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SUMMARY 

Proteins and functional RNAs are important components of biological organisms, 

which play essential roles in biological systems. Therefore, the identification of 

functional proteins and RNAs is of great importance for understanding biological 

processes, discovering new therapeutic targets, and accelerating drug development. 

This thesis describes my work of applying machine learning methods to facilitate the 

identification of multifunctional enzymes, disease related proteins and microRNAs. 

 

Multifunctional enzymes (MFEs) are enzymes that perform multiple catalytic 

activities. The identification and characterization of MFEs would provide valuable 

insights into molecular mechanisms underlying the crosstalk between different 

cellular processes. In this study, a total number of 3120 experimentally verified MFEs 

were collected from various sources. A support vector machine (SVM) based 

classifier was then developed to distinguish MFEs from non-MFEs. The classifier was 

also applied to search against ExPASy ENZYME database to identify potential novel 

MFEs. Moreover, we also investigated the mechanism of multiple catalytic properties, 

as well as their evolutionary basis. Our results suggest that MFEs are non-evenly 

distributed in different species, but no solid evidence suggests complex life forms like 

human prefer more MFEs than simple life form like yeast. Further KEGG ontology 

(KO) analysis indicated that MFEs most likely evolve from ancestor enzymes in 

primitive life forms. From structural perspective, the alpha and beta fold topology 

seems to be most favored for MFEs. The analysis of physiochemical properties 

indicated that four properties, including charge, polarizability, hydrophobicity, and 

solvent accessibility, are most important for the characterization of MFEs. 
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Another objective of this work is to identify disease related proteins which hold 

promise for discovering new therapeutic targets. Three groups of disease related 

proteins were studied, including antimicrobial proteins, antibiotic resistance proteins 

and cancer associated proteins. Corresponding SVM based prediction systems were 

developed to identify these proteins based on their primary sequences. Independent 

data sets that were not included in model development were then used to evaluate the 

performance of classification system, showing that prediction accuracies for members 

and non-members of these disease related proteins are in the range of 81.8%~97.5% 

and 99.2%~99.9% respectively. In addition, most of non-homologous antimicrobial 

proteins and antibiotic resistances were correctly predicted. These results suggest the 

usefulness of SVM method for facilitating the identification of disease related 

proteins, especially for non-homologous functional proteins. 

 

The other objective of this work is to identify microRNAs (miRNAs) from sequence 

derived physicochemical properties by four machine learning methods, including 

decision trees (DT), k-nearest neighbors (KNN), probabilistic neural networks (PNN), 

and support vector machines (SVM). SVM was found to reach the best performance, 

with prediction accuracies of precursor miRNAs and mature miRNAs at 92.2% and 

94.8%, and the accuracies for non-precursors miRNAs and non-matures miRNAs at 

98.4 and 99.5% respectively. Screening non-coding RNA sequences within four 

representative genomes, including Homo sapiens, Mus musculus, Drosophila 

melanogaster and Saccharomyces cerevisiae, identifies 2.2%~5.6% of non-coding 

RNAs as potential precursor miRNAs, which contains fewer false positives than 

previous studies. These findings indicate that our prediction system is capable of 
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identifying miRNAs with relatively high accuracy. Similar strategy can be ideally 

applied to the prediction of other functional RNA classes.  

 

Beyond in-house prediction models, we also developed a series of online prediction 

tools to serve scientific community to identify novel functional proteins and RNAs. 

Our prediction systems could be accessed at following links. 

SIME   http://jing.cz3.nus.edu.sg/cgi-bin/sime.cgi 

SAPI   http://jing.cz3.nus.edu.sg/cgi-bin/sapi.cgi  

SARPI   http://jing.cz3.nus.edu.sg/cgi-bin/sarpi.cgi 

CAPIS   http://jing.cz3.nus.edu.sg/cgi-bin/capis.cgi 

MiRDetector  http://ang.cse.nus.edu.sg/cgi-bin/mirna/mirna.cgi 
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1. Introduction 

Proteins are important components of biological systems and essential to any life form. 

They participate in almost every biological process, such as catalyzing chemical 

reactions, providing structure rigidity to cells, and transmitting signals and nutrients. 

A number of proteins are involved in different disease related pathways, and 

dysfunction of these proteins accounts for most of human diseases. For example, over 

expression of oncogenes would cause cancers, while mutations in antimicrobial 

proteins may reduce their capacity to defend against microbial infection. Therefore, 

identification of these proteins and understanding of their mechanisms would be of 

great importance to discover novel therapeutic targets and develop new drugs to treat 

diseases.   

 

Besides proteins, RNAs are also well recognized as important components of 

biological systems. According to central dogma of molecular biology, RNAs are 

responsible to transcribe gene information storing in DNA, and then translate them 

into protein sequences. However, since the late 1990s, a number of non-coding RNAs 

have been identified by experimental or computational methods. They are not to be 

translated into proteins; instead, their role in biological systems remains at the RNA 

level. In particular, a group of smallest non-coding RNAs, called microRNAs 

(miRNAs), have attracted intensive interests. It is estimated that one third of human 

genes are regulated by miRNAs, which open a new door to controlling the expression 

of desirable genes, and may profoundly influence current drug discovery process.   

 

Since the sequencing of phage fX174 in 1977, a tremendous amount of genomic 

information of organisms have been decoded and deposited into varieties of database. 
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Up to April 2008, more than 360,000 proteins have been collected in a curated protein 

database, Swiss-Prot, and the number is continuing increasing rapidly. On the other 

hand, however, low and non-homologous proteins with unknown function constitute a 

substantial part (up to 20%~100%) in Open Reading Frames (ORFs), in many newly 

sequenced genomes. Although wet-lab experiments are still the most effective 

methods to determine functions of proteins and RNAs, they are, however, still costly 

and time consuming for annotating such tremendous amount of data. Therefore, there 

is a need to explore other methods including computational approach for facilitating 

the identification of protein and RNA function to complement web-lab experimental 

methods. 

 

In this thesis, I will introduce my work on the application of machine learning to the 

prediction of multifunctional enzymes, disease related proteins, and miRNAs.  

