected in the late 1990s first in human but subsequently in animals as well (Kühn 

et al., 2005). Avoparcin usage in the livestock industry was thought to be associated with VRE; 

hence, animals were considered as the main reservoir of VRE (Kühn et al., 2005). After the 

ban of avoparcin use in animal farms, the prevalence of VRE colonization in human also 

dropped (van den Bogaard and Stobberingh, 2000). In Uganda, Enterococcus samples collected 

from dairy cows and farmers showed high similarities of AMR profile; but the zoonotic trans-

mission was not found (Kateete et al., 2013). The multi-resistant profile of Enterococcus spe-

cies, which were isolated from mastitis cases, were found to be highly frequent in Polish dairy 

farms (Hanna et al., 2019). Similar results were found in studies carried out in the northeast 

region of China (Gao et al., 2019) and several other regions of China, which were more repre-

sentative of the country (Yang et al., 2019a). Due to the common multidrug resistance of En-

terococcus species, the treatment decision should be given carefully. More importantly, control 

of Enterococcus IMI should be focused on the prevention of the infection by proper milking 

procedures and hygiene rules. 

1.2 Mastitis Control  

Mastitis prevention has been shown to be more beneficial than the treatment and thus was 

prioritised in the disease control programs (Dufour et al., 2012). The first mastitis control plan 

was designed in the UK called “five-point plan” (Dodd and Jackson, 1971). The five-point plan 

included hygiene of milking equipment, teat disinfection, use of dry cow therapy, prompt treat-

ment of clinical mastitis cases and culling of the chronic cases. The five-point plan successfully 

reduced the prevalence of the contagious mastitis pathogens, such as S. agalactiae and S. 
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aureus, which were a great concern at that time (Bradley, 2002). The broad application of five-

point plan decreased the incidence rate of clinical mastitis from 153 cases/100 cows/year to 40 

cases/100 cows/year in less than twenty years (Bradley, 2002). However, this was not enough 

to clear all mastitis cases as the control plan was ineffective against environmental mastitis 

pathogens, which were the new concern. The cry for the adaptation of a mastitis control pro-

gramme was partially solved by the ten-point plan of the US National Mastitis Council (NMC), 

which included management of the dairy environment. Moreover, the UK established its na-

tional scheme, Dairy Mastitis Control Plan, in 2009 that focused on individual farms (Down et 

al., 2016). This plan has achieved a 10% reduction/per year in clinical mastitis in a short time 

(Green et al., 2012). Other countries such as Canada (Reyher et al., 2011), Australia (Brightling 

et al., 2009), Netherlands (Lam et al., 2013) and Norway (Østerås and Sølverød, 2009) had 

their own national mastitis control policies which were similar to the plans outlined above. In 

terms of outcome, the Norwegian control plan decreased the incidence of clinical mastitis up 

to 60% in thirteen years (Østerås and Sølverød, 2009). The Dutch control plan was unable to 

decrease the prevalence of subclinical mastitis significantly (from 23.0% to 22.2%); however, 

it significantly reduced the incidence of clinical mastitis cases (from 33.5 to 28.1 quarter 

cases/100 cow-years) (Lam et al., 2013). Although the reduction seems lower in Dutch control 

plan, it should be noted that its observations were made in a relatively smaller time frame (5 

years) than others. Furthermore, there is a growing concern to reduce the antimicrobial usage 

in dairy farms; thus, blanket dry cow antimicrobial therapy has been replaced with the applica-

tion of teat sealants and selective antibiotic therapy in many countries (Ruegg, 2017). 

1.3 Mastitis Diagnostic Tools for Identification at Strain Level 

Strain identification is needed for several reasons which include the epidemiological examina-

tion of contagious disease, outbreak investigation, pathogenesis detection and characterisation 

of the microbial population (van Belkum et al., 2007). Several phenotypic and genotypic meth-

ods have been used to identify mastitis pathogens at the strain level. These methods should be 

assessed case by case based on certain performance criteria such as stability, typeability, dis-

criminatory power, epidemiological convenience, reproducibility, generality on the population, 

speed, accessibility, easiness and economic cost (van Belkum et al., 2007). 
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 Phenotypic Typing Methods 

Phenotypic typing tools categorize the organisms based on the similarities between character-

istics (biological or metabolic activities) expressed by them (Emerson et al., 2008). Some of 

the phenotypic typing methods are biotyping, antimicrobial susceptibility testing, serotyping, 

multilocus enzyme electrophoresis (MLEE) and MALDI-TOF.  

Biotyping is a very conventional typing technique that refers to the biochemical tests measuring 

different metabolic activities such as hydrolysis of compounds, hemolysis, hemagglutination, 

sugar fermentation etc. (Maslow, Maury Ellis and Arbeit, 1993). According to the results of 

these biochemical tests (either positive or negative reaction), the biotype is determined. Alt-

hough biotyping is a cheap, less laborious and commonly used technique, it is rarely stable and 

less reproducible (van Belkum et al., 2007). In literature, applications of biotyping can be seen 

for nearly all mastitis pathogens but most of them are outdated (Myllys et al., 1997; Aarestrup 

and Jensen, 1996; Nemeth, Muckle and Gyles, 1994). Moreover, the reliability of the biochem-

ical characterisation was found to be low even for species-level identification (Gonano and 

Winter, 2008). 

Antimicrobial susceptibility tests (aka antibiogram-based typing) are based on antimicrobial 

activity and breakpoints which quantify resistance and susceptibility (Reller et al., 2009). Broth 

dilution assay, Etest and disk diffusion are currently in use, although traditional applications 

have generally been replaced with automatic measurements such as Vitek2 (bioMerieux), Sen-

sitre ARIS 2X (Trek Diagnostic Systems), Phoneix (Becton Dickinson Diagnostic Systems), 

Walk-Away System (Beckman Coulter) and Microscan (Beckman Coulter) (Benkova, Soukup 

and Marek, 2020). It has been suggested that it should be used to guide treatment decision 

making for clinical cases (Constable and Morin, 2003). However, the association with antimi-

crobial susceptibility testing and treatment success depends on the diversity of the population 

and type of antimicrobials (Petrovski, Laven and Lopez-Villalobos, 2011). There is also a lack 

of bovine mastitis pathogen-specific protocol, as breakpoints rely on organisms isolated from 

other species rather than dairy cows, other diseases rather than mastitis or completely different 

administration route (Hoe and Ruegg, 2005; Apparao et al., 2009). 

Serotyping is another phenotypic technique, which is performed by comparison of differing 

antigens expressed on the cell surface (Jenkins et al., 2017). It has been used since the very 

early times in microbiology (van Belkum et al., 2007). It has also been used to type several 

bovine mastitis pathogens such as S. aureus and E. coli (Ma, Cocchiaro and Lee, 2004; 
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Fernandes et al., 2011). Although serotyping is fast, easy and reproducible, the discriminatory 

power of this technique is fair and highly depends on the organism (Maslow, Maury Ellis and 

Arbeit, 1993). 

MLEE is a protein-based technique which is also known as isoenzyme typing (Boerlin, 1997). 

MLEE performs the typing based on mutations in the bacterial housekeeping enzymes, which 

can be observed by their electrophoretic migration patterns (Selander et al., 1986). As many 

enzymes in bacteria are polymorphous, MLEE can provide good discrimination power and 

highly reproducible results (Maslow, Maury Ellis and Arbeit, 1993). MLEE can be affirmed as 

the ancestor version of multilocus sequence typing (MLST), which uses housekeeping genes 

instead of enzymes and enables interlaboratory comparison (Maiden et al., 1998). In literature, 

there are examples of MLEE usage for the characterisation of bovine mastitis-causing S. aureus 

(Fitzgerald et al., 1997). 

MALDI-TOF is another commonly used phenotypic typing technique based on the proteome, 

which means the set of proteins encoded in an organism (Tyers and Mann, 2003). MALDI-

TOF will be discussed comprehensively later in this thesis (section 1.4).  

 Genotypic Typing Methods 

1.3.2.1 Ribotyping 

Ribotyping is one of the molecular techniques which identifies bacterial sub-species by using 

the ribosomal RNA genes’ pattern (Caballero, Trugo and Finglas, 2003). In this technique, the 

genome of the organism is first digested with the family of type-II restriction enzymes and then 

electrophoresed. After electrophoresis, it is taken to the Southern blot transfer and hybridized 

with a radiolabelled ribosomal operon probe. The ribotyping profile of the organism is then 

visualised by autoradiography (Bouchet, Huot and Goldstein, 2008). All bacteria contain 

unique ribosomal genes, and this differs from each other; however, it provides less discrimina-

tory power at strain level (Bouchet, Huot and Goldstein, 2008). Moreover, the restriction en-

zyme selection greatly affects the discrimination success of the analysis (Daly et al., 1999). In 

literature, there are ribotyping technique applications for the identification of bovine mastitis 

pathogens. These studies were mostly for epidemiological purposes, for instance, the geograph-

ical variation of S. aureus in Nordic countries (Aarestrup et al., 1997), the distinction of S. 

agalactiae between bovine and human sources (Dogan et al., 2005; Sukhnanand et al., 2005), 

the distinction of S. canis between bovine and cat sources (Tikofsky and Zadoks, 2005), 
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proportioning of S. uberis in environmental sources (Zadoks, Tikofsky and Boor, 2005) or 

strain isolations of CNS species such as S. chromogenes, S. epidermis, S. simulans from differ-

ent extramammary sites of the cows (Taponen, Björkroth and Pyörälä, 2008). 

1.3.2.2 Pulse Field Gel Electrophoresis (PFGE) 

PFGE is another genotypic tool that uses restriction enzymes to cut DNA at several sites and 

then compares the fragments following electrophoresis (Sharma-Kuinkel, Rude and Fowler, 

2016). PFGE has been successfully applied to differentiate strains of bovine mastitis pathogens 

including E. coli, S. aureus and S. uberis (Douglas et al., 2000; Blum and Leitner, 2013; Lim 

et al., 2004). However, interlaboratory reproducibility of PFGE was shown to be low; therefore 

standardisation of the technique is greatly needed (te Witt et al., 2010). Currently, standardized 

PFGE protocols are limited to foodborne pathogens only (Gerner-Smidt et al., 2006). PFGE is 

suggested to be used for studying the outbreaks limited in a geographical area only, not for 

global epidemiology (Maiden et al., 1998). 

1.3.2.3 PCR Based Diagnostic Tools 

Randomly amplified polymorphic DNA typing (RAPD) is a PCR technique, but unlike tradi-

tional PCR, the DNA segments are randomly amplified as the name suggests (Williams et al., 

1990). It has been widely used as a molecular screening tool due to its cheap price, speed and 

ease to conduct (Munoz and Zadoks, 2007). RAPD is a comparative typing technique; moreo-

ver, loci identification for primer binding is not needed. However, the discriminatory power of 

RAPD-typing was found to be related to the primers used in the analysis (Munoz and Zadoks, 

2007). Furthermore, the lack of standardization causes poor reproducibility of the results be-

tween laboratories or at different time points (Singh et al., 2009). In terms of screening bovine 

mastitis pathogens, RAPD has been used for S. aureus, S. uberis, S. agalactiae, S. dysgalactiae, 

Serratia spp., Klebsiella spp. and Enterobacter spp. (Zadoks et al., 2011; Gurjar et al., 2012). 

It was also employed to show distinct profiles of S. agalactiae from the bovine and human 

origin (Martinez et al., 2000). There were no significant differences found in the profiles of S. 

aureus isolated from bovine and human by using RAPD (Reinoso et al., 2004). 

Enterobacterial repetitive intergenic consensus (ERIC), repetitive DNA sequence PCR (rep-

PCR) and amplified fragment length polymorphism (AFLP) are other PCR based techniques 

that have been used to type bovine mastitis-causing E. coli, Klebsiella spp. and CNS strains, 

respectively (Bradley and Green, 2001a; Döpfer et al., 1999; Paulin-Curlee et al., 2007; 
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Piessens et al., 2011). These comparative typing techniques rely on defining the similar or 

dissimilar electrophoretic pattern of the isolates. However, they do not provide any genetic 

information for evolutionary comparisons and cannot be used for wider epidemiological anal-

ysis such as comparison of studies no matter when, where and by whom the analysis is per-

formed. To overcome these issues, alternative library typing techniques are needed (Zadoks 

and Schukken, 2006).  

Multiple locus variable-number tandem repeat analysis (MLVA) is another PCR-based typing 

technique that is based on variabilities on repetitive DNA (van Belkum et al., 2007). Like 

MLST (section 1.3.2.4), it is a target-specific technique, and similarly, a database was devel-

oped but did not become as popular as MLST databases. MLVA was used to strain-type mas-

titis related S. aureus and S. uberis (Gilbert et al., 2006b; Gilbert et al., 2006a). 

1.3.2.4 Multilocus Sequence Typing (MLST) 

MLST is a genotypic technique, which checks the variation of nucleotide sequences in certain 

sets of housekeeping genes, and was developed as a solution to track the epidemiology of the 

pathogen (Urwin and Maiden, 2003). Each unique sequence of the housekeeping genes are 

given allele numbers and a combination of these numbers define the sequence type (ST); which 

are stored in online databases (https://pubmlst.org/) (Maiden et al., 1998). MLST has been very 

popular to investigate microbe biology and bacteria evolution, and can commonly be used for 

the identification of bovine mastitis pathogens at the sub-species level. Online MLST databases 

are available for the following major mastitis pathogens: E. coli (Zhou et al., 2020), S. uberis 

(Coffey et al., 2006), S. aureus (Enright et al., 2000), S. dysgalactiae (McMillan et al., 2010), 

S. agalactiae (Jones et al., 2003) E. faecalis (Ruiz-Garbajosa et al., 2006), E. faecium (Homan 

et al., 2002) etc. Additionally, more than one MLST schemes have been generated, which uses 

different sets of housekeeping genes, for some species such as E. coli and S. uberis (Jolley and 

Maiden, 2010; Zadoks, Schukken and Wiedmann, 2005; Coffey et al., 2006). The STs isolated 

from mastitis pathogens can be compared within the herds, between countries and with the STs 

acquired from other sources or infections (Katholm and Rattenborg, 2009; Zadoks, Schukken 

and Wiedmann, 2005). In this thesis, MLST has been performed in Chapters 3 and 4. 

1.3.2.5 Whole-Genome SNP Typing (wgSNP) 

SNP represents the single nucleotide variation that occurs in a certain position of a genomic 

part with respect to a reference, whereas wgSNP refers to the whole genome (Schürch et al., 
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2018). Hence, the selection of a reference genome is vital for the resolution of the analysis as 

any genomic information that is absent will be excluded from the comparison analysis (Schürch 

et al., 2018). One of the disadvantages of reference-based SNP analysis is that comparison with 

the literature is not possible if studies use a different reference (Schürch et al., 2018). Refer-

ence-based SNP mapping can be performed by several workflows such as Snippy, SNVpyl or 

CSIPhylogeny (Kaas et al., 2014; Katz et al., 2017; Petkau et al., 2017; Seemann, 2015). How-

ever, reference-free SNP analysis is also possible (Gardner and Hall, 2013). 

With the recent advances and the rising popularity of the next genome sequencing, wgSNP 

typing has also been applied to mastitis agents. For instance; it has been recently used to explore 

virulence profiles of S. aureus strains isolated from Russian and Danish dairy farms (Fursova 

et al., 2020; Ronco et al., 2018). Another SNP typing study with bovine mastitis-causing S. 

aureus concluded the importance of variation on the severity of the disease besides virulence 

genes (Rocha et al., 2019). There were other SNP typing studies with other mastitis pathogens 

including E. coli (Blum et al., 2015; Richards et al., 2015), S. uberis (Hossain et al., 2015) and 

M. bovis (Parker et al., 2016). In this thesis, wgSNP typing has been performed in Chapter 4. 

1.4 Matrix-Assisted Laser Desorption/Ionization-Time of Flight 

Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) has been offered 

as an alternative to biochemical tests and DNA-based techniques due to its straightforward 

sample preparation, quick analysis, high-throughput capabilities and economical price per run. 

On average, conventional methods need about one week depending on the biochemical tests 

(Barreiro et al., 2010) compared to minutes for MALDI-TOF after 1 day of initial bacterial 

growth (Mellmann et al., 2008). Furthermore, interpretation of the biochemical tests are sub-

jective and mistyping of the mastitis pathogen is common (Bes et al., 2000; Taponen et al., 

2006). It was also found to be highly reproducible for the identification of bacterial species by 

interlaboratory experiments (Mellmann et al., 2009). 

MALDI-TOF technique is based on the movement of the sample molecules from either whole 

cell culture or protein lysate extract mixed with a highly absorbing matrix compound. A laser 

is used to ionise and desorb the molecules, which are then accelerated by the electromagnetic 

field in the direction of the detector (Hillenkamp et al., 1991). The arrival time for the particles 

depends on the molecular weight, as the heavier proteins will arrive later than lighter ones. The 

pattern of the isolate is generated after the same procedure is repeated multiple times 

(Coombes, Baggerly and Morris, 2007; Arneberg et al., 2007). The location and intensity of 



21 
 

all peaks are checked against a reference database to detect the best match. Thus, a unique 

proteome pattern of the analysed organism is found (Ryzhov and Fenselau, 2001). 

MALDI-TOF MS was invented through the studies of Franz Hillenkamp and his colleagues on 

the late 1980s (Karas and Hillenkamp, 1988; Karas et al., 1987). In the second half of the 

1990s, bacteria identification using MALDI-TOF MS became possible. Holland and colleagues 

were the first scientists to show the ability of MALDI-TOF analysis of whole cells for bacteria 

identification (Holland et al., 1996). In the same year, Krishnamurty and Ross were able to 

differentiate Bacillus sp. at the sub-species level, and then Claydon and colleagues were also 

able to identify Staphylococcus spp. and E. coli at species and strain level, respectively 

(Krishnamurthy and Ross, 1996; Claydon et al., 1996). By 2010, MALDI-TOF was success-

fully applied to a broad spectrum of bacteria - from gram positives such as Bacillus, Listeria, 

Staphylococcus and Streptococcus; to gram negatives such as Aeromonas, Campylobacter, 

Coxiella, Francisella, Helicobacter, Neisseria and Salmonella - to identify bacteria on species 

and sub-species level (Murray, 2010). 

The promising potential of MALDI-TOF MS technology was also seen by veterinary medicine, 

where the timely diagnosis of the pathogen is vital for the treatment success of the animal 

disease (Leitner et al., 2012). By using MALDI-TOF MS, bovine mastitis pathogens including 

S. aureus, S. agalactiae and CNS were identified accurately and 8 times quicker than conven-

tional techniques (Barreiro et al., 2010). MALDI-TOF MS were able to identify almost 90% 

of the Corynebacterium spp. isolated from dairy animals diagnosed with subclinical mastitis 

which are usually hard to specify using conventional methods (Gonçalves et al., 2014; Watts 

et al., 2000). Other mastitis pathogens E. faecalis and E. faecium isolates were identified by 

MALDI-TOF MS as good as phenotypical tests and PCR, but faster and less laborious (Werner 

et al., 2012). Another study showed the identification success of MALDI-TOF MS for bovine 

mastitis-causing CNS with an accuracy of 95.4% (Tomazi et al., 2014). In another study with 

CNS, the accuracy and typeability of MALDI-TOF were increased up to 99.5% and 92.0%, 

respectively (Cameron et al., 2017). Enterobacter spp. which were collected from milk and 

dairy environment were identified at the species level by using MALDI-TOF (Rodrigues et al., 

2017). Specification of Mycoplasma spp. from human and animal sources, including mastitic 

cows, was also shown successfully by using MALDI-TOF MS (Pereyre et al., 2013). In a com-

prehensive study, MALDI-TOF was shown to have potential of bacteria identification in vet-

erinary applications to alternate current biochemical tests with better accuracy, less laborious 

and faster (Randall et al., 2015). The higher discriminatory power of MALDI-TOF over other 
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phenotypic techniques, API and ARIS, as well as quicker analysis time and less reagent usage 

for the identification of gram-positive and gram-negative bacteria in dairy herds were shown 

(Savage et al., 2017). However, some examples have shown the insufficient discriminatory 

power of MALDI-TOF MS for some organisms including dairy-related isolates (Schabauer et 

al., 2014; Lasch et al., 2014). 

Although MALDI-TOF MS, itself, is a quick technique compared to other phenotypic and gen-

otypic diagnosis methods, it still requires the culturing step. Several attempts have been made 

to exclude culturing, and diagnose the mastitis pathogen directly from the milk. The successful 

identification of several organisms such as E. coli, E. faecalis, S. aureus, S. uberis, S. agalac-

tiae and S. dysgalatiae were reported (Barreiro et al., 2012; Barreiro et al., 2017). However, at 

least 107 CFU/ml of E. coli, 106 CFU/ml of E. faecalis and S. aureus and 108 CFU/ml of S. 

uberis, S. agalactiae and S. dysgalactiae were needed for direct identification which was way 

higher than the thresholds to label any milk sample as contaminated with these pathogens 

(Wisconsin Veterinary Diagnostic Laboratory, 2020). 

The working range of the MALDI-TOF MS (<20 kDa) is one of the drawbacks since the entire 

bacterial proteome cannot be measured in this range (Welker, 2011). The other limitation of 

MALDI-TOF is that the reference databases are mostly generated with the organisms isolated 

from human sources rather than animals (i.e. cows diagnosed with mastitis) (Tomazi et al., 

2014). This can greatly affect the identification performance of the analysis as identical origins 

increase the typeability; on the other hand, diverse sources decrease the success of MALDI-

TOF MS technology (Mahmmod et al., 2018). Moreover, the accuracy of identification could 

be improved by adding reference spectra for certain mastitis pathogens (Cameron et al., 2017). 

Although MALDI-TOF instrument providers (Bruker or Biomeriux) allow the users to cus-

tomize their databases, there is still a need for a universal database for animal pathogens. 

Although MALDI-TOF instruments have been approved only for bacterial identification; they 

are capable of typing at strain level and predicting antimicrobial susceptibility which have been 

shown by many studies (van Belkum et al., 2015; Schubert and Kostrzewa, 2017). The prote-

omic fingerprint of an organism can inform about potential virulence, pathogenicity and anti-

microbial profile which can be used to diagnose the disease, estimate the prognosis and even 

take proper treatment decisions (Coombes, Baggerly and Morris, 2007). Discriminant peaks 

between different classes can be used to learn more about certain strain or antimicrobial char-

acter of an organism (Vrioni et al., 2018).   
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1.5 Machine Learning Analyses 

Several attempts have been made for a proper definition of machine learning (ML). Tom Mitch-

ell described ML as “a computer program is said to learn from experience E concerning some 

class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E” (Mitchell, 1997). ML models are generally well-known simple 

statistic algorithms and, as the definition states, they perform their tasks by learning from the 

given data unless they are programmed how to process in detail.   

ML algorithms are divided into supervised learning, unsupervised learning, semi-supervised 

learning, reinforcement learning and recommender systems (Ayodele, 2010). In this study, as 

the categorization has been performed on the labelled data only supervised ML has been used 

so other types will not be described. Supervised ML algorithms train on a set of labelled inputs 

and learn predicting the correct output to solve mainly classification and regression problems 

(Sangaiah, 2019). In regression problems, the aim is to predict a continuous numerical outcome 

whereas in classification problems the aim is to predict the discrete values from a prelabelled 

list such as binary – yes/no, true/false, 0/1, spam/not spam, positives/negatives etc.- or mul-

ticlass, i.e. low, medium and high (Müller and Guido, 2016). In this study, the following su-

pervised learning algorithms were used to solve classification problems: Genetic algorithm 

(GA), QuickClassifier (QC), Supervised Neural Network (SNN), logistic regression (LR), lin-

ear support vector machine (LSVM), radial basis function support vector machine (RBF SVM), 

multilayer perceptron neural network (MLP NN), decision tree (DT), random forest (RF), Ada-

Boost, naïve Bayes (NB), linear discriminant analysis (LDA) and quadratic discriminant anal-

ysis (QDA). 

 MALDI-TOF Data Post-Processing Software ClinProTools 

ClinProTools is commercial software that was built by Bruker Daltonik GmbH to analyse 

MALDI-TOF mass spectra. The software calculates the recognition capacity (RC), which 

measures the discrimination success of the features between different classes, and cross-

validation (CV), which estimates the performance of the model by splitting the data into two 

sections: training, to train the model, and validation to validate it (Bruker Daltonics, 2011). It 

allows the user to tune data preparation settings such as baseline subtraction, peak definition, 

recalibration, resolution and normalization. Statistical analysis of the peaks can be calculated 

by the software. It can be used to generate a model by employing one of the four algorithms: 
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GA, SNN, QC and SVM. It should be noted that SVM was not available in the software used 

in this current work. In this study, three algorithms –GA, QC and SNN- were used according 

to ClinProTools’ manual (Bruker Daltonics, 2011).   

1.5.1.1 Genetic Algorithm 

Genetic algorithm (GA) is the application of natural evolution, which is the idea of survival of 

the fittest, in computing to replace the brute force approach (Goldberg and Holland, 1988). In 

this study, the best peak combinations, which are found as the most relevant in discriminating 

the MALDI profiles of individual classes, are selected by using GA (Bruker Daltonics, 2011). 

Although the performance of GA is high, the results will always be the closest estimation to 

the optimal solution, as one cannot guarantee the best peak combination without trying all the 

peaks (brute force approach).   

 

Figure 1-5. The workflow of Genetic Algorithm. Initial peak population is generated randomly 

followed by calculating the fitness scores of each peak. Parents are then selected and altered by 

crossover and mutation. The performance of the new peak population is rated again by k-NN per-

formance. These steps are repeated until the best performing peak population is achieved. This 

figure was generated using Lucidchart.com. 



25 
 

In ClinProTools, GA is coupled with a k-nearest neighbour (k-NN) classifier, which is used to 

determine the fitness score of the peak combinations. K-NN classifier defines the neighbours 

of query spectra based on the distance and labels the query with the class membership of the 

neighbours accordingly. The basic principles of the GA can be summarized as seen in Figure 

1-5. The first step is the initiation of the population, which is comprised of random peak com-

binations. Then, the fitness score is calculated for each peak combination in the population. In 

the next step, two-parent peak populations are selected based on their fitness scores. These two 

parents are then used to generate child peak combinations by cross-over, which enables swap-

ping the parts of the parents. Later, the child peak combinations are modified based on prede-

fined mutation probability. Finally, the child peak combinations are added to a new population 

which takes place of the old population. These steps are repeated until the best results are ob-

tained in the k-NN classifier in terms of RC and CV (Bruker Daltonics, 2011). 

1.5.1.2 Supervised Neural Network 

Supervised Neural Network (SNN) algorithm identifies unique spectra for individual classes, 

which are named as prototypes and then performs classification based on these prototypes 

(Bruker Daltonics, 2011). The determination of the prototypes is a vital process as the query 

spectra are labelled based on these prototypes only. ClinProTools randomly assigns the prede-

fined number of prototypes and then optimizes them based on their discriminatory power be-

tween classes. The determination of the prototypes could be simply explained as shown in 

Figure 1-6.   
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Figure 1-6. Prototype determination of Supervised Neural Network (SNN). SNN needs to 

identify proteomic characteristics of the classes to label new (unknown class) spectra. Hence, the 

prototypes (yellow and purple stars) and the prototype regions for two classes (yellow and purple 

circles) of the problem were defined. For illustration purposes, only two peaks were used in the axes 

but data cannot be shown in two-dimensional data space in a real-life problem. The figure was based 

on Bruker Daltonics (2011) and generated using Lucidchart.com. 

As seen in Figure 1-6, two classes are shown in two-dimensional space where the axis are two 

different peaks. However, it should be noted that real-life problem cannot be shown just in two-

dimensional data space, as there will be generally more than two peaks. Regions are assigned 

for these two classes according to their prototypes which are the subset of data points from 

original data. When a query spectrum falls in one of the classes’ regions, it is predicted with 

that class’ label (i.e. yellow or purple class).   

1.5.1.3 QuickClassifier 

QuickClassifier (QC) is a univariate sorting algorithm that separates the classes based on areas 

and statistical characteristics of the peaks. For classification, the area of each peak is calculated, 

and the area of all peaks are averaged for each class. These figures are stored together with the 

sorted values coming from statistical tests such as t-test/Anova and Wilcoxon/Kruskal-Wallis. 

The peaks are determined based on statistical character, and their values are compared to clas-

sify the query spectra. QC algorithm enables tracing back of the classification results owing to 

its simple characteristics. In the case of limited sample size, QC algorithm has been shown to 

outperform other algorithms in ClinProTools (Bruker Daltonics, 2011). The illustration of QC 

can be seen in Figure 1-7. 
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Figure 1-7. Illustration of QuickClassifier (QC).  For each class, the area under the peaks is 

calculated and stored with values gathered from statistical tests. For illustration purposes, only two 

peaks were used but in real-life problem data, it would highly likely have more peaks. The area 

under peak-1 and peak-2 was calculated for class-1 (purple) and class-2 (yellow), respectively. The 

figure was adapted based on the description from the ClinProTools manual and generated using 

Lucidchart.com. 

 Open-Source Python Environment 

To compare with ClinProTools, algorithms from the scikit-learn library in Python were used 

(Pedregosa et al., 2011). Following ML algorithms were employed in this thesis: LR, LSVM, 

RBF SVM, MLP NN, DT, RF, AdaBoost, NB, LDA and QDA. In the following sections, the 

theoretical and mathematical background of the algorithms are briefly explained.  

1.5.2.1 Logistic Regression 

Logistic regression (LR) is one of the basic but widely used ML algorithm, which often pro-

vides solutions for simple problems. LR is one of the initial ML algorithms to apply to com-

plicated problems as it is quick to finalize, requires less computational power, produces easy 

to interpret results and is possible to run in almost any language environment. It is useful for 

understanding the key and redundant features to design complicated models (Hosmer Jr, 

Lemeshow and Sturdivant, 2013). The ability to provide probabilities and classifications for 

new samples based on continuous and discrete measurements makes LR a popular ML method. 

LR aims to set the best-fitting model to define the relationship between dependent and inde-

pendent variables (Yan, Koc and Lee, 2004). This is done by computing weighted sums of 

input features with bias. Then, the logistic function estimates how probable a query belongs to 

a certain group (Géron, 2019) (see Figure 1-8). 



28 
 

 

Figure 1-8. Illustration of logistic regression. A) Basic principles of logistic regression are 

demonstrated. P(i) represents the peak of (i)th element in the dataset. In this illustration, a total of 

six peaks are shown. To compute linear predictive model (Zi); each peak is multiplied by parameter 

b (b1, b2, b3, b4, b5, b6) correspondingly, which refers to the weight of peak for the prediction, and 

bias was added to the equation. Then, this equation was converted to a probabilistic equation by 

logistic function (Ϭ(Zi)). B) Logistic function estimates the outcome probability (shown as “prob.” in 

the figure) between 0 and 1; where values equal or greater than 0.5 are appointed to the positive 

class (class 1), values lower than 0.5 are appointed to the negative class (class 2). The figures are 

generated based on information from Géron (2019) and Carin (2020). They were generated using 

Lucidchart.com. 

As the LR has less predictive power than other ML algorithms, complex problems cannot be 

solved perfectly. However, there are applications of LR on detecting AMR in several bacteria 

such as S. aureus (Rishishwar et al., 2014) and Enterobacteriaceae (Pesesky et al., 2016). LR 

has been widely used in the dairy industry as well and found to outperform DT, SVM and RF 

on predicting conception success by using insemination records (Hempstalk, McParland and 

Berry, 2015). In another dairy cow insemination study, LR, DT, RF and NB were employed to 

predict the insemination outcome of dairy cows and LR was found to be the best performer 

again (Fenlon et al., 2016). 

1.5.2.2 Support Vector Machines (SVMs) 

Vladimir Vapnik was the first scientist to come up with the idea of SVMs (Vapnik, 1995), they 

were then modified and extended to the current version by Vapnik and Cortes (Cortes and 

Vapnik, 1995). In this study two types of SVMs, linear and radial basis function, are used for 

binary classification problems (discussed in the next two sections).   

SVMs have been previously used both in AMR detection and bovine mastitis diagnosis. SVM 

was successfully used to differentiate vancomycin-resistant S. aureus isolates from susceptible 
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ones (Rishishwar et al., 2014). In another study, SVM was performed to diagnose bovine mas-

titis based on animal data such as milk yield, stage of lactation, mastitis history and milk elec-

trical conductivity (Miekley, Traulsen and Krieter, 2013). 

1.5.2.2.1 Linear Support Vector Machine (LSVM) 

Beside LR, the other most common linear classification algorithm is LSVM (Müller and Guido, 

2016). Linear classification models aim to classify training observations by determining the 

optimal hyperplane (see Figure 1-9). In LSVM, the optimal hyperplane is the one giving the 

best soft margin (distance between the hyperplane and the training observations on the edge 

which are called support vectors), which should be as maximum as possible considering the 

outliers (Géron, 2019). The soft margin is regulated by controlling the “C” hyperparameter of 

LSVM, where smaller values of “C” may result in underfitting, and higher values of “C” may 

cause overfitting (Müller and Guido, 2016).  

High dimensional problems can be solved efficiently by LSVM. As a subset of training points 

are used to generate the decision boundary, it is also computationally memory adequate 

(Pedregosa et al., 2011). LSVM generally work well in the cases of which the number of fea-

tures is greater than the number of samples (Müller and Guido, 2016); however if the difference 

is so high it may lead to overfitting (Pedregosa et al., 2011). One of the pitfalls of SVMs is that 

the probabilities of classification are not provided (Pedregosa et al., 2011). 

 

Figure 1-9. Illustration of linear support vector machine (LSVM) (left) and radial basis 

function support vector machine (RBF SVM) (right). The support vectors (purple and yellow 

stars) were determined to give the best separation between the two classes (purple and yellow 

classes). Decision boundaries were set linearly and non-linearly for LSVM and RBF SVM, respectively. 

For illustration purposes, only two peaks were used but in real-life problem, data is not always in 
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two-dimensional data space. The figure was adapted from Müller and Guido (2016) and generated 

using Lucidchart.com. 

1.5.2.2.2 Radial Basis Function Support Vector Machines (RBF SVM) 

Linear models usually do not perform well enough for complex datasets, as the linear bounda-

ries offer limited decision power (Géron, 2019). Hence, LSVMs must be transformed into a 

much more powerful model by adding nonlinear character such as computing the polynomials 

of original features. However, this is not an easy task as one cannot know which features to 

add in advance or the high-dimensional transformations may be computationally demanding 

(Müller and Guido, 2016). Fortunately, this is achieved by “kernel trick”, a computation which 

provides learning about the model in high-dimensional space by computing the relationship 

between every pair of the data points without high-dimensional transformations also needing 

to be made (Géron, 2019). There are several kernel types such as polynomial, sigmoid and 

radial basis function (RBF) (Pedregosa et al., 2011). RBF kernel can generally show more 

adaptive characteristics and quicker performance than other kernels (Mueller and Massaron, 

2016). As polynomial or sigmoid kernels were not employed, they will not be detailed in this 

thesis.  

RBF kernel is also known as Gaussian kernel and can be briefly explained as the application 

of all possible polynomial degrees until the best decision boundary is found (Müller and Guido, 

2016) (see Figure 1-9). However, it should be noted that as the polynomial degree increases, 

the importance of the feature decreases (Müller and Guido, 2016). Two hyperparameters need 

tuning for the good performance of RBF SVM which are “C” and “ɣ” (gamma). Here, “C” 

hyperparameter works like the LSVM, when C value is small, the data points have less influ-

ence so the decision boundary is almost linear; and when C value is high, the data points have 

much more influence which enables bending the decision boundary (Müller and Guido, 2016). 

Gamma parameter manages the width of the Gaussian kernel and defines the importance of 

being closer in datasets. When the gamma value is small, the decision boundary will be smooth 

and increasing the gamma value results in more complex models (Müller and Guido, 2016). 

RBF SVM could be used for complex datasets where LSVM fails to perform. RBF SVM could 

be also employed for cases where the number of features is many or a few. It can handle ro-

bustly the overfitting, the noise and outliers. RBF SVM performs well as much as NNs but 

with a faster analysis time (Kubat, 2017). The computational needs of RBF were also found to 

be less than other conventional algorithms such as k-NN (Ding and Li, 2009). RBF SVM needs 
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pre-processing of the datasets and tuning of the parameters. As tree-based models (i.e. RF or 

gradient boosting) does not require that much pre-processing, RBF SVM is demanded less. 

Furthermore, it is not so easy to interpret how the prediction is performed (Müller and Guido, 

2016). 

1.5.2.3 Neural Networks (NNs) 

Linear models fail to handle non-linearities in the data; thus, more sophisticated models, such 

as NNs, are needed to provide flexible decision boundaries. NNs form the base of deep learning 

where the algorithms are inspired by the structure of the human brain (Géron, 2019). In this 

thesis, multilayer perceptrons (MLPs), which are the most basic form in the family of NN al-

gorithms, have been used (Müller and Guido, 2016). MLPs are used for classification and re-

gression problems and are the starting point of advanced deep learning. They consist of three 

main layers: an input layer, one or more hidden layers, and an output layer (Moody and Darken, 

1989) (see Figure 1-10). Similar to biological NN; the input layer behaves like a dendrite, 

which is the input of a neuron, hidden layer process the information just like the cell body and 

the output layer behaves like an axon which is the output of a neuron (Li et al., 2020).   

 

Figure 1-10. Structure of basic multilayer perceptron neural network. Multilayer perceptron 

neural network consists of an input layer, one or more hidden layers and an output layer. In this 

illustration five features of the data (shown as peaks in our study: P1, P2, P3, P4 and P5) are taken 

as an input, computed in a single hidden layer with three nodes (H1, H2 and H3) and presented as 

an output (y). The figure was adapted from Müller and Guido (2016) and generated using Lucid-

chart.com. 
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MLP can be briefly described as the improved or extended version of LR (when the sigmoid 

function is used as an activation factor), where the same working mechanism is applied but not 

only once (Géron, 2019). The weighted sums of input features are computed like linear models. 

However, the power of NNs compared to linear models comes from the activation function, 

which introduces nonlinearity to the model in the hidden layer. The results of the activation 

function are used in the weighted sum that calculates the output (see Figure 1-11). The errors 

with delta are calculated and all weights and biases are adjusted by backpropagation (Müller 

and Guido, 2016). 

 

Figure 1-11. Illustration of multilayer perceptron (MLP) neural network. A) Basic principles 

of MLP with a single hidden layer are demonstrated. Three layers – input, hidden and output - are 

shown in pink, blue and green colours, respectively. P(i) represents the peak of (i)th element in the 

dataset. In this illustration, a total of five peaks are used as input. Each peak is multiplied by its 

weight w (w1, w2, w3, w4, w5, w6) correspondingly and bias was added to each equation. Then in 

the hidden layer (blue coloured), non-linearity was introduced based on the selected activation func-

tion. Eventually, the values computed in the hidden nodes are summed and output is generated. B) 

Several activation factors can be used in the hidden layers such as sigmoid, ReLU (rectified linear 

units), tanh (hyperbolic tangent) and sign function. Sigmoid activation factor is the same function 

as in logistic regression which outputs a probability between 0 and 1. ReLU activation factor outputs 

the result if it is greater than 0, or else it outputs 0. Tanh activation factor is like sigmoid function 

but outputs between -1 and 1 instead. Sign activation factor outputs 1, 0 and -1 for positive, zero 

and negative values, respectively. The figures are generated based on the information from Géron 

(2019), and Müller and Guido (2016). The figures were generated using Lucidchart.com. 

The main hyperparameters to tune in NNs can be listed as: 

- The number of hidden layers: which is mostly one but could be increased due to the 

complexity of the problem (Panchal et al., 2011).  
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- The number of nodes in each hidden layer: there is not a specific answer for this but in 

literature different criteria are used such as; middle values between input and output 

nodes when they are drastically different, less than two times of the input nodes in order 

not to get overfitting or two-thirds of the sum of input and output nodes (Müller and 

Guido, 2016). 

- The types of activation function: the options are sigmoid, ReLU, tanh and sign activa-

tion factor (see Figure 1-11) (Müller and Guido, 2016; Pedregosa et al., 2011). 

- Learning rate: learning rate affects the speed of outcome as slow learning rates could 

last hours, days or even weeks while fast learning rates could not give decent results. 

On the other hand, if model training is performed for a long time, it may result in over-

fitting and the generalization ability of the model is lost (Géron, 2019; Pedregosa et al., 

2011).  

It should be noted that NN algorithms start to learn from randomly assigned initial weights. 

Hence, using the exact parameters with the same datasets may not result in the same outputs. 

However, this mostly applies to smaller networks whereas larger networks and properly tuned 

complexity will result in similar accuracy (Müller and Guido, 2016; Pedregosa et al., 2011).  

The superiority of NNs over other ML algorithms is that NNs can learn from large datasets and 

build more complex models when enough computation resources are given. The main draw-

back of NNs is that some models need a long time to show good performance. For NN algo-

rithms, data processing and hyperparameter tuning are needed to obtain confident results such 

as kappa values over 85% etc. Just like SVMs, NNs perform the best when the data is homog-

enous (similar measurements of the features) (Müller and Guido, 2016; Pedregosa et al., 2011). 

MLPs are successfully applied to AMR detection (Rishishwar et al., 2014). Application of 

MLPs in the dairy industry is not rare either, for instance, two hidden layer MLPs have been 

shown as the best performer to define the cows with artificial insemination difficulties 

(Grzesiak et al., 2010). MLPs have also been used to detect mastitis in dairy farms by using 

automatic milking system’s data (Sun, Samarasinghe and Jago, 2010; Wang and Samarasinghe, 

2005). 

1.5.2.4 Decision tree 

Decision tree (DT) algorithm, as the name suggests, is a tree-framed diagram and determines 

a roadmap with a final decision by asking if/else questions (Müller and Guido, 2016). It can be 
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used for solving both regression and classification problems (Géron, 2019). For a clear under-

standing of the DT, some terms are vital. The root node is the highest point where the tree 

starts, whereas the leaf node is the furthest point where no more segregation is possible. The 

nodes which are not root or leaf node are called internal nodes. The root node is the parent node 

of all other nodes (leaf and internal nodes) which are also named as a child node. Splitting is 

the categorization of root and internal nodes according to certain criteria (see Figure 1-12). 

Pruning is the removal of the branches that are redundant for the performance of the DT. The 

questions asked during the learning process of the DT are called tests, which should not be 

confused with the test data (Boehmke and Greenwell, 2019). 

 

Figure 1-12. Illustration of a decision tree. Decision boundaries are shown on the left and cor-

responding questions asked and answered to define these borders are shown on the right. Two 

classes (purple and yellow) are categorized based on the intensities of two peaks (peak-1 and peak-

2). Orange block is the parent node, the middle two blocks in the second layer are internal nodes 

and the bottom blocks are the leaves of the decision tree. In the parent node, data points were 

separated based on the intensity values of peak-1. In the internal nodes, data points were separated 

based on the intensity values of peak-2. This figure was derived from Müller and Guido (2016) and 

generated using Lucidchart.com. 

The tests should be defined accurately for higher performance. DT analyses all the probable 

tests and defines the most descriptive about the dataset. The classification could be based on 

binary features such as yes/no and true/false or numeric for continuous data (VanderPlas, 

2016). The tests can be decided by calculating different scores such as Gini impurity, infor-

mation gain, chi-square or variance reduction (for regression) (Mueller and Massaron, 2016). 

In the current work, Gini impurity, which measures the likelihood of an incorrect classification 
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(it is 0 when all training data points belong to the same class), was used as it was computation-

ally efficient (Géron, 2019).  

The most common problem with DT algorithm is overfitting. Overfitting occurs when the al-

gorithm is trained with the noise in the dataset. It can be prevented by two types of pruning 

which are pre- and post-pruning. Post-pruning is the erasing of branches that do not contain 

remarkable information after the model is built. Pre-pruning is the early prevention for the 

model based on depth in the tree, number of leaves and number of points in each node of the 

tree. It should be noted that in this thesis, only pre-pruning is applied to DT models as the 

scikit-learn package is not implemented with post-pruning (Pedregosa et al., 2011). 