 

1.1. Introduction to multifunctional enzymes (MFEs) 

It has been noticed for a long time that some enzymes are able to perform multiple 

functions [1-4], which are called multifunctional enzymes (MFEs). An increasing 

number of such enzymes are being discovered in recent years. MFEs are found to be 

beneficial to living systems and provide competitive survival edges in a variety of 

ways. They are able to employ alternative approaches to coordinating multiple 

activities and regulate their own expression [1], which demonstrates evolutionary 

advantage as part of a clever strategy for generating complexity from existing proteins 

without expansion of the genome [3, 5, 6]. Combination of multiple functions enables 

an enzyme to act as a switch point in biochemical or signaling pathways so that a cell 

can rapidly respond to changes in surrounding environment [7]. Multifunctionality 
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seems to be a common mechanism of communication and cooperation between many 

different functions and pathways within a complex cellular system or between cells 

[2]. 

 

Identification of MFEs and subsequent investigation of their mechanistic and 

structural basis of multifunctionality is important for studying biological roles of 

enzymes [3, 7] and for the exploration of multiple activities in protein engineering [8] 

and inhibitor design [9]. Studies of sequences, structures and components of MFEs 

have demonstrated that useful information can be derived for facilitating the 

understanding of the mechanism of actions [10], organizational and evolutionary 

features [11], and assembly patterns [12] of MFEs. In-depth study on comprehensive 

collection of MFEs is expected to provide a more complete picture about the 

functional, evolutional, and structural features of multifunctional enzymes. 

 

A recent study indicates that current sequence analysis algorithms (alignment, 

clustering and motif approaches) are capable of disclosing individual functions of 

MFEs [13]. Algorithms based on remote homology, like PSI-BLAST (Position 

Specific iterative-Basic Local Alignment Search Tool) [14], have been found to give 

good performance for finding alternative functions of MFEs [13]. However, in some 

cases, it is difficult to determine whether the predicted multiple functions by these 

methods are due to true multifunctionality or false identification [2-4]. Thus it is 

highly desirable to develop a method to determine the multifunctionality of proteins. 

MFEs have certain common structural and physicochemical characteristics in spite of 

the diversity of their sequences and structures, which can be potentially exploited for 

determining whether enzymes are multifunctional or not. Active sites of enzymes with 
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multiple catalytic activities are inherently reactive environments packed with 

nucleophiles, electrophiles, acids, bases and cofactors [3]. Special structural features 

are present in some MFEs to enable them to bind to different substrates [3]. The 

surface of some MFEs allows the formation of complexes with different proteins or 

substrates at different cellular environments [2, 7].  

 

Proteins of multiple functions are known to have high sequence and structure 

diversity but none-the-less possess common structural and physicochemical features 

to perform common functions. Such characteristics make it difficult to identify MFEs 

by homology-based approaches. Thus it is desirable to explore other methods to 

identify MFEs. 

 

1.2. Introduction to disease related proteins 

1.2.1. Antimicrobial proteins 

Microbes, such as bacteria, viruses and fungi, are responsible for a number of human 

or other organisms’ diseases, such as acute bacterial meningitis [15], human 

immunodeficiency virus (HIV) [16] and latent tuberculosis infection [17]. On the 

other hand, host organisms have also developed a variety of sophisticated mechanisms 

to fight against the invasion of microbes, among which antimicrobial peptides play an 

important role. Antimicrobial peptides are able to induce both innate and adaptive 

immune responses in host organisms [18, 19]. They usually take effects by insertion 

into microbial membrane to either disrupt the physical integrity of the bilayer or 

translocate across the membrane and act on internal targets [18]. Due to their 

broad-spectrum antimicrobial properties, antimicrobial peptides are increasingly used 
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as molecular therapies [19]. A number of databases have also been developed to 

collect and characterize antimicrobial peptides [20-23]. 

  

Antimicrobial peptides are derived from antimicrobial proteins (AMPs) upon bacterial 

attack [24, 25]. Therefore knowledge of AMPs would be helpful to identify novel 

therapeutic targets and invent new antimicrobial agents to treat diseases caused by 

bacteria. The characterization of AMPs to date mainly relies on kinds of experimental 

approaches such as NMR [26], electron microscopy [27], and fluorescent dyes [28]. 

However, many of them generally require a purified or semi-purified target of interest, 

and usually time consuming, which limit their application to identify antimicrobial 

peptides in large scale [29]. Therefore, alternative approaches including 

computational methods would be helpful to the identification of AMPs.  

 

1.2.2. Antibiotic resistance proteins 

Antibiotics are believed to be one of the greatest medical inventions in the 20th 

century, which have significantly extended human life expectancy by 10 years [30, 

31]. Antibiotics have been widely used to treat various diseases caused by bacteria, 

such as tuberculosis, pneumonia and leprosy, which were lethal diseases before the 

invention of antibiotics. Antibiotics take effect through inhibiting or killing bacteria 

while causing little or no harm to the host. Various mechanisms are used by 

antibiotics to achieve this selective effect. For instance, some antibiotics are able to 

inhibit the synthesis of key proteins that play critical roles in bacterial growth and 

proliferation [32], whilst others may disrupt bacterial membrane structure and result 

in bacterial death [33]. 
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However, the widespread usage of antibiotics also applies selective pressure on 

bacteria [34]. Antibiotic resistance began to emerge almost as soon as the first clinical 

use of penicillin. The emergence of highly virulent and multi-drug resistant bacterial 

strains has presented a serious challenge to traditional therapies of infectious diseases 

[35]. Antibiotic resistance accounts for a number of treatment failures, and it could be 

fatal to those critically sick patients who rely on antibiotics to fight against bacteria 

[34]. To make the situation even worse, resistant bacteria could spread widely, posing 

more serious problems for infection control [36].  

 

Antibiotic resistance is a consequence of natural selection or programmed evolution. 