Graphical representation of the process makes DT models easier to interpret (see Figure 1-12). 

However, the deeper the tree gets, it will be more confusing to do so. To prevent this, the depth 

should be defined in the pre-pruning step with the other parameters listed above (Pedregosa et 

al., 2011; Géron, 2019). 

Feature scaling (i.e. normalization and standardisation) is not needed unlike other ML algo-

rithms (e.g. SVM or ANN), and DT performs well when the features are on completely dis-

similar scales (Pedregosa et al., 2011).  

DTs have been previously used in livestock-related studies, for instance, difficult parturition in 

Irish dairy cows could be predicted (Fenlon et al., 2017). Milk content data including fat, pro-

tein and lactose levels can be provided by automated monitoring devices. This data then can 

be used handled by ML algorithms for predicting the subclinical mastitis in dairy farms. New 

Zealander researchers performed classifiers such as NB, LR and DT on such dataset to estimate 

subclinical mastitis (Ebrahimi et al., 2019; Ebrahimie et al., 2018). In other automated milking 

data study, DT was employed to diagnose clinical mastitis in Dutch dairy farms (Kamphuis et 

al., 2010). 

1.5.2.5 Random Forest 

Ensemble is an ML technique that combines several learners to build a more efficient and ac-

curate model compared to their singular use (Hastie, Tibshirani and Friedman, 2009). These 

learners are combined with two different methods: bagging and boosting. Random forest (RF) 

is a bagging algorithm (aka bootstrap aggregating); which means that it is a combination of 

multiple DT algorithms (Breiman, 2001). RF is offered as a solution for the commonly seen 

overfitting problem of DTs (Müller and Guido, 2016). The idea is that if more DTs different 
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from each other employed and performed well, less overfitting will occur by averaging the 

results of these trees. The first thing is defining the number of trees to include in RF. By the 

bootstrapping method, random samples are selected from the data points where some of them 

are selected more than once and typically one-third of them are not even selected once. By 

doing this, a new dataset as big as the original one is constructed. Then, DTs are grown up from 

the newly formed dataset which pick a random subset of features and try for the best possible 

test. This step is controlled by defining the number of the maximum number of features 

(Mueller and Massaron, 2016; Müller and Guido, 2016; Breiman, 2001). It should be noted 

that this parameter should be less than the total number of features, otherwise randomness is 

violated. The lower the number of maximum features is, the higher chance the forest is grown 

by different trees. Predictions are made in every grown DT and the final verdict is given by 

aggregating the votes (see Figure 1-13). Bootstrapping and using the aggregate for a decision 

is termed bagging (Müller and Guido, 2016). 

 

Figure 1-13. Illustration of random forest. N amount of decision trees are generated by random 

sampling, and categorization is performed in each one of them separately. Each decision tree has 

one vote, and the majorly voted class is picked as the final decision. In this particular binary classi-

fication example, the majority of the decision trees voted for Class-1 and hence is labelled with that 

class. This figure was based on Géron (2019) and generated using Lucidchart.com. 

RF is used both for regression and classification problems. It does not require pre-processing 

steps like scaling or normalization. One of the biggest advantages of RF is that missing values 

either in the training or test dataset can be tolerated (Mueller and Massaron, 2016). The other 
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superiority of RF model is that the importance of the features can be calculated as in DT but 

with more confidence (Géron, 2019). 

One of the drawbacks is RF is that visualization of multiple trees is not possible; hence, DT 

should be selected for visualisation and educational purposes. Moreover, RF models do not 

perform well on certain characteristics such as high dimensional datasets, sparse datasets and 

text datasets (Müller and Guido, 2016). 

RF has been commonly used in dairy-related studies. Liver fluke exposure in European dairy 

farms could be predicted by performing RF on bulk milk tank data (Ducheyne et al., 2015). RF 

was performed on genotype data of Polish dairy cows to predict their susceptibility towards 

mastitis (Daniel et al., 2016). In another study, RF successfully predicted IMIs between dry 

and lactation periods (Hyde et al., 2020). In another study, the main behaviours of dairy cows 

were predicted by performing several algorithms including SVM, RF and AdaBoost where RF 

had the highest performance (Riaboff et al., 2020). Moreover, RF was found to give better 

performance than other algorithms including NB and DT, for predicting the insemination out-

come in dairy cows (Shahinfar et al., 2014). 

1.5.2.6 AdaBoost 

Boosting is a method that combines the weak learners sequentially to build a more powerful 

algorithm (Hastie et al., 2009). There are several boosting methods but the most popular one 

is adaptive boosting (AdaBoost), which can be combined with linear models or NB but more 

often with DTs to solve a problem (Mueller and Massaron, 2016). As being an ensemble model 

of DTs, it may be confused with RF but there are certain differences between them. Each DT 

is grown fully in RF; however, in AdaBoost generally each tree consists of just a root and two 

leaves, which is named as “stump”. Stumps are not as good as full trees for making predictions 

of classification and are technically called weak learners. All features are used to decide in a 

full-sized tree whereas a stump can use only one feature at a time (Alpaydin, 2020). The other 

difference between RF and AdaBoost is how they treat their trees or stumps in case of voting 

for the final verdict. Each tree has the same vote in RF whereas in AdaBoost, some stumps 

have more, and some have fewer votes for the final decision (Hastie, Tibshirani and Friedman, 

2009). AdaBoost creates stumps in order so that the error made in the early stumps affects the 

following stumps. RF is generated by the independent trees which do not influence each other 

(Breiman, 2001). 
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The following steps describe briefly how the AdaBoost works; firstly, the same weight is given 

to each sample which states that all the samples are equally important. These weights for each 

sample are then adapted according to the first stump. The first stump is created by deciding the 

best feature at categorising samples (i.e., Gini impurity). The amount of vote that the first stump 

will have for the final decision is computed according to its performance of classification (see 

Figure 1-14). For this, the total error of the stump which indicates the incorrectly classified 

samples are used in a special formula. The lower the total error is, the higher the vote for the 

final decision the stump gets. After creating the first stump, the sample weight of incorrectly 

classified samples is increased while the sample weight of correctly classified samples is de-

creased. Thus, incorrectly classified samples are ensured to be considered by the following 

stump. This is the idea behind how the previous stump affect the following stump (Hastie et 

al., 2009; Mueller and Massaron, 2016; Kubat, 2017). 

 

Figure 1-14. Illustration of AdaBoost. The weak learners try to classify the data subsequently, 

and the final classification was decided based on the weight given through these iterations. In this 

example, the decision boundary for the two classes (purple and yellow) was drawn after three iter-

ations. Again, it should be noted that only two peaks were used but in real-life problem, data is not 

always in two-dimensional data space. The figure was derived from Schapire and Freund (2013) and 

generated using Lucidchart.com. 
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AdaBoost has wide applications in real-life data such as medical decisions (Thongkam et al., 

2008), genome-wide association studies (Assareh, Volkert and Li, 2012), AMR detection 

(Davis et al., 2016) etc. In the Python scikit-learn package, several parameters can be set other 

than default values but tuning the number of estimators is a good start to cope with the overfit-

ting problem (Pedregosa et al., 2011). 

1.5.2.7 Naïve Bayes (NB) 

NB is a plain but interestingly efficient model for classification problems (Zhang, 2005). The 

algorithm gets its name from Bayes’ theorem and makes naïve assumption of independence 

between input features (VanderPlas, 2016). Bayes’ theorem states the rational way of revising 

an existing state of knowledge about a parameter to a new state with given new research data 

(Green et al., 2008). 

Briefly, NB classifier works on the principle of the following steps: firstly, the probabilities of 

each feature in every class are computed. Then the product of all probabilities related to each 

resulting class is calculated. These products are normalized, and the class given with the highest 

probability is chosen as the final verdict (Kubat, 2017). NB learns from the input data by treat-

ing each feature independently and calculating basic statistics (Müller and Guido, 2016). The 

assumption of individual feature is impractical and may not fit in real-world problems. How-

ever, NB was shown to have equivalent performance to that of complex ML algorithms (Banko 

and Brill, 2001). 

NB algorithm family consists of three different classifiers in the python sci-kit learn package: 

Bernoulli, Gaussian and Multinomial (Pedregosa et al., 2011). In this current work as the data 

was continuous, Gaussian NB was used. Gaussian NB does not have any hyperparameter and 

is used for baseline classification continuous data by assuming Gaussian distribution (see Fig-

ure 1-15) (VanderPlas, 2016).  
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Figure 1-15. Illustration of Gaussian naïve Bayes.  In this illustration, purple and yellow colours 

represent Class-1 and Class-2, respectively. Gaussian curves are computed for each feature (peak) 

in the classes based on the mean and standard deviation of the peak intensities. When new data 

come, the likelihood of the features in this data in each class (Class-1 and Class-2, respectively) are 

calculated (P(Feature-n|Class-1) and P(Feature-n|Class-2)). The probability of the data belonging 

to Class-1 and Class-2 is then calculated separately based on Bayes’ theorem and higher possibility 

is defined as the class of the new data (P(new data|Class-1) and P(new data|Class-2)). The figure 

was adapted from Raizada and Lee (2013) and generated using Lucidchart.com. 

There are several advantages of selecting the NB algorithm over other classifiers. NB does not 

require huge datasets to train itself. It can handle both continuous and discrete data. It is a quick 

classifier and thus can be applied to real-time predictions. Even huge datasets can be analysed 

quicker than other algorithms (Müller and Guido, 2016). It is not restricted to binary classes 

and can easily process multiple classes. NB does not require detailed pre-processing and is 

therefore widely used in ML applications in advance of, or instead of, employing more complex 

classifiers such as NNs (Müller and Guido, 2016). 

NB has been previously used in medical diagnosis (Soni et al., 2011), AMR detection 

(Rishishwar et al., 2014), bacterial colony fingerprinting (Maeda et al., 2018), biomarker dis-

covery (Ralhan et al., 2008) and proteomics (Liu et al., 2009). It was also used to classify 

clinical mastitis bacteria according to gram status and genus, respectively (Steeneveld et al., 

2009). 

1.5.2.8 Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is a linear classification algorithm as the name suggests, 

which was developed by famous statistician Ronald Fisher in the mid-1930s (Fisher, 1936). 

LDA uses Bayes’ theorem for classification and makes the following assumptions: i) each class 
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is drawn from a multivariate Gaussian distribution, ii) classes have their own mean vector, iii) 

variance is common amongst classes (Pedregosa et al., 2011). LDA is commonly mentioned 

with principal component analysis (PCA), where they both reduce the dimensions but LDA 

focuses on maximizing the separability between classes while PCA does not have any intention 

like categorization based on class (Martínez and Kak, 2001). LDA employs all features to cre-

ate a new axis and outline the data on this new axis in a way to maximize the separation between 

these classes. A new axis is created by maximizing the distance between means of the classes 

and minimizing the scatter (variation) within each class (Pedregosa et al., 2011). 

LDA can be used for the classification of not only binary classes but also more classes when 

the measurement of features are continuous (Abdi, 2007). In literature, there are applications 

of LDA on automatic milking system data to detect mastitis in New Zealander dairy farms 

(Sun, Samarasinghe and Jago, 2010; Wang and Samarasinghe, 2005). LDA was employed to 

categorize mastitis pathogens based on farm records and was able to predict with the accuracy 

between 42% and 57% of the cases depending on the herd characteristics (Heald et al., 2000).  

The number of training sample is important for the performance of the algorithm. Although 

LDA can perform on relatively small datasets, when the number of features is greater than the 

number of samples, the performance is highly affected. One solution provided in the scikit-

learn project is a tool named “shrinkage”. Shrinkage enhances the covariance matrix where the 

empirical one is not good enough in a situation like described above. Shrinkage parameter 

could be set a value between 0 and 1, where 0 means no shrinkage (empirical value) and 1 

means complete shrinkage (update the covariance matrix by using a diagonal matrix of vari-

ances) (Pedregosa et al., 2011).  
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Figure 1-16. Illustration of linear discriminant analysis (LDA) (left) and quadratic discri-

minant analysis (QDA) (right). To categorize 2 classes (purple and yellow), decision boundaries 

were set linearly and non-linearly for LDA and QDA, respectively. For illustration purposes, only two 

peaks were used but in real-life problem, data is not always in two-dimensional data space. The 

figure was adapted from Pedregosa et al., (2011) and generated using Lucidchart.com. 

1.5.2.9 Quadratic Discriminant Analysis 

Quadratic discriminant analysis (QDA) also uses Bayes’ theorem for classification (Pedregosa 

et al., 2011). The fundamental difference between LDA and QDA is that LDA is based on a 

linear function and decision boundary is linear, instead, QDA is a nonlinear function so the 

decision boundary is not linear but quadratic (Duda, Hart and Stork, 2012) (see Figure 1-16). 

Both QDA and LDA assumes the Gaussian distribution, but in LDA one common covariance 

matrix is calculated for all classes whereas the covariance matrix is calculated for every single 

class in QDA (McLachlan, 2004). In binary classification problems when the covariances of 

the classes are equal, a linear decision boundary is drawn and LDA will be enough to solve it 

(Alpaydin, 2020). When the covariances of the classes are not equal, a non-linear boundary 

will be needed and QDA will outperform the LDA (Hastie, Tibshirani and Friedman, 2009).  

QDA performs better if the covariances of the classes are distinct. A handicap of QDA com-

pared to LDA is that QDA cannot be used as a dimension reduction technique (McLachlan, 

2004). QDA is more flexible and can handle more variance than LDA. It can be employed to 

train large datasets where LDA cannot work efficiently (Alpaydin, 2020). QDA and LDA clas-

sifiers are commonly used due to their high speed for training the data. The other advantage of 

these algorithms is that they do not have any hyperparameters to tune (Pedregosa et al., 2011). 
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 ML Applications on MALDI-TOF Data for Bacteria Strain Typing 

MALDI-TOF coupled with ML algorithms has been commonly used for bacterial strain typing. 

DT and SVM models were employed to differentiate strain types of MRSA using MALDI-

TOF profiles, providing an alternative to MLST (Wang et al., 2018b). GA, SNN and QC were 

used to discriminate major serotypes of S. pneumonia in Japan (Nakano et al., 2015). In another 

study which aimed to differentiate sub-species of Mycoplasma pneumoniae, GA was able to 

correctly identify these strains with a sensitivity and specificity of 100% (Xiao et al., 2014). 

LSVM on MALDI-TOF data of seven Bacillus spp. performed accuracy up to 90% (Al-

Masoud et al., 2014). SVM was also applied successfully to discriminate Klebsiella pneumonia 

complex members (Rodrigues et al., 2018). Chung and colleagues performed several ML al-

gorithms including RF, DT and SVM to strain type Staphylococcus haemolyticus based on 

MALDI profiles and achieved almost 85% of the area under the curve (AUC) (Chung et al., 

2019). On the other hand, not every study of MALDI-TOF coupled with ML gave satisfactory 

results. For instance, MLPs on E. faecium and S. aureus isolates were failed to differentiate in 

strain level by using MALDI-profiles (Lasch et al., 2014). 

 ML Applications on MALDI-TOF Data for Antimicrobial Susceptibility Testing 

ML algorithms have also been successfully employed to classify bacteria according to the an-

timicrobial profile based on MALDI profiles. Heterogeneous vancomycin-intermediate S. au-

reus (hVISA) could be detected by employing DT, RBF SVM, k-NN and RF, where RBF SVM 

outperformed the other algorithms (Wang et al., 2018a). Moreover, Asakura and colleagues 

designed a graphical user interface that uses ML on MALDI-profiles to classify vancomycin 

susceptible S. aureus (VSSA), vancomycin-intermediate S. aureus (VISA) and hVISA 

(Asakura et al., 2018). MALDI-profiles of MRSA and MSSA were also aimed to be differen-

tiated by using GA (Bai et al., 2017), SVM (Sogawa et al., 2017), RF (Tang et al., 2019). S. 

aureus strains used in these studies were all isolated from human patients. 

RF, NB, SVM, LR and k-NN algorithms were employed to classify carbapenem-resistant and 

susceptible K. pneumoniae isolates based on MALDI-profiles and RF was found to be the best 

performer (Huang et al., 2020). MALDI-TOF coupled with SVM was employed to differenti-

ate beta-lactamase-producing isolates of Enterobacteriaceae and Pseudomonas aeruginosa; 

however, it could only perform with up to 70% accuracy which was not sufficient enough for 

routine diagnostics (Schaumann et al., 2012). 
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MALDI-TOF MS coupled with ML has been recently performed to classify VRE and vanco-

mycin-susceptible enterococci (VSE) on the largest real-world datasets coming from human 

blood, sterile body fluid, wound, urinary and respiratory tract. In this comprehensive study, 

three ML algorithms (RF, RBF SVM and k-NN) were used where RF outperformed the other 

classifiers. The performance of RF was validated by 5-fold cross-validation and two different 

external data based on time point and location, all resulted in at least 84.00% of AUC. It was 

concluded that MALDI-TOF MS coupled with ML was more accurate (up to 30%) and quicker 

(up to 50%) than the traditional approach (Wang et al., 2020). 

1.6 Biomarker Characterisation  

MALDI-TOF spectral peaks recognized as discriminant by the trained classifiers were cross-

matched with proteins (i.e. biomarkers). These proteins were characterized by using bioinfor-

matics analyses such as Gene Ontology, 3D structural modelling and protein-protein interac-

tion, which are explained in the following sections. 

1.6.1.1 Gene Ontology 

Gene Ontology (GO) was generated to provide a common framework for the functions of gene 

products across species (Ashburner et al., 2000). GO examines the gene products in three as-

pects as molecular function, biological process and cellular component (Ashburner et al., 

2000). Molecular function represents the activity carried out by the gene product; cellular com-

ponent states where this activity occurs in the cell; and biological process describes the larger 

biological objective to which the gene product contributes (Thomas, 2017). 

It can be used for several reasons to analyse products of high throughput analysis (Gaudet et 

al., 2017) such as functional profiling of a subset of the genes (Rhee et al., 2008), evaluating 

the functional annotations of enzymes (Holliday et al., 2017), or function estimation of unan-

notated genes (Burge et al., 2012). Performing functional enrichment analysis on proteomics 

data (i.e. MALDI spectral profile) enables testing systematic measurements of the proteome 

which provides a better understanding of pathogen metabolism rather than genomics or tran-

scriptomics, as protein biomarkers are more stable for phenotyping (Chen et al., 2020). In the 

current study, GO analysis was used for two objectives i) to annotate the possible functions of 

not well known or hypothetical proteins ii) functional enrichment of the sets of gene product 

including the discriminant proteins and their first interactors. 
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1.6.1.2 Three-Dimensional (3D) Structural Modelling 

3D structural modelling is mainly used to estimate the biological functions of the proteins as 

the protein structure governs the interaction of it with ligands or other molecules (Lopez et al., 

2007). It has been divided into three categories: homology modelling (aka comparative mod-

elling) (Martí-Renom et al., 2000), threading/folding recognition (Jones, Taylort and Thornton, 

1992) and ab initio modelling (Wu, Skolnick and Zhang, 2007). In this thesis, homology mod-

elling and threading/folding recognition have been used to predict 3D protein structures. Build-

ing 3D structure of biomarkers found discriminatory by classifiers provides an understanding 

of the function of the protein in the cell and estimate the location of the binding sites that can 

be used as drug targets (Dorn et al., 2014). 

1.6.1.3 Protein-Protein Interaction (PPI) 

Traditional biochemical techniques centre the characterisation of a single protein, the results 

of which are well archived and curated at well-known protein databases (e.g. UniProt) (Kaake, 

Wang and Huang, 2010; UniProt, 2018) However, proteins mainly act as a team rather than 

individual to perform their biological functions at cellular and system levels such as signal 

transduction, transportation, DNA regulation and alternative splicing (De Las Rivas and 

Fontanillo, 2010; Berggård, Linse and James, 2007; Eisenberg et al., 2000).  

Analysing the PPI network which is consisted of biomarkers picked by the classifiers can help 

better understanding the disease-causing mechanism of the pathogen that can eventually play 

a crucial role in treatment optimization (Arabnia and Tran, 2015). In this study, PPI was used 

to outline protein complexes and learn their biological pathways in detail. 

1.7 Summary of Research Aims 

The main aim of this study was to develop a computational diagnostic solution for the rapid 

and accurate identification of pathogens at the subspecies level causing bovine mastitis, one of 

the most significant diseases in the dairy world where it causes serious economic and welfare 

issues. This study focused on the analyses of specific mastitis agents: S. uberis, E. coli, S. 

aureus, E. faecalis and E. faecium. The first three pathogens (S. uberis, E. coli and S. aureus) 

were selected, as they are the most frequently isolated bovine mastitis agents worldwide. E. 

faecalis and E. faecium are the other bovine mastitis pathogens that have been increasingly 
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isolated from recycled manure solids (aka green bedding) and bulk milk tanks (Gagnon et al., 

2020; Bradley et al., 2018).  

Since each one of the species is featured by various strains which are the significant driving 

force for the outcome of the disease, this study aimed to develop a tool for the identification of 

mastitis pathogens at the subspecies level. The current study considered to develop an inte-

grated MALDI-TOF, ML and bioinformatics platform that could provide highly accurate dis-

crimination of the mastitis pathogens at the subspecies level; moreover, to annotate correspond-

ing proteins of the discriminant peaks underlying a phenotype.  

MALDI-TOF MS was selected as the method for the identification of the pathogens because 

this technology has the ability of typing at the subspecies level and to profile AMR profiles. It 

has been widely used in identifying the proteomic fingerprints of the organisms under certain 

conditions and enables discrimination by means of multiple biomarkers pattern. Moreover, 

MALDI-TOF MS coupled with ML is capable of providing fast analysis turnout, economic 

cost per sample, easy application and resolution ability. Finally, a new bioinformatics pipeline 

was integrated which enabled the identification and characterisation of the molecular determi-

nants (i.e. their molecular function, biological process and interaction with the rest of bacterial 

proteome) underlying the studied phenotypes.  

The specific aims and objectives of this work were as follows in each chapter. 

Chapter 3: i) to investigate MALDI-TOF MS coupled with ML to discriminate between bo-

vine mastitis-causing S. uberis isolates with different modes of transmission (contagious and 

environmental), ii) to compare strain differences within and between dairy farms of the UK, 

iii) to identify proteins related to the differentiating peaks between transmission routes. 

Chapter 4: i) to understand the genotypic and phenotypic characteristics of bovine mastitis-

causing E. coli strains, ii) to identify genotypic profiles of bovine mastitis-causing E. coli iso-

lates by whole-genome sequencing, iii) to investigate MALDI-TOF MS coupled with ML to 

discriminate between bovine mastitis-causing E. coli isolates with different clinical outcome 

(clinical and subclinical) and disease phenotype (persistent and non-persistent), iv) to identify 

biomarkers related to the clinical status of bovine mastitis-causing E. coli isolates. 

Chapter 5: i) to provide a fast and more accurate alternative to standard antimicrobial suscep-

tibility tests, ii) to investigate MALDI-TOF MS coupled with ML to profile multidrug and 

benzylpenicillin resistance in bovine mastitis-causing S. aureus isolates, iii) to identify proteins 
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related to the differentiating peaks between multidrug-resistant and susceptible, and benzylpen-

icillin-resistant and susceptible isolates.  

Chapter 6: i) to test the power of MALDI-TOF MS coupled with ML for profiling AMR in a 

more general perspective (several types of antimicrobials and different organisms), ii) to iden-

tify proteins related to the differentiating peaks between resistant and susceptible profiles of E. 

faecalis, and between resistant and susceptible profiles of E. faecium.  

Additionally, in each chapter potential biomarkers related to segregate different classes were 

targeted to be identified by using bioinformatics tools. These biomarkers were supported with 

additional information about their PPI, 3D protein structures, GO and KEGG functions and 

literature mining. 
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CHAPTER 2 METHODS 

2.1 Data Source 

The data used in this current work was provided by Quality Milk Management Services 

(QMMS) Ltd under an awarded Innovate UK grant. The isolates had been originally collected 

for previous studies. S. uberis and S. aureus isolates analysed respectively in Chapters 3 and 5 

were collected for an intervention study carried out in 52 Welsh and English dairy farms by 

Green and colleagues (Green et al., 2007). E. coli isolates analysed in Chapter 4 were collected 

for an incidence and aetiology of clinical mastitis study carried out in 6 Somerset (England) 

dairy farms by Bradley and Green (Bradley and Green, 2001b). E. faecalis and E. faecium 

isolates analysed in Chapter 6 were collected in a cross-sectional study of UK farms by Bradley 

and colleagues (Bradley et al., 2018). The following information is provided from these previ-

ous works. 

2.2 Sample Preparation 

The isolates were kept in a bead-based micro preservation system (Protect, Technical Service 

Consultants, Heywood, UK) at -80˚C. These isolates had been previously identified by stand-

ard classification techniques (Bradley et al., 2007); therefore, direct whole culture MALDI-

TOF analysis was carried out to be sure about the identification at the species level. 

The samples from the bedding materials were collected by qualified workers who were previ-

ously trained about the methodology. Minimum of 10 bedding material samples (75 ml) were 

taken from different cubicles on each farm. These samples (total of at least 750 ml) were then 

combined and mixed utterly. The samples (500 ml) from the bulk milk tank, which had 1 or 2 

days of milking, were collected on the same visit. On the occasion that multiple bulk milk tanks 

were employed for the milk collection, samples were taken from all and then combined to 

represent the proportion of milk in the tanks. The samples were then instantly sent to the labor-

atory for bacteriological examination. 

The bacteriological examination of the samples collected from bedding and bulk milk per-

formed according to the following steps. First, 30 g of mixed bed materials were mixed with 

270 ml of the maximum recovery diluent in the lab blender at 100 rpm for 1 min. Serial dilu-

tions of milk and bedding material were taken into plates with Edwards agar and incubated at 
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around 37˚C between 66 to 72 hours. The thresholds of detection for Enterococcus spp. were 

defined as 10 CFU/g and 1 CFU/ml for bedding and milk samples, respectively. 

2.3 Generation of MALDI-TOF Spectra 

MALDI-TOF analysis by ethanol-formic acid extraction protocol was performed to generate 

spectra used in the current work just as previously carried out by Barreiro et al. (2010) for 

mastitis pathogens. Microorganisms were transferred into a tube containing 300 µl of molecu-

lar-grade water and vortexed. Then, 900 µl of 100% ethanol was put into the same tube and 

vortexed again. The sample was then centrifuged at 20,800 x g for 3 min. The supernatant was 

removed, and the pellet was dried at around 20˚C. Then, 50 µl of 70% formic acid and the same 

amount of 100% acetonitrile were added, mixed and centrifuged at 20,800 x g for 2 min. After 

centrifuge, 2 µl of supernatant was spotted onto the MALDI target plate and left drying. After 

drying, 2 µl of HCCA matrix solution was added onto the target plate and air-dried before 

MALDI-TOF analysis. 

For each isolate, six technical replicate profiles were generated from 240 desorptions (6 x 40 

shots). Spectra were compared visually using Biotyper 3.1 (Bruker Daltonics). The technical 

replicates with an insufficient resolution, low intensity or substantial background noise were 

removed. Technical replicates were further compared using composite correlation indices 

(CCI) to remove dissimilar spectra with CCI<0.99 (Arnold and Reilly, 1998). Each isolate with 

less than three technical replicates was removed from further analyses except Chapter 4, where 

the isolate counts were relatively small. Isolate recovery, MALDI-TOF analyses and quality 

control of the spectra were performed by QMMS Ltd. 

2.4 Pre-processing of the Data 

In Chapter 3, the data pre-processing was performed by ClinProTools (see the Methods section 

of Chapter 3). In Chapters 4, 5 and 6, it was performed by using MATLAB Bioinformatics 

Toolbox Release 2017b, The MathWorks, Inc., Natick, Massachusetts, United States. The fol-

lowing parameters were set for pre-processing to extract peak list: 

a)  Mean computing: the technical replicates of each biological isolate were averaged.  

b)  Mass range filter: the mass range of the spectra was limited to 2-12kDa. 

c)  Resampling: the data was up-sampled from 13,740 points to 20,000 points. 
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d) Baseline correction: window and step sizes of 200Da with pchip regression and quantile 

method of 0.1 was used for baseline editing. 

e) Normalization: the AUC of each spectrum was normalized to the median and post-

rescaled such that the maximum intensity was 100. 

f) Noise reduction: the spectra were denoised using least-squares polynomial with a win-

dow of 35Da and a 2-degree polynomial function.   

g) Alignment: the spectra were aligned using the peaks found at least 30% of the samples 

as references.   

h) Peak detection: over-segmentation on m/z axis set as 20Da. The height filter on intensity 

was set as 5, 10 and 1 for Chapters 4, 5 and 6, respectively. 

2.5 Spectral Features 

Statistical analyses (Anderson-Darling test, Welch’s t-test and Wilcoxon test) similar to 

ClinProTools 3.0 were performed on the peaks which met the criteria of pre-processing (Bruker 

Daltonics, 2011). Statistical tests were computed based on the peak intensities of those present 

in at least 30% of all spectra. The Anderson-Darling test was used to check the normality of 

data distribution (Anderson and Darling, 1954). Peak selection was performed based on statis-

tical tests as follows: Welch’s t-test for those showing the normal distribution and Wilcoxon 

test for others. The data provided to the ML algorithms, after peak selection, look like as shown 

in Figure 2-1. The selected peaks were further pre-processed to have zero mean and unit vari-

ance. Such peaks represented the spectral features used in the classification analysis. 
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Figure 2-1. Illustration of the MALDI-TOF spectra which were used to train machine learn-

ing algorithms.Binary classification problem is solved by providing the intensity values of selected 

peaks in each spectrum of the classes (Class-1 and Class-2). In this illustration, five peaks (shown 

as P-1, P-2, P-3, P-4 and P-5) are selected based on selection criteria and their intensity values are 

used by the algorithms. These figures are generated using Lucidchart.com. 

 

 



52 
 

2.6 Resampling for the Imbalanced Datasets 

Binary classification models are generally not designed for skewed data and perform better in 

balanced classes (Zhang, 2010; He and Garcia, 2009). In the binary classification of benzylpen-

icillin/multidrug-resistant and susceptible S. aureus isolates (Chapter 5), the datasets in the 

susceptible isolates holding class is more frequent than the resistant isolates holding one. This 

may cause a bias towards the class holding susceptible isolates. Therefore, a resampling ap-

proach was used to cope with the imbalanced dataset issue. In ML, there are four different 

approaches to cope with imbalanced datasets, which are undersampling, oversampling, the 

combination of undersampling and oversampling techniques, and ensemble learning (Lemaître, 

Nogueira and Aridas, 2017). The undersampling technique decreases the number of samples 

from the majority class as seen in Figure 2-2-A. Undersampling approaches can be categorized 

under fixed undersampling and cleaning undersampling. Fixed undersampling is a quick and 

simple way which only aims to reduce the number of samples from the majority class to ensure 

an appropriate ratio between classes. In this chapter, the fixed undersampling approach (ran-

dom under-sampler from imblearn library) (Lemaître, Nogueira and Aridas, 2017) was used to 

balance benzylpenicillin/multidrug-resistant and susceptible classes of S. aureus. Cleaning un-

dersampling instead cleans the data points according to specific empirical criteria such as 

Tomek’s links (Tomek, 1976), edited nearest neighbours (Wilson, 1972), condensed nearest 

neighbours (Hart, 1968), instance hardness threshold (Smith, Martinez and Giraud-Carrier, 

2014) etc. As these techniques have not been used in this study, they will not be discussed in 

detail.  

 

Figure 2-2. Schematic illustration of fixed undersampling and oversampling approaches. 

A) In fixed undersampling, data points of the majority class are selected randomly to ensure the 

appropriate ratio (1:1) with the minority class. B) In random oversampling, data points of the 
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minority class are repeated randomly to ensure the appropriate ratio (1:1) with the majority class. 

These figures were generated using Lucidchart.com. 

In the binary classification of antimicrobial-resistant and susceptible E. faecalis and E. faecium 

isolates (Chapter 6), the datasets in the susceptible isolates holding class and the resistant iso-

lates holding one were not balanced. This may cause a bias towards the majority class in the 

analyses. Therefore, the oversampling approach was used to cope with the imbalanced dataset 

issue. There are different oversampling algorithms such as random oversampling, over-

sampling by using ADASYN and SMOTE. The random oversampling technique creates new 

samples by random repeating the existing dataset in favour of the class that is less frequent 

(minority class) (Figure 2-2-B). This technique allows representation of the classes (both major 

and minor) are balanced. Hence, the bias of the decision boundary towards the more frequent 

class (majority class) is lessened (He et al., 2008). Adaptive synthetic sampling approach 

(ADASYN) (He et al., 2008) and synthetic minority oversampling technique (SMOTE) 

(Chawla et al., 2002) offers more advanced oversampling approaches by employing heuristic 

technique instead of repeating the existing dataset. As these techniques have not been used in 

this study, they will not be discussed in detail. In Chapter 6, random oversampling (random 

over-sampler from imblearn library) was used to balance classes (Lemaître, Nogueira and 

Aridas, 2017). 

2.7 Classification Methods 

The performance of the classifiers - LR, LSVM, RBF SVM, DT, RF, MLP NN, NB, AdaBoost, 

LDA and QDA - was investigated using the scikit-learn library in Python (Pedregosa et al., 

2011). NB, LDA and QDA do not have hyperparameters. For other classifiers, hyperparameters 

were optimized by using the following set of values: 

- LR: inverse of regularization strength C = [0.001, 0.01, 0.1, 1, 10, 100, 1000]. 

- LSVM: penalty parameter of the hinge loss error C = [0.001, 0.01, 0.1, 1, 10, 100, 1000]. 

- RBF SVM: γ (RBF kernel coefficient) = [0.0001, 0.001, 0.01, 0.1] and C (penalty pa-

rameter) = [0.001, 0.01, 0.1, 1, 10, 100, 1000]. 

- DT: maximum depth of the tree = [10, 20, 30, 50, 100]. 

- RF: number of estimators = [2, 4, 8, 16, 32, 64]. 

- MLP NN: α (regularization term) = [0.001, 0.01, 0.1, 1, 10, 100], learning rate (initial 

learning rate used to control the step size in updating the weights with Adam solver) = 

[0.001, 0.01, 0.1, 1] and hidden layer sizes = [10, 20, 40, 100, 200, 300, 400, 500]. 
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- AdaBoost: number of estimators = [2, 4, 8, 16, 32, 64]. 

2.8 Prediction Performance  

The prediction performance of each classifier was evaluated by considering the following in-

dicators, assuming P and N as the total number of positive and negative classes (see Table 2-1) 

and using T for true (correct) and F for false (wrong) predictions: 

- Sensitivity (True Positive Rate) = TP / P 

- Specificity (True Negative Rate) = TN / N 

- Accuracy = (TP+TN)/(P+N) 

- Cohen’s Kappa statistic = (po – pe)/(1-pe)  

where po= (TP+TN)/(P+N) and pe= (P*(TP+FN) + N*(FP+TN)) /(P+N)2 

Table 2-1. Positive and negative classes in the analyses. 

Analysis Positive Class Negative Class 

Chapter 3 Contagious S. uberis Environmental S. uberis 

Chapter 4 Subclinical E. coli 

Persistent E. coli 

Clinical E. coli 

Non-persistent E. coli 

Chapter 5 Resistant S. aureus Susceptible S. aureus 

Chapter 6 Resistant E. faecalis 

Resistant E. faecium 

Susceptible E. faecalis 

Susceptible E. faecium 

 

2.9 Performance Analysis 

Nested Cross-validation (NCV) (Cawley and Talbot, 2010) was employed to assess the perfor-

mance and select the hyperparameters of the proposed classifiers. In NCV, there is an outer 

loop that splits the data points into test and training sets (see Figure 2-3). For each training set, 

a grid search (inner loop) is run, to find the best hyperparameters of the classifier by using 

accuracy. Then, the test set is used to score the best hyperparameters found in the inner loop, 

showing how well the model performs on unseen data points. Thirty iterations were carried 

out, wherein each iteration an NCV was employed. The inner loop of the NCV finds the best 
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hyperparameters of each classifier (when suited) using stratified 3-fold cross-validation; the 

outer loop measures the accuracy, sensitivity, specificity and kappa by using 5-fold stratified 

cross-validation (in Chapter 4, 4-fold was used due to data size), to compare all the classifiers 

(Figure 2-3). 

 

Figure 2-3. Nested Cross-Validation (NCV) loop. The data points are first divided into 5-folds 

by the outer loop, where 1-fold is the test set and 4-folds are the training set. The training set is 

then divided into 3-folds by the inner loop, where 1-fold is the validation and the rest are the training 

folds. The hyperparameter grid search is realized in the inner loop. Accordingly, the model is trained 

and tested. 

2.10 Biomarker Characterisation  

A dedicated bioinformatics pipeline was developed to find correspondences between individual 

peaks and actual proteins of organisms. First, amino acid sequences of the proteomes listed in 

Table 2-2, were retrieved from the PATRIC database in FASTA format. The molecular weights 

of the proteins were calculated using the Compute pI/Mw tool on ExPASy (Walker, 2005). The 

proteins were filtered in the range of ± 200Da of the mass of individual peaks as initial methi-

onine cleavage, phosphorylation, additional and removal of molecules or isotopes of elements 

may change the molecular weight of a protein (Coombes, Baggerly and Morris, 2007; 

Bonissone et al., 2013). N-terminal methionine cleavage was predicted using the online pre-

diction tool TermiNator (Frottin et al., 2006) and the theoretical molecular weights of the pro-

teins were re-calculated using compute pI/Mw tool according to presence or absence of the 

initial methionine. Finally, the proteins which fell within a maximum of 0.2% difference as 
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molecular weight were cross-matched with the individual peaks as in previous studies (Yasui 

et al., 2003; Zou et al., 2011). 

Table 2-2. Model organisms used in the analyses. 

Analysis Organism 

Chapter 3 S. uberis 0140J (Ward et al., 2009) 

Chapter 4 
E. coli genomes that were sequenced in the current work 

E. coli strain MG1655 for PPI analysis 

Chapter 5 
S. aureus Newbould 305 (ATCC 29740) (Bouchard et al., 2012) 

S. aureus strain NCTC 8325 / PS 47 for PPI analysis 

Chapter 6 

E. faecalis strains isolated from bovine in PATRIC db 

E. faecalis ATCC 29212 (Minogue et al., 2014) for PPI analysis 

E. faecium strains isolated from bovine in PATRIC db 

E. faecium C68 (García-Solache and Rice, 2016) for PPI analysis 

 

To further investigate the function of the identified proteins, PPI was studied as previously 

described (Esener et al., 2018). The PPI datasets of the organisms were obtained from the 

STRING database (Szklarczyk et al., 2018) and nodes (proteins) with interaction scores lower 

than medium confidence level (interaction scores <0.400) were filtered out. The remaining 

nodes (proteins) were analysed in Cytoscape 3.7.1 (version 3.6.1 was used in Chapter 3) based 

on the following parameters: the average number of neighbours, clustering coefficient, network 

density and network heterogeneity (Shannon et al., 2003; Ravasz et al., 2002; Dong and 

Horvath, 2007).  

Resistant genes of the antimicrobial classes that were available in ResFinder v3.1 (Zankari et 

al., 2012) were obtained and used as queries in a comparative BLAST search against the pro-

teomes in Chapters 5 and 6. Gene functions were annotated by GO terms (biological process, 

molecular function and cellular component) (Ashburner et al., 2000) and KEGG pathways 

(Kanehisa and Goto, 2000) in which they were involved. Finally, to gain a more in-depth un-

derstanding of the protein functions, homology and threading 3D models for discriminant pro-

teins were built. 3D homology modelling was performed for the proteins with good quality 

templates (identity ≥30% (Xiang, 2006)) in the Swiss-Model repository (Waterhouse et al., 

2018) by using Swiss-PdbViewer (Guex, Peitsch and Schwede, 2009). 3D models of those with 
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no homology or bad quality templates (identity<30%) were generated by using the threading 

technique of I-TASSER, where GO functions were predicted as well (Yang and Zhang, 2015). 

3D models of all discriminant proteins were visualised and edited in UCSF Chimera (Pettersen 

et al., 2004). 

Homologs of the discriminant proteins were checked in the NCBI database by position-specific 

iterative basic local alignment tool (PSI-BLAST) (Schäffer et al., 2001). Functional domains 

were searched against the CDD v3.17-52910 PSSMs (Lu et al., 2020), PFAM (El-Gebali et al., 

2018) and SMART databases (Letunic and Bork, 2018). PSORTb v3.0 was used to predict 

cellular locations of the discriminant proteins (Yu et al., 2010). 
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CHAPTER 3 DISCRIMINATION OF CONTAGIOUS AND 

ENVIRONMENTAL STRAINS OF STREPTOCOCCUS UBERIS 

IN DAIRY HERDS BY MEANS OF MASS SPECTROMETRY 

AND MACHINE LEARNING 

This chapter was published in Scientific Reports (https://www.nature.com/articles/s41598-

018-35867-6) with the title above by Necati Esener, Martin J. Green, Richard D. Emes, Ben-

jamin Jowett, Peers L. Davies, Andrew J. Bradley & Tania Dottorini. Although this chapter 

was organised in standard thesis outline (introduction-methods-results-discussion) instead of 

published format (introduction-results-discussion-methods), most of the content was left un-

touched. The authors’ contributions were as follows: MJG and AJB provided the original data. 

TD, MJG, RDE and AJB conceived and designed the data analysis procedures. NE, RDE, TD, 

and BJ carried on the data analysis. TD, NE and PLD wrote the manuscript. All authors re-

viewed the manuscript. 

In Chapter 3, the main aim was to inspect MALDI-TOF MS data with ML as a method to 

discriminate bovine mastitis-causing S. uberis isolates based on their transmission dynamics; 

contagious and environmental. To this end, the commercial software, ClinProTools, was em-

ployed for data preparation (MALDI-TOF spectra) which focused on removing ‘noise’ from 

the dataset to increase the chance of classification based on solely biological information. Pre-

processed data were analysed with three supervised ML algorithms that were available in the 

ClinProTools software; GA, SNN and QC. These classifiers were run on the MALDI-TOF MS 

data both coming from individual farms (intra-farm) and overall representation of the country 

(inter-farm). GA was shown to outperform other classifiers, where the prediction performance 

was much better for intra-farm analysis rather than inter-farm. 

3.1 INTRODUCTION 

Clinical mastitis is one of the most important challenges facing the dairy industry, where it 

reduces productivity, profitability and cow welfare. Considerable progress has been made in 

understanding the epidemiology and microbiology of mastitis over the past four decades, iden-

tifying the physical origins of infection as contagious or environmental (Todhunter, Smith and 

Hogan, 1995) and temporal origins of the infection e.g. dry period or lactation (Green et al., 

2007). Coliform bacteria are almost always environmental, whilst other pathogens such as S. 

https://www.nature.com/articles/s41598-018-35867-6
https://www.nature.com/articles/s41598-018-35867-6
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aureus and S. agalactiae are typically contagious on the contrary, S. uberis can commonly 

manifest itself in both contagious and environmental forms (Zadoks and Fitzpatrick, 2009; 

Zadoks et al., 2011), and the ability to diagnose the clinical mastitis transmission pattern (con-

tagious or environmental) is an essential step to identify appropriate and effective management 

interventions for the control of the disease at a herd level. Limited financial and labour re-

sources are typically available to farmers for mastitis control. A role of the clinician is to iden-

tify the mode of transmission as early as possible, to react appropriately before costly produc-

tion losses have occurred. Currently, clinicians assess the most likely mode of transmission 

through analysis of historical data (Davies et al., 2016), visual observation of management 

practices (milking, cleaning, etc.) and knowledge of pathogens, although there is limited evi-

dence that the latter two methods are useful in determining transmission patterns in the modern 

dairy herd. This leads to inevitable delays and associated losses before a diagnosis of a new, 

emerging disease pattern can be made. Prompt diagnosis of the likely transmission route in 

case of an outbreak would allow appropriate control interventions to be implemented earlier 

and reduce deleterious production and welfare consequences of additional clinical mastitis 

cases.   

Previous studies in this field have used genomic epidemiological techniques to classify indi-

vidual bacterial strains broadly as contagious or environmental according to their observed 

patterns of clinical disease within multiple independent herds (Davies et al., 2016). These tech-

niques are useful as research tools to understand the observed patterns but are too costly and 

laborious to be practical clinical tools for clinicians. The discriminatory ability for genomic 

techniques such as MLST may also not be appropriate for the classification of bacterial isolates 

according to their clinical manifestation if those attributes which govern the transmission be-

haviour of an isolate are determined by epigenetic factors or conferred by mobile genetic ele-

ments which are rapidly exchanged between bacteria such as S. uberis (Casadesús and Low, 

2006).  

Evidence of epigenetic strain variation and strain evolution within a bacterial species has been 

described by several mechanisms, such as differential methylation resulting in phase variation 

(Seib et al., 2015) as a means for isolates of commensal and pathogenic bacterial species to 

adapt to new or changing environments. In human cases of Salmonellosis, epigenetic strain 

variation in virulence and host-pathogen interaction could be demonstrated by proteomic anal-

ysis where genomic discrimination of strains was not possible (Badie et al., 2007). When iden-

tifying the route of transmission of an individual bacterial isolate from a case of bovine mastitis, 
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a rapid proteomic technology able to characterise variation in antigenic expression related to 

virulence, such as surface protein molecules, may be more discriminatory than existing ge-

nomic techniques (Baseggio et al., 1997). 

Gel-based proteomics techniques for strain differentiation have been used for decades in many 

species and disease processes including bovine mastitis (Kallow et al., 2006). More recently, 

highly discriminatory techniques, such as MALDI-TOF MS have increased our ability to in-

vestigate the molecular epidemiology and host-pathogen interactions of many bacterial patho-

gens (Nakano et al., 2015). 

In contrast to genomic techniques, MALDI-TOF MS provides a rapid and economic means of 

identifying bacteria and is capable of strain differentiation within a bacterial species such as S. 

pneumoniae, Y. entrocolitica and M. pneumoniae (Xiao et al., 2014; Rizzardi, Wahab and 

Jernberg, 2013; Barreiro et al., 2010).  

Comparison of MALDI-TOF MS proteomic profiles may allow discrimination between bacte-

rial, isolate strains of a pathogen, such as environmental and contagious S. uberis strains which 

have acquired or evolved enhanced survival or colonisation characteristics (genetic or epige-

netic) that increase the risk of a cow to cow transmission. 

The primary aim of this study was to investigate MALDI-TOF MS data with ML as a method 

to discriminate between S. uberis isolates with different modes of transmission; contagious and 

environmental. A secondary aim of the study was to compare strain differences within and 

between farms of the UK. The final aim of the study was to identify proteins related to the 

differentiating peaks between transmission routes with bioinformatics tools. 

3.2 METHODS 

 Data Source 

The data for the present study was obtained from the previous large-scale study (Green et al., 

2007) of UK dairy herds within the scope of the control plan of mastitis. The 52 farms were 

enrolled in the National Milk Records database on the criterion that none of them had an inci-

dence of fewer than 35 cases of clinical mastitis per 100 cows per year. All study farms kept 

the animals housed during wintertime, while the seasonal and all year long calving herds were 

distributed equally within the same groups. Therefore, the selection and grouping of the farms 

represent the characteristics of commercial farms across England and Wales. The incidence 
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rate of clinical mastitis in these 52 farms were 66 per 100 cows per year as median and 75 per 

100 cows per year as mean. On average, 28% of the clinical cases were caused by S. uberis, 

ranging from 7% to 64% in individual farms. 

Milk samples of all mastitis cases were collected in a 14-month-time period starting from 

March 2004 till April 2005. Standardised operating procedure (Green et al., 2004) was applied 

to mastitis diagnosis and sample collection by farm employees. Culturing of the samples were 

executed by a commercial milk laboratory QMMS, where standard bacterial identification was 

applied (Bradley et al., 2007). 

 MLST and MALDI-TOF Datasets 

The original MALDI-TOF raw spectra had been obtained in the previous study using Bruker 

Microflex instrument, Flex Control version 3.4 (Davies et al., 2016). To better appreciate the 

nature of the available data, the following information is provided from that previous work.   

MLST: The gDNA was extracted for MLST sequencing following the protocol described in 

previous literature (Leigh et al., 2010). Clinical cases attributed to isolates of the same MLST 

occurring in different cows in the same herd within a 42-day time period were classified as 

contagious, whereas cases attributed to isolates occurring only once in any cow of any herd 

were classified as environmental. 

In this work, to extract each peak list, the following steps were applied in ClinProTools 3.0:  

a) baseline subtraction: using the Top Hat baseline (minimal baseline width: 10%) (Serra, 

1983); 

b) normalization: to the total ion count, leading to spectral intensities in the [0-1] range (Bruker 

Daltonics, 2011); 

c) recalibration of the m/z values: using as reference masses those appearing in at least 30% of 

the spectra and setting 1000 ppm as the maximal peak shift (Bruker Daltonics, 2011);  

d) total average spectrum calculation: using weighted contributions from the available repli-

cates (Morris et al., 2005);  

e) average peak list calculation: the calculation was applied to the total average spectrum rather 

than on every single spectrum (Bruker Daltonics, 2011); 

f) peak picking on the total average spectrum: using resolution: 800 for spectrum smoothing, 

signal to noise threshold: 5.00, and 0.000% relative threshold base peak to include all peaks 

(Bruker Daltonics, 2011);  
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g) peak normalization: to give the same relevance (weight) to all peaks within the classifica-

tion/prediction models (Bruker Daltonics, 2011); 

h) mass range filter: the mass range of the spectra was limited to 4-10kDa. 

 Classification Methods 

To verify if MALDI-TOF peak lists associated with isolates could be used to predict their con-

tagious or environmental nature, supervised ML technologies were used to implement classi-

fiers, i.e. software systems that, once provided with a spectrum as the input, would respond by 

predicting the most likely class (i.e. environmental or contagious) for the isolate. Being based 

on supervised learning, all methods required the availability of training datasets for model 

building (Russell and Norvig, 2010) (i.e. peak lists with the known associated classification of 

environmental or contagious from MLST), and validation datasets for assessing the perfor-

mance of the classifier. The following classification methods available in the Bruker mass 

spectrometry analysis software ClinProTools 3.0 were tested: GA, SNN and QC.  

The GA method uses the training datasets to identify a subset of peaks shared by all of the peak 

lists (referred to as “peak combination”), acting as the most effective discriminator between 

contagious and environmental isolates. The performance of each tentative combination in terms 

of discrimination effectiveness is assessed by evaluating the degree of separation of the clusters 

formed by the known contagious and environmental isolates, once that combination of peaks 

is considered. The identification of the best combination is treated as an optimisation problem 

and solved via GA (Holland, 1975). When the best peak combination is found (end of training), 

new peak lists submitted to the classifier are predicted as being contagious or environmental 

by extracting the peak combination and using it to determine which one of the two clusters is 

closest to the observation using the k-NN metric (Bruker Daltonics, 2011).  

The SNN method is based on building a classifier powered by a NN implementing a modified 

version of the supervised relevance neural gas algorithm (Hammer, Strickert and Villmann, 

2005). The peak lists of the training set are investigated by the algorithm, to identify “proto-

type” lists suitable to act as representative for the corresponding class (contagious or environ-

mental). Once trained, the network can be fed with any new peak list; the prediction will be 

based on understanding which prototypes are closer to the given list (Bruker Daltonics, 2011).   

The QC method is based on grouping the peak lists into two classes (environmental and con-

tagious), generating peak averages representative of each class, and ranking the relevance of 
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the peaks when acting as discriminators based on statistical testing. Any new observation is 

then tested on similarity against the weighted averages of each class, the most similar class 

being elected as the prediction result (Bruker Daltonics, 2011). 

 Parameters Used for the Classification Methods 

GA default parameters (as suggested by the ClinProTools software) were as follows: initial 

number of peak combinations (INPC): automatic detection; maximal number of peaks (MNP, 

maximum number of peaks to be included in the combination): 5; maximum number of gener-

ations (MNG, number of GA iterations to identify the optimal result): 50; mutation rate (MR): 

0.2; crossover rate (CR): 0.5 (mutation and crossover control how new candidate combinations 

are created starting from those tested in the current generation); number of neighbours for k-

NN (number of neighbours considered by the k-NN method to determine the distance of a new 

observation from an existing class): 5. The optimised set of GA parameters was: INPC: 125, 

MNP: 19, MNG: 50, MR: 0.2, CR: 0.5 and k-NN: 3. 

SNN parameters were MNP: automatic detection; upper limit of cycles (ULC): 1000; number 

of prototypes (NP): automatic detection. 

QC method had only one controllable parameter: MNP was set to automatic detection. 

 Prediction Performance 

The performance of the classifiers was assessed with the following metrics: 

- recognition capability (RC): the accuracy obtained when the classifier is trained with the 

entirety of the dataset and tested on the same data. 

- accuracy, kappa and other indicators from cross-validation (CV): the dataset is split into a 

training subset (containing a percentage of the available spectra) and a testing subset (con-

taining the remaining spectra). The subsets are created by randomly drawing individuals 

from the same dataset. Accuracy, kappa and any other desired indicator resulting from the 

confusion matrix are computed. The entire process is repeated n times (training and testing 

n classifiers), then the final indicators are obtained as the arithmetic means of the values 

obtained on the n confusion matrices. 

- accuracy, kappa and other indicators from external validation (EV): only one classifier is 

built, by using the entirety of the available dataset for training. Testing is performed using 

a dataset separates from the training dataset. The indicators are computed on the resulting 

confusion matrix.  
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 Methods for Cross and External Validation 

In the intra-farm analysis, classifiers were developed to operate exclusively within each farm. 

The spectra of the 19 farms selected as suitable for model building were used to implement 19 

separate classifiers (one per farm). Only data pertaining to the specific farm were used to im-

plement and validate each classifier. RC and CV performance indicators were computed for 

each farm, but no external validation was performed. CV of each classifier was performed 

using 80% of the available spectra for training and the remaining 20% for validation. The pro-

cedure was repeated 10 times, each time randomising the extraction of spectra for the training 

set. 

For inter-farm analysis CV of the global classifier was performed using 80% of the spectra 

obtained by aggregation of data from the 19 farms for training and the remaining 20% for 

validation. The procedure was repeated 10 times, each time randomising the extraction of spec-

tra for the training set. For external validation, 100% of the available aggregated spectra were 

used for training, and the spectra from the 10 holdout farms were used for validation. The entire 

procedure was repeated 10 times for the GA classifier, because of the random components 

present in the method. 

3.3 RESULTS 

 Data source 

In this work, we first assessed the geographical distribution of clinical cases. The results are 

shown in Figure 3-1, indicating spread in England and Wales, with a higher concentration to-

wards the south, and no herds in Scotland. 
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Figure 3-1. Location of the enrolled farms on the map of the United Kingdom. a) The entire 

set of 52 farms b) the 19 farms selected for building the model for intra-farm analysis. The red 

colour represents the environmental isolates of Streptococcus uberis while the green is for conta-

gious ones. The size of the circle indicates the number of Streptococcus uberis isolates in the farms. 

The figures were generated in R (R Core Team, 2019) using the sp (Pebesma and Bivand, 2005), 

mapdata (Deckmyn, 2018) and mapplots (Gerritsen, 2014) packages. 

To construct predictors/classifiers, we focused on herds containing both environmental and 

contagious S. uberis isolates. Thus, by looking at the available MLST data, we selected for the 

study only the 29 farms/herds containing both. The 23 eliminated herds consisted of 2 without 

any S. uberis isolates, 4 containing only contagious, 13 containing only environmental and 4 

containing unclassified isolates (see Figure 3-2). Amongst the 29 herds selected, 10 of them 

were reserved for external validation (holdout group) as they each featured <20 MALDI-TOF 

spectra, too few to be useful for the generation of effective classifiers. The remaining 19 farms 

(Figure 3-1b) were considered suitable for the development of classification models. 
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Figure 3-2. Process of initial farm selection and farm codes. The categorisation was done 

according to the type and presence of Streptococcus uberis (contagious and environmental) strains 

and the number of MALDI-TOF spectra. This figure was generated using Lucidchart.com. 

 Intra-Farm Analysis 

The results of the intra-farm analysis on the 19 selected farms are shown in Figure 3-3. Classi-

fiers were run with default settings as described in the Methods section. RC, CV accuracy and 

kappa are shown as arithmetic means computed from the individual results of the 19 farms 

(GA: RC= 100.00%, CV accuracy= 97.81%; CV kappa= 93.72%, sensitivity= 97.13%, speci-

ficity= 96.26%. SNN: RC= 84.00%, CV accuracy= 82.17%, CV kappa= 60.20%, sensitivity= 

87.22%, specificity= 72.65%. QC: RC= 97.32%, CV accuracy = 91.34%, CV kappa= 80.20%, 

sensitivity= 92.36%, specificity= 87.20%.). 
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Figure 3-3. Comparison of intra-farm analysis results of 19 farms using Genetic Algorithm 

(GA), Supervised Neural Network (SNN) and QuickClassifier (QC). All the results were ob-

tained by adopting the default settings for the classifying methods. This figure was generated using 

R package ggplot2 (Wickham, 2011). 

 Inter-Farm Analysis 

In inter-farm analysis, a single classifier was developed and trained on the aggregated data 

from all the available 19 farms. RC, and performance indicators from CV were computed using 

the data from the 19 farms. The RC and CV results for the inter-farm analysis are shown in 

Figure 3-4. Classifiers were run with default settings (GA: RC= 89.02%, CV accuracy= 

75.25% CV kappa= 50.59%, sensitivity = 81.75%, specificity =69.16%. SNN: RC=57.51%, 

CV accuracy= 50.11%, CV kappa= 0.65%, sensitivity= 64.09%, specificity= 36.55%. QC: 

RC= 57.92%, CV accuracy= 54.02%, CV kappa= 7.71%, sensitivity= 66.97%, specificity= 

40.59%).  

 

Figure 3-4. Comparison of inter-farm analysis results of 19 farms using Genetic Algorithm 

(GA), Supervised Neural Network (SNN) and QuickClassifier (QC).  Inter-farm analysis re-

sults are the arithmetic mean of the results from nineteen classifiers (one per farm). All the results 

were obtained by adopting the default settings for the classifying methods. This figure was generated 

using R package ggplot2 (Wickham, 2011). 
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GA was selected for further optimisation, due to better performance. With the optimised set-

tings (see Methods), the performance of the GA classifier went from 89.02% to 99.09% for 

RC, from 75.25% to 95.88% for CV accuracy, and from 50.59% to 92.62% for CV kappa. The 

probability distributions of the performance indicators for intra-farm (19 separate classifiers) 

and inter-farm (single classifier on the aggregated data from 19 farms) analysis are reported in 

Figure 3-5. 

 

Figure 3-5. Distribution of the performance indicators for analysis performed by Genetic 

Algorithm. a) intra-farm cross-validation; b) inter-farm cross-validation. Data from 19 farms. These 

figures were generated using R package beanplot (Kampstra, 2008). 

External validation was performed on the GA classifier, using the additional 10 farms in the 

holdout group. The following EV indicators were obtained: sensitivity 82.07%, specificity 

50.00%, accuracy 70.67% and Cohen’s kappa 33.80%. The probability distributions of the per-

formance indicators for inter-farm external analysis are reported in Figure 3-6. 



69 
 

 

Figure 3-6. Distribution of the performance indicators for inter-farm external validation 

analysis performed by Genetic Algorithm.  This figure was generated using R package beanplot 

(Kampstra, 2008). 

 Biomarker Characterisation 

GA classifier for the intra-farm analysis identified a set of 19 peaks shared by all the isolates, 

providing optimal discrimination between environmental and contagious isolates. The masses 

of these peaks were then compared with the molecular weights of S. uberis proteins in the 

NCBI database and 7 out of 19 could be matched to 8 proteins from the proteome (in one case, 

the molecular weight of a peak was close to two different proteins) (Figure 3-7). 

Five of the eight proteins have a known function (according to NCBI): two of them are riboso-

mal proteins, two of them bacteriocins and one is an ATP synthase protein. The remaining 

three proteins had unknown functions; two of these were hypothetical and one of them was of 

an unknown domain. Using the SMART database, the domains of the 8 proteins were found. 

The predicted three-dimensional models are shown in Figure 3-7. 
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Figure 3-7. Selected proteins of Streptococcus uberis. Top to bottom: 3D protein structure, 

protein ID, domain of the protein and molecular weight of the protein. The visualisation was car-

ried out with UCSF Chimera. 

The analysis of the PPI network for the discriminant proteins in S. uberis (Figure 3-8) showed 

that 5 out of 8 proteins (SUB1426, SUB0666, SUB0081, SUB1796 and SUB0585) share com-

mon first neighbour proteins. Interestingly, SUB0666, SUB0081 and SUB1796 were also 

found to interact with each other.
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Figure 3-8. The protein-protein interaction (PPI) network showing 153 Streptococcus uberis proteins (yellow) interacting with the 5 

discriminant proteins (red).  The visualisation was carried out with Cytoscape.
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GO functions of these 158 proteins (5 of interest and 153 connected to at least two genes of 

interest) are shown in Figure 3-9 as well as KEGG pathways they are involved in (FDR<0.05). 

 

Figure 3-9. Functional annotation of 158 proteins (5 of interest and 153 interacting with 

at least two genes of interest) in Streptococcus uberis based on Gene Ontology and KEGG 

Pathway. This figure was generated using R package tidyverse (Wickham et al., 2019). 

3.4 DISCUSSION 

Our study shows that S. uberis isolates classified according to transmission route as either con-

tagious or environmental can be discriminated by MALDI-TOF spectral profiles. The discrim-

inatory power of MALDI-TOF appears to be greater in intra-farm analysis, in particular when 

using GA, indicating the potential for the development of successful screening solutions at the 

herd level. The inter-farm classification does not work equally well, indicating that more work 
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is needed to develop screening solutions applicable at the population level. Such limited clas-

sification performance may be due to the divergent evolution of bacterial strains across farms. 

Contact between dairy farms within the UK is limited, and management practices to control 

environmental mastitis vary (e.g. different choices of bedding materials, different cleaning 

practices, different antibiotic treatment protocols). Thus, divergent evolution and hence the 

emergence of farm-specific populations of S. uberis is entirely plausible. Diversity within com-

mon bacterial species has been demonstrated, such as for Campylobacter populations between 

broiler farms in Switzerland (Wittwer et al., 2005), and S. aureus strains in bovines from dif-

ferent geographical regions in Argentina (Sordelli et al., 2000). At a much larger scale, the 

divergent evolution of Helicobacter pylori has been described in human populations migrated 

from a common origin to different geographical regions (Falush et al., 2003). Because of such 

diversity, it is possible that the same combination of discriminant peaks may not work equally 

well for all the farms.  

For the investigated data, classifiers based on the GA method showed better performance over 

SNN and QC both before and after being optimised. The results showed the presence of prote-

omic phenotypic differences between contagious and environmental strains of S. uberis along 

with previously demonstrated, identical genotypic characteristics (Leigh et al., 2010). This 

would appear plausible since selection pressure in the mammary gland is likely to force 

changes in protein expressions. 

In this study, seven of the 19 peaks identified by the GA as the most discriminant between 

environmental and contagious isolates, where found corresponding to the protein products of 

eight genes in the reference 0140J genome. While the GA is treating the identification as a 

purely mathematical optimization problem, it is interesting to see if the mapped proteins have 

some functional meaning that might explain their differentiating power. This can be done by 

looking at GO, where protein functions are annotated according to the aspects of biological 

process, molecular function and cellular component (see Methods). 

The SUB1796 protein is the ribosomal protein-L33 (RpmG) is a part of the large ribosomal 

subunit (Sharp, 1994). In GO, RpmG is annotated as follows: biological process – translation; 

molecular function – structural of constituent of ribosome; cellular component – intracellular 

and ribosome. RpmG was shown to have paralogs differing on whether it binds structural zinc 

or not, which helps bacteria survive in the case of zinc starvation (Panina, Mironov and 

Gelfand, 2003). This is an important consideration, as most of the ribosomal proteins are 
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encoded by single and highly conserved genes. Zinc has a crucial role in preserving the immune 

status of the cow and mammary gland health; its deficiency can result in an increased mastitis 

incidence (O'Rourke, 2009). RpmG was discovered to be phylogenetically distinct amongst 

bacterial species and within single genomes such as Bacillus subtilis, Lactococcus lactis, My-

coplasma pneumonia, M. genitalium, Ureaplasma ueralyticum and Streptomyces coelicolor 

(Makarova, Ponomarev and Koonin, 2001). Moreover, rpmG was demonstrated to be a core 

member of the minimal set of bacterial genes which is essential to maintain cell life (Gil et al., 

2004). RpmG was suggested as the putative drug target in three Streptococcus species (S. aga-

lactiae, S. pneumoniae, and S. pyogenes) (Georrge and Umrania, 2012), two Bordetella species 

(B. pertussis and B. parapertussis) (Zhu et al., 2008), H. pylori (Rao Reddy Neelapu and 

Pavani, 2013) and Mycobacterium tuberculosis (Fan et al., 2014). 

The SUB0081 protein is the ribosomal protein S-14 (RpsN), which involved in the following 

functions according to GO: biological process – translation, molecular function- metal ion 

binding, rRNA binding and structural constituent of the ribosome; cellular component - ribo-

some. RpsN was shown to be essential for growth and deficiency of RpsN resulted in incom-

plete 30S subunits in B. subtilis (Natori et al., 2007; Nanamiya and Kawamura, 2010), E. coli 

(Shoji et al., 2011) and S. aureus (Forsyth et al., 2002). 

The SUB0666 protein is an ATP synthase (subunit C, atpE). The GO annotation is: biological 

process - ATP hydrolysis and synthesis, and proton transport; molecular function - hydrogen 

ion transmembrane transporter and lipid binding; cellular component – plasma membrane. 

AtpE gene was targeted by several drug studies such as R207910 (Koul et al., 2007; Petrella et 

al., 2006) and Bedaquilline (Aguilar-Ayala et al., 2017) in mycobacterium species. Moreover, 

subunit C was shown to be the target site of venturicidin in several E. coli studies (Sambongi 

et al., 1999; Fillingame, Oldenburg and Fraga, 1991). 

The SUB0585 protein is the transcriptional coactivator p15 (PC4). The GO annotation is: bio-

logical process - regulation of DNA-templated transcription; molecular function - DNA bind-

ing and transcription coactivator; cellular component- no terms assigned in this category. PC4 

is also believed to have an important role in DNA repair of bacterial species since studies with 

E. coli (Wang et al., 2004) and Leptospira species (Nascimento et al., 2004) revealed that PC4 

protected the DNA during oxidative stress. 

The SUB1340 protein contains the Fic domain. No GO terms were assigned for this protein 

yet. This domain is often found in pathogenic and non-pathogenic bacteria with different 
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structures, where some families may contain conserved regulatory functions (Roy and Cherfils, 

2015). It is suggested that pathogenic bacteria secrete Fic proteins (Roy and Cherfils, 2015); 

thus, showing similar functionality to toxins in terms of fulfilling some duties in the host cell 

such as interfering with cytoskeletal, signalling and translation pathways (Roy and Cherfils, 

2015). Fic proteins participate in cell division and have been shown to synthesize folate in E. 

coli (Komano, Utsumi and Kawamukai, 1991). In turn, folate is involved in the secretion of 

enzymes controlling the bacterial pathogenesis in cattle pathogenic bacteria, Histophilus somni 

(Worby et al., 2009). 

The SUB0505 protein is a bacteriocin, which has the following GO annotation: biological pro-

cess - defence response to the bacterium, molecular function and cellular component- no terms 

assigned in these categories. Many bacteria produce tiny peptides called bacteriocins for the 

antimicrobial activity to compete with intra and interspecies over limited nutrients in the envi-

ronment (Eijsink et al., 2002). In the study by Ward et al. (2009), six bacteriocin proteins in-

cluding SUB0505 were found in the 0140J strain, where this redundancy was interpreted as the 

result of mutations. The study done by Hossain and colleagues (2015) revealed the absence of 

bacteriocin genes, including SUB0505, in the EF20 strain, which may be correlated to the non-

virulent status of the EF20 strains. The EF20 strain of S. uberis was shown to be susceptible to 

phagocytosis by bovine neutrophils in the presence of serum (Leigh and Field, 1991), and 

mammary gland macrophages were reported to have the capability of killing the EF20 strain 

in the media containing 50% skimmed milk as the source of opsonin or 10% pooled bovine 

serum (Grant and Finch, 1997). Moreover, a comparison of the EF20 strain with the reference 

strain 0140J showed EF20 growing relatively slowly in raw skimmed milk (Leigh, Field and 

Williams, 1990). In another study (Leigh and Lincoln, 1997), EF20 strains of S. uberis per-

formed a high amount of bounding plasmin activity following growth while bovine plasmino-

gen was present in the media. Bacteriocin immunity proteins prevent the bacteria from the toxic 

effect of its own bacteriocins by forming a stable compound with the receptors (Chang et al., 

2009; Kjos et al., 2010). The EntA immune protein (SUB1426) was discovered to guard the 

particular bacteria against its own class II bacteriocins (Johnsen, Fimland and Nissen-Meyer, 

2005). The studies in Streptococcus species revealed that immunity proteins play a significant 

role in antimicrobial sensitivity by regulating quorum-sensing (Wang et al., 2013; Matsumoto-

Nakano and Kuramitsu, 2006). In summary, the literature shows that bacteriocins feature high 

levels of differentiation depending on the environment and host immunity response. This may 
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justify why we found SUB0505 as a discriminating peak between environmental and conta-

gious strains of S. uberis. 

Interestingly, the protein network analysis showed that three of the identified proteins 

(SUB0081, SUB0666 and SUB1796) interact with one another. This may suggest that the func-

tions (ribosome, oxidative phosphorylation and bacterial secretion system) and importantly the 

expressions of key proteins participating in the differentiation of transmission routes of S. 

uberis, are co-ordinated. The co-ordination implies that the regulatory changes acting on these 

genes are accumulated over time across strains. Such stringency in constraining expression 

variance shifts may play an evolutionary role in the definition of different phenotypically re-

lated traits. 

The results of this study suggest that MALDI-TOF spectral analysis of clinical mastitis isolates 

could provide a rapid means of diagnosing the likely route of transmission at the early stages 

of a mastitis outbreak, as previously suggested by Archer and colleagues (Archer et al., 2017). 

Given that potentially contagious transmission of S. uberis has been identified in two-thirds of 

commercial herds and it has been found as the dominant transmission route in a third of UK 

herds (Davies et al., 2016), there is a clear need for diagnostic tools capable to discriminate 

between contagious and environmentally acquired infections. Tools based on MALDI-TOF 

spectral analysis would enable clinicians to identify the most appropriate control measures 

promptly, during an outbreak of disease. A diagnosis based on MALDI-TOF spectra has the 

potential to reduce the incidence of clinical disease, reduce associated production losses, reduce 

the costs associated with the treatment of clinical mastitis and improve the efficiency of labour 

and resource allocation on a farm. 

In conclusion, the analysis of MALDI-TOF spectral profiles through solutions powered by ML, 

and in particular GA, was shown to be useful to predict the contagious or environmental nature 

of S. uberis mastitis. Classifiers developed to target individual farms achieved 97.81% CV 

accuracy (mean over 19 farms), with a mean Cohen’s kappa coefficient of 93.72%, clearly 

indicating the possibility to deploy effective diagnostic solutions capable to distinguish be-

tween environmental and contagious S. uberis strains within a farm. Prediction performance 

was still high at cross-validation for a classifier trained and tested on the aggregation of the 

data available from the same 19 farms (CV accuracy 95.88%, kappa 92.62%) but dropped to 

accuracy 70.67% (kappa 33.80%) when the predictor was externally validated with data from 

ten additional farms left as the holdout. It is unclear at the moment if such degradation may be 



77 
 

due to inherent proteomic diversity in S. uberis populations between herds, and if performance 

may be improved by simply increasing the amount of data available to train the predictors, for 

example by including a larger number of farms, or by focusing on ensuring more variation 

within the training sets. In any case, elucidating the role of specific proteins that have been 

found discriminatory between contagious and environmental transmission, may provide in-

sights into the underpinning biology of the pathogen. The protein network analysis has also 

shown the presence of a protein functional network suggesting the existence of a constrained 

co-evolution of functional pathways and protein expression in participating in differentiating 

transmission routes of S. uberis. 

As a future endeavour, it may be interesting to investigate whether similar solutions based on 

the analysis of MALDI-TOF spectra by means of ML may be used to develop screening tools 

to identify early signs of mastitis or related risk factors. Such a research goal has not been 

covered yet by our studies, as a significantly different approach is required both in terms of 

planning and executing data collection and for validating the results. Nevertheless, the analysis 

of MALDI-TOF peaks has proven successful at discriminating between contagious and envi-

ronmental strains of infected animals, and one may wonder if discrimination between healthy 

and infected individuals may be carried out by looking at similar sets of peaks.  
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CHAPTER 4 THE USE OF MALDI-TOF TO DIFFERENTIATE 

PHENOTYPIC PROFILES OF ESCHERICHIA COLI 

ISOLATES  

This manuscript was prepared by Necati Esener, Alexandre M. Guerra, Martin J. Green, An-

drew Warry, Richard D. Emes, Andrew J. Bradley and Tania Dottorini to be submitted in an 

open journal. The authors’ contributions were as follows: MJG and AJB provided the original 

data. TD, MJG, RDE and NE conceived and designed the data analysis procedures. NE, AW 

and RDE carried on the bioinformatics analysis. NE, AMG and TD carried on the ML analysis. 

NE wrote the manuscript, RDE and TD contributed with comments and amendments. 

In Chapter 4, the main aim was to show proteomic differences between bovine mastitis-caus-

ing E. coli isolates with different clinical outcomes (clinical and subclinical) and disease phe-

notype (persistent and non-persistent). To this end, first, the persistent isolates were identified 

by using high throughput sequencing approaches. Data preparation of the MALDI-TOF spectra 

was performed by an in-house script written in MATLAB platform. Pre-processed data was 

analysed with ten supervised ML algorithms that were available in the sci-kit learn library in 

Python: LR, LSVM, RBF SVM, MLP NN, RF, DT, AdaBoost, NB, LDA and QDA. These 

classifiers were run on the MALDI-TOF MS data to distinguish E. coli isolates based on both 

their clinical outcome and disease phenotype.   

4.1 INTRODUCTION 

Mastitis can be classified into clinical and subclinical types, where both cases cause more than 

£200 million loss per year for the UK dairy industry and $2 billion loss per year for the US 

dairy industry (Bradley et al., 2012; Bogni et al., 2011). Calculation of economic costs for 

subclinical and clinical mastitis vary between studies as it is difficult to estimate the indirect 

effects of subclinical cases. However, in a single study (Huijps, Lam and Hogeveen, 2008), 

total economic losses per cow per year was found to be €77 and €63 for subclinical and clinical 

mastitis, respectively. Moreover, subclinical mastitis is more prevalent than clinical mastitis 

especially in developing countries where the former is up to 40 times higher than the latter 

(Lakew, Tolosa and Tigre, 2009; Kurjogi and Kaliwal, 2014; Argaw, 2016) and thus is respon-

sible for more of the economic losses in the dairy industry (Aghamohammadi et al., 2018).  



79 
 

Clinical mastitis can show obvious signs both in the animal and the milk; signs include high 

fever, loss of appetite, dehydration, increased size of the mammary glands whilst in the milk 

they would include clots, blood, flakes and watery milk appearance (Contreras and Rodríguez, 

2011; Petrovski, Buneski and Trajcev, 2006). In the case of subclinical mastitis, although the 

animal may seem normal, there are possible scenarios that can cause loss to the dairy producer. 

Subclinical mastitis can result in losing 10-20% of the total milk production as a result of dam-

age in milk-producing cells during neutrophil influx (Petersson-Wolfe et al., 2013; Kumari, 

Bhakat and Choudhary, 2018). Subclinical mastitis may also result in earlier culling of the 

cows in a dairy herd (Reksen et al., 2006). Cows with subclinical mastitis are also a potential 

reservoir of IMI for the rest of the herd (Barlow, Zadoks and Schukken, 2013), which is a 

serious economic issue as the pathogen transmission to healthy cows was shown to be strongly 

associated with the cost of mastitis (Down, Green and Hudson, 2013). Elimination of subclin-

ical mastitis also provides a decrease in the incidence of clinical mastitis cases (van den Borne 

et al., 2010). 

The clinical outcome of the mastitis pathogen depends on several factors including herd factors 

such as nutritional and management practices, host factors such as breed, age, lactation period 

etc., and pathogen factors such as genotype and phenotype of the strain (Veh et al., 2015; 

Contreras and Rodríguez, 2011). However, it is still not known fully to what degree the host, 

herd and pathogen factors affect the clinical severity of mastitis (Fournier et al., 2008; Rainard 

et al., 2018). Relation of mastitis pathogen and its clinical outcome was targeted in earlier 

studies for agents other than E. coli (Wolf et al., 2011; Pichette-Jolette et al., 2019). Specific 

S. aureus isolates, which produce a higher amount of bi-component leukocidin that targets 

bovine neutrophils, were found to cause clinical mastitis rather than subclinical mastitis in dairy 

cows (Hoekstra et al., 2018). Other studies at different times and geographical locations have 

also shown the association between strain type of S. aureus and clinical severity of bovine 

mastitis (Haveri et al., 2007; Haveri et al., 2005; Pichette-Jolette et al., 2019). Association 

between strain type and persistence outcome was shown for S. uberis and S. dysgalactiae, as 

well (Phuektes et al., 2001; Zadoks et al., 2003; Oliver, Gillespie and Jayarao, 1998). 

Formerly, the dry period used to be ignored as it was thought to be the most resistant time of 

the cow for new intramammary infections. However dry period has also been shown to include 

the most susceptible phase for new intramammary infections (Bradley and Green, 2004). On 

average, 24% of the quarters of dairy cows are infected with new pathogens during at dry pe-

riod, 67% of which results in clinical mastitis in the following lactation (Arruda et al., 2013; 
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Pantoja, Hulland and Ruegg, 2009; Cook, Pionek and Sharp, 2005). McDonald and Anderson 

(1981) observed the new infection of E. coli at the dry period which stayed quiescent till early 

lactation and ended up with clinical mastitis. High concentration levels of lactoferrin and leu-

cocyte, where the former prevents the growth of the bacteria that needs iron by reversibly bind-

ing it, may be the reason why clinical mastitis is not often seen during the dry period (Bradley 

and Green, 2004). Although new infections occur at dry period, they do not generally multiply 

rapidly and remain subclinical till calving, then flaring up after calving. Subclinical onset fol-

lowed by clinical flare-up was also observed in other mastitis pathogens S. uberis and S. aureus 

(Zadoks et al., 2002; Zadoks et al., 2003). Adaptation of bacteria to new or changing environ-

ments has been shown for other diseases as well. For example, the dynamic disease progression 

of M. tuberculosis, from subclinical status to clinical TB, has been recently discovered (Drain 

et al., 2018) or asymptomatic bacteriuria can develop to symptomatic urinary tract infection in 

time (Karumanchi, August and Podymow, 2010).  

E. coli is the most common mastitis pathogen responsible for up to 80% of the coliform cases 

(Botrel et al., 2010; Bradley et al., 2007). E. coli IMI can lead to different outcomes varying 

from mild to severe inflammation that can result in quarter loss or even be fatal (Burvenich et 

al., 2003). However, severe E. coli IMIs occur rarely and in case of mild and moderate cases, 

antimicrobial usage is unnecessary (Suojala, Kaartinen and Pyörälä, 2013). 

Currently, dairy producers are dependent on bacteriological analysis which only provides in-

formation about the species level. MALDI-TOF MS offers an alternate for conventional tech-

niques by providing speedy and detailed information (at strain level more than species level). 

This could be used to monitor the herd over time and change strategies around disease treatment 

and prevention. Hence, unnecessary antimicrobial usage in dairy farms could be also reduced.   

This study aims to understand the genotypic and phenotypic characteristics of bovine mastitis-

causing E. coli strains. To achieve this aim, whole-genome sequencing was used to identify E. 

coli isolates at strain level and then MALDI profiles of these isolates were accordingly com-

pared by using ML. E. coli samples were collected from a geographically limited location from 

the beginning of the dry period to the end of the lactation period. The same quarter was sampled 

to minimize host factors, environmental conditions and other batch effects. This would clarify 

the interaction between the host and the pathogen; moreover, any discriminant proteins can be 

used as potential biomarkers for the diagnosis of the mastitis disease in the subclinical status 

and/or be used for putative targets for novel drugs for the treatment of mastitis. 
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4.2 METHODS 

 Terms Used in the Study 

Calving period: The period between the intramammary infusion of dry cow antibiotic and the 

calving day is called pre-calving; the week starting with the day of calving is called calving 

week, and the period from 1 week after calving (calving week) to the next intramammary in-

fusion of dry cow antibiotic is called post-calving. 

Clinical status: Inflammation of the mammary gland with visible abnormalities in the milk or 

udder of the cow is called clinical mastitis, and inflammation of the mammary gland with non-

visible abnormalities in the milk or udder of the cow is called subclinical mastitis. 

Persistence: A strain is named persistent when the samples collected from the same quarter 

during pre-calving and calving week/post-calving are shown to be genotypically identical. Oth-

erwise, it is called a non-persistent isolate. 

Extreme and intermediate isolates: The earliest detected subclinical isolate and the latest de-

tected clinical isolate of each case are called extreme isolates; the other isolates between ex-

treme ones are called intermediate isolates. 

 Data Source 

This study used E. coli isolates obtained during a previous study (Bradley and Green, 2000), 

which was carried out between March 1997 and July 1998 using six farms, named as N, H, S, 

F, W and B. Four farms, N, H, S and F, were located in Somerset whereas two farms, W and 

B in North Somerset (Figure 4-1). 
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Figure 4-1. Location of the enrolled farms in the United Kingdom.  The circles represent the 

six farms, named as W, B, F, H, S and N, which were all in Somerset (including North Somerset). 

Enrolled animals were coloured in circles and the size of the circle indicates the number of cows. 

This figure was generated in R (R Core Team, 2019) using the sp (Pebesma and Bivand, 2005), 

mapdata (Deckmyn, 2018) and mapplots (Gerritsen, 2014) packages.. 

In the original study (Bradley and Green, 2000), all cows from these six farms were sampled 

weekly during the dry period but in the following lactation period only when clinical mastitis 

occurred. In this work, we first assessed the recurrent mastitis in the same animal, same quarter 

criteria and found ten different cases (in ten different animals) (see Figure 4-2). Extreme iso-

lates of each case (the earliest detected subclinical mastitis isolate and the latest detected clin-

ical mastitis isolate) were sequenced to confirm whether they were persistent infection. 
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Figure 4-2. Animals and E. coli strains isolated from their quarters. The green colour repre-

sents the subclinical status, while the red colour represents the clinical status. The earliest detected 

subclinical and the latest detected clinical isolates from each cow are named “extreme isolates” in 

this study and were sequenced. This figure was generated using Lucidchart.com. 

 DNA Extraction 

Twenty extreme isolates – defined as the earliest detected subclinical and the latest detected 

clinical mastitis cases from each animal (total of 10 animals), were grown overnight in Luria-

Bertani broth at 37°C in a shaking incubator. The culture was then centrifuged for 5 minutes at 

13,000 rpm. DNA was extracted with a commercially available kit (DNeasy Blood-Tissue Kit, 

Qiagen). Quality and quantity measurements of the samples were performed by using Thermo 

Scientific NanoDrop spectrophotometer. According to quality control results, the concentration 

of the samples was normalised at 50 ng/µl with the addition of nuclease-free dH2O and the 

volume of 30 µl. 

 Sequencing 

The samples were submitted to Next Generation Sequencing Facility at the University of 

Leeds. NEBNext Ultra DNA library preparation and sequencing Illumina Miseq 250 bp paired-

end lane were conducted. 
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 Bioinformatics Analyses 

4.2.5.1 Quality Control of the Miseq Reads 

The quality of the raw Miseq sequence reads (coverage 100) was assessed by using FastQC 

(Andrews, 2014). According to quality control reports generated by FastQC, low-quality reads 

and adapters were cleaned by using sliding-window trimming and adapter sequence cutting 

algorithms (number of bases to average across: 4, and average quality required: 28) in Trimmo-

matic version 0.36.5 (Bolger, Lohse and Usadel, 2014). After the cleaning step, the quality of 

the reads was checked again to ensure they are high enough (Quality-score>28) for further 

analysis. 

4.2.5.2 De Novo Genome Assembly 

Trimmed reads were de novo assembled by using SPAdes 3.13.1 (Bankevich et al., 2012) with 

default parameters. Having considered the distribution of the contig length and coverage, con-

tigs with length<500 bp length and coverage<5.0 were removed by using an in-house script. 

The contig with phiX cloning vector was also removed. 

4.2.5.3 Genome Comparison Analyses 

4.2.5.3.1 Whole-Genome Average Nucleotide Identity 

Whole-genome average nucleotide identity of the assembled E. coli genomes, which is the 

average nucleotide identity of orthologous genes shared between two bacterial genomes, was 

checked by using FastANI tool (Jain et al., 2018). FastANI was designed by using a novel 

algorithm Mashmap built on top of Mash technology (Jain et al., 2017) which was able to work 

well on highly similar genomes and fast compared to BLAST (Jain et al., 2018). 

4.2.5.3.2 Genome Comparison by BRIG 

BLAST Ring Image Generator (BRIG) v0.95 (Alikhan et al., 2011) was used to compare gen-

otypic similarities and differences between E. coli isolates. Genomes of 10 subclinical (pre-

calving) isolates were visualised based on reference genome P4. 

4.2.5.3.3 Genome Comparison by ACT 

Detailed pairwise genome comparison between subclinical and clinical isolates of persistent 

strains was performed by using the Artemis comparison tool (ACT) (Carver et al., 2005). To 
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perform genome comparison, input files had to be adapted in a way that ACT would process. 

First, genome sequences as a multi-FASTA format containing re-ordered contigs by Mauve 

2.4.0 (Darling et al., 2004) were converted to a single FASTA format. The single FASTA files 

of subclinical and clinical isolates of each persistent strain were then blasted against each other 

and comparison files were generated. These files were then used as inputs for the ACT. 

4.2.5.4 Genome Annotation 

In this study, assembled genomes were annotated by two different workflows: Prokka and 

RASTtk. 

4.2.5.4.1 Genome Annotation by Prokka workflow 

Prokka, which is a rapid prokaryotic genome annotation tool, was used to annotate the assem-

bled genomes, with features such as gene name and functions (Seemann, 2014). Annotated 

assemblies in gff format were taken into the Roary pan-genome pipeline (Page et al., 2015). 

Roary was used to construct core-genome alignment as well as statistics on core-genome and 

accessory-genome. The threshold values were set to 95% of sequence similarity of amino-acid 

level and must be found in 99% of isolates for a gene to be considered in the core genome. 

Roary output containing gene presence and absence in comma-separated values (CSV) format 

were visualised by Phandango (Hadfield et al., 2017). 

4.2.5.4.2 Genome Annotation by RASTtk workflow 

Annotation of E. coli genomes was also performed by using RASTtk (Rapid Annotation using 

Subsystem Technology toolkit) (Brettin et al., 2015). Functional classification of coding se-

quence (CDS) for persistent E. coli cases was further analysed in the SEED subsystem 

(Overbeek et al., 2014). 

4.2.5.5 Phenotype-Specific Gene Control Analyses 

4.2.5.5.1 Persistent-Specific Gene Control Analysis 

A CSV file containing the presence/absence of genes generated by Roary was then taken into 

Scoary tool (Brynildsrud et al., 2016), which was used to find the relationship between the 

genes and traits. We were able to classify genomes in different groups and generate diagnostic 

test (sensitivity-specificity) reports as well as statistical reports based on the prevalence of cer-

tain genes in these groups.  
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In the first analysis, persistent strains (isolates 2424&2474, 739&937, 766&1608 and 

2421&2506) were labelled as a positive group and non-persistent strains (the remaining twelve 

isolates) were labelled as a negative group. In this analysis, the probability of presence for 

persistent-unique genes was checked.  