Multiple mechanisms contribute to antibiotic resistance, such as drug modification by 

enzymatic mechanisms, mutation of drug targets, enhanced efflux pump expression, 

and altered membrane permeability [36]. A number of proteins have been found 

responsible for antibiotic resistance. For instance, many multi-drug resistance efflux 

systems can pump out antibiotics from the cell surface by a collection of membrane 

associated proteins [37]. Specific mutations in antibiotic targets may hinder the 

binding and thus the effectiveness of certain antibiotics [38, 39]. In addition, 

resistance determinants borne on plasmids, bacteriophages, transposons and other 

mobile genetic elements can be transferred to naive recipients [36, 40]. Therefore, 

antibiotic resistance proteins may come from different sources which diversify from 

DNA gyrase, topoisomerase, to mutated enzymes, or gene duplication and 

over-expression of certain carrier proteins. 

 

Recognizing these proteins is critically important to study the evolution of antibiotic 

resistance, which will facilitate the design of novel drugs to control potential spread of 
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antibiotic resistance [40]. As part of the efforts for understanding and identifying these 

proteins, two antibiotics resistance protein databases, ARGO [41] and MvirDB [42], 

have been developed to collect and characterize ARPs. Various experimental methods 

have been explored for the identification of antibiotic resistance proteins (ARPs) 

[43-46].  

 

However, these methods are usually costly, time consuming, and resource intensive, 

which is a particular problem because of the fluidity of the microbial genomes can 

further increase the burden. Therefore, it would be helpful to explore alternative 

methods including computational approach to identify ARPs.  

 

1.2.3. Cancer associated proteins 

Cancer is the second leading cause of death in western world, just slightly inferior to 

cardiovascular diseases. Intense efforts have been devoted to the study of cancer 

genesis, progression, and therapeutic implication. Normal growth-control mechanisms 

have no effect on cancer cells. Cancer refers to a group of diseases. Cancer cells, 

unlike normal cells that respond to growth control mechanism, are capable of growing 

indefinitely and will invade healthy tissue nearby. Moreover, cancer cells can also 

migrate and proliferate in other places through metastasis, which accounts for 90% of 

human cancer deaths. 

 

The induction of cancer involves accumulation of multiple genetic alternations. A 

wide variety of chemical agents and physical agents can cause mutations in normal 

cells and induce malignant transformation which leads to final development to cancer. 

For instance, extensive exposure to UV radiation may lead to the mutation and 
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inactivation of p53 [47, 48], which plays important roles to suppress tumor. Another 

important cause of tumor is induced by DNA or RNA viruses, which may integrate 

their genomes into host chromosomes and result in malignant transformation in 

virus-infected cells. HIV-1 [49] could reverse transcribe their RNA into DNA and 

integrate to human genome, which may lead to malignant transformation.  

 

Within a normal tissue, cellular proliferation and cell death is carefully regulated by a 

number of signals. A number of genes responsible for the malignant transformation 

have been identified in the past three decades [50]. The growth and death of normal 

cells are sophisticatedly maintained by two categories of cancer related genes: 

proto-oncogenes and tumor suppressors. Proto-oncogenes are normal genes whose 

mutations, called oncogenes, code for proteins causing cancer [51-53].  

Proto-oncogenes are converted to oncogenes by mutations or genetic rearrangement. 

Some oncogenes are responsible for the over production of growth factor leading to 

uncontrolled cell growth. Some other oncogenes perturb parts of the signal cascade 

[54]. On the other hand, tumor suppressors are responsible for regulating cell 

proliferation or initiating apoptosis of cells, which reduce the possibility that a cell 

developing to a tumor cell [55, 56]. For example, the inactivation of mutated 

retinoblastoma gene results in unregulated tumor proliferation. 

 

Identification of cancer associated proteins will facilitate efforts to understand the 

mechanism of cancer development and therefore helpful to discover novel 

pharmaceutical agents and therapeutic targets to fight against cancer. The 

characterization of cancer-related proteins to date mainly relies on kinds of 

experimental approaches, like molecular cloning [57]. RB is the first tumor 
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suppressor gene isolated from human genome in 1986 [57]. Therefore, it would be 

helpful to explore computational method to finding those proteins. 

 

1.3. Introduction to microRNAs  

Non-coding genes function without being translated into protein products; instead, 

their products function at RNA level. For many years, it was believed that there are 

only a few non-coding RNAs (ncRNAs), such as transfer RNA (tRNA) and ribosomal 

RNA (rRNA), both of which are involved in the process of translation and gene 

expression [58]. However, since the late 1990s, a number of new non-coding RNAs 

have been found to participate in various regulatory events, which open a new door to 

investigate gene regulatory networks.  

 

MicroRNAs (miRNAs) are a group of smallest functional ncRNAs that regulate gene 

expression. Since the discovery of the first miRNA in 1993 [59], miRNAs have been 

attracting more and more scientists’ interest. MiRNA genes could be located in 

intergenic regions or in introns; some of them are found to be clustered [60]. Many 

miRNAs have heterogeneous expression profiles in different tissues, which also could 

be used as potential cancer markers [61-63]. The majority of miRNAs are 21 to 25 

nucleotides (nt) in length [64], with 21nt long on average. Many miRNAs are both 

sequence and structure conserved in evolution [65]. Mature miRNAs are derived from 

miRNA precursors (pri-miRNAs), which are about 70-100nt long and have an 

imperfect stem-loop structure with one or two miRNAs in the arms [66, 67]. Figure 

1-1 shows the biosynthesis of miRNAs in humans. MiRNAs are first transcribed as 

primary transcripts (pri-miRNAs) with a cap and poly-A tail by RNA polymerase II 

[68]. Pri-miRNAs are then processed into precursor miRNAs (pre-miRNAs) by 
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microprocessor complex, which is comprised of Drosha [69] and DGCR8 [70]. After 

that pre-miRNAs are transported from nucleus to cytoplasm by another complex that 

consists of exportin 5 and RanGTP [71]. In cytoplasm, pre-miRNAs are released and 

processed by Dicer into short double-stranded RNAs [72]. One segment called mature 

miRNA is integrated into the RNA-induced silencing complex (RISC) [73, 74]. This 

complex is responsible for the gene silencing observed due to miRNA expression and 

RNA interference [75, 76]. 