In the second analysis, isolates collected during pre-calving were targeted and the ones that 

showed persistence till post-calving were labelled as a positive group and the ones that failed 

to be detected post-calving were labelled as a negative group. Again, the probable genes unique 

to persistent profiles were checked in a smaller but more accurate subset (the isolates found 

post-calving could show persistency later). 

4.2.5.5.2 Clinical Status-Specific Gene Control Analysis 

In this study, OrthoMCL workflow was used to define genes between subclinical and clinical 

phenotypes of individual persistent strains. OrthoMCL pipeline was available via the Galaxy 

platform instance of VeuPathDB (Aurrecoechea et al., 2017). The pipeline briefly includes the 

following steps: firstly, the proteome FASTA file was generated. Then, all-v-all BLAST was 

run on the filtered proteins file and the file was formatted so that it could be loaded into the 

OrthoMCL database. Protein pairs were found in the following step and MCL was performed 

on these pairs to identify ortholog groups. OrthoMCL was set with BLASTp cut-off e-5 and 

50% match, leaving other parameters at default (Fischer et al., 2011). 

4.2.5.6 Genome Typing Analyses 

4.2.5.6.1 MLST Analysis 

MLST of E. coli relies on several different sets of housekeeping genes which vary according 

to the technique, for example, the most widely used Achtman scheme screens variation of seven 

housekeeping genes (adk, fumC, gyrB, icd, mdh, purA and recA) (Zhou et al., 2020) and Pas-

teur’s scheme sequence typing uses sets of eight housekeeping genes (dinB, icdA, pabB, polB, 

putP, trpA, trpB and uidA) (Clermont, Gordon and Denamur, 2015). 

4.2.5.6.2 Phylotyping 

ClermonTyper (Beghain et al., 2018) and Mash (Ondov et al., 2016), which are in silico PCR 

assay tools, were used to predict the phylogroup of E. coli isolates. 
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4.2.5.6.3 fumC fimH (CH) Typing 

CH Typing was based on two loci, which were fumC, one of the seven household genes from 

Achtman MLST, and fimH, an integral fragment of type 1 fimbrial-adhesin-encoding gene 

(Roer et al., 2018). In this study, CH types of our 20 E. coli isolates were found by using web 

tool CHTyper 1.0 (https://cge.cbs.dtu.dk/services/CHTyper-1.0/). 

4.2.5.6.4 Serotyping 

Serotyping of E. coli isolates used SerotypeFinder 2.0 web tool, where the minimum length of 

the match was set to contain 60% of the nucleotide for the serotype gene. The tool checked 

wzx, wzy, wzm and wzt for O-antigen and fliC, flkA, fllA, flmA and flnA for H antigen (Joensen 

et al., 2015). 

4.2.5.7 Variant Calling  

SNPs between the reference genome, mastitis model strain P4, and 20 E. coli genomes were 

found by using Snippy 3.2 (Seemann, 2015). Snippy-core 3.2 (Seemann, 2015) was used to 

merge Snippy outputs as a core SNP alignment. FastTree (Price, Dehal and Arkin, 2009) was 

used to generate phylogenetic trees for both whole-genome and core genome of the 20 E. coli 

isolates. Phylogenetic trees were visualised and coloured by ITOL v3 (Letunic and Bork, 

2016). 

4.2.5.8 Detection of Antimicrobial-Resistant Genes 

AMR genes in the E. coli genomes were checked using ResFinder v3.1 (Zankari et al., 2012). 

The ResFinder database contains AMR genes for the following antibiotic classes; aminoglyco-

side, beta-lactam, colistin, fluoroquinolone, fosfomycin, fusidic acid, glycopeptide, nitroimid-

azole, oxazolidinone, phenicol, rifampicin, sulphonamide, tetracycline, trimethoprim, macro-

lide, lincosamide and streptogramin B (Zankari et al., 2012). 

4.2.5.9 Detection of Virulence Genes 

The virulence genes in the assembled genomes were checked using VirulenceFinder 2.0 data-

base specific to E. coli (Joensen et al., 2014). Threshold values for identity and minimum length 

were set as 90% and 60%, respectively. 

https://cge.cbs.dtu.dk/services/CHTyper-1.0/
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4.2.5.10 Detection of Plasmids 

PlasmidFinder v2.1 (Carattoli et al., 2014), a web-based tool, was used to perform an in silico 

plasmid detection of a query genome. The PlasmidFinder database holds two different plasmid 

datasets which occurred mainly in gram-positive bacteria and Enterobacteriaceae. In this 

study, we screened the plasmids in both databases matching with our query genomes at a min-

imum threshold identity of 95% and minimum threshold coverage of 60%, which were the 

default values. 

4.2.5.11 Detection of Prophages 

PHASTER (PHAge Search Tool Enhanced Release) was used to screen the E. coli genomes 

for detection of any possible prophages causing the difference between clinical and subclinical 

isolates or changing subclinical cases to clinical cases in persistent isolates (Arndt et al., 2016). 

4.3 RESULTS 

 Bioinformatics Analyses 

4.3.1.1 De Novo Genome Assembly 

The quality of each genome assembly before and after the cleaning step was assessed by 

QUAST (Quality Assessment Tool) (Mikheenko et al., 2018). The statistics such as the number 

of contigs, GC content, the minimum number of the contigs that produce 50% (L50) and 75% 

(L75) of the bases in the assembly are shown in Table 4-1.  

GC content of the genomes was varied between 50.5 and 50.9. L50 and L75 value of the iso-

lates varied from 4 to 16 and 9 to 32, respectively where the worst in isolate-2117 (L50=16 and 

L75=32) and best in isolate-1469 (L50=4 and L75=9). The number of uncalled bases was the 

worst with the count of 495 in isolate-3109. However, the average number of uncalled bases 

was per 100,000 assembly bases was the worst at 9.82 in isolate 1608. 
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Table 4-1. Quality assessment of the assembled genome by using QUAST. The statistics were realized based on the contigs with a length size of 

500 bp and above unless otherwise was stated such as the number of contigs (≥0 bp) or the number of contigs (≥1000 bp). 

 

# represents “number of”. 

N50= the length of the shortest contig in the set of longest contigs that cover at least 50% of the total assembly size. 

N75= the length of the shortest contig in the set of longest contigs that cover at least 75% of the total assembly size. 

L50= minimum number of the contigs that produce 50% of the bases in the assembly. 

L75= minimum number of the contigs that produce 75% of the bases in the assembly. 

#N’s= the total number of uncalled bases in the assembly. 

#N’s per 100 kbp= the average number of uncalled bases per 100,000 assembly bases.



90 
 

4.3.1.2 Genome Comparison Analyses 

4.3.1.2.1 Whole-Genome Average Nucleotide Identity 

Whole-genome average nucleotide analysis was visualised by using pheatmap package in R 

(Kolde and Kolde, 2015). Achtman MLST results, phenotypes, animal and farm IDs were also 

included (see Figure 4-3). The isolates collected from the same cow were compared to deter-

mine if they are genotypically identical (persistent strain). Four different cases were assigned 

as “persistent” strains which are isolates 2424&2474 from animal-1, isolates 739&937 from 

animal-5, isolates 766&1608 from animal-8 and isolates 2421&2506 from animal-10. Isolate 

2378, a subclinical isolate of animal-9, was found highly similar to persistent strain (isolates 

2421&2506) of animal-10. Animal 9 and 10 were on the same farm. In the rest of the study, 

cases from animal-1, animal-5, animal-8 and animal-10 were termed persistent while other 

isolates were termed non-persistent. 
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Figure 4-3. Whole-genome average nucleotide identity of 20 E. coli isolates performed by FastANI. The heatmap represents the similarity 

between isolates where darkest blue is the most similar (scale from 97.5% to 100.0%). Isolate IDs were shown on the right, animal IDs and phenotypes 

of the isolates on the left, farm IDs and Achtman MLST schemes of the isolates were shown on the top of the heatmap. Isolates 2424&2474 of animal-1, 

739&937 of animal-5, 766&1608 of animal-8 and 2421&2506 of animal-10 were found to be highly similar and assigned as persistent. This figure was 

generated using R package pheatmap (Kolde and Kolde, 2015).
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4.3.1.2.2 Genome Comparison by BRIG 

There were some missing regions in the E. coli genomes compared to the P4 model mastitis 

genome. These regions were found mostly in prophages that the P4 strain contained (see Figure 

4-4-A). This was confirmed by phage finder tool PHASTER (see Figure 4-4-B). Overall, no 

pattern was observed between subclinical isolates of persistent and non-persistent strains.  

 

Figure 4-4. Genome comparison of subclinical isolates in a circular diagram created by 

BRIG. A) The innermost circle is model mastitis genome P4 which was used as a reference genome 

to map our E. coli isolates. The outermost circle represents the phages present in the P4 strain. B) 

The regions of phages that are present in P4 genomes are visualised by PHASTER. Most of the empty 

regions in our E. coli genomes correspond to these phages of the P4 strain. 

4.3.1.2.3 Genome Comparison by ACT 

Genome comparison within persistent cases showed that there were no deletions, and samples 

showed very high similarity between subclinical and clinical isolates, although there were some 

inversions, which may be due to errors during short-read sequencing. There were relatively 

more inversions in persistent strains of animal-1 and animal-8 compared to animal-5 and ani-

mal-10 (see Figure 4-5).  
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Figure 4-5. Comparison of subclinical and clinical phenotypes of persistent strains by us-

ing ACT. Comparison of A) isolate-2424 with isolate 2474 from animal-1, B) isolate-739 with iso-

late-937 from animal-5, C) isolate-766 with isolate-1608 from animal-8 and D) isolate-2421 with 

isolate-2506 from animal-10 were shown. Red blocks represent the forward, and blue lines represent 

the reverse orientation of conserved regions within the isolates. The top section (above red blocks) 

is the sequence view panel (top three segments are forward and bottom three segments are reverse 

frame lines) of subclinical isolates and the bottom section (below red blocks) is the sequence view 

panel (top three segments are forward and bottom three segments are reverse frame lines) of clinical 

isolates. 

4.3.1.3 Genome Annotation 

4.3.1.3.1 Genome Annotation by Prokka 

Protein-coding genes detected by Prokka were 4753 in isolate-2424 and 4755 in isolate-2474 

of persistent strain in animal-1; 4446 in isolate-739 and 4444 in isolate-937 of persistent strain 

in animal-5; 4601 in isolate-766 and 4592 in isolate-1608 of persistent strain in animal-8; 4842 

in isolate-2421 and 4843 in isolate-2506 of persistent strain on animal-10. These proteins were 

then detailed in OrthoMCL (section 4.3.2.4.2). 

Roary pan-genome analysis showed that 3259 genes were shared in all 20 E. coli isolates. Other 

genes grouped in soft-core genes, shell genes, cloud genes and total genes in all isolates can be 

seen in Table 4-2. 
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Table 4-2. The pangenome analysis of 20 E. coli isolates. Gene counts in the core (core and 

soft-core genes) and accessory (shell and cloud genes) genome are listed.  

Class Distribution (%) Gene Count 

Core genes present in all 20 isolates 3259 

Soft-core genes present in 19 isolates 114 

Shell genes present in 3 ≤ isolates < 19 2629 

Cloud genes present in 0 ≤ isolates < 3 3354 

Total genes present in 0 ≤ isolates ≤ 20 9356 

 

A phylogenetic tree constructed based on pangenome analysis showed that isolates 2424&2474 

of persistent strain in animal-1, isolates 739&937 of persistent strain in animal-5, isolates 

766&1608 of persistent strain in animal-8, isolates 2421&2506 of persistent strain in animal-

10 were clustered within each case (see Figure 4-6). Isolate-2378, which was always the closest 

to the persistent strain of animal-10 could be separated from those isolates. 

 

Figure 4-6. Roary pan-genome analysis of 20 E. coli strain visualised by Phandango. The 

phylogeny tree on the left is linked to the pan-genome content of the isolates. Blue blocks represent 

the presence of genes relative to the reference genome of the mastitis model strain P4. The line 

graph at the bottom represents the percentage of isolates carrying the gene at a certain position. 

Isolates 2424&2474 of animal-1, isolates 739&937 of animal-5, isolates 766&1608 of animal-8 and 

isolates 2421&2506 of animal-10 were shown to be clustered within the case. These isolates were 

proved to be persistent strains in this analysis.  
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4.3.1.3.2 Genome Annotation by RASTtk 

According to functional classifications based on the SEED subsystem, there was no significant 

difference between the subclinical and clinical isolates of persistent cases on the animal basis, 

except the phages, prophages and transposable elements and plasmids subsystem. This was 

consistent with the findings of OrthoMCL as the difference between the isolates of some per-

sistent strains were also found to be the product of prophages they had. Carbohydrates were 

the most frequent functional classification category while dormancy and sporulation subsystem 

was the least common ones (see Figure 4-7). Although the gene count of functional classifica-

tions was so close to each other, the following three categories varied the most between each 

case: 

1) Phages, prophages, transposable elements and plasmids: 

166 genes for each isolate (isolate 2424 and 2474) of animal-1, 

33 genes for each isolate (isolate 739 and 937) of animal-5, 

39 and 37 genes for isolate-766 and isolate 1608, respectively, of animal-8, 

167 and 166 genes for isolate-2421 and isolate 2506, respectively, of animal-10. 

2) Metabolism of aromatic compounds: 

7 genes for each isolate (isolate 2424 and 2474) of animal-1, 

6 genes for each isolate (isolate 739 and 937) of animal-5, 

21 genes for each isolate (isolate 766 and 1608) of animal-8, 

27 genes for each isolate (isolate 2421 and 2506) of animal-10. 

3) Iron acquisition and metabolism: 

66 genes for each isolate (isolate 2424 and 2474) of animal-1, 

39 genes for each isolate (isolate 739 and 937) of animal-5, 

52 genes for each isolate (isolate 766 and 1608) of animal-8, 

76 genes for each isolate (isolate 2421 and 2506) of animal 10. 

Particular attention was paid to iron acquisition and metabolism genes as fec locus (fe-

cIRABCDE) iron (III) dicitrate transport were shown to be significant for pathogenicity of 

mastitis-causing E. coli genomes (Blum et al., 2018). We checked if the genes on this locus 

cause the different gene counts for this class. However, fec locus genes (fecIRABCDE) were 

present in all the genomes and was not the reason for the different count of the genes in this 

class.
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Figure 4-7. CDS counts in the functional classifications based on the SEED subsystem database. The graph shows the 26 functional categories 

and the gene counts of 4 persistent cases (based on animals (animal-1, animal-5, animal-8 and animal-10) in these categories. Each subclinical (isolate-

2424 (from animal-1), isolate-739 (from animal-5), isolate-766 (from animal-8) and isolate-2421 (from animal-10)) and clinical (isolate-2474 (from 

animal-1), isolate-937 (from animal-5), isolate 1608 (from animal-8) and isolate-2506 (from animal-10)) isolate in these persistent cases are seen in 

green and red, respectively. This figure was generated using R package ggplot2 (Wickham, 2011). 
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4.3.1.4 Phenotype-Specific Gene Control Analyses 

4.3.1.4.1 Persistent-Specific Gene Control Analysis 

Persistent-specific gene control analysis was performed based on comparing two different 

groups as detailed in the Methods section. The reports created by Scoary were examined. There 

was no gene found with 100% sensitivity and specificity between persistent and non-persistent 

strains. This was expected as some isolates, i.e. isolate-2378 was consistently found more 

closely related to the persistent strain of animal-10 (isolates 2421&2506) at phylogenetic trees. 

Hence, specificity was lowered, and the gene list was examined again. However, there was still 

no gene found between the evaluated groups in both analyses. 

4.3.1.4.2 Clinical Status-Specific Gene Control Analysis 

Roary was performed for pan-genome analysis and gave satisfactory results; however, 0.37% 

proteins of the total proteome could not be appointed correctly, i.e. they appeared in different 

annotation groups (different annotation name was given), although they are the same. This 

problem could be solved by supplying a well-annotated reference genome in Roary as sug-

gested by its developers. However, we used another pipeline called OrthoMCL to define miss-

ing orthologs and alternate the technique. OrthoMCL runs all-against-all BLASTp (Fischer et 

al., 2011) and then these BLASTp results are employed to define orthologs and paralogs by 

performing Markov Clustering (MCL) (Dongen, 2000). The proteins (4.05% of the expected 

proteome size) which could not be mapped with any known groups (no ID given by Or-

thoMCL) were filtered out from each proteome and only those mapped with known Or-

thoMCL-DB groups (~96%) were kept. Common and unique proteins within the isolates of 

persistent strains from animals were compared (see Figure 4-8). 
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Figure 4-8. Comparison of isolates in terms of common and unique proteins based on 

orthology. The count of core and unique genes for A) subclinical (iso-2424) and clinical (iso-2474) 

isolates of animal-1, B) subclinical (iso-739) and clinical (937) isolates of animal-5, C) subclinical 

(iso-766) and clinical (iso-1608) isolates of animal-8, D) subclinical (iso-2421) and clinical (iso-

2506) isolates of animal-10, E) persistent strains isolated from each animal. These figures were 

generated at http://bioinformatics.psb.ugent.be/webtools/Venn. 

A unique protein was found in the subclinical form (isolate-2424) of persistent strain from 

animal-1 which was not present in its clinical form isolate-2474. There were 3565 common 

proteins between isolate 2424 and 2474. No unique protein was found between subclinical and 

clinical forms (isolates 739&937) of persistent strain from animal-5. There were 3495 common 

proteins between isolate 739 and 937. Three unique proteins were found which were absent in 

subclinical form (isolate-766) of persistent strain from animal-8 but present in its clinical form 

(isolate-1608). There were 3521 common proteins between isolate 766 and 1608. One unique 

protein was found in each form of the isolates (isolates 2421&2506) coming from animal-10. 

There were common 3619 proteins between isolates 2421 and 2506. Most of the unique pro-

teins were with unknown function as commonly known as hypothetical proteins. These hypo-

thetical proteins were analysed further and seen as the proteins coming from phages as listed 

in details in Table 4-3. 

The common proteins between clinical and subclinical isolates of each persistent strains were 

also compared with each other. There were 3222 proteins were found common between these 

persistent strains. 48 unique proteins in animal-1, 31 unique proteins in animal-5, 46 unique 

proteins in animal-8 and 97 unique proteins in animal-10 were found. 
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Table 4-3. Unique proteins found in the isolates by pairwise comparison within the per-

sistent strains. 

Isolate Protein 
BLASTp Matches 

Matched Protein Coverage E-value Accession 

1608 HokB 
type I toxin-antitoxin 
system toxin HokB 

100% 
2.00E-26 

 
WP_136750091.1 

 

1608 
Hypothetical 

Protein 
IS3-like element IS2 
family transposase 100% 

0 
 

WP_112842836.1 
 

1608 
Insertion ele-
ment IS6110 

IS3 family transposase 100% 
5.00E-74 

 
WP_000165309.1 

 

2421 
Hypothetical 

Protein 
IS1 family transposase 100% 

4.00E-61 

 

WP_000179210.1 

 

2424 
Hypothetical 

Protein 
IS1 family transposase 100% 

9.00E-64 
 

WP_000951585.1 
 

2506 
Hypothetical 

Protein 
Transposase 100% 3.00E-54 

 
ALL91260.1 

 

 

4.3.1.5 Genome Typing Analyses 

4.3.1.5.1 MLST Analysis 

According to the Achtman scheme, ST-10 was detected in two persistent strains (isolates 

739&937 in animal-5 and isolates 766&1608 in animal-8) as well as six other strains (isolates 

152, 1469, 2249, 2422, 3038 and 3109). Other persistent strains were found to be ST-57 and 

ST-106 for animal-1 (isolates 2424&2474) and animal-10 (isolates 2421&2506), respectively. 

Other E. coli isolates were found as follows: isolate-3042 as ST-1079, isolate 329 as ST-297, 

isolate 685 as ST-685, isolate 2117 as ST-4087 and isolate-435 as ST-5880. 

The distance between STs found in our E. coli isolates and clonal complexes of these STs based 

on the Achtman MLST scheme were visualised by using the global optimal eBURST minimum 

spanning tree (MST) algorithm available in Phyloviz v2.0a (Francisco et al., 2009) (see Figure 

4-9).  
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Figure 4-9. Global optimal eBURST (goeBURST) distance analysis of the Achtman MLST 

scheme. Numbers in the nodes represent the sequence type (ST), while node size is related to the 

count of isolate in each ST. A) STs of 20 E. coli genomes of this study with the STs belong to the 

same clonal complex and B) close-up showing the distance between each other only. The distance 

labels represent the count of the variant in seven housekeeping loci between STs. These figures 

were generated at Phyloviz v2.0a. 

By using Pasteur scheme MLST, the most common MLST was detected as ST-2 in this analy-

sis. Persistent strain in animal-5 (isolates 739&937) and persistent strain in animal-8 (isolates 

766&1608) were found to be ST-2. However, other isolates (isolate 152, 1469, 2249, 2422, 

3038, 3109) which were typed as ST-10 according to the Achtman scheme, were found to have 

completely different strain types according to the Pasteur scheme; isolate 152 was ST-475. 

Isolate 1469 was ST-108, isolate 2249 was ST-387, isolate 2422 was ST-818, isolate 3038 and 

isolate 3109 were ST-383. Other persistent strains in animal-1 (isolates 2424&2474) and ani-

mal-10 (isolates 2421&2506) were found to be ST-305 and ST-3 according to the Pasteur 

scheme, respectively. 

4.3.1.5.2 Phylotyping 

The phylotyping analyses were consistent between ClermonTyper and Mash tools except for 

the isolate-435 which gave phylogroup C and A, respectively, as a result of a mutation in one 

of the binding primers. Persistent strains in animal-1 (isolates 2424&2474), animal-5 (isolates 

739&937), animal-8 (isolates 766&1608) and animal-10 (isolates 2421&2506) were found 
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belonging to phylogroup E, A, A and D, respectively. Amongst the remaining isolates, phy-

logroup A was the most common as being found in isolate 152, 1998, 2117, 2249, 2422, 3038 

and 3109 while three isolates (isolate 329, 1469 and 3042) were found in phylogroup B1 (see 

Figure 4-10). 

 

Figure 4-10. Phylogroups of 20 E. coli genomes were found by Mash, genome clustering 

tool. The heatmap shows the similarity based on k-mers of genomes, generated by Sourmash tool 

(Brown and Irber, 2016). 

4.3.1.5.3 fumC fimH (CH) Typing 

fumC-fimH (CH types) of persistent cases were found as follows; isolates 2424&2474 (in ani-

mal-1) as 31-54, isolates 739&937 (in animal-5) as 11-27, isolates 766&1608 (in animal 8) as 

11-54, isolates 2421&2506 (in animal 10) as 35-47 (see Table 4-4). Amongst the remaining 

isolates most common CH type was 11-27 (in 4 more cases; isolates 152, 2422, 3038 and 3109). 

Interestingly, fumC-11 was in 56.25% of the cases in total (9 isolates out of 16) (see Table 4-4). 

4.3.1.5.4 Serotyping 

Serotypes of persistent isolates were found to be O176-H32 for isolates 2424&2474 (persistent 

in animal-1), O74-H39 for isolates 739&937 (persistent in animal-5), O9-H17 for isolates 

766&1608 (persistent in animal-8) and O17/O44 (100% similarity with wzy gene)-O17/O77 

(100% similarity with wzx gene)-H18 for isolates 2421&2506 (persistent in animal-10). 

Amongst other strains serotypes of O13 (100% similarity with wzx gene), O13/O135 (100% 

similarity with wzy gene) and H11 were found in isolates 3038&3109. As seen in Table 4-4, 

serotyping of the persistent strain in animal-10 and isolates 3038&3109 resulted in two 
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different typing outcomes for their O antigens. This kind of outcome was also noticed by the 

creators of the SerotypeFinder tool and compared with the conventional serotyping technique. 

According to conventional serotyping technique, typing of O17/O44-O17/O77 was O17 and 

typing of O13, O13/135 was O135 (Joensen et al., 2015). 

Table 4-4. Summary of the genome typing analysis results of 20 E. coli genomes. 

ID Phylogroup MLST CH Typing Serotype 

Isolate Animal ClermonType Mash Achtman Pasteur fumC fimH O type H type 

2424 1 E E ST-57 ST-305 fumC-31 fimH-54 O176 H32 

2474 1 E E ST-57 ST-305 fumC-31 fimH-54 O176 H32 

1469 2 B1 B1 ST-3188 ST-108 fumC-23 fimH-38 Ont H16 

1998 2 A A ST-685 ST-698 fumC-11 fimH-34 Ont H34 

2249 3 A A ST-10 ST-387 fumC-11 fimH-54 O107 H54 

3042 3 B1 B1 ST-1079 ST-360 fumC-19 fimH-32 O6 H49 

152 4 A A ST-10 ST-475 fumC-11 fimH-27 O4 H54 

3038 4 A A ST-10 ST-383 fumC-11 fimH-27 O13, O13/O135 H11 

739 5 A A ST-10 ST-2 fumC-11 fimH-27 O74 H39 

937 5 A A ST-10 ST-2 fumC-11 fimH-27 O74 H39 

435 6 C A ST-5880 ST-505 fumC-153 fimH-444 O26 H9 

2117 6 A A ST-4087 ST-698 fumC-11 fimH-444 O127 H4 

329 7 B1 B1 ST-297 ST-487 fumC-65 fimH-38 O179 H8 

3109 7 A A ST-10 ST-383 fumC-11 fimH-27 O13, O13/O135 H11 

766 8 A A ST-10 ST-2 fumC-11 fimH-54 O9 H17 

1608 8 A A ST-10 ST-2 fumC-11 fimH-54 O9 H17 

2378 9 D D ST-106 ST-3 fumC-35 fimH-47 O17/O44, O17/O77 H18 

2422 9 A A ST-10 ST-818 fumC-11 fimH-27 O45 H11 

2421 10 D D ST-106 ST-3 fumC-35 fimH-47 O17/O44, O17/O77 H18 

2506 10 D D ST-106 ST-3 fumC-35 fimH-47 O17/O44, O17/O77 H18 

4.3.1.6 Variant Calling 

SNP phylogeny on the core genome and whole-genome showed that subclinical and clinical 

forms of persistent strains were clustered within the case (see Figure 4-11). Both phylogeny 

trees gave almost the same results - only isolate 152 was clustered differently- however, using 

whole genomes were extremely slow. Hence, core genome phylogeny could be an alternative 

when computer resources are limited. It was interesting to observe that some other isolates 

were clustered as well based on the same phenotypes; clinical isolate-2117 with clinical isolate-

1998, subclinical isolate-1469 with subclinical isolate-329 and clinical isolate-3038 with clin-

ical isolate-3109. 



103 
 

 

Figure 4-11. SNPs phylogeny analysis of 20 E. coli genomes generated by Snippy pipeline. 

The phylogeny was performed based on A) core genome and B) whole genome. The isolates were 

coloured based on the phenotypes where subclinical ones were green and clinical ones were red. 

The figures were visualised using iTOL v3. 

4.3.1.7 Detection of Antimicrobial-Resistant Genes 

According to ResFinder v3.1, none of the E. coli isolates was predicted to be resistant against 

the following antibiotic classes colistin, fluoroquinolone, fosfomycin, fusidic acid, glycopep-

tide, nitroimidazole, oxazolidinone and rifampicin (see Figure 4-12). In all E. coli isolates mul-

tidrug efflux pump mdf(A) gene-related with macrolide, lincosamide and streptogramin B was 

detected. The following AMR genes were detected; aadA5, aph(3’)-Ia, aph(3”)-Ib and aph(6)-

Id as resistant to aminoglycosides; blaTEM-1B as resistant to beta-lactams, sul1 and sul2 as 

resistant to sulphonamides, catA1 as resistant to phenicols, dfrA16 as resistant to trimethoprim, 

tet(B) as resistant to tetracycline. 

The highest amount of AMR genes (11 out of 11 genes) were found in isolates 766 &1608 

(persistent strain in animal 8), which had all AMR genes listed. The second-highest (7 genes 

out of 11) were found in isolate 2378 which had aph(3’)-Ia, aph(3”)-Ib and aph(6)-Id genes of 

aminoglycoside; blaTEM-1B of beta-lactams; sul2 of sulphonamides, tet(B) of tetracycline and 

mdf(A) of macrolide, lincosamide and streptogramin B resistance. Isolates 2421&2506 (persis-

tent strain in animal 10) which were found highly similar with isolate 2378 in whole-genome 

comparison, had all the AMR genes isolate 2378 had except blaTEM-1B. The other persistent 
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strains had the following AMR genes; isolates 2424&2474 (persistent strain in animal 1) and 

isolates 739&937 (persistent strain in animal 5) happened to carry only mdf(A) gene which was 

detected in the other strains as well. 

 

 

 

Figure 4-12. AMR genes detected in 20 E. coli isolates against ResFinder v3.1 database. 

The shades of blue represent the percentage of identity matches between sequences of AMR gene 

and the isolate where the brightest is 97.64% and the darkest is 100.00% identity similarity. There 

were 11 AMR genes found in the E. coli isolates based on ResFinder v3.1 database. This figure was 

generated using R package pheatmap (Kolde and Kolde, 2015). 

4.3.1.8 Detection of Virulence Genes 

There were 11 virulence factors in total (air, astA, eilA, espP, gad, iroN, iss, lpfA, mchB, mchC 

and mchF) that were found in our E. coli isolates (see Figure 4-13). Iss was the most common 

virulence factor found in the isolates. The highest amount of virulence factors (7 genes) were 

found in isolates 2424&2474 (persistent strain in animal-1), which had asta, gad, iroN, iss, 

mchB, mchC and mchF. The second-highest amount of virulence factors (6 genes; air, eilA, 

espP, gad, iss and lpfA) were found in isolates 2421&2506 (persistent strain in animal-10) and 

isolate 2378. Persistent strain in animal-8 (isolates 766&1608) had 4 virulence factors which 

were gad, iroN, iss and mchF; whereas persistent strain in animal-5 (isolates 739&937) had 

none of the virulence factors. 
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Figure 4-13. Virulence factors detected in 20 E. coli isolates against VirulenceFinder 2.0 

database. The shades of blue represent the presence/absence of the gene where the dark colour 

means presence, whilst light one means absence. There were a total of 11 virulence factors found 

in 20 E. coli isolates. This figure was generated using R package pheatmap (Kolde and Kolde, 2015). 

4.3.1.9 Detection of Plasmids 

In this study, no hits were found from the gram-positive plasmids database as expected but 

there were hits in the Enterobacteriaceae database. Amongst persistent strains of this study 

isolates 2424-2474 (animal-1) had no hits, isolates 739&937 (animal-5) had three hits (IncFIA, 

IncFIB(AP001918), IncFII(29)), isolates 766&1608 (animal-8) had three hits 

(IncFIB(AP001918), InFIC(FII), Col440II) and isolates 2421&2506 had three hits IncFIA, 

IncFIB(AP001918), InFIC(pCoo). All persistent strains had the same plasmids with the same 

identity match between their subclinical and clinical forms (see Table 4-5). 

Clinical mastitis-causing isolate 3109 was found to have the most hits with 4 plasmids, 2 of 

them were the same with subclinical mastitis-causing isolate 329 collected from the same cow 

(animal 7). Amongst remaining isolates, two isolates (isolates 2249 and 2378) had three plas-

mid hits, one of them was isolate 2378, which is a closely related sample with persistent strain 

in animal 10 and had the same plasmids with them (isolates 2421&2506). Two isolates (isolate 

152 and 329) had two plasmid hits and three isolates (isolate 2422, 3038 and 3042) had one hit 

each while four isolates (isolate 435, 1469, 1998 and 2117) had no hits in the plasmid database. 

IncF plasmid family was the most commonly found one with several types of it (IncFIA(HII), 

IncFIB(K), IncFIB(pECLA), IncFIB(AP001918), IncFIC(FII), IncFIC(pCoo) and IncFII(29)) 

in our study. 



106 
 

Table 4-5. List of plasmids that were found in 20 E. coli genomes. 

Isolate Animal Status Farm Plasmid 

2424 1 Subclinical H - 

2474 1 Clinical H - 

1469 2 Subclinical S - 

1998 2 Clinical S - 

2249 3 Subclinical W IncFIA(HI1), IncFIB(K), IncY  

3042 3 Clinical W Col3M 

152 4 Subclinical N IncFIB(pECLA), p0111 

3038 4 Clinical N IncY 

739 5 Subclinical S IncFIA, IncFIB(AP001918), IncFII(29) 

937 5 Clinical S IncFIA, IncFIB(AP001918), IncFII(29) 

435 6 Subclinical N - 

2117 6 Clinical N - 

329 7 Subclinical W IncFIB(AP001918), IncFIC(FII) 

3109 7 Clinical W IncFIA, IncFIB(AP001918), IncFIC(FII), IncY 

766 8 Subclinical B IncFIB(AP001918), InFIC(FII), Col440II 

1608 8 Clinical B IncFIB(AP001918), InFIC(FII), Col440II 

2378 9 Subclinical F IncFIA, IncFIB(AP001918), InFIC(pCoo) 

2422 9 Clinical F IncY 

2421 10 Subclinical F IncFIA, IncFIB(AP001918), InFIC(pCoo) 

2506 10 Clinical F IncFIA, IncFIB(AP001918), InFIC(pCoo) 

 

4.3.1.10 Detection of Prophages 

Prophages were present in all of the genomes as expected; however, there was no pattern de-

tected in terms of phage types present between clinical and subclinical clusters either within all 

isolates or persistent strains alone. In persistent cases following count of intact prophage re-

gions were found. Persistent strain in animal-1 had 6 and 8 intact prophage regions found in 

isolate 2424 and 2474, respectively. Persistent strain in animal-5 had 3 intact prophage regions 

in both isolate 739 and 937. Persistent strain in animal-8 had 1 intact prophage region in both 

isolate 766 and 1608. Persistent strain in animal 10 had 7 and 9 intact prophage regions in 

isolate 2421 and 2506, respectively. The difference counts between the isolates labelled as the 

same strain in some animals (animal-1 and animal-10) may be a result of incompleteness score 

based on coverage and sequence quality. 

 Analysis of Subclinical and Clinical Phenotypes of Persistent Strains 

We investigated the possibility to develop a classifier to verify if the MALDI-TOF peak list 

associated with isolates could be used to predict their phenotype (SCM or CM) of the same 
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genotype. Classifiers were developed by categorizing persistent 4 subclinical isolates (isolate 

2424, isolate 739, isolate 766 and isolate 2421) which had 24 spectra (6 technical replicates of 

each isolate) as the positive class and persistent 4 clinical isolates (isolate 2474, isolate 937, 

isolate 1608 and isolate 2506) which had 24 spectra (6 technical replicates of each isolate) as 

the negative class. The pre-processing led to the identification of two peaks that are statistically 

different between groups and appear in at least 30% of the total spectra. These two peaks were 

then used as features to build ten classifiers to develop predictive models for the different phe-

notypes of persistent strains. 30 runs using NCV was performed. 

Amongst ten different classification algorithms LR, LSVM, AdaBoost, NB and LDA gave ac-

curacy over 75.00%. LR gave the best prediction performance values as follows; accuracy: 

85.00±5.09%, AUC: 90.83±12.25%, sensitivity: 95.00±10.17%, specificity: 75.00±0.00% and 

kappa: 70.00±10.71% (see Figure 4-14). 
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Figure 4-14. Prediction performance results of classifiers for subclinical vs clinical phe-

notypes of persistent E. coli strains. Ten different algorithms (X-axis) were used to classify 

phenotype profiles. Accuracy, AUC, sensitivity, specificity, kappa metrics were calculated for each 

learner. Moreover, these metrics were shown for logistic regression which was the best performing 

classifier amongst employed ones. These graphs were generated in GraphPad Prism v8. 
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 Analysis of Persistent and Non-Persistent E. Coli Strains 

We, then, investigated the possibility to develop a classifier to verify if the MALDI-TOF peak 

list associated with isolates could be used to predict persistent and non-persistent E. coli strains. 

Classifiers were developed by categorizing persistent 4 subclinical isolates (isolates 2424, 739, 

766 and 2421) which had 24 spectra (6 technical replicates of each isolate) as the positive class 

and non-persistent 6 subclinical isolates (isolates 1469, 2249, 152, 435, 329 and 2378) which 

had 36 spectra (6 technical replicates of each isolate) as the negative class. Clinical isolates of 

persistent and nonpersistent isolates were not involved to prevent the following biases; 1) add-

ing clinical isolates of persistent strains would increase the sensitivity as they are almost iden-

tical, 2) clinical isolates of so-called non-persistent strains may have shown persistency which 

was not detected in during study period. The pre-processing led to the identification of six 

peaks that are statistically different between groups and appear in at least 30% of all number 

of spectra. These six peaks were then used as features to build ten classifiers to develop pre-

dictive models for persistent and non-persistent strains. 30 runs using NCV was performed. 

Amongst ten different classification algorithms LR, LSVM, NB, RBF SVM and RF gave ac-

curacy over 75.00%. Both LR and LSVM gave the best prediction performance values as fol-

lows; accuracy: 85.71±4.98%, AUC: 92.50±9.63%, sensitivity: 75.00±0.00%, specificity: 

94.17±6.34% and kappa: 68.17±7.46% (see Figure 4-15). 
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Figure 4-15. Prediction performance results of classifiers for persistent vs non-persistent 

E. coli strains. Ten different algorithms (X-axis) were used to classify the persistence profile of E. 

coli isolates. Accuracy, AUC, sensitivity, specificity, kappa metrics were calculated for each learner. 

Moreover, these metrics were shown for LSVM and logistic regression which were the best perform-

ing classifiers amongst employed ones. These graphs were generated in GraphPad Prism v8. 
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 Biomarker Characterisation 

4.3.4.1 Biomarker Characterisation for Phenotypic Profiles of Persistent Strains 

Two peaks identified as providing optimal discrimination between subclinical and clinical phe-

notypes of persistent strains were further analysed to identify their correspondent E. coli pro-

teins. When compared with Prokka annotations of persistent E. coli strains, two peaks could be 

cross-matched with 50S ribosomal protein L35 (RpmI) and DNA gyrase inhibitor (YacG) 

within a maximum of 0.2% difference as molecular weight (see Table 4-6). 3D models of these 

discriminant proteins are shown in Figure 4-16. 

Table 4-6. Top PSI-BLAST, conserved domain search and cellular location results for the 

two discriminant proteins between subclinical and clinical phenotypes of persistent E. coli 

strains. 

MALDI-TOF 

Peak (Mw) 

Protein 

(Mw) 

PSI-BLAST 

Match 
Identity 

e- 

value 

Domain 

(e-value) 

PSORTB 

location 

(score) 

7149.66Da 

 

RpmI 

(7157.74Da) 

50S ribosomal 

protein L35 
100.00% 2e-37 

Ribosomal_L35p 

(1.44e-21) 

Cytoplasmic 

(9.26) 

       

7171.62Da 
YacG 

(7174.98Da) 

DNA gyrase 

inhibitor 
100.00% 1e-39 

DNA gyrase inhibitor 

YacG (2.74e-38) 
Unknown 

       

 

According to GO, YacG was found to be involved in DNA-templated regulation of transcrip-

tion (BP), negative regulation of DNA topoisomerase activity (BP), zinc-ion binding (MF), 

DNA topoisomerase type II inhibitor activity (MF), metal ion binding (MF) and cytosol (CC); 

whereas RpmI was found to be involved in translation (BP), structural constituent of ribosome 

(MF) and cytosolic large ribosomal subunit (CC). 
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Figure 4-16. 3D models of discriminant proteins between subclinical and clinical pheno-

types of persistent strains. The models are created based on the homology structure of A) RpmI 

and B) YacG. The visualisation was carried out with UCSF Chimera. 

PPI network analysis of 2 discriminant proteins (RpmI and YacG) and their 17 first neighbour 

proteins (19 in total) are shown in Figure 4-17. 

 

Figure 4-17. Protein-protein interaction (PPI) network related to the phenotypic profile 

of clinical status. The PPI shows two discriminant proteins (RpmI and YacG) coloured in green 

with 17 neighbouring proteins coloured in grey. The visualisation was carried out with Cytoscape. 

4.3.4.2 Biomarker Characterisation for Persistence Profiles 

Six peaks identified as providing optimal discrimination between persistent and non-persistent 

strains were further analysed to identify their correspondent E. coli proteins. When compared 

with Prokka annotations of analysed E. coli strains, six peak masses identified 30S ribosomal 

protein S19 (RpsS), protein YihD and four hypothetical proteins. 

To further characterise the function of these proteins we did a PSI-BLAST comparative anal-

ysis (see Table 4-7), where one of the hypothetical proteins were found to belong YncJ protein 

family. In further analysis, hypothetical protein-3 (HP-3) was called YncJ. 
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Table 4-7. Top PSI-BLAST, conserved domain search and cellular location results for the 

six discriminant proteins between persistent and non-persistent E. coli strains. 

MALDI-TOF Peak 

(Mw) 
Protein (Mw) 

PSI-BLAST 

Match 
Identity 

e- 

value 

Domain 

(e-value) 

PSORTB 

location 

(score) 

4173.95Da 

 

HP-1 

(4171.89Da) 

Hypothetical 

protein 
100.00% 3e-21 

No domain 

was found. 
Unknown 

6355.80Da 
HP-2 

(6359.51Da) 

Hypothetical 

protein 
100.00% 7e-29 

No domain 

was found. 
Unknown 

6444.01Da 
HP-3 

(6453.04Da) 

YncJ family 

protein 
100.00% 2e-33 DUF2554 Unknown 

9189.62Da 
HP-4 

(9182.58Da) 

Excisionase 

family protein 
100.00% 5e-52 DUF1233 Unknown 

10256.71Da 
YihD 

(10272.91Da) 

YihD family 

protein 
100.00% 1e-57 DUF1040 

Cytoplasmic 

(8.96) 

10298.83Da 
RpsS 

(10299.09Da) 

30S ribosomal 

protein S19 
100.00% 8e-61 

Ribosomal-

S19 

Cytoplasmic 

(9.26) 

HP: Hypothetical protein, DUF: Domain of unknown function. 

According to GO, YihD was found to be involved in the cytosol (CC); whereas no BP or MF 

terms were assigned for them. RpsS was found to be involved in translation (BP), ribosomal 

small subunit assembly (BP), rRNA binding (MF), structural constituent of ribosome (MF), 

rRNA binding (MF) and cytosolic large ribosomal subunit (CC).  

GO terms were predicted by using 3D threading protein models of hypothetical proteins which 

resulted as follows (see Figure 4-18). For HP-1: DNA-binding (MF), DNA-binding transcrip-

tion factor activity (MF), regulation of transcription (BP), regulation of DNA replication (BP) 

were found whereas none could be predicted for CC. For HP-2: ATP binding (MF), transporter 

activity (MF), toxin binding (MF), transport (BP), response to antibiotic (BP), bacteriocin im-

munity (BP) and plasma membrane (CC) were found. For HP-3: oxidoreductase activity (MF), 

transition metal ion binding (MF), establishment of localization (BP), cellular respiration (BP) 

and mitochondrial membrane (CC) were found. For HP-4: nucleotide binding (MF), regulation 

of transcription (BP) and intracellular part (CC) were found. 
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Figure 4-18. 3D models of discriminant proteins between persistent and non-persistent E. 

coli strains. The models are created based on threading A) HP-1, B) HP-2, C) HP-3, D) HP-4 and 

homology structure of E) protein YihD and F) RpsS. The visualisation was carried out with UCSF 

Chimera. 

PPI network analysis could be performed for three (RpsS, YihD and YncJ) out of six proteins 

as no interaction of the other three hypothetical proteins could be found in the STRING data-

base. PPI analysis of 3 discriminant proteins and their 30 first neighbour proteins (33 in total) 

are shown in Figure 4-19. 

 

Figure 4-19. Protein-protein interaction (PPI) network related to persistence profile. The 

PPI shows three discriminant proteins (RpsS, YncJ and YihD) coloured in green with 30 neighbouring 

proteins coloured in grey. The visualisation was carried out with Cytoscape. 
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 Functional Enrichment Analyses 

Functional enrichment analyses were performed for discriminant proteins of persistency (per-

sistence vs non-persistent) and phenotype (subclinical vs clinical) profiles and their neighbours, 

separately. Some of the significant annotations can be seen in Figure 4-20. 

 

Figure 4-20. Functional enrichment analysis of phenotypic profile discriminatory network 

and persistency discriminatory network based on Gene Ontology and KEGG pathways. Bi-

ological pathway (BP), molecular function (MF), cellular component (CC) and KEGG were indexed 1 

for the phenotypic profile discriminatory network (subclinical vs clinical) and 2 for persistency dis-

criminatory network (persistent vs non-persistent). This figure was generated using R package ti-

dyverse (Wickham et al., 2019). 

4.4 DISCUSSION 

This study used the recurrent mastitis samples obtained during a previous study (Bradley and 

Green, 2000). Recurrent clinical episodes can be a result of two different scenarios; re-infection 
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of the mammary gland by pathogens present in the environment or persistent infection with the 

same pathogen. The first objective in this work was to perform whole-genome sequencing for 

validation of the persistent E. coli samples which were collected at different time points (pre-

calving and post-calving) in the same quarter. Genotypically unique strains were thought to be 

the result of persistent infection as there is a wide range of E. coli pathogens in the environment 

and unlikely to be re-infected with the same genotype.  

Various genome comparison analyses such as FastANI, BRIG, ACT, SNPs typing etc., were 

performed to confirm two isolates that were collected from the same quarter in different time 

points were identical. The high similarity-based whole-genome analysis showed us that there 

were four identical cases in animal-1, animal-5, animal-8 and animal-10 which were labelled 

as persistent, whereas other isolates were labelled as nonpersistent and were still used to ex-

plore potential genotypic pattern between the different clinical status of mastitis pathogens. 

Although the increased accessibility of the whole-genome sequencing technology, MLST is 

still widely used for certain epidemiological studies, as it is easy to track the ST in literature 

due to well-established databases (Zhou et al., 2020). In this study, the MLST of 20 E. coli 

genomes were found based on Achtman and Pasteur scheme. As the Achtman scheme is the 

most frequently used MLST technique around the world, the findings of the Achtman scheme 

were compared with the literature. Amongst 20 E. coli isolates, the most common MLST type 

was ST-10, which was detected in two persistent strains (isolates 739&937 in animal-5 and 

isolates 766&1608 in animal-8) as well as six other strains (isolates 152, 1469, 2249, 2422, 

3038 and 3109). ST-10 is a widely isolated strain from humans and farm animals (Izdebski et 

al., 2013), and classified as zoonotic extended-spectrum beta-lactamase-producing E. coli 

(ESBL) (Lazarus et al., 2015). ST-10 has been previously found in Shiga-toxin-producing E. 

coli (STEC) isolated from bovine hides and carcases in Ireland (Monaghan et al., 2012; Feng 

et al., 2017), from pigs in Australia (Kidsley et al., 2018), from cattle in Tunisia (Grami et al., 

2014), from bovine mastitis diagnosed cows in China (Li et al., 2011). Moreover, ST-10 was 

the most widely isolated clone from Israeli dairy cows (Blum and Leitner, 2013; Lifshitz et al., 

2018) and found to be more prevalent in the cows than their environment (Blum and Leitner, 

2013). Persistent strain in animal-1 (isolates 2424&2474) was found to be ST-57, which was 

previously isolated from peritonitis syndrome outbreaks in chicken flocks (Landman et al., 

2014). ST-57 was detected in avian pathogenic E. coli (APEC) and uropathogenic E. coli 

(UPEC) strains as well (Lau et al., 2008; Hussein et al., 2013). Persistent strain in animal-10 

(isolates 2421&2506) was found to be ST-106. ST-106 was found in enterohemorrhagic E. coli 
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(EHEC) strains isolated from calves and humans from divergent locations such as the US, Ger-

many, Cuba and Scotland (Abu-Ali et al., 2009). Isolate 3042 was found to be ST-1079, which 

was previously detected in ESBL, MBL (metallo-beta-lactamase) and AmpC beta-lactamase-

producing isolates collected from livestock and poultry in India (Govindaraj et al., 2019). Iso-

late 329 was found ST-297, which was previously isolated from cattle in Tanzania (Madoshi 

et al., 2016), calves in India (Murugan et al., 2019), cows and chickens in China (Chen et al., 

2018), verotoxin-producing E. coli (VTEC) strain from cheese in Kosovo (Nagy et al., 2015) 

and from ESBL-producing isolates from wild birds in Tunisia (Ben Yahia et al., 2018). Isolate 

1998 was found ST-685, which was previously isolated from healthy swine in Thailand 

(Seenama, Thamlikitkul and Ratthawongjirakul, 2019). Isolate 2117 and 435 were found ST-

4087 and ST-5880, respectively. No E. coli isolate with this ST types was seen in the literature. 

There were 9635 different STs in the pubMLST database for the Achtman scheme on the day 

of analysis, some of which belonged to one of the 56 clonal complexes. As the name states, 

ST-10 was the main type of ST-10 clonal complex which contained pathogenic or non-patho-

genic strains from different sources. ST-106 was the furthest type to ST-10 with 6 loci variants. 

ST-106 belonged to ST-69 clonal complex which was isolated from sources including cattle 

around the world but mostly ESBL-producing strains (Lifshitz et al., 2018; Gordon, 2013; 

Madoshi et al., 2016). Strains of ST-69 observed in different studies were shown to be persis-

tent with good ability to colonize and adapt different hosts (Alghoribi et al., 2014; Gibreel et 

al., 2010). ST-57 belonged to ST-350 clonal complex while other STs (ST-5880, ST-685, ST-

1079, ST-297, ST-4087) did not belong to any clonal complex yet although there was only 

single locus variant (SLV) between ST-685 and ST-10. These findings showed that there was 

no specific ST type to define bovine mastitis causing E. coli strains as the same ST types could 

be isolated from various range of host and source. 

It was interesting to see that highly similar but not identical isolates (isolate 3038 &3109; iso-

late 2378 with persistent strain in animal 10) based on whole-genome sequencing analysis (i.e 

FastANI) were typed as same ST according to both MLST schemes (Achtman and Pasteur 

scheme). One can comment that MLST is highly accurate for true negatives but with high rates 

of false positives. Hence, MLST should be used carefully for strain detection studies. 

MLST needs to screen seven or more housekeeping genes for strain typing. As the number of 

loci to screen increases, the analysis time and price of the analysis increases (Overdevest et al., 

2012). Hence, researchers developed new typing techniques which can screen fewer loci and 

give the same discriminatory power with the MLST, one of them was CH typing based on two 
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loci: fumC and fimH. Housekeeping genes such as fumC evolve slowly as they are under neutral 

or stabilizing selection pressures (Jolley and Maiden, 2014). Instead, genes like fimH (type 1 

adhesin) evolve quickly to adapt regarding positive selection pressure and suggested to give 

better performance to differentiate strains (Schwartz et al., 2013). In an extensive study, almost 

a thousand E. coli isolates including commensal/pathogenic model isolates (ECOR) and newly 

collected isolates were CH typed (Weissman et al., 2012). Comparing our results with the re-

sults of that study; the most common CH type 11-27 of our analysis were also detected in 

laboratory strains MG1655 and W3110, ECOR12, ECOR14 and ECOR24, which were all from 

Swedish human hosts (Ochman and Selander, 1984). There were three model organisms iso-

lated from steer and two of them were found to be fumC11, which was the most common fumC 

type in our study. Another CH type found in one of our persistent isolates was fumC35-fimH47, 

which was also detected in the ECOR47 strain, sheep faecal from New Guinea. Other CH types 

found in our persistent cases fumC11-fimH54 and fumC31-fimH54 were not detected in any 

isolates of that particular study. 

In the case of an outbreak, it is essential to define which pathogenic serotype the E. coli isolate 

belongs to. Serotyping has been widely used since it was first discovered and has become the 

gold standard (Kauffmann, 1947). Conventional serotyping relies on three immunogenic units, 

which are lipopolysaccharide (O antigen), capsular (K antigen) and flagellar (H antigen) 

(Orskov et al., 1977). As the nature of this technique which screens the immunogenic structures 

unlike other typing methods such as PFGE, ribotyping or MLST; serotyping is the most accu-

rate to be used (Joensen et al., 2015). Serotyping result of isolates 2424&2474 (persistent strain 

in animal-1) was found to be O176:H32. In the literature, not much was found related to this 

serotype however O176 was detected in VTEC isolated from calves (Scheutz et al., 2004). 

Serotyping result of isolates 739&937 (persistent strain in animal-5) was found to be O74:H39, 

which was previously observed in STEC isolated from Argentinian dairy cows (Fernández et 

al., 2010) and beef (Constantiniu, 2002), enterohemorrhagic strains from bovine faeces 

(Abdulmawjood et al., 2003). Notably, this serotype was seen in another persistent mastitis-

causing E. coli isolated from a dairy farm in New York, which shared common virulence fac-

tors with ExPEC (Dogan et al., 2012). Serotyping result of isolates 766&1608 (persistent in 

animal-8) was found O9:H17, which was previously found in ESBL-producing E. coli 

(Verschuuren et al., 2020). Serotyping result of isolates 2421&2506 (persistent strain in ani-

mal-10) was found to be O17:H18, which was previously found in UPEC and STEC (Wallace-

Gadsden et al., 2007; Eklund, Scheutz and Siitonen, 2001). Serotyping result of isolates 3038& 
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3109 was found to be O135:H11, which was previously found in E. coli strains isolated from 

faeces of feedlot cattle (Diarra et al., 2009). The serotype of isolate 2422 was O45:H11, which 

was previously found in EPEC, non-pathogenic, UPEC and attaching-effacing E. coli (AEEC) 

strains as well (Delannoy, Beutin and Fach, 2012; Malik et al., 2017; Fröhlicher et al., 2008; 

Paniagua-Contreras et al., 2019). The serotype of isolate 1469 was Ont:H16, which was also 

isolated from a healthy dairy cow (Houser et al., 2008). The serotype of isolate 2249 was 

O107:H54, which was also found in isolates from urban impacted coastal waters (Fernandes et 

al., 2020). The serotype of isolate 152 was O4:H27, which was also found in isolates related 

to pigs with diarrhoea (Boerlin et al., 2005). The serotype of isolate 1998 was found to be 

Ont:H34, which was also detected in EPEC strains from Australia and Brazil (Nguyen et al., 

2006; Gomes et al., 2004); STEC strains from animals including cattle (Constantiniu, 2002); 

and VTEC strains from bovine skin and carcasses (Denis, Wieczorek and Osek, 2014). The 

serotype of isolate 2117 was found to be O127:H4, which was observed in EPEC (Jensen et 

al., 2007), STEC (Tozzoli et al., 2014), enteroaggregative hemorrhagic E. coli (EAHEC) 

(Dallman et al., 2012) and commensal isolates (Ahmed, Olsen and Herrero-Fresno, 2017). The 

serotype of isolate 3042 was O6:H49, which was previously observed in STEC strains isolated 

from healthy beef and dairy cattle (Castro et al., 2019). The serotype of isolate 329 was 

O179:H8, which was found in STEC isolated mostly from dairy cattle, beef cattle and sheep 

(Vimont, Delignette-Muller and Vernozy-Rozand, 2007; Beutin and Strauch, 2007; Fremaux 

et al., 2006; Hornitzky et al., 2005; Castro et al., 2019); VTEC isolated from various sources 

such as raw milk, milk filter and meat (Scheutz et al., 2004); and EPEC isolated from cheese 

(Júnior et al., 2019). Serotyping result of isolate 435 was found to be O26:H9, which was 

previously detected in STEC isolated from cattle faeces (Stanford et al., 2018), cattle itself and 

its environment (de Souza Figueiredo et al., 2019). Overall, our results were consistent with 

the findings of Wenz et al., (2006) where they failed to detect any predominant serotype in 

their bovine-mastitis causing E. coli strains. 

Persistent strains in animal-1 (isolates 2424&2474), animal-5 (isolates 739&937), animal-8 

(isolates 766&1608) and animal-10 (isolates 2421& were found belonging to phylogroup E, 

A, A and D, respectively. Amongst the remaining isolates, phylogroup A was the most common 

which was found in seven isolates (isolate 152, 1998, 2117, 2249, 2422, 3038 and 3109), while 

three isolates (isolate 329, 1469 and 3042) were found in phylogroup B1. This was consistent 

with the E. coli strains isolated from bovine mastitis cases in various geographical locations 

(Zude, 2014; Ghanbarpour and Oswald, 2010; Blum and Leitner, 2013; Dogan et al., 2006). 
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There are mainly commensal, transient and acute mastitis-causing strains in phylogroup A 

(Dogan et al., 2006; Blum et al., 2015). However, persistent mastitis strains were found in this 

group as well (Blum et al., 2015). Phylogroup B1 strains are also mainly commensal or intes-

tinal pathogens (Gordon and Cowling, 2003). However, transient and persistent mastitis-caus-

ing strains were also observed in this group (Dogan et al., 2012). It was a common belief that 

cow factors are the main drivers of mastitis severity rather than pathogenic factors (Burvenich 

et al., 2003). This may be true for animal-5 and animal-8 as persistent strains in these animals 

were found in phylogroup A and this persistency may be a result of their weak immune system. 

However, persistent strains in animal-1 and animal-10 were found in phylogroup E and D, 

respectively, which also contained highly pathogenic E. coli strains such as EHEC serotype 

O157:H7 and enteropathogenic (EPEC) serotype O55:H7 in phylogroup E (Cooper et al., 

2014); extra-intestinal pathogenic (ExPEC), enteroaggregative E. coli (EAEC) and highly vir-

ulent mammary pathogenic strain in phylogroup D (Olson et al., 2018). Dogan et al., (2012) 

also found persistent mastitis-causing E. coli strains which belonged to phylogroup D. Previ-

ously, mastitis associated E. coli strain was seen in phylogroup E which was also rare compared 

to phylogroup A and B1 (Leimbach et al., 2017). Although certain phylogroups dominate the 

specific hosts and habitats, other factors such as changes in the environment or selection pres-

sure may result in dominancy of less abundant clades (Smati et al., 2013; Scholz et al., 2016).  

Plasmids are important elements to circulate virulence factors and AMR in the bacterial popu-

lation (Guardabassi and Courvalin, 2006). In our study, IncF plasmid family was the most 

commonly found (IncFIA(HII), IncFIB(K), IncFIB(pECLA), IncFIB(AP001918), IncFIC(FII), 

IncFIC(pCoo) and IncFII(29)). This plasmid family capable of carrying transfer, multidrug re-

sistance and virulence factors (Johnson and Nolan, 2009). IncFIB(AP001918) was previously 

found in E. coli samples isolated from retail meat (Falgenhauer et al., 2016), cattle-sourced 

ESBL (Adator et al., 2020), cattle faeces (Bumunang et al., 2019), human and domestic ani-

mals (Salinas et al., 2019). IncFIA was previously found in ESBL-producing E. coli samples 

from bovine mastitis cases around the world (Ali et al., 2017; Freitag et al., 2017; Afema et 

al., 2018). IncFIC and IncFII plasmids were previously found in multidrug-resistant E. coli 

isolates from cattle with suspected mastitis infections in France and Germany (Brennan et al., 

2016). IncY (phage-like plasmid), p0111, col440II and col3M were another plasmid type de-

tected in this analysis. IncY plasmid was another common type isolated from bovine mastitis 

cases around different locations in China (Ali et al., 2017). 
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Many attempts have been made to identify virulence factors of bovine-mastitis causing E. coli 

strains. Although several studies (Fernandes et al., 2011; Suojala et al., 2011; Blum et al., 

2015) suggested that some virulence traits could be specific to bovine-mastitis causing E. coli 

strains, none of these traits has been universally agreed. In line with other studies, we could not 

see any pattern of virulence factors driving the force behind either bovine-mastitis causing, 

persistency or clinical severity. Seven virulence genes in the persistent strain of animal-1 (iso-

lates 2424&2474), four virulence genes in the persistent strain of animal-8 (isolates 766&1608) 

and six virulence genes in the persistent strain of animal-10 (isolates 2421&2506) were ob-

served whereas none was found in the persistent strain of animal-5 (isolate 739&937). There 

now follows a literature review about the virulence genes present in the sequenced E. coli ge-

nomes of this study. 

AstA gene was previously found amongst 6.3% of bovine mastitis-causing E. coli strains 

(Suojala et al., 2011), which was almost the same as our small scale study. It was only present 

in one of our persistent strains which was consistent with the study by Dogan et al., (2012), but 

in contradistinction to findings of Leimbach et al., (2015), where it was present in acute bovine 

mastitis strain (E. coli 1303) but absent in persistent mastitis-causing strain (ECC-1470). It was 

found to be the unique gene in bovine mastitis-causing E. coli isolates compared with environ-

mental E. coli strains (Blum and Leitner, 2013). It was also found to be one of the most related 

virulence genes resulting in metritis and endometritis, the other serious dairy diseases 

(LeBlanc, Osawa and Dubuc, 2011).  

Iss gene was the most common virulence factor found in various studies with bovine mastitis-

causing E. coli strains, although none of the studies proved the presence of iss in their all iso-

lates (Kaipainen et al., 2002). However, iss gene was also found frequently in ExPEC, APEC 

and NMEC (meningitis-associated E. coli) strains (Johnson, Wannemuehler and Nolan, 2008; 

Rodriguez-Siek et al., 2005). In our study, iss gene was found in 56.25% of the cases in both 

persistent and non-persistent; however, previously it was detected in only 16.7% of the 154 

bovine mastitis-causing E. coli isolates and not in any persistent strain (Suojala et al., 2011; 

Leimbach et al., 2015).  

The presence of lpfA gene was shown in transient and persistent mastitis-causing isolates and 

it was suggested to play a role in the adhesion of the pathogen (Dogan et al., 2012). LpfA gene 

was previously found to be a statistically significant gene that was present in phylogenetic B 

and absent in group A (Blum and Leitner, 2013; Kempf et al., 2016). These findings were 
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observed in our study as well, where the isolates with lpfA presence belonged to phylogenetic 

B1 and D; moreover absent in group A isolates. LpfA was shown in other pathogenic or non-

pathogenic E. coli strains as well (Toma et al., 2006; Chassaing et al., 2011). 

HilA-like regulator (EilA) and enteroaggregative immunoglobulin repeat protein (Air) play 

important roles in activating type III secretion system (T3SS) and adhesion, respectively 

(Sheikh et al., 2006). The correspondence of these genes was shown in various studies and it 

was concluded that EilA activates the Air protein (Sheikh et al., 2006). Both were present in 

only the same individuals of this study as well. Previously they were also isolated in EAEC 

strains and cefotaxime-resistant E. coli (CREC) strains from the faecal samples of suckling 

calves (Sheikh et al., 2006; Manga et al., 2019).  

Type-V secretion serine protease (espP) was found in the persistent strain of animal-10 (iso-

lates 2421&2506) and their closest isolate-2378. EspP was one of the ExPEC virulence factors 

(Köhler and Dobrindt, 2011; Dezfulian et al., 2003), it was not detected in any bovine-mastitis 

causing E. coli strains in the study by Leimbach et al., (2017); but detected in 3 out of 37 

bovine-mastitis causing E. coli strains in the study by Keane (2016).  

Microcins are secreted mainly by Enterobacteriaceae for providing tolerance to heat, pH, pro-

tease and bactericidal activity (Rebuffat, 2012). MchB, mchC and mchF were found together 

in the persistent strain of animal-1 (isolates 2424&2474) and mchF alone was found in the 

persistent strain of animal-8 (isolates 766&1608). Three of them together were previously 

found in STEC and only ST-21 type of EHEC strains (Gonzalez-Escalona et al., 2016; Ferdous 

et al., 2016). MchF gene was found in 3 out of 37 bovine-mastitis causing E. coli strains 

(Keane, 2016). 

Glutamate decarboxylase (gad) was shown to be related to survival in high acidic environments 

(Ma et al., 2002; Yin et al., 2012; Bergholz et al., 2007) and involved in oxidative stress regu-

lation (Bose, Venkatesh and Mande, 2017). Gad was another most common virulence factor 

which was found in 50% of the E. coli isolates in our study. It was previously shown present 

in EHEC, EPEC, enterotoxigenic (ETEC), enteroinvasive (EIEC), STEC and bovine mastitis-

causing E. coli strains (Grant, Weagant and Feng, 2001; Richards et al., 2015) 

Salmochelin siderophore receptor (IroN) is one of the members of E. coli siderophore, which 

play a role in iron uptake so that bacteria can compete with immune cells and increase bacterial 

growth (Faber and Bäumler, 2014). Moreover, it was suggested to take part in an invasion 

mechanism (Feldmann et al., 2007). IroN was found only in two persistent strains in this study 
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which were coming from animal-1 (isolates 2424&2474) and animal-8 (isolates 766&1608). 

Other researchers also found iroN present in their bovine mastitis-causing E. coli strains with 

the prevalence of 6% and 25% in transient and persistent mastitis cases, respectively (Dogan 

et al., 2012; Kempf et al., 2016). However, none of the bovine mastitis-causing E. coli strains 

did contain this gene in another study (Leimbach et al., 2017). IroN gene was detected in Ex-

PEC, UPEC and NMEC as well (Guzman-Hernandez et al., 2016; Peigne et al., 2009; 

Feldmann et al., 2007).  

Overall, no association was found between clinical severity of mastitis and virulence factor of 

mastitis-causing E. coli, which was consistent with previous studies (Suojala et al., 2011; 

Lehtolainen et al., 2003; Wenz et al., 2006). It was suggested that persistent mastitis E. coli 

strains could have other bacterial factors other than virulence genes (Shpigel, Elazar and 

Rosenshine, 2008). However, there was no other gene which was particularly specific to any 

phenotypic group of E. coli isolates was found in our study. This may show that the weak 

influence of the pathogen genome to develop different outcomes of bovine mastitis. Cases like 

the same strains infecting the different cows but only some resulting in clinical mastitis shows 

the contribution of host factors. In the current study, isolate-2378 from animal-9 was highly 

similar to the persistent case in the animal-10 (isolates 2421&2506), although it could not per-

sist or flare-up later in the lactation period. Cases like different strains infecting the quarters at 

dry period time, but only some resulting in persistent episodes through lactation strongly sug-

gest the contribution of pathogen factors. However, it is still unknown to what extent these 

factors play a role in clinical severity (Rainard et al., 2018). In this study, no specific pattern 

was shown between different phenotypes of mastitis pathogens based on their genomic pro-

files. It was, then, aimed to show the interaction between host and pathogen, by the constant 

host, based on proteome profiles of the pathogen in different clinical status. 

Higher predictions were successfully performed by relatively simpler models in this current 

study. This is not surprising as it is a common experience that simpler models work better for 

smaller datasets and as the model gets complex, more data is needed. MLP was previously 

shown not to perform well with small datasets (Silva and Adeodato, 2011). DT and RF were 

previously shown to be successful small datasets but the dataset was still relatively bigger than 

ours (Shaikhina et al., 2019). One of the main reasons for the low performance of RF classifier 

should be related to a limited number of features as RF needs a higher number of features. DT 

was also known to improve prediction performance together with an increase in training da-

tasets (Morgan et al., 2003). AdaBoost was previously shown to be more successful with larger 
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datasets by reducing bias and variance compared to small datasets (Zhang, Wang and Zhang, 

2011). Prediction performances of QDA and LDA are also highly related to the size of data 

that is trained. This should explain the low success in our study with these models. 

Although some classifiers like LR, LSVM and NB gave reasonable prediction performance for 

both analyses, we cannot talk about random testing which could disguise the learning curve 

and result in overfitting. It is no doubt that large datasets avoid overfitting and give better gen-

eralization; hence, this experiment should be repeated on a bigger scale. In ML studies, big 

datasets have been thought to be a key factor of high prediction performance (Müller and 

Guido, 2016). Moreover, the larger sample size was concluded to be improving prediction ac-

curacy no matter what algorithm or feature type was employed (Cui and Gong, 2018). How-

ever, it is not always possible to collect large datasets due to high cost, time pressure, laborious 

methodology, scarce resource or simply biological ethics. Therefore, researchers are some-

times constrained to performing ML on limited datasets, to obtain preliminary results at least. 

Contrary to common belief, big data is not always the solution and there is room for improving 

the performance with small datasets. NCV was shown to give robust and unbiased performance 

compared to other validation methods such as K-fold cross-validation which still needs a big 

amount of data to deal with bias (Vabalas et al., 2019). We also employed NCV for our study 

and had good performance with certain classifiers. The other issue to cope with employing ML 

on small datasets high dimensionality as neuroimaging, microarrays or genomic studies are 

subject to small sample size but produce lots of features (Arbabshirani et al., 2017; Libbrecht 

and Noble, 2015). This was not the issue in our study as only the peaks with high intensity and 

statistically different ones were employed and there were two features for phenotype discrim-

ination of persistent strains and six features for persistency detection. Hyperparameter optimi-

sation was another key point to cope with the overfitting problem (Vabalas et al., 2019), which 

were tuned for each classifier in this study. Another point to consider for assessing the perfor-

mance of classifiers is the standard deviation of the prediction metrics. The performance of 

small datasets may likely have high variance if outliers are present. Confidence bounds in an 

experiment with around 30 sample size were expected to be 15% (Varoquaux, 2018). LR, 

LSVM, NB, RBF SVM, LDA and QDA had all their prediction metrics (sensitivity, specificity, 

AUC, accuracy, kappa) in this range while others failed for persistence profiling. For pheno-

type profiling, all the classifiers but NN and RF gave prediction performance with less than 

15% error bar. 



125 
 

While our primary aim was to develop ML-powered diagnostic discriminating different phe-

notypes of the same genotype holding persistent E. coli strains, we also characterized the mo-

lecular determinants and mechanism underlying the clinical pattern to understand how bacteria 

transform their phenotype in the mammary gland. Our findings in differentiating subclinical 

and clinical phenotypes of E. coli showed that two MALDI-TOF peaks correspond to riboso-

mal protein (RpmI) and DNA gyrase inhibitor protein (YacG). YacG protein inhibits DNA 

gyrase activities such as supercoiling and relaxation, which could alter the physiology of the 

living organism. Hence, the function of YacG was thought to be as a control mechanism of the 

cell division and DNA replication in response to cell growth and stress signals (Sengupta and 

Nagaraja, 2008; Vos et al., 2014). Protein expression of YacG was shown to be altered by an 

environmental stimulus in E. coli (Stenger, 2019) and other species (Yang et al., 2019b). How-

ever, these studies of yacG were performed in vitro and it is not known why and when yacG is 

expressed in vivo. A common suggestion for its abundance may be related to stress, dormancy 

or persistency (Hobson and Berger, 2019). RpmI encodes the L35 protein which is the compo-

nent of 50S subunit of ribosome and was found to be non-essential in E. coli (Shoji et al., 

2011). However, RpmI was one of the biomarkers that were detected to discriminate Campyl-

obacter coli clades by using MALDI-TOF (Emele et al., 2019b). This part of the study showed 

that phenotypic differences between the subclinical and clinical status of the same genotypes 

were detectable by proteomic MALDI-TOF spectral profiles. This difference seems reasonable 

as the selection pressure in the mammary gland would drive bacteria to adjust their phenotype 

as either protein abundance or modification. 

Our findings in differentiating persistent and non-persistent phenotypes of E. coli showed that 

six MALDI-TOF peaks correspond to ribosomal protein (RpsS), protein YihD and four hypo-

thetical proteins of which two of them could be matched with YncJ family protein and exci-

sionase family protein by PSI-BLAST analysis. Protein expression of RpsS was shown to be 

altered by an environmental stimulus which shows RpsS involves in the stress response of E. 

coli (Stenger, 2019; Božik et al., 2018). RpsS was shown essential for the survival of E. coli 

on LB media at 30˚C and 37˚C (Shoji et al., 2011). It was one of the biomarkers which were 

found to differentiate C. coli and C. fetus clades by using MALDI-TOF (Emele et al., 2019a; 

Emele et al., 2019b). It was also found to be upregulated in mastitis E. coli strains cultivated 

with MAC-T cells (Zude, 2014). Protein expression of YihD was shown to be altered by envi-

ronmental stimulus (Stenger, 2019) and in depletion studies, it was shown to be involved in 

ribosome biogenesis (Vlasblom et al., 2014). Hypothetical protein-3 was found to belong to 
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YncJ family protein. The function of YncJ is still unknown but suggested to be related to stress 

response (Raivio, Leblanc and Price, 2013). YncJ gene was found up-regulated in fluoroquin-

olone-resistant E. coli isolates (Yamane et al., 2012), and was also shown to be affected by 

environmental stress such as different concentrations of external copper (Yamamoto and 

Ishihama, 2005). Hypothetical protein-4 was found to have an excisionase family domain 

which was phage-encoded. This may be plausible for explaining the persistence character of 

some strains. The domains of other hypothetical proteins were not found; hence, no further 

information could be given about them. 

Overall, we demonstrated that there was no genotypic pattern amongst bovine mastitis-causing 

E. coli strains to cause different phenotypic outcomes of persistency or clinical severity. It was 

shown that biological changes in the mammary environment force the pathogen to adapt its 

protein abundance by comparing MALDI profiles of different phenotypic groups. By using 

ML, we were able to show some of the biomarkers in a limited range, which may inspire further 

studies to design diagnostic tools or antimicrobial agents for bovine mastitis-causing E. coli. 
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CHAPTER 5 MASS SPECTROMETRY AND MACHINE 

LEARNING FOR THE ACCURATE DIAGNOSIS OF 

BENZYLPENICILLIN AND MULTIDRUG RESISTANCE OF 

STAPHYLOCOCCUS AUREUS IN BOVINE MASTITIS 

This chapter is published in PLOS Computational Biology (https://doi.org/10.1371/jour-

nal.pcbi.1009108) with the title above by Necati Esener, Alexandre M. Guerra, Katharina 

Giebel, Daniel Lea, Martin J. Green, Andrew J. Bradley and Tania Dottorini. PLOS applies the 

Creative Commons Attribution license to works they publish. Under this license, the articles 

are legally available for use, without permission or fees, for virtually any purpose. Anyone may 

copy, distribute, or reuse these articles, as long as the author and source are properly cited. The 

authors’ contributions were as follows: MJG and AJB provided the original data. TD, MJG and 

AJB conceived and designed the data analysis procedures. NE, AMG, KG, and DL carried on 

the data analysis. NE, AMG and TD wrote the manuscript. All authors reviewed the manu-

script. 

In Chapter 5, the main aim was to find a fast and more accurate alternative to standard sus-

ceptibility tests, to profile multidrug and benzylpenicillin resistance in S. aureus isolates. Data 

preparation of the MALDI-TOF spectra was performed by an in-house script written in 

MATLAB platform. Pre-processed data was analysed with ten supervised ML algorithms that 

were available in the sci-kit learn library in Python: LR, LSVM, RBF SVM, MLP NN, RF, 

DT, AdaBoost, NB, LDA and QDA. We tested the power of MALDI-TOF MS combined with 

ML techniques to present the antimicrobial profile of S. aureus associated with bovine mastitis. 

Here for the first time, we demonstrate that this approach can be used to develop diagnostic 

solutions that can discriminate with high performance between benzylpenicillin- and multi-

drug-resistant and susceptible bovine mastitis-causing S. aureus isolates. 

5.1 INTRODUCTION 

A new generation of 'superbugs' caused by ever-increasing AMR is a growing challenge in 

modern human and veterinary medicine (HM Government, 2019). The effects of neglecting 

AMR are extensive and have not only an economic impact, but also concern global health, 

environment, food sustainability and safety, and socioeconomic status. It is estimated that 

700,000 deaths each year globally are caused only by AMR infections and this figure is ex-

pected to reach 10 million by 2050 (O’Neill, 2016). 

https://doi.org/10.1371/journal.pcbi.1009108
https://doi.org/10.1371/journal.pcbi.1009108
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S. aureus is a major opportunistic pathogen, infecting both humans and a wide variety of ani-

mals including dairy cattle, which have been recently proven to pose an important zoonotic 

potential, being the principal animal reservoir of novel human epidemic clones (Richardson et 

al., 2018). Worldwide, S. aureus is one of the most frequently isolated pathogens of bovine 

mastitis, which remains a significant problem in the dairy industry by affecting productivity, 

profitability, animal health and welfare (Heikkilä et al., 2018). The majority of bovine mastitis 

infections caused by S. aureus exhibit subclinical and chronic manifestations resulting in long-

term intramammary persistence (Schukken et al., 2011). S. aureus can reproduce swiftly upon 

entering the mammary gland and induce immune reactions that can lead to tissue injuries (Sutra 

and Poutrel, 1994). Most of the time, the immune response of the cow itself cannot successfully 

eliminate the S. aureus infection and treatment is needed (Sutra and Poutrel, 1994). Existing S. 

aureus vaccines are not considered as a preventive solution due to their yet unproven effective-

ness against infections (Rainard et al., 2018). 

Antibiotics such as beta-lactams (e.g. benzylpenicillin), tetracyclines, cephalosporins (e.g. 

cefquinome), macrolides (e.g. erythromycin, tilmicosin, tylosin) and lincosamides are the most 

commonly used treatment for bovine mastitis (Gentilini et al., 2000; Watts et al., 1995). In the 

most recent UK-VARRS report (2020) which covers the data of 34% of all dairy farms in the 

UK, beta-lactams (32%) were found to be the most used antibiotic class for dairy cows. In a 

recent study with German dairy cows (Doehring and Sundrum, 2019), 44% of the clinical mas-

titis cases were found to be treated with penicillins. Similarly, 41% of the mastitis cases were 

found to be treated with penicillins in an extensive study with European dairy farms (De Briyne 

et al., 2014). In the same study, at least 22.93% of the other dairy-related disorders were found 

to be treated with penicillins. The first examples of using benzylpenicillin for bovine mastitis 

treatment can be traced back to the 1940s (Aarestrup and Jensen, 1998). However, penicillin-

resistant S. aureus strains, carrying a penicillinase/beta-lactamase emerged shortly after its first 

clinical usage and by the early 1950s, they became pandemic (Aarestrup and Jensen, 1998). 

More than 90% of current human-associated isolates (Peacock and Paterson, 2015) and varying 

from 84% to 92% of dairy-related isolates were observed to be penicillin-resistant (Feng et al., 

2016; Kalayu et al., 2020). Although the UK surveillance reports between 2016 and 2019 

showed that penicillin resistance in S. aureus was relatively low (22.25% on average) in British 

dairy cattle, the occurrence of penicillin resistance showed an increase through these years; 

12.9%, 20.5%, 27.8% and 27.8% in 2016, 2017, 2018 and 2019, respectively. It should be also 
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noted that penicillin resistance of S. aureus associated with bovine mastitis was always the 

most common amongst tested antimicrobial classes (UK-VARSS, 2020; UK-VARSS, 2019). 

It is not uncommon in the dairy cattle industry to give antibiotics to healthy animals to prevent 

the insurgence of diseases, and to sick animals often without certainty about the actual bacterial 

origin of the disease. Even when the bacterial origin is defined, broad-spectrum antibiotics are 

often used, instead of targeting the specific bacterial strain causing the illness. Underlying such 

prescription practices is the lack of fast, affordable and effective diagnostic solutions, which 

leaves the veterinarian to primarily rely on educated guesses. These practices have serious con-

sequences, amongst which is the appearance and diffusion of multidrug antibiotic resistance 

profiles in the pathogen population. Preventing and controlling AMR is crucial as decreasing 

antimicrobial usage will lead to slower development and spread of the resistance. It is crucial 

that people and animals take the right medicine at the right time, in the right dosage and over 

the right period. Inappropriate usage of the antimicrobial drug causes resistance in infectious 

organisms. 

S. aureus is capable of acquiring new resistance traits by the integration into its genome of 

exogenous genetic material via horizontal gene transfer and mutational events (Jensen and 

Lyon, 2009; Pantosti, Sanchini and Monaco, 2007). In Staphylococcus spp, the major targets 

underlying mechanisms of resistance are the cell envelope, the ribosome and nucleic acids 

(Foster, 2017). However, several studies have identified hypothetical proteins as also being 

associated with drug resistance specifically in S. aureus (Holden et al., 2004). Characterising 

the proteins, alone or in combination, that contribute to the resistance, can potentially lead to 

improved diagnostic tools and therapeutics against antibiotic-resistant S. aureus and may hold 

the key to unlocking this global health problem.  

In the dairy industry, several antimicrobial susceptibility profiling techniques have been used, 

which includes dilution (in broth, agar or milk) and agar diffusion (aka Kirby-Bauer) (Khan, 

Siddiqui and Park, 2019). These techniques have their specific advantages and disadvantages. 

Broth microdilution and agar dilution are the gold standard techniques; furthermore, agar dif-

fusion is commonly preferred due to its low price and easy-use (Constable and Morin, 2003; 

de Jong et al., 2018). Broth dilution is a quantitative technique which supplies MIC (minimum 

inhibitory concentration) values for the organism cultured on broth medium that includes anti-

microbial. Broth dilution technique has two types, macrodilution and microdilution, although 

macrodilution technique is laborious and costly, new commercial kits (e.g. Sensititre® ARIS 
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2X and VITEK® 2) are available for microdilution analysis (Constable and Morin, 2003). Milk 

dilution is also a quantitative technique like broth dilution but supplies MIC values for the 

organism that are cultured on the milk instead. Again, there are commercially available test 

kits to perform milk dilution (e.g. MASTik®). Milk dilution technique is relatively economic, 

fast and more comparable to in vivo conditions compared to broth dilution or agar diffusion. 

However, the mastitis agent cannot be identified at the species-level unless additional culturing 

is performed (Constable and Morin, 2003). Moreover, milk dilution assay does not always give 

the same results of broth dilution and agar diffusion depending on the pathogen especially for 

S. aureus (Constable and Morin, 2003). Similarly, agar dilution is a quantitative technique 

which supplies MIC values for the organism cultured on agar that includes antimicrobial; how-

ever, this technique is relatively costly and difficult to perform (Constable and Morin, 2003). 

For agar diffusion (aka Kirby-Bauer) technique mastitis pathogen is incubated on agar with 

known antimicrobials over nightly, the inhibition zone is measured and transformed to MIC 

values for specific antimicrobial (Constable and Morin, 2003). However, such diagnostic tools 

are not affordable and quick enough to offer real-time control of invasive infections. The de-

velopment of fast, affordable and effective diagnostic solutions capable of discriminating be-

tween antibiotic-resistant and susceptible S. aureus strains would be of huge benefit for effec-

tive disease detection and treatment. 

MALDI-TOF has been an alternative way of detecting antibiotic resistance due to its low-cost 

and speed (Hrabák, Chudáčková and Walková, 2013). Antibiotic resistance profiles of several 

organisms could be determined by MALDI-TOF (Axelsson, Rehnstam-Holm and Nilson, 

2019; Cordovana et al., 2019; Nisa et al., 2019), and, in combination with ML techniques, 

larger datasets could be analysed faster, more easily and economically (Tang et al., 2019; 

Sharaha et al., 2019). 

The objective of this study was to find a fast and more accurate alternative to standard suscep-

tibility tests, to profile multidrug and benzylpenicillin resistance in S. aureus isolates. To this 

end, we tested the discriminatory power given by the combination of supervised ML and 

MALDI-TOF, complemented by a PPI network and a protein structural analysis workflow. 

Here for the first time, we demonstrate that this approach can be used to develop diagnostic 

solutions that can discriminate with high performance between benzylpenicillin and multidrug-

resistant and susceptible bovine mastitis-causing S. aureus isolates. 
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5.2 METHODS 

 Data Source 

The data for the current study were obtained from the previous large-scale study as for Chapter 

3 (Green et al., 2007) of the UK dairy herds within the scope of the control plan of mastitis. 

The farm selection and sample collection were mentioned in the Methods section of Chapter 

3; hence, will not be repeated here. 

The samples were from 24 herds each in a different farm (24 farms) where 23 farms were in 

England (most of them in the south) and one farm was in Wales (Llangathen, Carmarthen). The 

locations of the farms and their respective number of cows are shown in Figure 5-1. 82 S. 

aureus isolates were collected from 67 animals that were diagnosed with bovine mastitis in 24 

different farms, in England and Wales between March 2004 and May 2005. The animals with 

mastitis were either primiparous (n=9) or multiparous (n=73, median parity=4). On the day of 

sample collection, the days in milk of the cows varied from 1 to 569 days with a median of 160 

days.  
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Figure 5-1. Location of the enrolled farms in the United Kingdom that provided Staphylo-

coccus aureus isolates. The circles represent the location of the farms and the diameters indicate 

the number of isolates provided by these farms. The highest number of isolates provided by a single 

farm was 21, while the lowest was 1. Green colour represents the susceptible S. aureus isolates, 

whereas dark and light blue represent multidrug-resistant and benzylpenicillin-resistant only S. au-

reus isolates, respectively. This figure was generated in R (R Core Team, 2019) using the sp 

(Pebesma and Bivand, 2005), mapdata (Deckmyn, 2018) and mapplots (Gerritsen, 2014) packages. 

 Antimicrobial Susceptibility Testing 

Bovine mastitis-causing S. aureus isolates were tested using a VITEK 2 AST-GP79 card per 

isolate by QMMS. Each card was filled with at least one positive control well with no antibiotic 

and multiple wells with increasing concentrations of the following antibiotics: benzylpenicillin, 

cefoxitin, oxacillin, cefalotin, ceftiofur, cefquinome, amikacin, gentamicin, kanamycin, neo-

mycin, enrofloxacin, clindamycin, erythromycin, tilmicosin, tylosin, tetracycline, florfenicol 

and trimethoprim/sulfamethoxazole. Using the VITEK 2, the growth and viability of the iso-

lates were measured in all wells compared to the control wells. Relative bacterial growth in 

each antibiotic well was calculated and compared with the positive control wells. The MIC 
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values were calculated by comparing the growth of the bacteria to the growth of isolates with 

known MICs. S. aureus isolates were labelled as either resistant or susceptible according to 

their antibiotic resistance profiles based on Clinical and Laboratory Standards Institute (CLSI) 

breakpoints (VET01-S3) (Watts et al., 2008).  

5.3 RESULTS 

 Antimicrobial Susceptibility Testing 

VITEK analysis showed that the cohort consisted of 31 benzylpenicillin resistant and 51 ben-

zylpenicillin susceptible isolates. Amongst the resistant isolates, 16 isolates were found to be 

only benzylpenicillin-resistant, while 15 isolates were found to be resistant to at least two more 

antibiotics, in addition to benzylpenicillin (multidrug-resistant). Only one isolate was resistant 

to two antibiotics in total. As shown in Figure 5-2 out of 15 multidrug-resistant isolates, 11 

isolates were resistant to benzylpenicillin, clindamycin, erythromycin, tilmicosin and tylosin; 

1 isolate was resistant to benzylpenicillin, clindamycin, tilmicosin and tylosin; 1 isolate was 

resistant to benzylpenicillin, tetracycline and tilmicosin; 1 isolate was resistant to benzylpeni-

cillin and tetracycline, and 1 isolate was resistant to benzylpenicillin, cefalotin, cefoxitin and 

oxacillin. 51 isolates were found to be susceptible to all antibiotics used in this study which 

were benzylpenicillin, cefoxitin, oxacillin, cefalotin, ceftiofur, cefquinome, amikacin, gentami-

cin, kanamycin, neomycin, enrofloxacin, clindamycin, erythromycin, tilmicosin, tylosin, tetra-

cycline, florfenicol and trimethoprim/sulfamethoxazole. 
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Figure 5-2. UpSet diagram summarizing the profile of antimicrobial-resistant S. aureus 

isolates. The total size of resistant S. aureus isolates is shown on the left bar plot. The multi-re-

sistant profile is visualised by the bottom plot and the occurrence is represented on the top bar 

plot. This figure was generated by using R package UpSetR (Conway, Lex and Gehlenborg, 2017). 

 Generation of MALDI-TOF Peak Lists and Set-Up of the Classifiers 

A total of 312 MALDI-TOF raw data spectra had been obtained from 82 S. aureus isolates, on 

average 4 replicate spectra per isolate. The peak lists, i.e. the lists of paired mass/charge (m/z) 

ratios and corresponding intensity values, were extracted from the raw spectra as specified in 

the Methods Section. 