 

MiRNAs play important roles in gene regulation at post-transcription level. It is 

estimated that approximately one third of protein coding genes are regulated by 

miRNAs [77]. MiRNAs are involved in surprisingly diverse of biological processes 

and they are responsible for a number of human diseases [78, 79]. The exact 

mechanisms of gene regulation by miRNAs remain to be discovered. Evidence shows 

that miRNA could degrade the target transcript, or inhibit protein translation [64]. 

MiRNAs are able to negatively regulate their targets through 

sequence-specific-pairing approach [80]. MiRNAs could bind to mRNA targets at on 

3’-UTRs and repress translation and mediate degradation [72]. The regulation 

mechanism of miRNAs in plants and animals are different. Most plants miRNAs 

could bind almost perfectly to their target mRNAs, and their binding sites are not 

limited to the 3’ untranslated region (3’ UTR), but could be throughout the whole 

genome [81]. In contrast, the pairing of animal miRNAs to their targets 3’UTR is 

imperfect. 
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Figure 1-1 MiRNA biosynthesis. MiRNA is produced from precursor microRNA 
(pre-miRNA), which in turn is formed from a miRNA primary transcript (pri-miRNA). 

 

 

The number of miRNAs in a vertebrate genome is estimated to be about 800-1000 [82, 

83], and approximately 0.5-1.5% of human genes are estimated to encode miRNAs 

[84]. Efforts have been devoted to collect and annotate miRNAs [85, 86] through 

various approaches. A number of experimental methods have been developed to 

identify and characterize miRNAs [87-90]. However, these methods are usually costly, 
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time consuming, and resource intensive [91, 92]. The short sequence, redundancy, and 

heterogeneous expression profiles make miRNA discovery even more difficult [92, 

93]. Numerous computational methods are also developed to facilitate the 

identification of miRNAs in different genomes, including sequence alignment [94, 95], 

structure based approach [96] and conservation based approach [97, 98]. One 

statistical learning method, support vector machine (SVM), has also been applied to 

identify new miRNA candidates [93, 99, 100]. However, these methods usually 

produce too many false positives when applied to large genomes. Thus prediction of 

miRNAs with lower false positive rate is still a challenging task. 

 

1.4. Overview of computational methods for biological function 

prediction 

1.4.1. Sequence similarity method 
 
Sequence similarity method (also named sequence alignment method) is the most 

popular method used in protein or RNA function prediction. The underlying 

assumption behind sequence similarity method is that similar sequence implies similar 

structure, and then similar function, which is satisfied in most of cases.  

 

Modern sequence alignment methods begin with the global homology algorithm of 

Needleman-Wunsch [101], which uses an iterative matrix method for optimizing the 

alignment between two sequences. Since then, more rigorous methods, such as 

Sankoff alignment (1972) [102] and Reicher alignment (1973) [103], started to 

emerge, although their biological implication was difficult to formulate. Later on, 

Smith and Waterman developed a local sequence alignment method [104], which only 
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searched relatively conserved subsequence, so one single sequence may yield more 

than one subsequence and only these conserved sequences could contribute to the 

score of alignment. Although this method was more useful for searching sequences in 

databases, it was still quite time consuming, and had to be used in supercomputers 

when large databases need to be searched. In order to solve this problem, heuristic 

algorithms were proposed. One of first tries is FASTA program developed by Lipman 

and Pearson[105], which aims to identify local similar regions between two sequences 

using PAM matrix. The strategy significantly decreased the computation time for 

comparison. In 1990, a breakthrough sequence comparison method, Basic Local 

Alignment Search Tool (BLAST), was developed [106]. At that time, BLAST was 

significantly faster than any other sequence alignment tools while maintaining 

comparable sensitivity. It balances accuracy and computation speed. After that, 

Gapped BLAST [14] was developed to generate gapped alignments, with 

approximately three times as fast as BLAST search. Meanwhile, Position Specific 

Iterated BLAST (PSI-BLAST) [107] allows BLAST search to iterate, which is 

particular useful to identify remote homologous proteins.  

 

Although sequence alignment methods have good performance in sequence analysis, 

they still have some limitations. Some proteins are so unique that it is difficult to find 

their “neighbors” in existing protein databases. Moreover, no all the similar proteins 

have analogous functions [108]. So there is a need to find other methods to assign 

protein function beyond sequence alignment. 

 

1.4.2. Motif based methods 
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Many proteins or RNAs are found to share consensus sequences or motif, which may 

provide important clue for their function prediction [109]. Motif based methods, such 

as Motifs, Prosite [109] and Sequence Clustering [110], have been developed to detect 

common motifs among proteins and RNAs. Motif databases, such as PROSITE, 

ProDom and Rfam, are also widely used in sequence analysis. 

 

PROSITE [111] consists of a large collection of biologically significant signature 

patterns that were manually annotated and used to determine the function of a given 

protein. The first release of PROSITE was published in 1992, which contained 397 

entries describing 433 different patterns. The number of patterns in the database has 

increased to 1318 in April 2008. The problem with PROSITE is that those patterns are 

usually too short, which may result in too many false positives of unrelated 

sequences. 

 

In order to address this problem, structurally defined regions, called domains, are used 

to characterize parts of protein sequences with well defined functions. ProDom and 

Pfam are two examples of this kind of databases. ProDom [112] is a comprehensive 

database of protein domain families generated from the Swiss-Prot database by 

automated sequence comparisons. It can be used for analyzing domain arrangements 

of complex protein families and protein homology relationships. Similarly, Pfam [113, 

114] database currently covers a large collection of manually curated protein domain 

families. Each family is represented by two multiple sequence alignments, two 

profile-Hidden Markov Models (profile-HMMs) and an annotation file [114]. It can 

automatically classify query proteins into protein domain families [115]. Pfam 

database current covers 9,318 families in April 2008.  
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Although there are so many motif databases which contain a large amount of patterns 

and domain information, not all newly sequenced proteins or RNAs could be covered 

by these databases. If a new sequence does not have any domain defined in current 

domain databases, its function could not be identified. So it is desirable to explore 

alternative methods to predict protein function besides motif based method. 