 Analysis of Multidrug-Resistant vs Susceptible Isolates 

We first focused on investigating the possibility to develop a classifier to verify if MALDI-

TOF peak lists associated with isolates could be used to predict their multidrug phenotype. 
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Specifically, we considered the spectra of 15 multidrug-resistant isolates (all resistant to ben-

zylpenicillin and at least one more antibiotic) and 51 susceptible isolates (susceptible to all 

antibiotics tested in this study). A total of 249 raw spectra were analysed. The pre-processing 

led to the identification of four different peaks found to appear in at least 30% of all number of 

spectra (see Table 5-1).  

Table 5-1. Peak statistic report for the analysis of multidrug-resistant vs susceptible iso-

lates. 

 

PTTA is the p-value of Welch’s t-test. 

PKWK is the p-value of Wilcoxon test.  

Ave1 is the intensity average of class ’Resistant’; Ave2 is the intensity average of class ’Susceptible’.  

StdDev1 is the intensity standard deviation of class ’Resistant’; StdDev2 is the intensity standard deviation of class ’Sus-

ceptible’.  

PA is the overall proportion of appearance; PA1 is the proportion of appearance of class ’Resistant’; PA2 is the proportion 

of appearance of class ’Susceptible’. 
 

Due to the unbalanced nature of this specific data set (76% of samples were susceptible and 

only 24% were resistant), the undersampling method was employed to build robust classifiers 

(Lemaître, Nogueira and Aridas, 2017). At each one of the 30 runs, 15 samples were randomly 

chosen out of the initial 51 susceptible samples and a final balanced (50% resistant, 50% sus-

ceptible) dataset was generated. The four peaks were then used as features to build ten classi-

fiers and to develop predictive models for the multidrug phenotype. Before the classification, 

features were standardised (mean centred and unit variance scaled) then resistant and suscep-

tible isolates were labelled as positive and negative, respectively. Amongst the investigated 

ML approaches, LDA, LSVM and RBF SVM were found to be the top three best performance 

showing algorithms. Diagnostic systems trained on individual isolates coming from 24 differ-

ent farms achieved up to (mean result values of test data): accuracy = 96.81±0.43%, sensitivity 

= 99.88±0.41%, specificity = 95.96±0.52%, and kappa = 91.83±1.37% in LDA algorithm. De-

tailed performance results of all classifiers on test data can be found in Figure 5-3.  
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Figure 5-3. Prediction performance results of classifiers of multidrug-resistant vs suscep-

tible S. aureus isolates. Ten different algorithms (logistic regression, linear SVM, RBF SVM, MLP 

neural network, random forest, AdaBoost, decision tree, naïve Bayes, quadratic discriminant analysis 

(QDA) and linear discriminant analysis (LDA)) that were used to classify the multidrug resistance 

profiles are shown on the X-axis. The prediction performance of these algorithms was measured 

based on four metrics (from left to right): accuracy, kappa, sensitivity and specificity. The scores for 

each metric (Y-axis) are between 0 and 1. These graphs were generated in GraphPad Prism v8. 

 Analysis of Benzylpenicillin-Resistant Only vs Susceptible Isolates 

Next, antimicrobial susceptibility profiling for benzylpenicillin only was investigated. This was 

to isolate specific patterns underlying resistance to this specific antibiotic. Benzylpenicillin was 

chosen because it was the only antibiotic for which we had singly resistant isolates. 

To this aim, the spectra of the 16 benzylpenicillin-resistant only and 51 susceptible isolates 

(susceptible to all antibiotics tested in this study) were first pre-processed as described in the 



137 
 

Methods Section. Five peaks were found in at least 30% of the overall number of spectra (Table 

5-2).  

Table 5-2. Peak statistic report for the analysis of benzylpenicillin-resistant only vs sus-

ceptible isolates. 

 

PTTA is the p-value of Welch’s t-test.  

PKWK is the p-value of Wilcoxon test. 

Ave1 is the intensity average of class ’Resistant’; Ave2 is the intensity average of class ’Susceptible’. 

StdDev1 is the intensity standard deviation of class ’Resistant’; StdDev2 is the intensity standard deviation of class ’Sus-

ceptible’. 

 PA1 is the proportion of appearance of class ’Resistant’; PA2 is the proportion of appearance of class ’Susceptible’. 

 

Due to the unbalanced nature of this specific data set (76% of samples are susceptible and only 

24% are resistant), the undersampling method was employed to build robust classifiers 

(Lemaître, Nogueira and Aridas, 2017). At each one of the 30 runs, 16 samples were randomly 

chosen out of the initial 51 susceptible samples and a final balanced (50% resistant, 50% sus-

ceptible) dataset was generated. The five peaks were then used as features to build ten classi-

fiers and to develop predictive models for the benzylpenicillin phenotype. Before the classifi-

cation, features were standardised (mean centred and unit variance scaled) then resistant and 

susceptible isolates were labelled as positive and negative, respectively. Amongst the investi-

gated ML approaches RBF SVM, NN and LR were those that achieved the best performance. 

Diagnostic systems trained on individual isolates coming from 24 different farms achieved up 

to (mean result values of test data); accuracy = 97.54±1.91%, sensitivity = 99.93±0.25%, spec-

ificity = 95.04±3.83%, and kappa = 95.04±3.83% in RBF SVM algorithm. Detailed perfor-

mance results of all classifiers on test data can be found in Figure 5-4. 
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Figure 5-4. Prediction performance results of classifiers of benzylpenicillin-resistant vs 

susceptible S. aureus isolates. Ten different algorithms (logistic regression, linear SVM, RBF SVM, 

MLP neural network, random forest, AdaBoost, decision tree, naïve Bayes, quadratic discriminant 

analysis (QDA) and linear discriminant analysis (LDA)) that were used to classify the multidrug re-

sistance profiles are shown on the X-axis. The prediction performance of these algorithms was meas-

ured based on four metrics (from left to right): accuracy, kappa, sensitivity and specificity. The 

scores for each metric (Y-axis) are between 0 and 1. These graphs were generated in GraphPad 

Prism v8. 

Notably, four peaks (4.807kDa, 6.422kDa, 6.891kDa and 9.621kDa) were found common in 

the analyses of benzylpenicillin-resistant vs susceptible and multidrug-resistant vs susceptible 

isolates. When comparing the intensities of these four peaks in the two datasets (resistant vs. 

susceptible) we observed that 4.807kDa, 6.891kDa and 9.621kDa had a higher average in sus-

ceptible isolates consistently while 6.422kDa had a higher average of intensity in 
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benzylpenicillin-resistant only isolates class. 4.305kDa which was specific to benzylpenicillin-

resistant only analysis had higher average intensity in resistant than susceptible isolates. 

 Biomarker Characterisation 

The five peaks identified as providing optimal discrimination between benzylpenicillin-re-

sistant only and susceptible isolates were further analysed to identify their correspondent S. 

aureus proteins. It should be noted that the four peaks identified as providing optimal discrim-

ination between multidrug-resistant and susceptible were also amongst these peaks. When 

compared to the reference S. aureus Newbould 305 (ATCC 29740) proteome, the five peak 

masses identified the following five S. aureus proteins: two hypothetical proteins (molecular 

weights of 4801.95 and 6901.37Da), RpmJ, RpmD and DNA-binding protein HU. The molec-

ular weights of the corresponding proteins changed slightly from those in the original spectra 

as a result of the search criteria outlined in the Methods. To further characterise the function of 

these proteins PSI-BLAST comparative analysis was computed; all discriminant proteins with 

100% coverage and significant e-values are shown in Table 5-3. 

Table 5-3. Top PSI-BLAST, conserved domain search and cellular location results for the 

five discriminant proteins. 

 
HP: Hypothetical protein. 

To better understand the functions and roles of these proteins within the drug resistance phe-

notype, we characterised the molecular functions (MF), cellular components (CC), and 
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biological processes (BP) they may carry out. Here, RpmJ and RpmD are the 50S ribosomal 

proteins L36 and L30, respectively. HU is a histone-like DNA-binding protein, which interacts 

with DNA to protect from denaturation (Mishra and Horswill, 2017). For the hypothetical pro-

teins, we used 3D threading methods to predict the GO functions (Figure 5-5). The hypothetical 

protein of 4801.95Da was annotated as intracellular protein transport (BP), proteolysis (BP), 

homophilic cell adhesion via plasma membrane adhesion molecules (BP) and ion binding 

(MF). The hypothetical protein of 6901.37Da was annotated as being involved with the small 

molecule metabolic process (BP), antibiotic metabolic process (BP), lipid transport (BP) and 

ion binding (MF). 

 

Figure 5-5. The 3D structures of the five proteins found to correspond to the significant 

MALDI-TOF peaks identified by the classifiers between benzylpenicillin-resistant and sus-

ceptible S. aureus isolates. Top row from left to right: homology models of ribosomal protein 

L36p (RpmJ, Mw: 4305.36Da), threading model of hypothetical protein (HP1, Mw: 4801.95Da) and 

homology model of ribosomal protein L30p (RpmD, Mw: 6422.48Da). Bottom row from left to right: 

threading model of hypothetical protein (HP2, Mw: 6901.37Da) and homology model of bacterial 

DNA-binding protein (HU, Mw: 9626.01Da). The visualisation was carried out with UCSF Chimera. 

Next, the drug resistance interactome was investigated by building the PPI network. The ben-

zylpenicillin PPI network, including the four significant proteins (RpmJ, RpmD, HU and HP2) 

and their 149 first neighbours, was generated (Figure 5-6). It should be noted that HP1 could 

not be found in the S. aureus proteome available in STRING database. Potential AMR genes 
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in the S. aureus proteome (see Methods for details) that were found to be interacting with the 

PPI network of interest are listed in Table 5-4. 

Table 5-4. Potential antimicrobial-resistant proteins in Staphylococcus aureus proteome 
matched with resistant proteins in ResFinder v3.1 database. Protein names, accession code, 
sequence similarity and shared domains are listed.   

Tetracycline resistance protein (TetM) and elongation factor G (FusA) which are related to 

tetracycline resistance, were found to be the first neighbours of RpmJ and RpmD based on the 

experimental findings of the homologs in E. coli (Gagarinova et al., 2016; Antipov et al., 2017). 

Additional four proteins (MecA, BlaZ, PbpA and metallo-beta-lactamase (MBL)) related with 

beta-lactams, rRNA adenine N-6-methyltransferase (ErmA), related with macrolides re-

sistance, and multidrug efflux pump (NorA) and ABC transporter protein (ABC-2) were found 

to interact with some first neighbours of the discriminant proteins in the network. Penicillin-

binding protein 2 prime (MecA) was shown to share a common interactor, cell division protein 

(DivIB), with the discriminant protein RpmD. The interactions of MecA-DivIB (interaction 

score: 0.639) and DivIB-RpmD (interaction score: 0.864) are based on experimental/biological 

data coming from homologs in other species (Rowland et al., 2010). MecA was also shown to 

share a common interactor, DNA polymerase I (PolA), with the discriminant protein HU. 

While the interaction of MecA-PolA was based on text mining (interaction score: 0.432), the 

PolA-HU was based on experimental/biological data (interaction score: 0.668) obtained from 

homologs in other species (Lopez-Causape et al., 2017; Ramstein et al., 2003). Text-mining 

represents the interaction of the proteins that are intermittently mentioned together in scientific 

publications (Szklarczyk et al., 2018). PolA was the only protein which links (based on text 



142 
 

mining) HU to beta-lactamase (BlaZ) (interaction score: 0.425) (Wang et al., 2014; Lopez-

Causape et al., 2017). 

ErmA was shown to share common nodes (ribosomal proteins) with the discriminant proteins 

RpmD and RpmJ. ErmA was shown, based on text mining, to also interact with PolA, linked 

to HU as previously described, (interaction score: 0.611) (McCarthy et al., 2011) and to other 

proteins (RpsA, MetG and GuaA), based on co-expression, gene fusion and co-occurrence (in-

teraction scores >0.400). Gene co-expression relies on the assumption that proteins in the same 

network show a similar expression pattern (Jansen, Greenbaum and Gerstein, 2002; Ge et al., 

2001). Gene fusion technique relies on the assumption that if a fusion protein has two compo-

nent homologous proteins which are not neighbours, they are highly likely to interact with each 

other (Enright et al., 1999). Gene co-occurrence relies on the assumption that the proteins are 

co-occurred in the organism which is close to each other at the phylogenetic tree (Huynen et 

al., 2000).  

NorA was shown to share a common interactor, DNA topoisomerase (TopA) with the discri-

minant protein HU. ABC-2 was shown to share common interactors, signal recognition particle 

proteins FfH and FtsY with discriminant proteins RpmD and RpmJ. MBL was shown to share 

a common interactor, putative fatty oxidation complex protein (AID38649.1), with discrimi-

nant protein RpmJ based on co-expression, gene fusion and co-occurrence (interaction scores 

> 0.400). 
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Figure 5-6. Protein-protein interaction (PPI) network of the Staphylococcus aureus proteins that are found to be discriminant between 

benzylpenicillin resistant and susceptible isolates. The PPI network shows the four discriminant proteins (RpmJ, RpmD, HU, hypothetical protein 2 

(HP2) and their first neighbour interactors in green and orange colours, respectively. Purple nodes (BlaZ, NorA, MecA, PbpA, ErmA, ABC-2, TetM, FusA and 

MBL) represent the antibiotic-resistant proteins predicted by ResFinder v3.1. Amongst antibiotic-resistant proteins TetM and FusA were found to be first 

neighbour interactors of discriminant proteins RpmJ and RpmD, while the others share common first neighbour interactors with the discriminant proteins 

as follows: BlaZ shares PolA with HU; MecA shares PolA with HU, and DivIB with RpmD and RpmJ; PbpA shares PolA with HU, and DivIB with RpmD and 

RpmJ; NorA shares TopA with HU; ABC-2 shares FfH and FtsY with RpmD and RpmJ; MBL shares AID38649.1 with RpmJ; and ErmA shares PolA, MetG, 

RpsA and GuaA with HU, and small ribosomal proteins such as RpsA with RpmD and RpmJ. The visualisation was carried out with Cytoscape.
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Notably, the PPI analysis of the benzylpenicillin-resistant proteome, 153 proteins – a total of 4 

discriminant proteins and 149 first neighbour proteins – showed higher connectivity (clustering 

coefficient 0.728) than the randomly selected 4 proteins (this is repeated 10 times, only 4 pro-

teins were selected randomly as this was the number of discriminant proteins in the network of 

interest) and their 106 first neighbour proteins (average of 10 times, same criteria with the 

benzylpenicillin-resistant proteome was applied for determining the first neighbour proteins) 

in S. aureus proteome network (clustering coefficient 0.068). The average number of neigh-

bours per protein was 68.719 in the benzylpenicillin-resistant proteome network and 2.834 in 

the randomly built S. aureus proteome network. In terms of network density, the values were 

0.452 (benzylpenicillin-resistant proteome network) and 0.041 (randomly built S. aureus pro-

teome network) and for the network heterogeneity, the values were 0.528 benzylpenicillin-

resistant proteome network) and 3.051 (randomly built S. aureus proteome network). 

Functional enrichment analysis of benzylpenicillin network in S. aureus proteome was per-

formed and the results based on GO terms and KEGG pathways can be seen in Figure 5-7. 
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Figure 5-7. Functional enrichment analysis of the benzylpenicillin network in S. aureus 

based on Gene Ontology and KEGG pathways.  The network contains the 4 discriminant proteins 

and their 149 first neighbours. This figure was generated using R package tidyverse (Wickham et 

al., 2019). 

5.4 DISCUSSION 

Antimicrobial-resistant S. aureus infections are a major concern in human and veterinary med-

icine. Recently, dairy cattle have been shown to be an important risk factor for zoonotic transfer 

(Richardson et al., 2018). Fast, affordable and effective diagnostic solutions which can detect 

the specific S. aureus strains and their antimicrobial-resistant and susceptible profiles are key 

to support effective and targeted treatment selection.  
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Motivated by identifying the most effective method to discriminate (multidrug- and benzylpen-

icillin-) resistant and susceptible S. aureus strains, we approached the task in a principled way 

by applying optimization techniques to overcome uncertainty in data features and by using a 

wide repertoire of classification methods. Diagnostic systems trained on individual isolates 

coming from 24 different farms for analysing benzylpenicillin profiles achieved up to (mean 

result values of test data): accuracy: 97.54±1.91%, sensitivity: 99.93±0.25%, specificity: 

95.04±3.83%, and kappa: 95.04±3.83% in RBF SVM algorithm. Again, diagnostic systems 

trained on individual isolates coming from 24 different farms for analysing multidrug profiles 

achieved up to (mean result values of test data): accuracy: 96.81±0.43%, sensitivity: 

99.88±0.41%, specificity: 95.96±0.52%, and kappa: 91.83±1.37% in LDA algorithm. Alt-

hough RBF SVM and LDA were found to be the best prediction performing models for profil-

ing benzylpenicillin only and multidrug resistance, respectively; LR, LSVM, MLP NN, NB 

and QDA also resulted in kappa values over 85.00%. RF for multidrug profiling (kappa 85.11% 

for benzylpenicillin only) and AdaBoost and DT for both benzylpenicillin only and multidrug 

profiling gave relatively poor performance (kappa values lower than 85.00%). As being en-

semble models RF, a classifier working in the principle of bagging, and AdaBoost, a classifier 

working in the principle of boosting, they need to use a subsample of an already small dataset; 

hence, might have not had enough data points to be trained well enough (Genuer, Poggi and 

Tuleau, 2008; Li, Wang and Sung, 2004). DT was also shown to give a limited performance 

with small datasets (Morgan et al., 2003). It is suggested that stable classifiers should have less 

than 10% standard deviation for small datasets (e.g. less than 100 data points) between obser-

vations (Varoquaux, 2018). Therefore, it was also checked for each model employed in our 

studies. All classifiers except DT in the multidrug profiling analysis met these criteria. The 

other interesting finding was that all the learners except LDA had a much higher performance 

for discriminating benzylpenicillin-resistant only vs susceptible isolates rather than multidrug-

resistant vs susceptible isolates. This may be explained by the fact that comparison based on 

single antimicrobial profile has less complexity. 

While our primary aim was to develop ML-powered diagnostics discriminating resistant and 

susceptible isolates of bovine mastitis-causing S. aureus, we also characterized the molecular 

determinants and interactions underlying the identified antibiotic resistance and susceptibility 

patterns.  

Our findings showed that the five MALDI-TOF peaks recognized as significant by the trained 

classifiers were found to correspond to two ribosomal proteins (RpmJ and RpmD), DNA-
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binding HU protein and two hypothetical proteins. DNA-binding HU protein, RpmD and two 

hypothetical proteins were also found to give the best discrimination between multidrug-re-

sistant and susceptible profiles of S. aureus.  

The notion that components of the ribosome are important in the growth rate and antibiotic 

resistance of bacteria is a well-known concept (Gomez et al., 2017). Among those determinants 

involved in intrinsic resistance, ribosomal proteins have been found to deal with the general 

response to stress (Olivares Pacheco et al., 2013). Similarly, recent findings highlighted the 

existence of ribosomal mutations conferring resistance to antibiotics of several classes not tar-

geting the ribosome (Gomez et al., 2017). Specifically, it has been shown that ribosomal mu-

tations can contribute to the evolution of multidrug-resistant profiles, by inducing ribosomal 

misassembly, which in turn leads to a systematic transcriptional cell alteration, ultimately im-

pacting resistance to multiple antibiotics by interfering with different cellular pathways 

(Gomez et al., 2017). RpmJ was shown to be up-regulated in P. aeruginosa when treated with 

ciprofloxacin and fluoroquinolone (Babin et al., 2017) and similarly in S. epidermidis (Zhu et 

al., 2010). Moreover, rpmJ was shown to confer intrinsic multidrug resistance to a varied set 

of antibiotics (nitrofurantoin, sulfamethoxazole, rifampicin, tetracycline, vancomycin, ampi-

cillin, colistin, erythromycin) in E. coli, where deletion of this gene caused the bacteria to be-

come more sensitive than wild type (Liu et al., 2010). In comparison, fewer literature works 

have been published about rpmD and antibiotic resistance. RpmD was shown downregulated 

in S. aureus strains which had the antibiotic tolerance related LytSR system silenced (Sharma-

Kuinkel et al., 2009).  

The discriminant protein DNA-binding HU protein was found essential in the bacterial survival 

and growth of S. aureus (Chaudhuri et al., 2009). It was also previously found to be correlated 

to antibiotic resistance by being upregulated in the mutant S. aureus isolates with silenced ser-

ine/threonine kinase PknB, which also has a penicillin-binding domain (Donat et al., 2009). 

Besides the proteins with known functions, we also identified two hypothetical proteins, but 

we were unable to find any evidence linking them to antibiotic resistance in the previous liter-

ature. Although it was not possible for us to identify the function of these hypothetical proteins, 

by applying PSI-BLAST and PSORTb v3.0 together with 3D threading modelling searches, 

the hypothetical proteins were predicted to be involved in pathways such as antibiotic meta-

bolic process, lipid/protein transport and ion binding. In future studies, molecular biology tech-

niques such as knock-out strategy may be performed to test whether they are actually AMR 

genes (Hadjadj et al., 2019). 
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Two genes play a great role in resistant against penicillin in S. aureus; blaZ and mecA (Jensen 

and Lyon, 2009). The resistance mechanism of blaZ gene is the inactivation of the penicillin 

by improving the hydrolysis activity of the beta-lactam rings (Olsen, Christensen and 

Aarestrup, 2006). In a recent study, blaZ was detected in all of the MRSA strains isolated from 

bovine mastitis cases in China (Yang et al., 2020). Furthermore, blaZ was found in high fre-

quencies of S. aureus strains associated with bovine mastitis around the world (Jamali, 

Radmehr and Ismail, 2014; Aslantaş and Demir, 2016; Pérez et al., 2020b). In this study, BlaZ 

was found to have common interactors with discriminant proteins in S. aureus PPI networks. 

Another beta-lactam-resistant gene was mecA, which encodes an alternative penicillin-binding 

protein with an altered antibiotic action target (Sawant, Gillespie and Oliver, 2009). In a recent 

study, mecA was detected in all of the MRSA strains isolated from bovine mastitis cases in 

China (Yang et al., 2020). Furthermore, mecA was also found in S. aureus strains associated 

with bovine mastitis around the world (Haubert et al., 2017; Aslantaş and Demir, 2016; Jamali, 

Radmehr and Ismail, 2014). In this study, MecA was found to have common interactors with 

discriminant proteins in S. aureus PPI networks. 

By proving protection of ribosomal structure (Gao et al., 2011), tetM, is one of the most prev-

alent tetracycline resistance genes in S. aureus isolated from both humans and animals (De 

Vries et al., 2009). It was detected in all of the MRSA strains isolated from bovine mastitis 

cases in China (Yang et al., 2020). Furthermore, tetM was found in several S. aureus strains 

associated with bovine mastitis around the world (Feng et al., 2016; Haubert et al., 2017; 

Jamali, Radmehr and Ismail, 2014; Aslantaş and Demir, 2016). In this study, TetM was found 

to be interacting directly with discriminant ribosomal proteins (both RpmJ and RpmD) in S. 

aureus PPI networks. 

Erythromycin belongs to the macrolide class of antibiotics which inhibits bacterial protein syn-

thesis by blocking peptidyl transferase (Vázquez-Laslop and Mankin, 2018). In S. aureus; 

ermA, ermB and ermC have been reported as macrolide-resistant genes which regulate riboso-

mal alterations (Jensen and Lyon, 2009; Gatermann, Koschinski and Friedrich, 2007). These 

genes have also been found in bovine mastitis associated S. aureus isolates, where ermC is 

more frequent (Pérez et al., 2020b; Jamali, Radmehr and Ismail, 2014). Conversely, another 

study found ermA gene in all S. aureus isolates whereas ermC was present in none of them 

(Shamila-Syuhada et al., 2016). Similar results were observed by a Turkish study where ermA 

was present in 70% of the bovine mastitis-causing S. aureus isolates (Aslantaş and Demir, 
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2016). In this study, ErmA was found to have common interactors with discriminant proteins 

in S. aureus PPI networks. 

We were not surprised that known genes such as blaZ and mecA conferring resistance to peni-

cillin in S. aureus were not amongst the MALDI-TOF peaks recognized as significant by the 

trained classifiers. This is because the mass range resolution of the MALDI-TOF was set to be 

between 2kDa and 12kDa, and the BlaZ and MecA are the proteins with molecular weights 

higher than 20kDa. However, our PPI cluster analysis results showed that these proteins known 

to confer resistance have all been found to interact with most of the proteins corresponding to 

the MALDI-TOF peaks and to form a highly connected benzylpenicillin proteome network. 

While our approach successfully developed a diagnostic solution to identify AMR signatures, 

there are limitations to our method which future work may build upon. For one, the working 

range of 2-12kDa does not give the possibility to study the complete S. aureus proteome in 

relation to a specific phenotype. Besides, we acknowledge that our data were collected from 

farms only in England and Wales. However, this should not pose a restriction on our method’s 

ability to predict resistance or susceptibility in other farms across the globe. If it is given a 

sufficiently diverse distribution of data to train the supervised learning algorithms, this would 

reduce any geographical bias that could affect predictive capability. Finally, we defined multi-

drug-resistant isolates as those being resistant to benzylpenicillin and at least one other antibi-

otic. Therefore, there is a bias towards peaks determining resistance or susceptibility to ben-

zylpenicillin, which may explain why all 4 multidrug discriminant peaks occurred within the 

set of benzylpenicillin-only discriminant peaks. 

Overall, we demonstrated that the combination of supervised ML and MALDI-TOF MS can 

be used to develop an effective computational diagnostic solution that can discriminate be-

tween benzylpenicillin/multidrug-resistant and susceptible S. aureus strains. Our solution 

could save time and money with respect to traditional susceptibility testing which is not viable 

for day-to-day monitoring of antibiotic resistance. Our solution could support farmers with 

timely, accurate and targeted treatment selection.  
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CHAPTER 6 DISCRIMINATION OF ENTEROCOCCUS 

FAECALIS AND ENTEROCOCCUS FAECIUM ISOLATES 

BASED ON ANTIMICROBIAL PROFILE  

This study was conducted by Necati Esener, Alexandre M. Guerra, Katharina Giebel, Martin 

J. Green, Andrew J. Bradley and Tania Dottorini to be submitted in an open journal. The au-

thors’ contributions were as follows: MJG and AJB provided the original data. TD, MJG, AJB 

and NE conceived and designed the data analysis procedures. NE, AMG and KG carried on 

the data analysis. NE wrote the manuscript. TD and MJG contributed with comments and 

amendments. 

In Chapter 6, the main aim was to test the power of MALDI-TOF MS coupled with ML, for 

profiling AMR in a more general perspective (several types of antimicrobials and different 

organisms), which was shown to work for S. aureus (Esener et al., 2021). Data preparation of 

the MALDI-TOF spectra was performed by an in-house script written in MATLAB platform. 

Pre-processed data was analysed with ten supervised ML algorithms that were available in the 

sci-kit learn library in Python: LR, LSVM, RBF SVM, MLP NN, RF, DT, AdaBoost, NB, 

LDA and QDA. We tested the power of MALDI-TOF MS combined with ML techniques to 

present the antimicrobial profile of E. faecalis and E. faecium. The antimicrobial profile of E. 

faecalis was checked for benzylpenicillin, chloramphenicol, clindamycin, erythromycin, tetra-

cycline and TMP/SMX, whereas the antimicrobial profile of E. faecium was checked for ben-

zylpenicillin, cefovecin, clindamycin, enrofloxacin, erythromycin and nitrofurantoin. Here, we 

showed MALDI-TOF MS coupled with ML has the potential of differentiating E. faecalis and 

E. faecium based on a single antimicrobial profile. 

6.1 INTRODUCTION 

Enterococcus is a large genus containing more than 50 species (Ludwig, Schleifer and 

Whitman, 2015); but Enterococcus faecalis and Enterococcus faecium are the most common 

species in dairy-related habitats (Gelsomino et al., 2001). Both can be isolated from faecal 

samples of animals including mammals as they are involved in intestinal microbiota; however, 

once they are released into the environment, they can survive in various media such as soil, 

sand, water, forage, plants, vegetables and milk (Aarestrup, Butaye and Witte, 2002). Both 

species show viability in extreme pH, temperature, salinity and media; for instance, they can 
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still show an increase in numbers even after refrigeration or pasteurization of milk (Giraffa, 

2003). They can also inhabit the skin of dairy animals, around the teats ending up in bulk milk 

tanks during milking (Petersson-Wolfe et al., 2008). Enterococcus spp. have been suggested 

as environmental contaminants instead of mastitis agents (Petersson-Wolfe et al., 2008; 

Rysanek, Zouharova and Babak, 2009); however, other studies have shown them as mastitis 

pathogens (Petersson-Wolfe, Wolf and Hogan, 2009; McBride et al., 2007). 

Dairy animals are housed during winter and recycled manure solids can be widely used as 

organic bedding material in the UK, EU and US (Bradley et al., 2014). No matter how strict 

the conditions for use of recycled manure solids are set, there is always a risk of new infections, 

transfer of virulence and AMR originating from inefficiently prepared material (Bradley et al., 

2014).  

Antibiotic treatment has been the most efficient way to fight bacterial diseases in animals. In a 

recent study with dairy cows Germany (Doehring and Sundrum, 2019), 44%, 37%, 6%, 1% 

and 1% of the clinical mastitis cases were found to be treated with penicillins, cephalosporins, 

(fluoro)quinolones, lincosamides and pyrimidines, respectively. In an extensive study with Eu-

ropean dairy farms (De Briyne et al., 2014), 41%, 33%, and 6% of the mastitis cases were 

found to be treated with penicillins, cephalosporins and macrolides, respectively. In the same 

study, at least 23% of the other dairy-related disorders were found to be treated with penicillins, 

6% with cephalosporins, 11% with macrolides, 12% with tetracyclines, 9% with (fluoro)quin-

olones and 1% with lincosamides. In the latest UK surveillance report, antimicrobial usage by 

the dairy farms was found as follows: 32% penicillins/ 1st generation cephalosporins, 19% ami-

noglycosides, 22% tetracyclines, 10% macrolides, 12% trimethoprim/sulphonamides, 4% am-

phenicols, 0.4% 3rd/4th generation cephalosporins, 0.4% fluoroquinolones and 1% others (UK-

VARSS, 2020). 

Treatment of the diseases caused by Enterococcus is becoming more difficult, as the AMR 

profile of the species rises as a result of huge antimicrobial usage (Giraffa, Carminati and 

Neviani, 1997). In a study with German dairy farms, of 64 E. faecalis isolates, 86% were re-

sistant to tetracycline, 17% to erythromycin and 9% to chloramphenicol (Werner et al., 2012). 

In the same study, 19% and 14% of 37 E. faecium isolates were resistant to tetracycline and 

erythromycin, respectively. Meanwhile, none of the E. faecium isolates was resistant to chlo-

ramphenicol. In a study of dairy farms in Finland, of 63 Enterococcus isolates, both E. faecalis 

and E. faecium, 73%, 19% and 25.4% were resistant to tetracycline, erythromycin and multi-
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antimicrobials respectively, while none of them was resistant to penicillin G (aka benzylpeni-

cillin) (Pitkälä et al., 2004). In Italy, E. faecalis isolates resistant to tetracycline, erythromycin, 

chloramphenicol and trimethoprim/sulfamethoxazole were 65.8%, 28.9%,18.4% and 2.6% of 

38 E. faecalis strains, respectively (Cariolato, Andrighetto and Lombardi, 2008). Meanwhile, 

E. faecium isolates resistant to erythromycin, penicillin, tetracycline, chloramphenicol and tri-

methoprim/sulfamethoxazole were 40%, 27.8%, 20%, 2.3% and 2.3% of 43 E. faecium strains, 

respectively. In Portugal, resistance to enrofloxacin, erythromycin, chloramphenicol, tetracy-

cline and benzylpenicillin were widely observed in dairy, clinical veterinary and human sam-

ples (de Fátima Silva Lopes et al., 2005).  

AMR mechanism can either be intrinsically present in the core genome of bacteria; or result 

from DNA mutations or acquisition of genetic mobile elements between intra and inter-species 

(Van Hoek et al., 2011). As many antimicrobial compounds are naturally produced molecules, 

bacteria have evolved resistance mechanisms intrinsically; therefore, this intrinsic resistance is 

not a main concern in the current pandemic of AMR (Munita and Arias, 2016). However, hor-

izontal gene transfer enables resistance to certain antimicrobials in those expected to be sus-

ceptible, and hence is a great concern (Munita and Arias, 2016). It has been increasing for 

decades due to selection pressure through increased antimicrobial use in human and veterinary 

medicine (von Wintersdorff et al., 2016). Antimicrobial use for food-producing animals was 

shown to be greater than human use, 73% of the total antimicrobial consumption in the world; 

however, it is noteworthy to acknowledge that this varies a lot between regions (i.e. much lower 

in EU countries than low- and middle-income countries) (Van Boeckel et al., 2019). Moreover, 

antimicrobial use for livestock animals is expected to rise by 11.5% by the year 2030 (Tiseo et 

al., 2020). Increased AMR due to usage in large quantities is not only limited to the system of 

these animals, their carers and their consumers but spread wider communities via groundwaters 

(Chee-Sanford et al., 2001; Smith et al., 2013). 

Enterococcus species show intrinsically low resistance to beta-lactams, lincosamides, amino-

glycosides and trimethoprim/sulfamethoxazole (Garrido, Gálvez and Pulido, 2014; Hollenbeck 

and Rice, 2012; Arias and Murray, 2012). However, the high resistance profile amongst Enter-

ococcus spp. is believed to be mainly as a result of horizontal gene transfer (Hershberger et al., 

2005) which has been shown in vitro (Eaton and Gasson, 2001) and in vivo studies (Lester et 

al., 2006). Acquired resistance of Enterococcus by horizontal gene transfer included several 

antimicrobials like tetracycline, erythromycin, chloramphenicol and vancomycin (Cho et al., 

2020a; Cho et al., 2020b; Conwell et al., 2017). Tetracycline resistance of Enterococcus is 
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mainly associated with tetM, which is often due to transposable elements (Aarestrup et al., 

2000). Erythromycin resistance of Enterococcus is mostly associated with ermB, which is lo-

cated in plasmid and mainly reported to be spread from Enterococcus to many other bacterial 

species (Munita and Arias, 2016; Roberts, 2008). Plasmid exchange between Enterococcus 

isolates was at high frequency even though there was no selection pressure (Cocconcelli, 

Cattivelli and Gazzola, 2003). Vancomycin resistance of Enterococcus is mainly associated 

with vanA and vanB, which are mainly located on mobile elements such as plasmids and trans-

posons (Garrido, Gálvez and Pulido, 2014; Woodford, 2001). Vancomycin-resistant S. aureus 

is evolved due to plasmid from E. faecalis (Gardete and Tomasz, 2014) 

Identification of the pathogens at strain level and their antimicrobial profile is important when 

it comes to choosing the right treatment (Zadoks et al., 2003) as the resistance increase is cor-

related with the excessive usage of antibiotics on farms (Hershberger et al., 2005). In veterinary 

medicine, antibiotic susceptibility testing is performed by phenotypic methods, such as disk 

diffusion, epsilometer test, automated system VITEK® 2, macrodilution and microdilution; or 

genotypic methods such as PCR, DNA microarray, DNA chips and whole-genome sequencing 

(Khan, Siddiqui and Park, 2019). However, such diagnostic tools are neither affordable nor 

quick enough to offer real-time control of invasive infections. MALDI-TOF has become an 

alternative way of detecting AMR due to its low-cost and speed (Hrabák, Chudáčková and 

Walková, 2013). Antimicrobial profiles of several organisms could be determined by MALDI-

TOF (Axelsson, Rehnstam-Holm and Nilson, 2019; Cordovana et al., 2019; Nisa et al., 2019). 

MALDI-TOF spectra can contain more than a hundred peaks which cannot be identified by 

visual inspection. Therefore, ML which can learn from complex datasets and offer a solution 

for even non-linear classification issues is useful. MALDI-TOF coupled with ML has been 

popular recently so that larger datasets can be analysed fast and cheaply (Tang et al., 2019; 

Sharaha et al., 2019). Thus, vancomycin-resistant and susceptible E. faecium isolates could be 

differentiated by using ML algorithms on MALDI-TOF data (Griffin et al., 2012; Wang et al., 

2020).  

The objective of this study was to find an alternative to standard susceptibility tests, to profile 

benzylpenicillin, chloramphenicol, clindamycin, erythromycin, tetracycline and TMP/SMX re-

sistance in E. faecalis; and benzylpenicillin, cefovecin, clindamycin, enrofloxacin, erythromy-

cin and nitrofurantoin resistance in E. faecium isolates. Doing so enables diagnosis of the anti-

microbial profiles of Enterococcus species, monitor over time and alter strategies around dis-

ease prevention. To this end, we tested the discriminatory power of MALDI-TOF coupled with 
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several supervised ML algorithms: LR, NN, RF, AdaBoost, DT, NB, LDA, QDA, RBF and 

LSVM. The prediction performance was evaluated by sensitivity, specificity, accuracy, AUC 

and Cohen’s kappa. Furthermore, we analysed the discriminant proteins between resistant and 

susceptible profiles of Enterococcus proteomes individually using bioinformatic tools. We 

showed that the peaks from MALDI-TOF spectra which have been employed by the several 

ML models as the most relevant for discrimination between susceptible and resistant to treat-

ment, actually correspond to ribosomal subunits, DNA binding and bacterial two-component 

regulatory proteins, suggesting that these proteins may be correlated with different antimicro-

bial profiles. To the best of our knowledge, other than vancomycin, no studies have employed 

ML in the analysis of MALDI-TOF spectra for the classification of Enterococcus species based 

on their antimicrobial profile.  

6.2 METHODS 

 Data Source 

For this study, 111 E. faecalis and 88 E. faecium isolates were collected from milk and recycled 

manure solids bedding materials between 2015 and 2017. Susceptibility testing for all Entero-

coccus pathogens was conducted in the QMMS laboratory by using VITEK 2 (Ligozzi et al., 

2002). Briefly, antibiotic susceptibility testing cards were filled with positive control and in-

creasing concentration of the following antibiotics: benzylpenicillin, chloramphenicol, 

clindamycin, erythromycin, tetracycline and trimethoprim/sulfamethoxazole for E. faecalis 

isolates; benzylpenicillin, cefovecin, clindamycin, enrofloxacin, erythromycin and nitrofu-

rantoin for E. faecium isolates. The growth of Enterococcus isolates in the control wells was 

observed and growth at an appropriate rate was confirmed. MIC was then measured by com-

paring the growth of Enterococcus pathogens with known MIC values. E. faecalis and E. fae-

cium isolates were labelled as either resistant or susceptible according to MIC breakpoints 

adapted from CLSI (Watts et al., 2008) and EUCAST (EUCAST, 2019). 

6.3 RESULTS 

 Data Source 

Antimicrobial-resistant/susceptible profiles for a total of 111 E. faecalis isolates are shown in 

Figure 6-1-A. While 38.74% (n=43) of the E. faecalis isolates were resistance to only one 

certain antibiotic, 39.64% (n=44) were resistant to more than one antibiotic. The distribution 
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of the multi-resistant profiles is shown in Figure 6-1-B. 21.62% (n=24) of the E. faecalis iso-

lates were found to be non-resistant (either susceptible, intermediate or not known) to any an-

tibiotics used in this study.
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Figure 6-1. The antimicrobial-resistant/susceptible profiles of E. faecalis isolates. A) Red-coloured wells indicate the resistance whereas blue 
coloured wells indicate the susceptibility for a certain antibiotic. Yellow coloured wells indicate either intermediate or terminated analysis before the results 
obtained. B) UpSet diagram summarizing the profile of resistant E. faecalis isolates. The total size of resistant E. faecalis isolates is shown on the left bar 

plot. The multi-resistant profile is visualised by the bottom plot and the occurrence is represented on the top bar plot.
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E. faecalis isolates, where technical count refers to the replicates of biological samples during 

MALDI-TOF analysis, were profiled as follows: 

- Benzylpenicillin: 18 biological (70 technical) and 6 biological (26 technical) isolates as being 

susceptible and resistant classes, respectively. 

- Chloramphenicol: 97 biological (392 technical) and 11 biological (44 technical) isolates as 

being susceptible and resistant classes, respectively.  

- Erythromycin: 38 biological (150 technical) and 24 biological (99 technical) isolates as being 

susceptible and resistant classes, respectively.  

- Tetracycline: 56 biological (220 technical) and 51 biological (210 technical) isolates as being 

susceptible and resistant classes, respectively. 

 - Clindamycin: 11 biological (44 technical) and 75 biological (301 technical) isolates as being 

susceptible and resistant classes, respectively.  

- TMP/SMX: 91 biological (365 technical) and 16 biological (64 technical) isolates as being 

susceptible and resistant classes, respectively. The detailed information about these E. faecalis 

isolates can be seen in Table 6-1.
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Table 6-1. MIC values of Enterococcus faecalis isolates against benzylpenicillin, chloramphenicol, erythromycin, tetracycline, clindamycin 

and TMP/SMX.  In this table, only susceptible and resistant isolates which are used in further machine learning analysis are shown, whereas intermedi-

ate isolates are not shown. 

 

*MIC values of ≤20 µg/ml. 

**MIC values of ≥160 µg/ml. 
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Antimicrobial-resistant/susceptible profiles for a total of 88 E. faecium isolates are shown in 

Figure 6-2-A. While 11.36% (n=10) of the E. faecium isolates were resistant to only one certain 

antibiotic, 86.36% (n=76) were resistant to more than one antibiotic. The distribution of the 

multi-resistant profiles is shown in Figure 6-2-B. 2.27% (n=2) of the E. faecium isolates were 

found to be non-resistant (either susceptible, intermediate or not known) to any antibiotics used 

in this study.



160 
 

 

Figure 6-2. The antimicrobial-resistant/susceptible profiles of E. faecium isolates. A) Red-coloured wells indicate the resistance whereas blue 
coloured wells indicate the susceptibility for a certain antibiotic. Yellow coloured wells indicate either intermediate or terminated analysis before the results 
obtained. B) UpSet diagram summarizing the profile of resistant E. faecium isolates. The total size of resistant E. faecium isolates is shown on the left bar 
plot. The multi-resistant profile is visualised by the bottom plot and the occurrence is represented on the top bar plot.
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E. faecium isolates, where technical count refers to the replicates of biological samples during 

MALDI-TOF analysis, were profiled as follows: 

- Benzylpenicillin: 59 biological (224 technical) and 19 biological (74 technical) isolates as 

being susceptible and resistant classes, respectively. 

- Cefovecin: 22 biological (82 technical) and 61 biological (237 technical) isolates as being 

susceptible and resistant classes, respectively.  

- Enrofloxacin: 15 biological (56 technical) and 62 biological (238 technical) isolates as being 

susceptible and resistant classes, respectively.  

- Nitrofurantoin: 25 biological (96 technical) and 12 biological isolates (46 technical replicates) 

isolates as being susceptible and resistant classes, respectively.  

- Clindamycin: 31 biological (118 technical) and 56 biological (214 technical) isolates as being 

susceptible and resistant classes, respectively. 

- Erythromycin: 32 biological (122 technical) and 18 biological (66 technical) isolates as being 

susceptible and resistant classes, respectively. The detailed information about these E. faecium 

isolates can be seen in Table 6-2.
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Table 6-2. MIC values of Enterococcus faecium isolates against benzylpenicillin, cefovecin, enrofloxacin, nitrofurantoin, clindamycin and 

erythromycin.  In this table, only susceptible and resistant isolates which are used in further machine learning analysis are shown, whereas intermedi-

ate isolates are not shown.  
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 Generation of Peak List and Algorithm Tuning 

To compare each antimicrobial profile (resistant vs susceptible), the relative intensity height 

filter was set to 1, where the maximum intensity value was set to 100 and others normalized 

accordingly, as previously suggested (Ressom et al., 2007). Peak selection was performed 

based on Welch’s t-test for the normally distributed data of the following analyses; E. faecalis: 

benzylpenicillin, chloramphenicol and clindamycin; E. faecium: benzylpenicillin and 

clindamycin. E. faecalis erythromycin analysis gave the best prediction performance results by 

having used all of the peaks (including peaks found to be statistically non-significant by 

Welch’s t-test and Wilcoxon test, but still present in 30% of the spectra) whereas for the rest 

of the analyses (E. faecalis: tetracycline and TMP/SMX; E. faecium: cefovecin, enrofloxacin, 

erythromycin and nitrofurantoin) peak selection was performed based on Wilcoxon test, which 

is more robust to non-normally distributed data (Wilcoxon, 1992). 

 Analyses with E. faecalis Isolates 

Resistant and susceptible E. faecalis to each antimicrobial class – benzylpenicillin, chloram-

phenicol, clindamycin, erythromycin, tetracycline and TMP/SMX – were labelled as positive 

and negative, respectively. Due to the imbalanced nature between resistant and susceptible 

classes of benzylpenicillin, chloramphenicol, clindamycin, erythromycin and TMP/SMX da-

tasets, each was resampled by oversampling the minority class to build robust classifiers. The 

minority class was the resistant isolates for benzylpenicillin, chloramphenicol, erythromycin 

and TMP/SMX datasets; and susceptible isolates were clindamycin. Feature (peak) selection 

was performed in each analysis except the erythromycin dataset. This was done by selecting 

the statistically significant peaks that appear in at least 30% of all number of the spectra. The 

detailed information is shown in Table 6-3. 
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Table 6-3. The counts of the biological and technical (spectra) replicate in each class, 

feature selection and re-balancing techniques in analyses with E. faecalis isolates. 

Analysis 
Resistant isolate 
(spectra count) 

Susceptible isolate 
(spectra count) 

Feature 
Selection 

Resampling 
Technique 

     

Benzylpenicillin 6 (26) 18 (70) ptta<0.05 
Oversampling the 

resistant class 
     

Chloramphenicol 11 (44) 97 (392) ptta<0.05 
Oversampling the 

resistant class 
     

Clindamycin 75 (301) 11 (44) ptta<0.05 
Oversampling the 
susceptible class 

     

Erythromycin 24 (99) 38 (150) - 
Oversampling the 

resistant class 
     

Tetracycline 51 (210) 56 (220) pwkw<0.05 - 
     

TMP/SMX 16 (64) 91 (365) pwkw<0.05 
Oversampling the 

resistant class 
Ptta is the p-value of Welch’s t-test and pwkw is the p-value of Wilcoxon test. 

 

The prediction performances after 30 observations of the most powerful algorithms in each 

discrimination analysis between resistant and susceptible E. faecalis isolates are shown and 

summarized in Figure 6-3 and Table 6-4, respectively. 
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Figure 6-3. Best prediction performances (accuracy, AUC, sensitivity, specificity and 

Kappa) in discrimination of resistant and susceptible profiles of E. faecalis isolates. A) 

Logistic regression was found to be the best algorithm to discriminate benzylpenicillin resistant and 

susceptible E. faecalis isolates. B) MLP neural network was found to be the best algorithm to dis-

criminate chloramphenicol resistant and susceptible E. faecalis isolates. C) Naive Bayes was found 

to be the best algorithm to discriminate clindamycin resistant and susceptible E. faecalis isolates. 

D) Logistic regression was found to be the best algorithm to discriminate erythromycin resistant and 

susceptible E. faecalis isolates. E) RBF SVM was found to be the best algorithm to discriminate 

tetracycline resistant and susceptible E. faecalis isolates. F) Logistic regression was found to be the 

best algorithm to discriminate TMP/SMX (trimethoprim/sulfamethoxazole) resistant and susceptible 

E. faecalis isolates. These graphs were generated in GraphPad Prism v8. 
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Table 6-4. Best prediction performers and their exact performance values for discrimina-
tion of resistant and susceptible profiles of E. faecalis isolates. 

 

 Analyses with E. faecium Isolates 

Resistant and susceptible E. faecium isolates to each antimicrobial class – benzylpenicillin, 

cefovecin, clindamycin, enrofloxacin, erythromycin and nitrofurantoin – were labelled as pos-

itive and negative, respectively. Due to the imbalanced nature between resistant and susceptible 

classes of benzylpenicillin, cefovecin, clindamycin, enrofloxacin, erythromycin and nitrofu-

rantoin datasets, each was resampled by oversampling the minority class to build robust clas-

sifiers. The minority class was the resistant isolates for benzylpenicillin, erythromycin and ni-

trofurantoin datasets; and susceptible isolates were cefovecin, clindamycin and enrofloxacin. 

Feature (peak) selection was performed in each analysis by selecting the statistically significant 

peaks that appear in at least 30% of all number of spectra. The detailed information is shown 

in Table 6-5. 
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Table 6-5. The counts of the biological and technical (spectra) replicate in each class, 

feature selection and re-balancing techniques in analyses with E. faecium isolates. 

Analysis 
Resistant isolate 
(spectra count) 

Susceptible isolate 
(spectra count) 

Feature 
Selection 

Resampling 
Technique 

     
Benzylpenicillin 19 (74) 59 (224) ptta<0.05 Oversampling the 

resistant class 
     

Cefovecin 61 (237) 22 (82)  pwkw<0.05 Oversampling the 
susceptible class 

     
Clindamycin 56 (214) 31 (118) ptta<0.05 Oversampling the 

susceptible class 
     

Enrofloxacin 62 (238) 15 (56) pwkw<0.05 Oversampling the 
susceptible class 

     
Erythromycin 18 (66) 32 (122) pwkw<0.05 Oversampling the 

resistant class 
     

Nitrofurantoin 12 (46) 25 (96) pwkw<0.05 Oversampling the 
resistant class 

     
Ptta is the p-value of Welch’s t-test and pwkw is the p-value of Wilcoxon test. 

The prediction performances after 30 observations of the most powerful algorithms in each 

discrimination analysis between resistant and susceptible E. faecium isolates are shown and 

summarized in Figure 6-4 and Table 6-6, respectively.
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Figure 6-4. Best prediction performances in discrimination of resistant and susceptible 

profiles of E. faecium isolates.  A) AdaBoost was found to be the best algorithm to discriminate 

benzylpenicillin-resistant and susceptible E. faecium isolates. B) Naïve Bayes was found to be the 

best algorithm to discriminate cefovecin-resistant and susceptible E. faecium isolates. C) LDA (linear 

discriminant analysis) was found to be the best algorithm to discriminate clindamycin-resistant and 

susceptible E. faecium isolates. D) MLP neural network was found to be the best algorithm to dis-

criminate enrofloxacin-resistant and susceptible E. faecium isolates. E) Naïve Bayes was found to 

be the best algorithm to discriminate erythromycin-resistant and susceptible E. faecium isolates. F) 

LSVM was found to be the best algorithm to discriminate nitrofurantoin-resistant and susceptible E. 

faecium isolates. These graphs were generated in GraphPad Prism v8. 
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Table 6-6. Best prediction performers and their exact performance values for discrimina-
tion of resistant and susceptible profiles of E. faecium isolates.  

 

 Biomarker Characterisation 

The peaks with the relative intensity of 10 and above, which is the average value in almost 

every analysis and provides a representative number of biological biomarkers in each analysis, 

were taken from the statistical report of each analysis, as characterizing all the peaks would not 

be convenient. The discriminant peaks found in the comparisons of resistant and susceptible 

profiles of each antibiotic for E. faecalis and E. faecium were cross-matched with the proteins 

are shown in Table 6-7 and Table 6-8, respectively.  
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Table 6-7. Discriminant peaks in each antimicrobial analysis of E. faecalis with the corre-

sponding proteins and top PSI-BLAST match of these proteins with their cellular location. 

MALDI-TOF 

Peak (Mw) 
Protein (Mw) PSI-BLAST Match 

PSORTB 

location 

(score) 

Discriminant 

Profile 
  

 

4440.35Da 

PTS family porter 

(4440.13Da) 
PTS family porter 

Unknown 

(2.5) 
BENZ, CLIN   

       

4766.09Da 
HP-1 

(4769.57Da) 
Hypothetical protein 

Unknown 

(2.5) 

BENZ, CHLO, 

ERYT, TETRA  
  

       

 

5557.37Da 

LuxR family protein 

(5547.38Da) 

Bacterial response 

regulator 

Unknown 

(2.5) 

BENZ, CHLO, 

ERYT, TETRA, 

TMP/SMX 

  

       

6224.00Da 
RpmD 

(6224.27Da) 

50S ribosomal pro-

tein L30 

Cytoplasmic 

(9.67) 

ERYT, TETRA, 

TMP/SMX 
  

       

6399.48Da 
RpmF  

(6399.48Da) 

50S ribosomal pro-

tein L32 

Cytoplasmic 

(9.67) 
CHLO, ERYT   

       

6669.68Da 
HP-2  

(6670.51Da) 
Hypothetical protein 

Cytoplasmic 

(7.5) 
ERYT   

       

6858.79Da 
RpmB 

(6857.07Da) 

50S ribosomal pro-

tein L28 

Cytoplasmic 

(9.67) 

ERYT, TETRA, 

CLIN, TMP/SMX 
  

       

7022.47Da 
RpsZ  

(7022.32Da) 
30S ribosomal S14 

Cytoplasmic 

(9.97) 

CHLO, ERYT, 

TMP/SMX 
  

       

7327.72Da 
RpmC  

(7329.55Da) 
50S ribosomal L29 

Cytoplasmic 

(9.97) 

ERYT, TETRA, 

TMP/SMX 
  

       

7574.28Da 
RpmI  

(7569.00Da) 
50S ribosomal L35 

Cytoplasmic 

(9.67) 

TETRA, CLIN, 

TMP/SMX 
  

       

8106.05Da 
InfA  

(8105.42Da) 

Translation initiation 

factor 1A/IF-1 

Cytoplasmic 

(10) 

TETRA, 

TMP/SMX 
  

       

9111.40Da 
RpsR  

(9110.64Da) 
30S ribosomal S18 

Cytoplasmic 

(9.97) 

CHLO, ERYT, 

TETRA, 

TMP/SMX 

  

       

9524.71Da 
HU  

(9524.89Da) 

DNA-binding pro-

tein HBsu 

Cytoplasmic 

(9.97) 

CHLO, CLIN, 

ERYT, TETRA, 

TMP/SMX 

  

       

10510.85Da 
RpsO  

(10511.97Da) 
30S ribosomal S15 

Cytoplasmic 

(9.67) 

TETRA, 

TMP/SMX 
  

       

1111.30Da 
RplX 

(11115.04Da) 
50S ribosomal L24 

Cytoplasmic 

(9.67) 

CHLO, BENZ, 

ERYT, TETRA, 

TMP/SMX 

  

       

HP: hypothetical protein, BENZ: benzylpenicillin, CHLO: chloramphenicol, CLIN: clindamycin, 

ERYT: erythromycin, TETRA: tetracycline, TMP/SMX: trimethoprim/ sulfamethoxazole. 
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Table 6-8. Discriminant peaks in each antimicrobial analysis of E. faecium with the corre-

sponding proteins and top PSI-BLAST match of these proteins with their cellular location. 

MALDI-TOF 

Peak (Mw) 

Protein 

(Mw) 
PSI-BLAST Match 

PSORTB 

location 

(score) 

Discriminant Profile 

     

4488.85Da 
HP-1 

(4487.34Da) 

Putative metal homeostasis 

protein 

Unknown 

(2.5) 
BENZ, CEFO, ERYT 

     

5036.95Da 
HP-2 

(5047.09Da) 

Enterocin L50 family lead-

erless bacteriocin 

Cytoplasmic 

(9.55) 
CEFO, ENROF, NITRO 

     

6507.02Da 
RpmF 

(6510.57Da) 
50S ribosomal protein L32 

Cytoplasmic 

(9.67) 
BENZ, CLIN 

     

7273.74Da 
CsbD 

 (7287.14Da) 
CsbD-like family protein 

Unknown 

(2.5) 
ENROF 

     

7324.94Da 
SHK  

(7337.42Da) 

Two-component system 

sensor histidine kinase 

Cytoplasmic 

(7.5) 

CEFO, ERYT, CLIN, 

NITRO 

     

8977.49Da 
RpsR  

(8980.54Da) 
30S ribosomal protein S18 

Cytoplasmic 

(9.97) 
BENZ, CEFO, CLIN 

     

9056.35Da 
RpsT 

(9059.33Da) 
30S ribosomal protein S20 

Cytoplasmic 

(9.67) 
BENZ, CLIN 

     

9547.57Da 
HU 

(9550.88Da) 

Bacterial DNA-binding 

protein 

Cytoplasmic 

(9.97) 
BENZ, CLIN 

     

10068.06Da 
PTS-IIB 

(10079.74Da) 

PTS sugar transporter subu-

nit IIB 

Cytoplasmic 

(7.5) 

CEFO, ENROF, NITRO, 

ERYT 

     

10934.36Da 
RplX 

(10937.90Da) 
50S ribosomal L24 

Cytoplasmic 

(9.97) 
BENZ 

     

HP: hypothetical protein, BENZ: benzylpenicillin, CEFO: cefovecin, CLIN: clindamycin, ENROF: en-

rofloxacin, ERYT: erythromycin, NITRO: nitrofurantoin.  

Analyses of E. faecalis isolates based on their antimicrobial profiles resulted in two common 

proteins (LuxR family protein and RplX) to discriminate chloramphenicol-resistant vs suscep-

tible, tetracycline-resistant vs susceptible, benzylpenicillin-resistant vs susceptible, erythromy-

cin-resistant vs susceptible and TMP/SMX-resistant vs susceptible profiles (see Figure 6-5-A). 

Bacterial DNA-binding HU protein was found common to discriminate chloramphenicol-re-

sistant vs susceptible, tetracycline-resistant vs susceptible, clindamycin-resistant vs suscepti-

ble, erythromycin-resistant vs susceptible and TMP/SMX-resistant vs susceptible profiles. 

RpsR was found in the discrimination analyses of tetracycline-resistant vs susceptible, eryth-

romycin-resistant vs susceptible, chloramphenicol-resistant vs susceptible and TMP/SMX-
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resistant vs susceptible profiles. HP-1 (Mw: 4769.57Da) was found common to discriminate 

chloramphenicol-resistant vs susceptible, tetracycline-resistant vs susceptible, benzylpenicil-

lin-resistant vs susceptible, and erythromycin-resistant vs susceptible. RpmB was found com-

mon to discriminate clindamycin-resistant vs susceptible, tetracycline-resistant vs susceptible, 

TMP/SMX-resistant vs susceptible, and erythromycin-resistant vs susceptible. Two common 

proteins (RpmC and RpmD) were found in the discrimination analyses of erythromycin-re-

sistant vs susceptible, tetracycline-resistant vs susceptible and TMP/SMX-resistant vs suscep-

tible profiles. RpsZ was found common in the discrimination of chloramphenicol-resistant vs 

susceptible, erythromycin-resistant vs susceptible and TMP/SMX-resistant vs susceptible pro-

files. RpmI was found common to discriminate tetracycline-resistant vs susceptible, clindamy-

cin-resistant vs susceptible and TMP/SMX-resistant vs susceptible profiles. Two common pro-

teins (InfA and RpsO) were found in the discrimination analyses of tetracycline-resistant vs 

susceptible and TMP/SMX-resistant vs susceptible profiles. RpmF was found common in the 

discrimination of chloramphenicol-resistant vs susceptible and erythromycin-resistant vs sus-

ceptible profiles. PTS family porter protein was found common to discriminate benzylpenicil-

lin-resistant vs susceptible and clindamycin-resistant vs susceptible profiles. HP-2 (Mw: 

6670.51Da) was found unique to the analysis of erythromycin-resistant vs susceptible profiles 

(see Figure 6-5-A). 

 

Figure 6-5. Discriminant proteins of Enterococcus faecalis and Enterococcus faecium be-

tween resistant and susceptible profiles of each antibiotic. These figures were generated us-

ing Lucidchart.com. 

Analyses of E. faecium isolates based on their antimicrobial profiles resulted in that PTS sys-

tem IIB component was common to discriminate cefovecin-resistant vs susceptible, nitrofu-

rantoin-resistant vs susceptible, erythromycin-resistant vs susceptible, and enrofloxacin-re-

sistant vs susceptible profiles (see Figure 6-5-B). Sensor histidine kinase (SHK) protein was 
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found common in the discrimination of erythromycin-resistant vs susceptible, nitrofurantoin-

resistant vs susceptible, clindamycin-resistant vs susceptible and cefovecin-resistant vs suscep-

tible profiles. RpsR was found common in the discrimination of clindamycin-resistant vs sus-

ceptible, benzylpenicillin-resistant vs susceptible and cefovecin-resistant vs susceptible pro-

files. HP-1 (Mw: 4487.34Da) was found common in the discrimination of benzylpenicillin-

resistant vs susceptible, erythromycin-resistant vs susceptible, and cefovecin-resistant vs sus-

ceptible profiles. HP-2 (Mw: 5047.09Da) was fund common in the discrimination of cefovecin-

resistant vs susceptible, nitrofurantoin-resistant vs susceptible, and enrofloxacin-resistant vs 

susceptible profiles. Three common proteins (RpmF, DNA-binding HU and RpsT) were found 

to discriminate clindamycin-resistant vs susceptible and benzylpenicillin-resistant vs suscepti-

ble profiles. RplX and a CsbD domain-containing protein were found unique to benzylpenicil-

lin-resistant vs susceptible and enrofloxacin-resistant vs susceptible profiles, respectively (see 

Figure 6-5-B). 

6.3.5.1 Functional Characterisation of Discriminant Proteins 

3D protein modelling is mainly used to estimate the biological functions of the proteins as the 

protein structure governs the interaction of it with ligands or other molecules (Lopez et al., 

2007). In this section, SWISS-MODEL (homology modelling) was used to predict 3D model-

ling structures of known-function proteins, and I-TASSER server (threading/folding recogni-

tion) was used to predict 3D modelling structures and GO terms of less known-function pro-

teins. 3D models of these discriminant proteins are shown in Figure 6-6 and Figure 6-7 for E. 

faecalis and E. faecium, respectively.  
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Figure 6-6. 3D structures of the discriminant proteins of Enterococcus faecalis between 

resistant and susceptible profiles of each antibiotic. Hypothetical proteins: HP-1 (Mw: 

4769.57Da), HP-2 (Mw: 6670.51Da). Ribosomal proteins: 30S ribosomal S15 (RpsO), 30S ribosomal 

S14 (RpsZ), 30S ribosomal S18 (RpsR), 50S ribosomal L30 (RpmD), 50S ribosomal L32 (RpmF), 

50S ribosomal L35 (RpmI), 50S ribosomal L29 (RpmC), 50S ribosomal L24 (RplX) and 50S ribosomal 

L28 (RpmB). Other proteins: LuxR family protein, DNA-binding protein HBsu, PTS family porter, 

translation initiation factor IF-1 (InfA). The visualisation was carried out with UCSF Chimera and 

Lucidchart.com. 

 

Figure 6-7. 3D structures of the discriminant proteins of Enterococcus faecium between 

resistant and susceptible profiles of each antibiotic. Hypothetical proteins: HP-1 (Mw: 

4487.34Da) and HP-2 (Mw: 5047.09Da). Ribosomal proteins: 50S ribosomal L32 (RpmF), 50S ribo-

somal protein L24 (RplX), 30S ribosomal S20 (RpsT) and 30S ribosomal protein S18 (RpsR). Other 

proteins: sensor histidine kinase, DNA-binding protein HBsu, pTS system IIB component and CsbD 

domain-containing protein. The visualisation was carried out with UCSF Chimera and Lucidchart.com. 
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PTS (phosphoenolpyruvate: carbohydrate phosphotransferase system) protein was found to be 

discriminant between several antimicrobial-resistant and susceptible profiles of both E. faecalis 

and E. faecium isolates in this study. PTS family porters are involved in the transportation and 

phosphorylation of carbohydrates as well as signal transduction and regulatory functions (Ruiz-

Cruz et al., 2016). In some bacteria species, pTS genes were proved to have virulence effects 

(Hava and Camilli, 2002; Jones, Knoll and Rubens, 2000). Moreover, some classes of PTS 

porters were suggested to have a function in bacteria for survival in animal hosts especially in 

epithelial cells (Zuniga et al., 2005). The function of PTS family porters and biofilm formation 

has been shown to be associated in gram-positive bacteria (Sutrina, McGeary and Bourne, 

2007), which may be important as biofilm-forming organisms are known to show increased 

antimicrobial-resistant (Sobisch et al., 2019). 

DNA-binding HU protein was found to be discriminant between several antimicrobial-resistant 

and susceptible profiles of both E. faecalis and E. faecium isolates in this study. DNA-binding 

HU protein is considered to be more significant in gram-positive bacteria than gram negatives 

(Macvanin and Adhya, 2012). CsbD protein is involved in the cellular response to environ-

mental stress conditions (Zuber, 2001). A Csbd-like domain-containing protein was previously 

found to be one of the discriminant proteins in several processes such as pathogenic vs non-

pathogenic E. coli strains (Fagerquist et al., 2010) and aflatoxigenic vs non-aflatoxigenic As-

pergillus flavus strains (Pennerman et al., 2019). 

LuxR family protein was found discriminant for resistant and susceptible profiles of E. faecalis 

for the following antibiotics benzylpenicillin, chloramphenicol, erythromycin, tetracycline and 

TMP/SMX. LuxR family proteins are known to be regulators involved in the quorum-sensing 

system (Nasser and Reverchon, 2007). In different species, LuxR homologs were suggested to 

be involved in controlling oxidative stress (Hudaiberdiev et al., 2015), which could be an ex-

planation for the discriminant profile in our experiment, as bactericidal antimicrobials induce 

oxidative stress (Kohanski, Dwyer and Collins, 2010; Marrakchi, Liu and Andreescu, 2014). 

SHK is part of two-component signal transduction systems (TCSs) in bacteria, which respond 

to changes in environmental conditions (Gao and Stock, 2009). TCSs are essential for cell sur-

vival and are also responsible for pathogenicity, biofilm formation and quorum sensing (Gotoh 

et al., 2010). The TCSs of some bacteria species, including E. faecalis, are recommended as 

novel drug targets (Gotoh et al., 2010; Bem et al., 2015; Tiwari et al., 2017). Furthermore, 
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AMR genes of vancomycin are regulated by TCSs in Enterococcus species (Mueller-Premru 

et al., 2009; Koteva et al., 2010). 

RpsO was one of the discriminant peaks between resistant and susceptible E. faecalis isolates 

of tetracycline and TMP/SMX in the current study. However, it was found to be one of the four 

discriminant transcripts between azithromycin, a macrolide class antibiotic, resistant and sus-

ceptible isolates of Neisseria gonorrhoeae (Wadsworth et al., 2019). RpmC and RpmD were 

found to be discriminant protein between erythromycin, tetracycline and TMP/SMX-resistant 

and susceptible profiles of E. faecalis in the current study. The abundance of rpmC showed 

significant alterations for environmental conditions such as copper stress (Tarrant et al., 2019), 

antimicrobial activity (Choi et al., 2011; Alves et al., 2019) or presence of other organisms 

(Luppens et al., 2008). Expression of rpmD was observed to be downregulated in studies where 

antibiotic tolerance related systems were knocked out (Sharma-Kuinkel et al., 2009). RpmB 

was one of the discriminant peaks between resistant and susceptible E. faecalis isolates of 

erythromycin, tetracycline, clindamycin and TMP/SMX in our study. However, rpmB was 

shown to be inhibited by streptomycin, an aminoglycoside antibiotic, in M. tuberculosis (Fan 

et al., 2014). In our study, RpmI was found discriminant between tetracycline, clindamycin 

and TMP/SMX-resistant vs susceptible profiles of E. faecalis. RpmI was suggested to be es-

sential for protease restoration (Kitten and Willis, 1996), which play an important role in AMR 

profile in some species (Fernández et al., 2012).  

RpsR was found to be discriminant between several antimicrobial profiles of E. faecalis and E. 

faecium such as erythromycin, tetracycline, clindamycin, benzylpenicillin etc. RpsR gene in E. 

faecalis was shown to be upregulated by the treatment of glyphosate -an active ingredient of 

widely used herbicides (Saunders and Pezeshki, 2015)- and its primary breakdown product of 

aminomethylphosphonic acid (Stenger, 2019). Similar results with our study about the role of 

rpsR in resistance to erythromycin (Xu et al., 2010) and multidrug were found earlier (Pathania 

et al., 2009). RplX was found to be discriminant between benzylpenicillin and susceptible pro-

files of E. faecium. Moreover, it was found to differentiate E. faecalis isolates based on the 

resistance profile of several antibiotics including benzylpenicillin. In previous studies with 

other species, rplX gene was shown to be differentially expressed in the presence of antimicro-

bial agent lupulone and betulinaldehyde (Wei et al., 2014; Chung, Chung and Navaratnam, 

2013). 
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Proteins mainly act as a team rather than individual to perform their biological functions at 

cellular and system levels (De Las Rivas and Fontanillo, 2010; Berggård, Linse and James, 

2007; Eisenberg et al., 2000). In this study, PPI was used to outline protein complexes and 

learn their biological pathways in detail. PPI analysis found that the clustering coefficient of 

295 proteins - a total of 15 discriminant proteins and 270 first neighbour proteins – was 0.611, 

while randomly selected 15 proteins (this is repeated 10 times) and their 368 first neighbour 

proteins (on average) network in E. faecalis proteome had a clustering coefficient of 0.035. 

The clustering coefficient provides a scale of the interconnectivity of a network (between 0 and 

1, where 1 is for all neighbours connected and 0 for no connection of neighbours) (Ravasz et 

al., 2002). The average number of neighbours per protein for the clusters of interest and the 

randomly built PPI network of E. faecalis was 68.298 and 2.232, respectively. The average 

number of neighbours represents the mean connectivity value of a protein in the network 

(Assenov et al., 2008). The clusters of interest and the randomly built PPI network had 0.232 

and 0.006 for network density and 0.716 and 4.105 for network heterogeneity, respectively. 

Network density is the normalized version of the average number of neighbours, and proteins 

with no connectivity are rated 0, while proteins with lots of connections are given values closer 

to 1 (Assenov et al., 2008). Network heterogeneity indicates the variance of connectivity and 

the more hub nodes, the greater value it has (Dong and Horvath, 2007). 

For E. faecium, it was found that the clustering coefficient of 345 proteins - a total of 8 discri-

minant proteins and 337 first neighbour proteins – was 0.383 while randomly selected 8 pro-

teins (this is repeated 10 times) and their 358 first neighbour proteins network in E. faecium 

proteome had a clustering coefficient of 0.012. The average number of neighbours per protein 

in the clusters of interest and the randomly built PPI network was 4.591 and 2.211, respectively. 

The clusters of interest and the randomly built PPI network had 0.013 and 0.007 for network 

density and 3.517 and 4.168 for network heterogeneity, respectively. 
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Figure 6-8. The protein-protein interaction (PPI) network showing 295 Enterococcus faecalis proteins. The blue circles represent the 15 dis-
criminant proteins (RpmB, RpmC, RpmD, RpmF, RpmI, RpsO, RpsZ, RpsR, RplX, HU (DNA-binding protein), pTS family porter, luxR family protein, InfA 

(translation initiation factor IF-1), HP1 and HP2 (hypothetical proteins)), while yellow circles are the E. faecalis proteins with which the discriminant proteins 
interact (first shell interacting partners). Amongst these first shell interacting partners, the red circle is TetM (tetracycline resistance protein) is related to 
antimicrobial resistance. 
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Figure 6-9. UpSet diagram summarizing the interacting sets of discriminant proteins in Enterococcus faecalis. The total size of E. faecalis 

proteins with which the discriminant proteins interact (first shell interacting partners) is shown on the left bar plot. Every possible interaction is visual-

ised by the bottom plot and the occurrence is represented on the top bar plot. 
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PPI network could be created for all discriminant proteins of E. faecalis; however, HP-1 (Mw: 

4769.57Da), HP-2 (Mw: 6670.51Da) and PTS family porter did not show cluster with other 

discriminant proteins (see Figure 6-8). Ribosomal proteins (RpmB, RpmC, RpmD, RpmF, 

RpmI, RpsO, RpsZ, RpsR and RplX), LuxR family protein, InfA (translation initiation factor) 

and HU (DNA-binding protein) were found to be interacting directly or via common neighbour 

nodes (proteins). The occurrence of the common first shell interacting partners between discri-

minant E. faecalis proteins is shown in Figure 6-9.  

Moreover, TetM was found directly interacting with discriminant ribosomal proteins (RpmB, 

RpmC, RpmD, RpmF, RpmI, RpsO, RpsZ, RpsR and RplX) and translation initiation factor 

(InfA) in the PPI network (see Figure 6-8). Although the neighbour interaction of TetM with 

our discriminant E. faecalis proteins have not been experimentally validated yet, homologs of 

them were shown in E. coli K12 W3110 (Gagarinova et al., 2016; Butland et al., 2005; Hu et 

al., 2009).
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Figure 6-10. The protein-protein interaction (PPI) network showing 345 Enterococcus faecium proteins. The blue circles represent the 8 
discriminant proteins (RpsR, RpmF, RplX, RpsT, HU (DNA-binding protein), HP1 (hypothetical protein with Mw of 4487.34Da), sensor histidine kinase 
(SHK), CsbD like domain-containing protein, while yellow circles are the E. faecium proteins with which the discriminant proteins interact (first shell 
interacting partners). Amongst these first shell interacting partners, six proteins (red circles): TetM (tetracycline resistance protein), GyrA and GyrB 

(quinolone resistance proteins), ErmB (macrolide resistance protein), VanSB and VanRB (vancomycin resistance proteins) are related to antimicrobial 
resistance.
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Figure 6-11. UpSet diagram summarizing the interacting sets of discriminant proteins in Enterococcus faecium. The total size of E. faecium 

proteins with which the discriminant proteins interact (first shell interacting partners) is shown on the left bar plot. Every possible interaction is visual-

ised by the bottom plot and the occurrence is represented on the top bar plot. 
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PPI network could be created for eight out of ten discriminant proteins of E. faecium (RpsR, 

RpmF, RplX, RpsT, HU, HP-1 (Mw: 4487.34Da), SHK and CsbD like domain-containing pro-

tein), while HP-2 (Mw: 5047.09Da) and PTS system IIB component did not contain any inter-

actions higher than medium confidence score (see Figure 6-10). Discriminant E. faecium pro-

teins were found to be interacting directly or via common neighbour nodes (proteins) as seen 

in Figure 6-11. 

Moreover, AMR proteins in the PPI network of discriminant proteins were found as follows: 

TetM (tetracycline resistance protein) that directly interacts with the discriminant ribosomal 

proteins; GyrA and GyrB (quinolone resistance proteins) that directly interact with RpsR; 

ErmB (macrolide resistance protein) which directly interacts with RpsR and RpsT; VanSB and 

VanRB (vancomycin resistance proteins) which directly interact with SHK (see Figure 6-10). 

Although the neighbour interactions of VanSB and VanRB with our discriminant E. faecium 

protein SHK have not been experimentally validated yet, homologs of these proteins in E. coli 

K12 W3110 and MG1655 were found to be interacting (Yamamoto et al., 2005; Babu et al., 

2018). Again, the neighbour interaction of TetM with our discriminant E. faecium ribosomal 

proteins - RpsR, RpsT, RplX and RpmF - have not been experimentally validated yet but hom-

ologs of them were shown in E. coli K12 W3110 (Hu et al., 2009; Butland et al., 2005). No 

experimental interactions between ErmB and RpsR, ErmB and RpsT, GyrA and RpsR, and 

GyrB and RpsR were proved in E. faecium or other organisms yet. These interactions were 

predicted through co-expression and/or text-mining in STRING database (Szklarczyk et al., 

2018). 

Gene category techniques like GO annotation and KEGG enables profiling over-represented 

features in a given set of proteins (Bauer, 2017). Functional enrichment analyses of the proteins 

involved in the PPI network of E. faecalis and E. faecium are shown in Figure 6-12. Proteins 

in both networks took part in the similar biological pathway, molecular function, cellular com-

ponent and KEGG pathway with similar counts. 
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Figure 6-12. Functional enrichment analyses of the genes encoding the 295 Enterococcus 

faecalis proteins and 345 Enterococcus faecium proteins present in the PPIs. In A) Biolog-

ical pathway (BP), B) Molecular function (MF), C) Cellular component (CC) and D) KEGG pathway; 

the enriched categories and the number of the genes populating them are shown. The figure was 

generated using R package fmsb (Nakazawa and Nakazawa, 2019). 

Moreover, individual GO terms for not well-characterized discriminant proteins of E. faecalis 

were estimated by threading technique (see Methods section for details). 

1)  GO terms assigned for PTS family porter are: negative regulation of immune effector 

process (BP), cytokine receptor binding (MF), and extracellular region part (CC). 

2)  GO terms assigned for HP-1 (hypothetical protein with Mw of 4769.57Da): phosphor-

ylation (BP), ATP binding (MF), metal ion binding (MF) and nucleoid (CC). 

3) GO terms assigned for HP-2 (hypothetical protein with Mw of 6670.51Da): oxidation-

reduction process (BP), oxidoreductase activity (MF), transition metal ion binding 

(MF), and integral component of membrane (CC). 

Individual GO terms for not well-characterized discriminant proteins of E. faecium were also 

estimated by the threading technique (see Methods section for details). 
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1) GO terms assigned for HP-1 (hypothetical protein with Mw of 4487.34Da) are: trans-

location (BP), protein transporter activity (MF), zinc ion binding (MF), protein domain 

specific binding (MF) and cytosol (CC). 

2) GO terms assigned for HP-2 (hypothetical protein with Mw of 5047.09Da) are: DNA 

replication (BP), ATP binding (MF) and integral component of membrane (CC). 

3) GO terms assigned for CsbD domain-containing protein: cellular protein metabolic pro-

cess (BP), protein binding (MF), DNA polymerase activity (MF), metal ion binding 

(MF) and cytoplasmic part (CC). 

6.4 DISCUSSION 

In this study, E. faecalis and E. faecium isolates did not show resistance to only one particular 

antibiotic, but rather, presented a multidrug resistance profile. However, generating multidrug-

resistant vs susceptible classes was not possible as (1) there were limited E. faecalis or E. fae-

cium isolates that showed resistance to certain antibiotics together, (2) E. faecalis isolates that 

were susceptible to all antibiotics were few in number; and (3) there was no E. faecium isolate 

that showed no resistance to all antibiotics screened in this study. Hence, the isolates were 

grouped as resistant and susceptible according to the sole antibiotic profile and then analysed. 

This is plausible because, in the field, one could not screen all antibiotics to define the antimi-

crobial profile of a pathogen. Instead, the several antibiotics used in their management scheme 

are screened to define whether a pathogen is resistant to that particular antimicrobial. This 

study could represent a real-life scenario that is generally seen in dairy farms. 

Out of 12 different resistant vs susceptible antimicrobial profile comparison; LR and NB gave 

the best performance for 3 of the analyses each, of which E. faecalis: benzylpenicillin, eryth-

romycin and TMP/SMX for LR and E. faecalis clindamycin; E. faecium cefovecin and eryth-

romycin for NB. MLP NN gave the best performance for 2 analyses which were E. faecalis 

chloramphenicol and E. faecium erythromycin. Meanwhile, RBF SVM, LDA, Adaboost and 

LSVM and gave the best performance for 1 analysis each, of which were E. faecalis: tetracy-

cline; E. faecium clindamycin, benzylpenicillin and nitrofurantoin, respectively. However, DT, 

RF and QDA were not found in any of the analysis as the best performance predictor. RF, as a 

classifier working in the principle of bagging, might not have had enough data points to be 

trained well enough (Genuer, Poggi and Tuleau, 2008). DT was also shown to give a limited 

performance with small datasets (Morgan et al., 2003). QDA performance was surprising as, 

in general, QDA outperforms LDA as it can fit in the data better. However, in this study, LDA 
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outperformed QDA in ten of the twelve analyses, which was seen in other studies as well when 

small datasets were the case (Wu et al., 1996; Decruyenaere et al., 2015). 

Classification of E. faecalis isolates based on antimicrobial profile gave satisfying results for 

benzylpenicillin, chloramphenicol, clindamycin, erythromycin, tetracycline and TMP/SMX, 

after 30 observations for each analysis. The confidence level between the observations in the 

experiments with around 100 samples is expected to be less than 10% (Varoquaux, 2018), 

where all prediction performance metrics of these analyses provided this criterion as well. 

Classification of E. faecium isolates based on antimicrobial profile gave satisfying results for 

cefovecin, clindamycin, enrofloxacin, erythromycin and nitrofurantoin, after 30 observations 

for each analysis. The prediction performance metrics of these analyses fell into the 10% con-

fidence bound as well. Classification results of benzylpenicillin-resistant vs susceptible isolates 

of E. faecium were relatively lower (i.e. kappa of 48.06%) and more than 10% confidence 

bound between multiple observations. This may be a result of the labelling technique of the 

isolates as some benzylpenicillin susceptible isolates had MIC values very close to the break-

points. In fact, when the extreme cases were compared (benzylpenicillin-resistant vs most sus-

ceptible), the results were significantly improved (data not shown). This was also observed in 

S. aureus when the degree of AMR increased, the similarity to spectra of wild-type strain was 

decreased (Muroi et al., 2012). 

The prediction performance of the learners could be improved with more peaks (features) by 

setting the relative intensity height filter at a lower threshold (for instance, the height filter was 

set to 10 in the previous chapter). Improved accuracy with the employment of more peaks was 

also observed in the study by Wang and colleagues (2020), where they continuously increased 

the number of peaks and the performance reached a plateau when the peak number was over a 

hundred. Application of a large number of peaks rather than a few can also offer solutions for 

reproducibility of MALDI-TOF spectra which has been a huge problem (Croxatto, Prod'hom 

and Greub, 2012). If some discriminant peaks are not produced for any reason, alternative 

peaks could still be used for classification (Wang et al., 2020).      

This study showed that differences in the antimicrobial profiles of Enterococcus species could 

be detected in MALDI-TOF spectral profiles by using ML. This seems reasonable as the anti-

biotic stress would drive bacteria to adjust their protein abundance and/or modification. While 

the primary aim was to develop ML-powered diagnostics discriminating resistant and suscep-

tible isolates of Enterococcus species, we also characterized the molecular determinants and 
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mechanisms underlying the patterns. Although more peaks were employed to discriminate 

based on antimicrobial profiles, only those peaks with certain relative intensity were offered as 

biomarker candidates. Fifteen and twelve peaks were identified by the classifiers as the most 

discriminant between resistant and susceptible profiles of E. faecalis and E. faecium, respec-

tively. These peaks were cross-matched with the proteins in the proteomes of these species, as 

understanding the roles of these proteins may help the discriminatory power of MALDI-TOF. 

As the identified biomarkers of this study are not the product of specific AMR genes, it may 

be hard to explain the antimicrobial profiles of the isolates. However, other factors have also 

been shown to contribute to AMR or adaptation in response to selective pressure (Miller, 

Munita and Arias, 2014). Similar results to our study were found when the proteome of another 

mastitis-causing pathogen S. xylosus under the effect of tylosin was analysed (Liu et al., 2019). 

The proteins which had increased expressions under tylosin included several ribosomal pro-

teins and a translation initiation factor protein. In another study with MRSA, rpmB and rplX 

were amongst the differentially regulated genes under treatment of therapeutic agents; stigmas-

terol and luperol (Adnan, Ibrahim and Yaacob, 2017). Moreover, different peak intensities in 

MALDI profiles of resistant and susceptible isolates were observed, even where there was no 

prior antimicrobial treatment (Mather et al., 2016). Having observed the similar expression 

pattern between the discriminate peaks and resistant genes may explain the biologic mechanism 

behind AMR, these biomarkers could be targeted for new drug development. 

Clustering coefficient values are greater in real networks than randomly selected networks 

(Albert and Barabási, 2002), which can be used to explain the importance of discriminant pro-

teins and their neighbours in the PPI networks of each organism. Our results indicated that the 

networks of interest both for E. faecalis and E. faecium had a remarkable clustering coefficient 

which was much higher than randomly built PPI networks in each proteome. This shows the 

modular organization where the nodes in the network of interest are internally more connected 

compared to the rest of the proteome (Ravasz et al., 2002). Our results for the network of 

interest for E. faecalis showed that both the average number of neighbours and network density 

values were higher than the randomly built PPI network of E. faecalis. Although these results 

were also higher in the network of interest for E. faecium, they were much closer to the values 

of the randomly built PPI network. Heterogeneous networks are accepted to be robust against 

random decays but susceptible to targeted interventions (Shang, 2014). The network heteroge-

neity of the network of interest for E. faecalis was almost six times smaller than the value of 

the randomly built network of E. faecalis. However, network heterogeneity of the network of 
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interest for E. faecium was similar with the randomly built network of E. faecium. This means 

that the network of interest for E. faecium have some hubs which supply the connection be-

tween nodes and thus may be specifically targeted (Dong and Horvath, 2007). Overall, topo-

logical properties of networks of interest for E. faecium and E. faecalis indicate that the same 

approach may fail to treat both infections. 

PPI analysis showed that 12 out of 15 discriminant proteins of E. faecalis interact with each 

other either directly or indirectly (by sharing the same first neighbour proteins). It is no surprise 

that ribosomal proteins interact with each other but DNA-binding HU protein, InfA and LuxR 

family protein were also in the same network. The other three discriminant proteins were less 

characterized (i.e. hypothetical proteins) and this may be the reason why they were not found 

to have interaction with the rest, above medium confidence level. Moreover, TetM was the first 

neighbour of the discriminant ribosomal proteins. This may suggest that the expression of vital 

proteins participating in discrimination of resistant and susceptible profiles of E. faecalis are 

co-ordinated and may be targeted by new drug therapies (Petta et al., 2016; Carro, 2018).  

In the PPI network of E. faecium, all the discriminant proteins except CsbD were shown to be 

interacting with each other directly or indirectly (sharing first neighbours). Again, findings of 

direct interaction between ribosomal proteins were not surprising but other discriminant nodes 

SHK, HU and HP were also involved in the same network. Moreover, AMR regulatory proteins 

VanRB and VanSB, which activate transcription of vancomycin resistance genes vanA, vanH 

and vanX (Arthur et al., 1997), were found to be the first neighbour of SHK, TetM to be the 

first neighbour of discriminant ribosomal proteins, GyrA and GyrB to be the first neighbour of 

RpsR, and ErmB to be the first neighbour of RpsT and RpsR. This may strongly suggest that 

the expression of vital proteins participating in discrimination of resistant and susceptible pro-

files of a species (E. faecium in this case) are co-ordinated. 

Functional enrichment analyses of both E. faecalis and E. faecium PPI networks resulted in the 

same GO functions and KEGG pathways in similar counts. There were important functions 

such as response to stress, drug metabolic process, antioxidant activity, drug binding etc., 

which may explain the biological mechanism behind the potential biomarkers. 

The primary target of most synthetic and natural antimicrobials is bacterial ribosomal subunits 

(Schlunzen et al., 2001). In this study 13 out of 25 discriminant proteins were part of ribosomal 

units and direct interactions of antimicrobial-resistant proteins were shown in the PPI network. 

This may strongly suggest that the discriminatory power of several ML algorithms could 
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correctly select the discriminatory peaks from MALDI profiles. The proteomes analysed in this 

study were limited to 12kDa due to the working range of the MALDI-TOF equipment, which 

prevented the observation of higher mass proteins.  

AMR of Enterococcus is highly associated with antimicrobial usage (Beukers et al., 2017; 

Klibi et al., 2015). There are various categorization systems of antimicrobials according to 

several organizations such as WHO (World Health Organisation), AMEG (Antimicrobial Ad-

vice ad hoc Expert Group) and OIE (World Organisation for Animal Health). Although cate-

gory naming/numbering vary between these classification systems, the antimicrobials which 

are recommended to avoid and reduce veterinary use fall into the same priority levels 

(EMA/AMEG, 2019). Antimicrobials tested in this study fall into the following categories: 

cefovecin and enrofloxacin for restricted use; chloramphenicol, erythromycin and clindamycin 

for cautious use; nitrofurantoin, benzylpenicillin, trimethoprim/sulfamethoxazole and tetracy-

cline for prudent use (EMA/AMEG, 2019). 