 

1.4.3. Machine learning approach 
 
Unlike sequence similarity approach and motif based approach, machine learning 

methods take a different strategy to predict protein function. Machine learning 

methods derive rules from common characteristics within proteins, and then apply 

these rules to justify unseen examples. Machine learning methods have been 

successfully applied to the identification of novel enzymes [116], bacterial proteins 

[117], lipid-binding proteins [118], transporters [119] and other protein functional 

classes [120, 121]. 

 

A number of challenges are still waiting to be solved, such as the generation of 

effective negative samples, ambiguous information in biological data and data 

imbalance issue.  

 

1.5. Scope and objective 

The objective of this study is to develop computational tools to facilitate the 

identification of multifunctional enzymes, disease related proteins and miRNAs from 

their primary sequences derived physicochemical properties. Machine learning 

methods were employed in the study. Computational tools are expected to offer an 
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alternative solution to the identification of functional proteins and non-coding RNAs, 

and help to accelerate the pace of drug development and discover new therapeutic 

targets. 

 

The objective could be divided into three parts: 

1. To develop a classification system for predicting MFEs directly from their 

primary sequences. Further analysis of their mechanism, evolution, species 

distribution need to be done.  

2. To develop prediction systems for disease related proteins, including 

antimicrobial proteins, antibiotic resistance proteins, and cancer related 

proteins.  

3. To apply machine learning methods to predict miRNAs.  

 

In order to achieve the 3 parts of the objective described above, a machine 

learning method, support vector machine (SVM), is employed to develop these 

prediction systems. It is particular useful for the prediction of the proteins or 

miRNAs that are not homologous to those with known function, where traditional 

sequence similarity or motif based approach are likely to fail.  

 

This thesis includes six chapters. Chapter 1 provides the introduction to 

multifunctional Enzymes, disease related proteins, microRNAs and current 

prediction methods for protein and RNA. Chapter 2 describes algorithms of 

different machine learning methods, as well the construction of feature vectors. 

The application of machine learning methods for the prediction of multifunctional 

Enzymes, disease related proteins and microRNAs are described in Chapter 3, 
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Chapter 4 and Chapter 5, respectively. Chapter 6 describes conclusion and future 

work. 
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2. Methods 

In the chapter, algorithms of four well known machine learning methods will be 

introduced, which will be used to develop computational methods to predict 

functional proteins and RNAs. Moreover, feature selection and performance 

evaluation will also be illustrated. As most of machine learning methods could only 

accept numerical values instead of protein/RNA sequences, it is essential to convert 

them into numerical vectors before the application of machine learning. The method 

of feature vector construction will be covered in the last part of this chapter. 

 

2.1. Machine learning methods 

The term of machine learning refers to algorithms and techniques that allow 

computers to extract information from past experience. Although it emerges as a 

separate research field in the early 1980s, the study of machine learning can be traced 

from the 1960s [122]. Over the past 50 years, various machine learning methods have 

been developed and applied in a wide spectrum of fields, such as k-nearest neighbor 

algorithms in text categorization, decision tree methods in pharmaceutical research, 

artificial neural network in stock market analysis and prediction, support vector 

machine in bioinformatics and cheminformatics. 

 

Machine learning uses computational and statistical methods to build mathematical 

models, and make inference from training samples [123]. Machine learning is a 

branch of artificial intelligence (AI), and it is closely related to statistics and pattern 

recognition, since they all study the analysis of data. However, unlike statistics and 
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pattern recognition, machine learning is primarily concerned with algorithmic 

complexity of computational implementations [124]. 

 

In order to be learnt by computational methods, all the samples, or instances, should 

be represented by feature vectors, which could be categorical, binary or continuous. 

Machine learning could be divided into two categories: if samples are given with 

known classes, it is called supervised learning; otherwise, it is called unsupervised 

learning [125]. In supervised learning, the learning process is to optimize an objective 

function and predict the value of the function for any valid input object after having 

learnt experience from training examples. This category includes well known machine 

learning methods like k-nearest neighbors, support vector machines, and decision 

trees. On the other hand, unsupervised learning is never given the answer set, and all 

the answers are assumed to be latent variable. All data under investigation are allowed 

to speak for themselves and they are treated evenly. This category includes self 

organization map and clustering methods. 

 

In the following sections, four machine learning algorithms will be introduced, 

including support vector machine, k-nearest neighbors, neural networks, and decision 

tree. Their specific properties, advantages and disadvantages in real world problems, 

will also be discussed. 

 

2.1.1. Support Vector Machine (SVM) 

Support vector machine (SVM) is one of the newest members in supervised learning 

family [126]. It was first officially proposed by Vladimir Vapnik in 1995[126], and 
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then further explained by Dr. Burges in 1998[127]. A special property of SVM is that 

it simultaneously minimizes the empirical classification error and maximizes the 

geometric margin. Over the past 20 years, SVM has been successfully applied to a 

wide range of real-world problems, including hand-written digit recognition [128], 

tone recognition [129], image classification [130-133], as well as broad fields in 

biology, such as protein function prediction[134, 135], protein-protein interaction 

prediction [136], protein remote homology detection [137, 138], and classification for 

discriminating coronary heart disease patients[139]. SVM is the primary method used 

in our study. Therefore its theory and algorithm will be discussed with more details in 

following sections.  

 

2.1.1.1. Linear SVM 

In two-class problems, SVM aims to separate examples of two classes with the 

maximum hyperplane (Figure 2-1). Mathematically, the data is composed of n 

examples of two classes, denoted as 1 1{( , ), , ( , )}n nx y x yχ = , where N
ix R∈  is a 

vector in feature space and { 1, 1}iy ∈ − +  denotes its class. A hyperplane could be 

drawn to separate examples of one class (positive examples) from those of the other 

one (negative examples). The hyperplane is represented by 0w x b⋅ + = , where w  is 

the slope and b is the bias. Thus the objective function of SVM changes to minimize 

Euclidean norm 2w  with following limitations:  

1iw x b⋅ + ≥ +  for 1iy = +  (positive examples)        (1) 

1iw x b⋅ + ≤ −  for 1iy = −  (negative example)        (2) 
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According which side that new instances locate, we can easily determine which class 

they belong to. So the decision function becomes , ( ) ( , )w bf x sign w x b= < > + . 

Figure 2-1 Architecture of support vector machines 

 
 
Geometrically, all the points are divided into two regions by a hyperplane H. As 

shown in Figure 2-2, there are numerous ways through which a hyperplane can 

separate these examples. The objective of SVM is to choose the “optimal” hyperplane. 

As all new examples are supposed to be located under similar distribution as training 

examples, the hyperplane should be chosen such that small shifts of data do not result 

in fluctuations in prediction result. Therefore, the hyperplane that separates examples 

of two classes should have the largest margin, which is expected to possess the best 

generalization performance. Such hyperplane is called the Optimal Separating 

Hyperplane (OSH) [30].  
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Figure 2-2 Different hyperplanes could be used to separate examples 

 
Examples locating on the margins are called support vectors, whose presentation 

determines the location of the hyperplane. OSH could be thus represented by a linear 

combination of support vectors. The margin ( , )i w bγ of a training point ix is defined 

as the distance between H and ix : 

( , ) ( )i iw b y w x bγ = ⋅ +              (3) 

and the margin of a set of vectors 1{ , , }nS x x= is defined as the minimum distance 

between the hyperplane H to all the vectors in S : 

{ | 1} { | 1}
( , ) ( , )min min max

i
S ix S x y x y

w x w xw b w b
w w

γ γ
∈ =+ =−

⋅ ⋅
= = −                        (4) 

So the OSH is the solution to the optimization problem: 

Maximize  ( , )w bχγ              (5) 
Subject to  ( , ) 0w bχγ >              (6) 

2 1w =              (7) 
 

which is an equivalent statement of the problem 

Minimize  21
2

w               (8) 
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Subject to  1iw x b⋅ + ≥ +  for 1iy = +          (9) 

1iw x b⋅ + ≤ −  for 1iy = −          (10) 

This optimization problem could be efficiently solved by the Lagrange method. With 

the introduction of Lagrangian multipliers 0( 1,2,..., )i i nα ≥ = , one for each of the 

inequality constraints, we obtain the Lagrangian: 

1

1( , , ) [ ( ) 1]
2

n
T

P i i i
i

L w b w w y w x bα α
=

= − ⋅ + −∑         (11) 

This is a Quadratic Programming (QP) problem. We would have to minimize 

( , , )PL w b α  with respect to w , b and simultaneously require that the derivatives of 

( , , )PL w b α  with respect to the multipliers iα vanish, ( , , ) 0PL w b
w

α∂
=

∂
 and 

( , , ) 0PL w b
b

α∂
=

∂
 

This leads to 

1

n

i i i
i

w y xα
=

=∑  and 
1

0
n

i i
i

yα
=

=∑            (12) 

By substituting these two equations into equation (11), the QP problem becomes the 

Wolfe dual of the optimization problem: 

1 , 1

1( , , ) ( )
2

n n

D i i j i j i j
i i j

L w b y y x xα α αα
= =

= − ⋅∑ ∑          (13) 

subject to constraints 
1

0
n

i i
i

yα
=

=∑  and 0iα ≥ , 1, 2, ,i n= . 

The corresponding bias 0b  can be calculated as: 

{ }0 0 0{ | 1} { | 1}

1 ( ) ( )
2

min max
x y x y

b w x w x
=+ =−

= − ⋅ − ⋅           (14) 
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This QP problem could be efficiently solved through several standard algorithms like 

Sequential Minimization Optimization [140] or decomposition algorithms [141].  

 

Once 0w and 0b  are determined, the hyperplane is readily drawn. The points for 

which 0iα >  are called support vectors, which lie on the margin [127].  

                                                                                  

2.1.1.2. Nonlinear SVM 

Many real-world problems are usually too complicated to be solved with linear 

classifiers. With the introduction of kernel techniques, input data could be mapped to 

a higher-dimension space, where a new linear classifier can be used to classify these 

examples (Figure 2-3).  

 

Figure 2-3 Mapping input space to feature space 

 

 

Let Φ  denotes an implicit mapping function from input space to feature space F . 

Then all the previous equations are transformed by substituting input vector ix  and 

inner product ( , )ix x  with ( )ixΦ  and kernel ( , )iK x x  respectively, where 

( , ) ( ) ( )i iK x x x x= Φ ⋅Φ              (15) 
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Equation (13) is then replaced by 

1 1 1

1( , , ) ( )
2

n n n

D i i j i j i j
i i j

L w b y y K x xα α αα
= = =

= − ⋅∑ ∑∑         (16) 

subject to constraints
1

0
n

i i
i

yα
=

=∑  and 0iα ≥ , for 1, 2, ,i n= . The bias 0b  becomes  

 0 { | 1} { | 1}

1 [ ( , )] [ ( , )]
2

min maxi i i i i i
SV SVx y x y

b y K x x y K x xα α
=+ =−

⎧ ⎫= − −⎨ ⎬
⎩ ⎭

∑ ∑      (17) 

and the decision function becomes 

0 0
1

( ) [ ( , ) ] [ ( , ) ]
n n

i i i i i i
i SV

f x sign y K x x b sign y K x x bα α
=

= + = +∑ ∑      (18) 

 

Note that the mapping function Φ  is never explicitly computed, which would 

significantly reduce the computation load. Another advantage is that the feature space 

may be infinitely dimensional, such as in the case of Gaussian kernel [142], where 

mapping function cannot be explicitly represented. A function could be used as a 

kernel function if and only if it satisfies Merce’s conditions [143]. Followings are 

several well-known kernel functions: 

Polynomial ( , ) ( , 1) pk x z x z= < > +  

Sigmoid ( , ) tanh( , )k x z x zκ δ= < > −  

Radial basis function (RBF)  2 2( , ) exp( / 2 )k x z x z σ= − −  

 

In this work, RBF kernel also known as Gaussian kernel is used due to its many 

advantages demonstrated in previous studies [118, 144, 145]. Then SVM models 

developed in this study could be developed by using different σ  values. It is thus 

necessary to scan a number of σ  values to find the best model, which is evaluated 

by their performance on classification tasks. In our work, SVM models withσ value 
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in the range of 1 to 100 were evaluated for each classification task. On the other hand, 

another variable C in SVM model is assigned a value of 10E9. Figure 2-4 illustrates 

the process of training and prediction of protein function by SVM.  