Chloramphenicol inhibits protein biosynthesis by binding to the peptidyl transferase centre of 

the large ribosomal unit (Schlunzen et al., 2001). The resistance to chloramphenicol is mostly 

a result of the activity of the chloramphenicol acetyl-transferase gene, cat (Schwarz et al., 

2004), which was previously found on a transmissible plasmid in E. faecalis RE25 (Schwarz, 

Perreten and Teuber, 2001). However, there are other resistance mechanisms including efflux 

systems, interruptions by phosphotransferases, mutations of the ribosomal proteins or permea-

bility barrier success (Abushaheen et al., 2020). The model strain we used in this study for the 

E. faecalis proteome did not have the cat gene; thus, we could not show the interaction of 

discriminant proteins with it.  

Erythromycin belongs to the macrolide class of antibiotics which inhibits bacterial protein syn-

thesis by blocking peptidyl transferase just like chloramphenicol (Vázquez-Laslop and 

Mankin, 2018). Although macrolide resistance occurs due to the contributions of many genes, 

such as macrolide and streptogramin B resistant (msr), macrolide efflux (mef) and virginiamy-

cin factor A (vga), erythromycin ribosome methylase B (ermB) is the most common gene ob-

served in resistant isolates (Roberts et al., 1999). Amongst erythromycin resistance genes, 

ermB is the most commonly found in Enterococcus spp. isolated from animal (Petersen and 

Dalsgaard, 2003), food (Gazzola et al., 2012; Rizzotti et al., 2005) and environmental sources 

(Cho et al., 2020a). In our study, we did not observe ErmB interacting with the discriminant E. 

faecalis proteins, but we did observe an interaction in the PPI network of E. faecium. 
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Tetracycline inhibits protein synthesis by binding the small subunit of bacterial ribosomes 

(Chukwudi, 2016). Tetracycline resistance occurs as a result of three different mechanisms: 

ribosomal protection mechanism coding genes (e.g. tetM), efflux pump functioning genes (e.g. 

tetL) and enzymatic inactivation genes (e.g. tetX) (Van Hoek et al., 2011). Amongst tetracy-

cline resistance genes, tetM is the most commonly found in Enterococcus spp. isolated from 

human (Aarestrup et al., 2000), animal (Jackson et al., 2010; Cauwerts et al., 2007), food (Huys 

et al., 2004; Frazzon et al., 2010) and environmental sources (Cho et al., 2020a; Sadowy and 

Luczkiewicz, 2014). It is thought to be a highly important gene for spreading tetracycline re-

sistance amongst Enterococcus (Rizzotti et al., 2009). In this study, TetM was found to be 

interacting directly with discriminant ribosomal proteins in both E. faecalis and E. faecium PPI 

networks. 

Benzylpenicillin inhibits the synthesis of peptidoglycan (the main component of the bacterial 

cell wall) by targeting penicillin-binding proteins (PBPs) (Sauvage et al., 2002). Penicillin is 

one of the most active beta-lactams to combat Enterococcus infections (Miller, Munita and 

Arias, 2014). Bacterial species in the Enterococcus genus contain several PBPs; in particular, 

6 genes (pbpA, pbpB, pbpF, pbpZ, pbp5 and ponA) are responsible for PBPs synthesis in E. 

faecalis and E. faecium (Duez et al., 2004). Particularly, owing to pbp5 gene, Enterococcus 

species have intrinsically low-resistance to beta-lactam antibiotics (Sifaoui et al., 2001; 

Arbeloa et al., 2004), where penicillin resistance of E. faecium is higher than E. faecalis 

(Garrido, Gálvez and Pulido, 2014). In our study, we could not find the direct interaction of 

our discriminant proteins with these genes in E. faecalis and E. faecium, but PbpA and PonA 

were found to be interacting with some first neighbour proteins in both E. faecalis and E. fae-

cium PPI networks (data not shown). 

Cefovecin belongs to the cephalosporin antibiotic class but is relatively new (third generation). 

Cefovecin is already known to inhibit the synthesis of the cell wall by targeting PBPs just like 

other cephalosporin family antibiotics. Intrinsic tolerance in Enterococcus for cephalosporin is 

thought to be associated with penicillin-binding proteins especially pbp5 gene (Rice et al., 

2009; Arbeloa et al., 2004). Bacterial two-component regulatory systems (TCS) such as histi-

dine kinase, response regulator (CroS/R), transmembrane kinase and cognate phosphatase 

(IreK/P) were also shown to be related to cephalosporin resistance of Enterococcus (Miller, 

Munita and Arias, 2014; Kellogg and Kristich, 2018). 

Enrofloxacin is a synthetic antibiotic that belongs to the fluoroquinolone antibiotic family. 

Fluoroquinolones work by targeting two bacterial enzymes, DNA gyrase and topoisomerase 
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IV, which play important roles during DNA replication (Hooper and Jacoby, 2016). Resistance 

to fluoroquinolones was found to be correlated with the mutations of four genes - DNA gyrase 

A subunit (gyrA) and B subunit (gyrB), and topoisomerase IV A subunit (parC) and B subunit 

(parE) - in (fluoro)quinolone-resistant E. faecium and E. faecalis isolates (Oyamada et al., 

2006). In our study, GyrA and GyrB were found to be the first neighbours of the discriminant 

ribosomal protein RpsR between resistant and susceptible profiles of E. faecium while ParC 

and ParE were found to be interacting with some first neighbours of discriminant proteins in 

the PPI network (data not shown). 

Nitrofurantoin inhibits bacteria by damaging bacterial DNA, RNA and cell wall protein syn-

thesis (Waller and Sampson, 2017). Nitrofurantoin susceptibility was shown to be correlated 

with the presence of nitrofuran reductases. When these reductases transform nitrofuran into 

electrophilic intermediates, bacterial ribosomal proteins are targeted, resulting in inhibition of 

protein synthesis. Deletion of two nitrofuran reductase genes (nfsA and nfsB) in E. coli in-

creased the resistance profile compared to the wild type (Sandegren et al., 2008). Resistance 

without the loss of nitrofuran reductases was also reported which was the result of plasmid-

mediated oqxAB nitrofurantoin (Ho et al., 2015). In this study, nitrofuran reductases were not 

found to be interacting directly with our discriminant proteins between resistant and susceptible 

antimicrobial profiles. 

Clindamycin is a semisynthetic antibiotic acquired by chlorination of lincomycin. It belongs to 

the lincosamide antimicrobial family and has a broad spectrum against gram-positive and an-

aerobes. Clindamycin targets the large units in bacterial ribosomes and inhibits peptidyl trans-

ferase activity (Dhawan and Thadepalli, 1982). Clindamycin resistance occurs mainly as a re-

sult of the altered ribosome due to adenine demethylation in 23S rRNA which can also result 

in multi-drug resistance. In addition to this common resistance mechanism, lincosamide inac-

tivation nucleotidylation genes linA and linB were found related to clindamycin resistance in 

E. faecium (Bozdogan et al., 1999). E. faecalis was also considered to be resistant to clindamy-

cin owing to an intrinsic gene of lincosamides and streptogramins A (lsa) (Dina, Malbruny and 

Leclercq, 2003), rRNA adenine N-6-methyltransferases ermA and ermB (Malhotra-Kumar et 

al., 2009). In this study, ErmB was found to be interacting directly with our discriminant pro-

teins between resistant and susceptible antimicrobial profiles. 

Trimethoprim (TMP), a pyrimidine class antibiotic, and sulfamethoxazole (SMX), a sulphon-

amide class antibiotic, both target bacterial folic acid synthesis but at different stages; SMX 

prevents the transformation of dihydropteroate from para-aminobenzoic acid by inhibiting 
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dihydropteroate synthetase whereas TMP prevents the transformation of tetrahydrofolate from 

dihydrofolate by inhibiting dihydrofolate reductase. These steps happen sequentially and there-

fore the combination of TMP/SMX was offered to provide a synergetic effect (Minato et al., 

2018). Although in vitro susceptibility tests can show the susceptible profile of Enterococcus 

to trimethoprim-sulfamethoxazole, like shown previously (Zervos and Schaberg, 1985) or in 

our study, they cannot be effective against Enterococcus infections in vivo as Enterococcus can 

bypass the synergistically working mechanism of these antibiotics by absorbing the folic acid 

from the environment (Miller, Munita and Arias, 2014). Trimethoprim resistance can be ac-

quired by horizontal transfer of dihydrofolate reductase (dfr) genes (Bergmann et al., 2014). In 

E. faecalis studies, dihydrofolate reductase genes (dfrE and dfrF) were shown to be providing 

intrinsic resistance to TMP/SMX (Coque et al., 1999). In this study, dihydrofolate reductases 

were not found to be interacting directly with our discriminant proteins between resistant and 

susceptible antimicrobial profiles. However, DfrE was found to be interacting with the first 

neighbours of discriminant proteins in the E. faecium PPI network (data not shown). 

In conclusion, discrimination of antimicrobial profiles of Enterococcus species based on 

MALDI-TOF profiles combined with various ML algorithms gave satisfactory results. Some 

of the discriminant proteins between resistant and susceptible isolates were related to AMR, 

stress response and drug binding activities as an individual protein or PPI network. As future 

work, a wider range of proteomes could be employed to improve the prediction performance 

of ML algorithms.   
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CHAPTER 7 DISCUSSION 

This research used MALDI-TOF coupled with ML to discriminate mastitis pathogens at sub-

species level in dairy herds of England and Wales. The purpose of the research was to provide 

an alternative diagnostic tool to current techniques (see section 1.3 for details) used for mastitis 

pathogens identification. Esener et al., (2018) was the first paper to perform MALDI-TOF MS 

coupled with ML algorithms to discriminate bovine mastitis pathogens. In the whole thesis, 

several mastitis agents were tested both gram-positive (S. uberis, S. aureus, E. faecalis and E. 

faecium) and gram-negative (E. coli). 

In Chapter 3, the only commercially available software that combines MALDI-TOF MS anal-

ysis with ML was used. However, the data manipulation for the pre-and post-analysis was lim-

ited to pre-defined settings. Moreover, only three supervised machine learning classifiers were 

available which offered limited room for exploring the biological mechanism underlying the 

data. In Chapters 4, 5 and 6, in-house scripts written in MATLAB and Python were used for 

data preparation and machine learning analyses, respectively. 

Typeability of MALDI-TOF MS coupled with ML was tested for transmission of S. uberis in 

Chapter 3, and for disease phenotype of E. coli in Chapter 4. Antimicrobial susceptibility test-

ing ability of MALDI-TOF MS coupled with ML was tested for S. aureus in Chapter 5, and 

for Enterococcus spp. in Chapter 6.  

Transmission behaviour (contagious and environmental) of S. uberis has been shown to vary 

at the subspecies level, contrary to early studies that suggested only an environmental route 

(Davies et al., 2016). Chapter 3 of this study investigated the application of MALDI-TOF MS 

coupled with ML algorithms in commercial software ClinProTools to differentiate transmis-

sion route (contagious and environmental) of S. uberis isolates at both the herd (intra-farm) and 

country-level (inter-farm). 

This chapter has shown that discriminatory power based on MALDI profiles is higher in intra-

farm analysis, especially when GA is used, which can be potentially developed in screening 

solutions at the herd level. Inter-farm classification appeared to be much weaker; hence, further 

improvements are needed to use it in screening solutions applicable at the population level. The 

explanation for that may be the divergent evolution of S. uberis isolates between the dairy herds 

in the UK, as there are no significant differences between contact and management control (i.e. 

bedding material, antimicrobial therapy etc). Previous studies have found divergent evolution 
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in other organisms such as Campylobacter spp., S. aureus and H. pylori (Wittwer et al., 2005; 

Sordelli et al., 2000; Falush et al., 2003). This may be the reason why the same discriminant 

peaks combination does not work equally well for every study farm. 

The investigation of MALDI profiles of clinical mastitis isolates has shown that prompt diag-

nosis of the transmission route at the early stages of an outbreak is possible. Considering that 

potentially contagious transmission of S. uberis has been found in two-thirds of commercial 

herds and proved to be the dominant transmission route in a third of UK herds (Davies et al., 

2016), the development of such a diagnostic tool is necessary. MALDI-TOF based methods 

would allow clinicians to identify the most appropriate control measures rapidly during an out-

break of disease. Potentially, it could reduce the incidence of clinical disease, reduce associated 

production losses and the costs associated with the treatment; and improve the efficiency of 

labour and resource allocation on the farm. 

Chapter 4 of this study investigated the genotypic and phenotypic characteristics of bovine 

mastitis-causing E. coli strains. To this end, 20 E. coli strains were sequenced which were 

isolated from 10 cows (same cow same quarter) that had different clinical outcomes: subclini-

cal and clinical mastitis. MALDI-TOF MS coupled with several ML algorithms – LR, LSVM, 

RBF SVM, MLP NN, DT, RF, AdaBoost, NB, LDA and QDA– were then performed to dis-

criminate proteomic characteristics of this mastitis agent based on clinical outcome (clinical 

and subclinical) and disease phenotype (persistent and non-persistent). 

It was demonstrated that there was no genotypic pattern amongst E. coli strains to cause dif-

ferent phenotypic outcomes of persistency or clinical severity. Biological changes in the mam-

mary environment (i.e. host immune response) forced the pathogen to adapt its protein abun-

dance. This finding accords with a recent study which showed that host response is needed for 

mastitis pathogen S. uberis to infect the mammary cells and cause mastitis (Archer et al., 2020). 

By using machine learning, some of the biomarkers in a limited range could be shown, which 

may inspire further studies to design diagnostic tools or antimicrobial agents for bovine masti-

tis-causing E. coli.  

As a limitation of this study, the sample size was too small to draw broad conclusions. How-

ever, this resulted from stringent data selection criteria and generating more data (i.e. same 

cow, same quarter, different bacterial phenotype) was not possible. It was at least shown that 

there was a proteomic difference in the mastitis pathogens even though their genomics is almost 

completely identical. 
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Future research should be undertaken to investigate whether similar solutions based on the 

analysis of MALDI-TOF MS coupled with ML may be used to develop screening tools to 

identify early signs of mastitis or related risk factors. The analysis of MALDI-TOF peaks has 

demonstrated good prediction performance for binary classification of bovine mastitis-causing 

E. coli with different phenotypic characters. There is abundant room for further progress in 

determining the proteome of this pathogen on a larger scale (not limited to MALDI-TOF MS 

range) but considering biomarkers of this study. 

Antimicrobial-resistant S. aureus infections are a major concern in human and veterinary med-

icine, where dairy cattle are an important risk factor for zoonotic transfer. Fast, affordable and 

effective diagnostic solutions able to detect the specific S. aureus strains and their antimicro-

bial-resistant and susceptibility profiles are key to effective and targeted treatment selection. 

Chapter 5 investigated the application of MALDI-TOF MS coupled with ML algorithms to 

discriminate S. aureus strains that are resistant or susceptible to multidrug and benzylpenicillin. 

The task was approached in a principled way by applying optimization techniques to overcome 

uncertainty in data features and by using a wide repertoire of classification methods. In general, 

most of the machine learning approaches tested achieved high performance and had kappa 

values over 85.00%. 

Previous studies have shown biomarkers between MRSA and MSSA isolated from humans by 

using MALDI-TOF either with ML (Sogawa et al., 2017; Tang et al., 2019) or without ML 

(Du et al., 2002; Edwards-Jones et al., 2000). Biomarkers found in these studies did not match 

with our discriminant peaks. This result may be explained by the fact that there was only one 

MRSA strain in the current study. In a recent study, van Oosten and Klein (2020) performed 

MALDI-TOF coupled with ML to identify proteomic signatures of S. aureus when treated with 

different antimicrobials such as benzylpenicillin, erythromycin, gentamicin, neomycin, tetra-

cycline, trimethoprim etc. Peaks at m/z 4306.7Da (4305.59Da in our study), 4812.5Da 

(4807.21Da in our study), 6889.1Da (6891.1Da in our study) and 9627.6Da (9621.26Da in our 

study) were found common to be significant features for the antimicrobial screening of S. au-

reus. Wang and colleagues (2018a) found the following peaks at m/z 4305Da (4305.59Da in 

our study), 4813Da (4807.21Da in our study), 6422Da (6423.37Da in our study), 6887Da 

(6891.1Da in our study) and 9625Da (9621.26Da in our study) amongst the relevant features 

to distinguish VSSA from VISA and hVISA isolates. Another study (Mather et al., 2016) which 

performed MALDI-TOF coupled with ML showed that peaks at m/z 4815Da (4807.21Da in 
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our study), 6425Da (6423.37Da in our study) and 9626Da (9621.26Da in our study) were 

amongst the features to differentiate VISA, hVISA and VSSA. 

The most important limitation lies in the fact that the working range of 2-12kDa prevents in-

spection of the complete S. aureus proteome regarding its specific antimicrobial profile. Also, 

it is important to acknowledge that the data were collected from only English and Welsh farms. 

However, this should not limit the potential of the current method to determine antimicrobial 

profiles in other farms across the globe, which could be easily achieved when diversely dis-

tributed data (i.e. to weaken geographical bias) is supplied to train the ML algorithms. Lastly, 

multidrug-resistant isolates were all resistant to benzylpenicillin. Hence, there is a bias towards 

peaks determining resistance or susceptibility to benzylpenicillin, which could explain why all 

four multidrug discriminant peaks occurred within the set of benzylpenicillin-only discriminant 

peaks. 

Having shown the good performance of MALDI-TOF MS coupled with ML on differentiating 

the antimicrobial profile of S. aureus (Chapter 5), it was aimed to apply the same technique to 

other bovine mastitis pathogens such as Enterococcus spp. Chapter 6 investigated to provide 

an alternative to standard susceptibility tests which would profile benzylpenicillin, chloram-

phenicol, clindamycin, erythromycin, tetracycline and TMP/SMX resistance in E. faecalis; and 

benzylpenicillin, cefovecin, clindamycin, enrofloxacin, erythromycin and nitrofurantoin re-

sistance in E. faecium isolates. Like in Chapter 5, this chapter approached the task in a princi-

pled way by applying optimization techniques to overcome uncertainty in data features and by 

using a wide repertoire of classification methods. Out of 12 different resistant vs susceptible 

antimicrobial profile comparisons, LR and NB gave the best performance for 3 of the current 

analyses each: for LR E. faecalis benzylpenicillin, erythromycin and TMP/SMX; for NB, E. 

faecalis clindamycin, E. faecium cefovecin and erythromycin. MLP NN gave the best perfor-

mance for 2 analyses: E. faecalis chloramphenicol and E. faecium erythromycin. Meanwhile, 

RBF SVM, LDA, AdaBoost and LSVM gave the best performance for 1 analysis each: E. 

faecalis tetracycline, E. faecium clindamycin, benzylpenicillin and nitrofurantoin, respectively.  

In a previous study with larger sample size, Wang and colleagues (2020) compared vancomy-

cin-resistant and susceptible E. faecium isolates that were sourced from human patients. Peaks 

at m/z 5038Da (5036.95Da in our study), 6512Da (6507.02Da in our study), 7275Da 

(7273.74Da in our study), 7330Da (7324.94Da in our study), 10075Da (10068.06Da in our 

study) and 10941Da (10934.36Da in our study) were found common to be significant features 

with our study. New broad-spectrum antimicrobials can be designed targeting these 
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biomarkers. Another study found m/z 6036.59Da and 4526.45Da to be statistically significant 

peaks between tetracycline-resistant and susceptible Enterococcus spp., which were different 

from the current study (Sabença et al., 2020). This discrepancy could be attributed to the use 

of MALDI profiles at the genus level isolated from food sources in the other study. Exact m/z 

matches of the biomarkers between MALDI-TOF experiments are not common since MALDI-

TOF instruments, calibration settings, wearing out of laser and detector, sample preparation 

and spectra pre-processing vary hugely in the studies (Sauget et al., 2017). 

It was demonstrated that the combination of supervised ML and MALDI-TOF MS can also be 

used to develop an effective computational diagnostic solution that can discriminate between 

resistant and susceptible profiles of E. faecalis and E. faecium for more antimicrobial classes 

besides benzylpenicillin (as shown for S. aureus in Chapter 5). 

To compare the results of the analyses between chapters, kappa was used as it measures the 

performance considering both positive and negative classes. Sensitivity and specificity alone 

could not be used for comparison of different analyses, as the former provides results which 

consider only the positive class, whereas the latter provides results which consider the only 

negative class. Moreover, the use of accuracy for comparison may be confusing as it may be 

higher for imbalanced datasets although this would not mean healthy prediction of each class 

– accuracy will be high as the classifier will mainly predict the datasets of the frequent class 

correctly (Müller and Guido, 2016). It should be noted that AUC also considers both classes, 

but it was not used as ClinProTools does not calculate this value. 

Comparison of the findings between chapters shows that the kappa values of biotyping (from 

Chapter 3 and 4) were relatively lower than values of antimicrobial susceptibility analysis (in 

Chapter 5 and 6). There are possible explanations for these findings. A possible explanation 

for the low kappa value of Chapter 3 might be that the model of inter-farm analysis was vali-

dated by external data coming from different herds which did not contribute any spectra to train 

the model. This is plausible as the intra-farm analyses had remarkable prediction performance 

(kappa of 92.62%). Another possible explanation for the low performance in Chapter 3 may be 

due to limited parameter settings as hyperparameter tuning was restricted within the options 

defined by commercial software. While working with MALDI-TOF MS technology, it is im-

portant to generate more than one spectrum per sample as a low-quality spectrum may be miss-

ing certain m/z values due to noise (López Fernández et al., 2016). Similarity comparison be-

tween technical replicates is important as differences have been observed between technical 

replicates due to the performance of the instrument (Oberle et al., 2016). One possible 
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explanation for the relatively low performance of the analysis in Chapter 4 might be that CCI 

analysis was not performed to measure similarities between technical spectra, unlike in other 

chapters. Quality control of the spectra would have increased analysis success. The reason why 

CCI was not performed for the analysis in Chapter 4 was not to lose more spectra from the 

small-sized dataset. Another possible explanation may be the small size of the sample as it 

shrank through stringent data selection criteria. Moreover, in the analysis of clinical status, the 

proteomes of genotypically identical E. coli strains were compared. Hence, the low prediction 

performance is plausible as there is relatively limited room for differentiation.  

Binary classification models are generally not designed for skewed data and perform better in 

balanced classes (Zhang, 2010; He and Garcia, 2009). In binary classification, if the datasets 

in one class are more frequent than in the other one, they are called imbalanced classes (Müller 

and Guido, 2016). This causes a bias towards the class that has more datasets (majority class) 

(Prati, Batista and Monard, 2009). Therefore, additional steps were needed to cope with the 

bias due to the nature of imbalanced datasets. As previously stated, the manipulation of the 

data was limited within the commercial software ClinProTools, so no additional pre-processing 

to balance the datasets in positive and negative classes could be performed in Chapter 3. The 

datasets in positive and negative classes were fairly balanced in Chapter 4. However, the da-

tasets in positive and negative classes were imbalanced for both of the analyses in Chapters 5 

and 6. 

In the current work, the undersampling approach was used to balance benzylpenicillin/multi-

drug-resistant and susceptible classes of S. aureus in Chapter 5; and the oversampling approach 

was used to balance single antimicrobial-resistant and susceptible classes of E. faecalis and E. 

faecium in Chapter 6. Oversampling and undersampling techniques provide improved predic-

tion performance by balancing the classes. They do not have any obvious superiority over each 

other and can be decided based on the problem (Xia et al., 2019). However, when under-

sampling is used, it ignores some data points in the majority class which may be important for 

analysis, and therefore this may reduce the prediction performance (Buda, Maki and 

Mazurowski, 2018). On the other hand, oversampling may be computationally expensive as it 

increases the training datasets for the minority class (Le et al., 2019). Furthermore repeated 

data points of the minority class may result in overfitting (Azadbakht, Fraser and Khoshelham, 

2018). In this thesis, the approaches performed to cope with imbalanced datasets were basic. 

There are also more advanced techniques (i.e. oversampling by ADASYN and SMOTE or 

cleaning undersampling using methods such as Tomek’s links, edited nearest neighbours, 
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condensed nearest neighbours, instance hardness threshold etc.). However, these techniques 

generate new datasets instead of repeating the existing samples for oversampling or deleting 

the existing data points for undersampling. These techniques were not selected in the current 

study as this might have disturbed the biological mechanism behind the phenotypic classes. 

Further researchers, who do not focus on the biological relationship between the classes, can 

employ one of these approaches in their work. 

The biomarker characterisation was performed through cross-matching of m/z and molecular 

weight of protein in databases such as UniProt, NCBI and PATRIC. Peak-protein cross-match-

ing by comparing observed and theoretical mass has been widely used in proteomic studies 

(Borgaonkar et al., 2010; Shin et al., 2008; Pusztai et al., 2004). This kind of approach is ten-

tative as only molecular weights of unmodified proteins are considered in these databases, alt-

hough an assortment of posttranslational modifications such as methylation, acetylation, car-

boxylation, and protease cleavage may develop in the cell (Meister, 2009). To cope with these 

issues, the theoretical N-terminal methionine cleavage was considered in the analyses of Chap-

ters 4, 5 and 6 like previous studies (Arnold et al., 1999). The molecular weight of a protein is 

not always the same as the addition and removal of molecules or isotopes of elements vary the 

mass by 1 to 22Da; moreover, phosphorylation of a protein may cause two peaks separated 

from each other by 80Da (Coombes, Baggerly and Morris, 2007). The peaks become broader 

as the m/z values increase; hence, peak-protein cross-match should be performed by a formula 

considering the individual peak mass rather than an identical value for all peak-protein cross-

matching (Coombes, Baggerly and Morris, 2007). To cope with these issues, the mass range 

of 0.2% has been considered as the threshold for peak-protein cross-matching in the analyses 

of Chapters 3, 4, 5 and 6. The value of 0.2% was previously used as a threshold for peak-protein 

cross-matching, although other studies employed a wider range (0.5%) instead (Borgaonkar et 

al., 2010; Shin et al., 2008). Since the current study was limited to computational approaches, 

it was not possible to test biomarkers by wet-lab experiments such as knock-out and knock-

down. Further studies regarding the role of biomarkers, especially less known ones (i.e hypo-

thetical proteins), would be worthwhile.  

It was not possible to assess bovine mastitis agents directly from the milk samples; therefore, 

they were first cultured and then MALDI profiled. Although previous studies aimed to analyse 

bovine mastitis pathogens including E. coli, S. aureus, S. uberis and E. faecalis directly from 

the milk, a certain amount of CFU was needed which was significantly above the clinical mas-

titis diagnosis threshold (Barreiro et al., 2012; Barreiro et al., 2017). MALDI-TOF coupled 
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with ML analysis takes only 1 day which is needed for bacterial growth. Sample preparation 

for MALDI-TOF takes around 10 min/sample and analysis itself takes 2 min/sample (Barreiro 

et al., 2010). ML analysis depends on the algorithm, for which computation times were gener-

ally short (less than 2 min) on a machine with Intel(R) Core (TM) i7-8665U CPU @ 1.90GHz; 

RAM: 16Gb; Windows 10. GA (on average 2.5h) and MLP NN (on average 4h) were excep-

tions. These values were also reported in a similar study (Maciel-Guerra et al., 2021). On the 

other hand, traditional biochemical tests used for typing takes between 3 to 6 days after single 

colony growth which needs an additional day (Barreiro et al., 2010). MALDI-TOF coupled 

with ML analysis also provides a 50% time reduction compared to conventional antimicrobial 

susceptibility tests (Wang et al., 2020). 

MALDI-TOF MS instrument is expensive as a capital investment; however, once installed the 

application per identification is much more economic than conventional microbiology tests 

(Gaillot et al., 2011). The cost of MALDI-TOF MS analysis was shown to be almost 20 times 

more economic than conventional phenotypic techniques per sample (Cherkaoui et al., 2010). 

Moreover, it was shown to decrease reagent waste, unnecessary antibiotic use, labour costs and 

the need for secondary verification such as sequencing (Gaillot et al., 2011; Tan et al., 2012; 

Nagel et al., 2014). 

Since the mass range of the MALDI approach could not exceed 12kDa, it was not possible to 

observe differences between the heavy proteins in the proteomes of the analysed classes, which 

could provide other biomarkers. A potential alternative approach to increase the mass range 

beyond current values may be the application of high-intensity focused ultrasound-assisted 

proteomic analysis (Gekenidis et al., 2014). The proteins with higher molecular weights could 

be detected by this technique. In another study, the upper limit of the detection was increased 

up to 75kDa for both gram-positive and negative bacteria by using unconventional chemicals 

for pre-treatment (Madonna et al., 2000). 

Notwithstanding the relatively limited proteins of the proteome, MALDI-TOF offers valuable 

insights into discriminating different phenotypes based on whole-cell and cell extract 

measurements which are most abundant with ribosomal proteins (Ryzhov and Fenselau, 2001). 

It is estimated that 20% of the proteins in the cell are ribosomal proteins and the conventional 

working mass range of MALDI-TOF consists of mainly ribosomal and a few other 

housekeeping proteins (Stump et al., 2003; Murray, 2012). Additionally, previous studies 

suggested that ribosomal proteins are stable biomarkers as they were not affected in terms of 

peak mass under several growth conditions (Arnold and Reilly, 1999; Wunschel et al., 2005a). 
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Additionally, the abundance of the ribosomal proteins has been shown to vary according to the 

phenotype of bacteria (Arnold et al., 1999; Sousa et al., 2020).  

Interlaboratory experiments concluded that when appropriate controls of the conditions were 

provided, spectral reproducibility could be ensured (Valentine et al., 2005; Wunschel et al., 

2005a; Wunschel et al., 2005b). However, some biomarkers other than ribosomal proteins 

could be affected in terms of presence/absence by sample and matrix preparation, protein 

extraction techniques or experimental conditions (Wang et al., 1998). As the intensity of pro-

teins is also considered to define biomarkers, which may be influenced by minor experimental 

variations, it is recommended that all samples should be treated in the same laboratory; if this 

is not possible extreme caution should be shown to minimize bias between laboratories (Wang 

et al., 1998). 

Moreover, appropriate pre-processing steps should be performed after acquiring the raw 

spectra from a MALDI-TOF instrument. Previously, researchers used to think that if there was 

a strong biomarker between groups, it would be detected no matter how the pre-processing was 

performed (Borgaonkar et al., 2010; Wagner, Naik and Pothen, 2003). However, pre-

processing is essential to draw biological conclusions from the raw data. Even small differences 

between MALDI-profiles may alter the performance of the classification; therefore, all classes 

should be prepared in the same pre-processing pipeline (Chung et al., 2019). 

A typical MALDI spectrum contains hundreds of peaks (Coombes, Baggerly and Morris, 

2007); however, not all of them have relevant biological information. Visual inspection of these 

many peaks is not possible; therefore, ML techniques are needed (Morris et al., 2005; Mather 

et al., 2016; Wang et al., 2018b). In the experiments of this study, the MALDI-TOF coupled 

with ML approach identified a total of 46 biomarker proteins which were as follows: 8 

biomarkers from the differentiation analysis of S. uberis based on transmission route (see 

Chapter 3), 6 biomarkers from the differentiation analysis of E. coli based on disease phenotype 

and 2 biomarkers from the differentiation analysis of E. coli based on clinical outcome (see 

Chapter 4), 5 biomarkers from the antimicrobial susceptibility profiling of S. aureus (see 

Chapter 5), 15 biomarkers from the antimicrobial susceptibility profiling of E. faecalis and 10 

biomarkers from the antimicrobial susceptibility profiling of E. faecium (see Chapter 6). Out 

of the 46 biomarkers, 19 ribosomal proteins, 3 DNA-binding proteins, 2 bacteriocins, 2 

phosphotransferase system proteins, 1 ATP synthase protein, 1 bacterial response regulator 

(LuxR family protein), 1 translation initiation factor, 1 sensor histidine kinase, 1 stress response 

protein (CsbD domain containing) and 1 DNA gyrase inhibitor (YacG) were found as known 
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functional domains; whereas 12 hypothetical and 2 DUF (domain of unknown function) 

proteins were found as unknown functional domains. Detailed information about the functions 

of these biomarkers was given in the Results sections of the relevant chapters. 

These biomarkers accord with earlier observations by MALDI-TOF MS, which showed mainly 

ribosomal proteins, DNA-binding proteins, stress-associated proteins (i.e. CsbD family 

proteins) and hypothetical proteins (Ojima-Kato et al., 2017; van Oosten and Klein, 2020). 

Cheng and colleagues (2018) compared the spectra coming from 14 genera (81 species, 403 

strains) by using GA and found ribosomal and DNA-binding proteins as the ten most 

discriminant ones for bacterial identification. However, non-ribosomal proteins were also 

found to show different expression according to different situations (Cheng, Qiao and 

Horvatovich, 2018). 

Notwithstanding the mass range limitations of the analyses, this study offered biomarkers to 

differentiate certain phenotypes. Biomarker characterisation should be supported by the 

functions and pathways they are involved in, as the interactions or differential expressions of 

other proteins can help to understand the biological mechanism of the disease (Swan et al., 

2013). The products of structural analyses, functional enrichment analyses and PPI analyses of 

biomarkers are not repeated here and can be found in the Results sections of each chapter. In 

Chapters 5 and 6 – where respectively the classifications for antimicrobial susceptibility pro-

files of S. aureus and Enterococcus spp. were performed - known resistance proteins were not 

amongst the biomarkers found by the classifiers. As previously stated this was not expected as 

the molecular weights of these proteins were out of the mass range of standard MALDI-TOF 

analysis (DeMarco and Ford, 2013). Previous antimicrobial susceptibility profiling studies by 

using MALDI-TOF MS and ML also did not find the biomarkers related to AMR proteins 

(Sousa et al., 2020). However, the PPI cluster analysis of Chapter 5 showed that these proteins 

known to confer resistance have been found to interact with most of the biomarkers and to form 

a highly connected benzylpenicillin proteome network. Again, the PPI cluster analysis of 

Chapter 6 showed that some antimicrobial-resistant proteins and biomarkers were interacting 

with each other directly or via common first interactors. 

MALDI-TOF MS technology has also been offered as an alternative to the current antimicro-

bial susceptibility test (detailed in the Introduction). In the dairy industry, phenotypic tests are 

still commonly used; however, breakpoints of the antimicrobials are decided based on human 

pathogens or animal pathogens associated with other than bovine mastitis. Determination and 

validation of antimicrobial susceptibility breakpoints depend on pathogen organism, disease 
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type, the tissue and organ where the infection occurs and the host species (Cameron et al., 

2016). Currently, antimicrobial susceptibility profiles of bovine mastitis pathogens are mainly 

decided based on the clinical breakpoints defined by CLSI. However, available breakpoints for 

bovine mastitis pathogens are limited to ceftiofur, penicillin/novobiocin and pirlimycin only 

(Ruegg et al., 2015). Breakpoints in penicillin/novobiocin and pirlimycin are available for S. 

aureus, S. agalactiae, S. dysgalactiae and S. uberis IMIs, whereas breakpoints in ceftiofur are 

available for the same pathogens and E. coli IMIs (Cameron et al., 2016). As indicated in the 

study by Constable and Morin (2003), to determine the breakpoints for mastitis pathogens, 

certain requirements are still missing. for instance, pharmacokinetics and pharmacodynamics 

data for treatment of clinical mastitis is missing or the recommended breakpoints are found by 

oral or intravenous administration route in humans; however, other routes such as intra-

mammary, subcutaneous or intramuscular routes are preferred for dairy cow treatment (Léger 

et al., 2017). Hence, clinical breakpoints for bovine mastitis pathogens are decided based on 

indications other than mastitis or even on species other than bovine, which could lead to mis-

interpretation of the analysis results (Schwarz et al., 2010). In a study of bovine mastitis path-

ogens in Belgian dairy farms, antimicrobial susceptibility profiling breakpoints were not avail-

able for 42% of the cases and more than 80% of cases were not veterinary specific but from 

human host data (Supré, Lommelen and De Meulemeester, 2014). Another important limitation 

of the use of mastitis-non-specific breakpoints is that comparison between studies is not possi-

ble as the analysis may use different breakpoints; for example, clinical breakpoints are not the 

same in French and British antimicrobial susceptibility profile surveillances of mastitis agents 

(de Jong et al., 2018). Clinicians are greatly in need of breakpoints that refer to antimicrobial 

susceptibility profiles of mastitis pathogens. MALDI-TOF coupled with ML is not dependent 

on breakpoints and therefore can provide a solution for identifying the antimicrobial suscepti-

bility profiles of the organisms with no need of disease-specific clinical breakpoints. In Chap-

ters 5 and 6, it was shown that the proteome of mastitis pathogens S. aureus, E. faecalis and E. 

faecium could be discriminated based on their antimicrobial phenotype. 

Overall, in this study, several ML techniques were successfully performed to classify MALDI-

TOF data coming from the bovine mastitis pathogens with different phenotypes. There is abun-

dant room for further progress in the use of MALDI-TOF coupled with ML. MALDI spectra 

obtained by uniformed techniques (same instrument, same data preparation etc.) can be deposit 

in online libraries with their metadata which enables larger datasets with more variation (e.g. 

geographical, time series etc.) and fairly balanced phenotypes. More complex ML techniques 



204 
 

such as deep learning, which demand large datasets and more computational power, can then 

be used for achieving even better prediction performance.  
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SUPPLEMENTARY FILES 

 

Supplementary Figure 1. Prediction performance results of algorithms to discriminate 

benzylpenicillin-resistant and sensitive E. faecalis isolates. Ten different algorithms (logistic 

regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, AdaBoost, na-
ïve Bayes, quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA)) that were 
used to classify benzylpenicillin resistance profiles are shown on the X-axis. The prediction perfor-
mance of these algorithms was measured based on five metrics (from left to right): accuracy, 
AUC, kappa, sensitivity and specificity. The scores for each metric (Y-axis) are between 0 and 1. 
Logistic regression was found to give the best performance. 
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Supplementary Figure 2. Prediction performance of the several algorithms to discrimi-

nate chloramphenicol-resistant and sensitive E. faecalis isolates. Ten different algorithms 

(logistic regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, Ada-

Boost, naïve Bayes, quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA)) 
that were used to classify chloramphenicol resistance profiles are shown on the X-axis. The predic-
tion performance of these algorithms was measured based on five metrics (from left to right): ac-
curacy, AUC, kappa, sensitivity and specificity. The scores for each metric (Y-axis) are between 0 
and 1. MLP neural network was found to give the best performance. 
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Supplementary Figure 3. Prediction performance of the several algorithms to discrimi-
nate clindamycin-resistant and sensitive E. faecalis isolates. Ten different algorithms (lo-

gistic regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, Ada-

Boost, naïve Bayes, quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA)) 
that were used to classify clindamycin resistance profiles are shown on the X-axis. The prediction 
performance of these algorithms was measured based on five metrics (from left to right): accu-
racy, AUC, kappa, sensitivity and specificity. The scores for each metric (Y-axis) are between 0 
and 1. Naïve Bayes was found to give the best performance. 
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Supplementary Figure 4. Prediction performance of the several algorithms to discrimi-
nate erythromycin-resistant and sensitive E. faecalis isolates. Ten different algorithms (lo-

gistic regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, Ada-
Boost, naïve Bayes, quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA)) 
that were used to classify erythromycin resistance profiles are shown on the X-axis. The prediction 
performance of these algorithms was measured based on five metrics (from left to right): accu-
racy, AUC, kappa, sensitivity and specificity. The scores for each metric (Y-axis) are between 0 
and 1. Logistic regression was found to give the best performance. 



274 
 

 

Supplementary Figure 5. Prediction performance of the several algorithms to discrimi-
nate tetracycline-resistant and sensitive E. faecalis isolates. Ten different algorithms (lo-

gistic regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, Ada-

Boost, naïve Bayes, quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA)) 
that were used to classify tetracycline resistance profiles are shown on the X-axis. The prediction 
performance of these algorithms was measured based on five metrics (from left to right): accu-
racy, AUC, kappa, sensitivity and specificity. The scores for each metric (Y-axis) are between 0 
and 1. RBF SVM was found to give the best performance. 
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Supplementary Figure 6. Prediction performance of the several algorithms to discrimi-
nate TMP/SMX-resistant and sensitive E. faecalis isolates. Ten different algorithms (logistic 

regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, AdaBoost, na-

ïve Bayes, quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA)) that were 
used to classify TMP/SMX resistance profiles are shown on the X-axis. The prediction performance 
of these algorithms was measured based on five metrics (from left to right): accuracy, AUC, 
kappa, sensitivity and specificity. The scores for each metric (Y-axis) are between 0 and 1. Logistic 
regression was found to give the best performance. 
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Supplementary Figure 7. Prediction performance of the several algorithms to discrimi-

nate benzylpenicillin-resistant and sensitive E. faecium isolates. Ten different algorithms 

(logistic regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, Ada-
Boost, naïve Bayes, quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA)) 
that were used to classify benzylpenicillin resistance profiles are shown on the X-axis. The predic-
tion performance of these algorithms was measured based on five metrics (from left to right): ac-
curacy, AUC, kappa, sensitivity and specificity. The scores for each metric (Y-axis) are between 0 

and 1. AdaBoost was found to give the best performance. 
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Supplementary Figure 8. Prediction performance of the several algorithms to discrimi-
nate cefovecin-resistant and sensitive E. faecium isolates. Ten different algorithms (logistic 
regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, AdaBoost, na-

ïve Bayes, quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA)) that were 

used to classify cefovecin resistance profiles are shown on the X-axis. The prediction performance 
of these algorithms was measured based on five metrics (from left to right): accuracy, AUC, 
kappa, sensitivity and specificity. The scores for each metric (Y-axis) are between 0 and 1. Naïve 
Bayes was found to give the best performance. 
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Supplementary Figure 9. Prediction performance of the several algorithms to discrimi-
nate clindamycin-resistant and sensitive E. faecium isolates. Ten different algorithms (lo-

gistic regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, Ada-
Boost, naïve Bayes, quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA)) 
that were used to classify clindamycin resistance profiles are shown on the X-axis. The prediction 
performance of these algorithms was measured based on five metrics (from left to right): accu-
racy, AUC, kappa, sensitivity and specificity. The scores for each metric (Y-axis) are between 0 

and 1. LDA was found to give the best performance. 
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Supplementary Figure 10. Prediction performance of the several algorithms to discrimi-

nate enrofloxacin-resistant and sensitive E. faecium isolates. Ten different algorithms (lo-

gistic regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, Ada-
Boost, naïve Bayes, quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA)) 
that were used to classify enrofloxacin resistance profiles are shown on the X-axis. The prediction 
performance of these algorithms was measured based on five metrics (from left to right): accu-
racy, AUC, kappa, sensitivity and specificity. The scores for each metric (Y-axis) are between 0 
and 1. MLP neural network was found to give the best performance. 
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Supplementary Figure 11. Prediction performance of the several algorithms to discrimi-

nate erythromycin-resistant and sensitive E. faecium isolates. Ten different algorithms (lo-
gistic regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, Ada-
Boost, naïve Bayes, quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA)) 
that were used to classify erythromycin resistance profiles are shown on the X-axis. The prediction 
performance of these algorithms was measured based on five metrics (from left to right): accu-
racy, AUC, kappa, sensitivity and specificity. The scores for each metric (Y-axis) are between 0 

and 1. Naïve Bayes was found to give the best performance. 
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Supplementary Figure 12. Prediction performance of the several algorithms to discrimi-
nate nitrofurantoin-resistant and sensitive E. faecium isolates. Ten different algorithms (lo-
gistic regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, Ada-

Boost, naïve Bayes, quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA)) 

that were used to classify nitrofurantoin resistance profiles are shown on the X-axis. The prediction 
performance of these algorithms was measured based on five metrics (from left to right): accu-
racy, AUC, kappa, sensitivity and specificity. The scores for each metric (Y-axis) are between 0 
and 1. Linear SVM was found to give the best performance. 

 