 

Figure 2-4 Schematic diagrams illustrating the process of the training and prediction of 
the functional class of proteins by using SVM. Sequence-derived feature hi, pi, vi … 
represents such structural and physicochemical properties as hydrophobicity, 
polarizability, and volume. Feature di, si, mi, …, represents properties such as domain 
information, subcellular localization, and post-translational (PT) modification profiles 
etc. 
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2.1.2. K-Nearest Neighbors (KNN) 

Nearest neighbor algorithm is one of the most straightforward instance-based learning 

algorithms [125]. The basic idea of nearest neighbor algorithm is to assign an object 

to the class of its nearest neighbor. The k-nearest neighbors (KNN) is an extension of 

this idea, whereas an object is classified by a majority vote of its k neighbors. 

 

In KNN classification, every example is represented by a feature vector in 

n-dimension feature space. Therefore, the distance between every two samples could 

be measured and their neighbors could be identified. According to the class of the 

majority of its neighbors, the class of a test example could be defined (see Figure 2-5). 

Thus two steps are involved in KNN classification: one is to determine the similarity 

between a test example and instances in training data set; the other one is to determine 

the class of the test example based on the classes of its k nearest neighbors.  

Figure 2-5 Example of k-nearest neighbors (squares and triangles represent traing 
samples and the star symbol indicates an unknown sample)  
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Many distance measurements could be used to determine the similarity between two 

examples. Following is a list of some popular ones. 

Minkowsky: 
1/

1
( , ) ( ) ( )

rn r

i j l i l j
l

d x x x xα α
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑  

Manhattan: 
1

( , ) ( ) ( )
n

i j l i l j
l

d x x x xα α
=

= −∑  

Chebychev: 
1

( , ) max ( ) ( )
n

i j l i l ji
d x x x xα α

=
= −  

Euclidean: 
1/ 2

2

1
( , ) [ ( ) ( )]

n

i j l i l j
l

d x x x xα α
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑  

where x denotes an arbitrary instance represented by a feature vector 

1 2{ ( ), ( ), , ( )}nx x xα α α , ( )l xα  denotes the value of the lth attribute of instance x, 

l=1,2,..,n. Based on equations above, the distances between the query instance and all 

the training instances could be readily calculated. 

 

Once the distances are calculated, the k nearest neighbors of a test example could be 

identified, the majority of which will be used to determine the class of the test 

example. As shown in Figure 2-5, all training instances belong to two classes, one 

represented by squares and the other one represented by triangles. If five nearest 

neighbors are taken into consideration, the test sample (black start) should be 

classified into the class as squares, because there are 3 squares but only 2 triangles as 

the nearest neighbors. However, it is never a trivial work to select appropriate number 

of neighbors, namely the value of k. If k is too small, the model may not benefit from 

a large data set, whereas if k is too large, the larger class will overwhelm the smaller 

one. In theory, the value of k should be greater than or equal to one but less than N, 

where N is the size of the entire dataset. Dasarathy found that the ideal value of k is 
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usually less than N [146]. In practice, the value of k is generally estimated by the 

cross validation and can be optimized by many trials on the training and validation 

sets. 

2.1.3. Neural Networks (NN) 

Neural networks (NN), often referred to artificial neural networks, is inspired by 

neuroscience and designed to emulate the central nervous system. A neural network 

consists of an interconnected group of processing information and processing element 

known as artificial neurons using a connectionist approach to computation. Since an 

initial neural network model called perceptrons proposed by Frank Rosenblatt, neural 

networks have been successfully applied in pattern reorganization, drug discovery, 

and modeling the process of expert systems. 

 

A neural network is a two-stage regression or classification model that trains a 

hidden-layer-containing network [144, 145]. A simple neural network (see Figure 2-6) 

could be mathematically represented as 0( ) j j
j

f x g w h= ∑ , where 0 jw  is the output 

weight of a hidden node j to an output node, g is the output function, jh  is the value 

of a hidden layer node ( )j ji j j
j

h w x wδ= +∑ , xj represents input feature vector, jiw is 

the input weight from an input node i to a hidden node j, jw is the threshold weight 

from an input node of value 1 to a hidden node j, and δ is an activation function 

where the sigmoid function 1
1 xy

e−=
+

is mostly used. Other alternative activation 

functions like Gaussian function are also widely used in neural networks, especially in 

probabilistic neural network (PNN) [147].  
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The main advantage of neural networks is that their separable structure is suitable for 

parallel computation, which could reach higher computation speed. However, there 

are still some problems during the practice of neural network. One issue is that 

models generated by neural networks are implicit: they work like a black box, where 

the relationship between input variables and output variables is difficult to formulate. 

Moreover, neural networks tend to overfit their models to training examples, making 

them difficult to be extended to unknown cases. The optimization of large number of 

weight parameters also presents a computationally intensive challenge.  

 

Figure 2-6 Architecture of a simple three-layer neural network 
 

 

 

2.1.4. Decision Tree (DT) 

Decision tree (DT) is a powerful learning algorithm that has been applied to a variety 

of fields. It is simple to construct, efficient in decision making and able to generate 
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human readable and interpretable rules compared with other machine learning 

methods, such as neural networks and support vector machines.  

 

Decision trees classify input instances through generating a series of rules on each 

feature property. The structure of decision tree classifier is similar to a tree, where 

each leaf node represents the target attribute, and each decision node represents some 

tests to be conducted on a specific attribute. Instances are classified starting at the root 

node and sorted down the tree until leaf nodes are reached. Figure 2-7 is an example 

of a decision tree according to the training set of Table 2-1. 

 

Figure 2-7 Example of a decision tree classifier 

 

 

Using the decision tree described in Figure 2-7 as an example, the instance A = m1, 

B= n2, C = m3, would sort to the nodes: A, B, and finally C, which would classify the 

instance as positive.  
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The attractiveness of decision tree is the speed and perspicuity. It could be applied to 

a number of different tasks such as predicting outcomes, classification or when the 

goal is assignment of a query to a few broad categories. One problem with decision 

tree is overfitting. In the original algorithm of decision tree, construction of the tree 

will not stop until all the training examples are classified. However, in many cases, 

noise or erroneous information are inevitable present in the training data, which may 

result in a tree too specific to be applied to unseen examples [148]. There are several 

approaches to alleviate this problem, such as modifying stopping criteria to stop the 

tree generation before leaf nodes are reached, or post-pruning the tree when it is 

finished. These approaches, on the other aspect, however, will inevitably come with 

the sacrifice of training accuracy. Therefore it is important to find a balance between 

the accuracy of classification and the generalization capability for unseen cases.   

Table 2-1 Example of training data for decision tree 

A B C Class
m1 m2 m3 Yes 
m1 m2 n3 Yes 
m1 n2 m3 Yes 
m1 n2 n3 No 
n1 n2 n3 No 

 

2.2. Feature selection  

Feature selection is to select a subset of relevant features for different tasks, while 

removing irrelevant ones. This process is expected to help to build more robust 

models, and make the models more easily to understand and interpret.  

 

A number of feature selection methods have been developed based on different 

strategies. Among these strategies, recursive feature elimination (RFE), has gained 

popularity due to its effectiveness and sensitivity. RFE has been successfully applied 
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in a wide range of biological tasks like cancer gene classification and drug activity 

analysis [149-151].  

 

The central idea of RFE is recursively ranking features. The ranking criterion for 

feature selection can be based on the variation in an objective function upon removing 

each descriptor [152]. It iteratively ranks the contribution of each feature to the 

objective function, and then eliminates those features that do not reach a defined 

threshold. In RFE, ranking criteria is based on the change in objective function of QP 

problem in SVM upon removing each feature. From previous introduction of SVM, 

we know that the objective function is represented by a cost function for the i -th 

feature computed by using the training set. The cost function is minimized under the 

constrain
1

0
n

i i
i

yα
=

=∑  where 0iα ≥ , 1, 2, ,i n= . We then convert cost function into 

following format   

1
2

T TJ H Lα α α= − ,                                              (19) 

where ( , ) ( , )i j i jH i j y y K x x= , K  is the kernel function and L is an l dimensional 

vector (l is the number of proteins in the training set).  

 

For linear case, we have 

( , )i j i jK x x x x= i                  (20) 

When the i -th feature is removed, the effect of removing one feature could be 

deduced as following 

2
2

2

1( ) ( )
2 i

i

JDJ i Dw
w
∂

=
∂

             (21) 

where the change in weight 0i iDw w= −  corresponds to the removal of feature i. 
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In nonlinear case, one assumption should be made that the values of α s will not 

change significantly with removing one feature. Therefore, only ( )H i− , which is 

matrix computed by using the same method as that of matrix H with its i-th 

component removed, needs to be re-computed. Then the resulting ranking criterion is: 

1 1( ) ( )
2 2

T TDJ i H H iα α α α= − −                (22) 

The features with the smallest difference ( )DJ i should be removed iterated until only 

the features with predetermined number are obtained [153]. 

 

2.3. Performance evaluation 

The performance evaluation aims to find out whether an algorithm is able to be 

applied to novel data that have not been used to develop the prediction model, or 

measure the generalization capacity to recognize new examples from the same data 

domain [154]. 

 

In this study, several statistical measurements were explored, including sensitivity 

(SE), specificity (SP), positive prediction value (PPV), and overall prediction 

accuracy (Q). The formulas to calculate these measurements are listed as following   

SE = TP/(TP + FN) 

SP = TN/(TN + FP)  

PPV = TP/(TP + FP)  

Q = (TP + TN)/(TP+TN+FP+FN) 

where TP (true positive), FN (false negative), TN (true negative), and FP (false 

positive) represents correctly predicted positive samples, positive samples incorrectly 
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predicted as negative, correctly predicted negative samples, and negative samples 

incorrectly predicted as positive respectively. Another measurement, Matthews 

correlation coefficient (MCC) was also used to evaluate the randomness of the 

prediction. MCC is defined as following  

))()()((/)( FNTNFPTNFPTPFNTPFNFPTNTPMCC ++++×−×=  

where MCC is within the range of -1 to 1. Negative values of MCC indicate the 

disagreement between prediction and measurement, while positive values of MCC 

indicate the agreement between prediction and measurement. A zero value means the 

prediction is no better than random guess.  

 

2.4. Construction of feature vectors 

2.4.1. Protein feature vectors 

As most machine learning methods could only accept numerical vectors instead of 

protein sequences, it is essential to convert proteins sequences into numerical vectors 

in order to employ the power of machine learning to classify proteins. The 

construction of feature vector for each protein is based on the formula used for the 

prediction of protein functional classes [155-157] and protein-protein interactions 

[136]. Each feature vector is constructed from the encoded representations of 

tabulated residue properties including amino acid composition, hydrophobicity, 

normalized Van der Waals volume, polarity, polarizability, charge, surface tension, 

secondary structure and solvent accessibility [136, 158].  

 

For each of these properties, amino acids are divided into three groups such that those 

in a particular group are regarded to have the same property. For instance, amino 
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acids can be divided into hydrophobic (CVLIMFW), neutral (GASTPHY), and polar 

(RKEDQN) groups. The groupings of amino acids for each of the properties are given 

in Table 2-2. Three descriptors, composition (C), transition (T), and distribution (D), 

are used to describe global composition of each of the properties. C is the number of 

amino acids of a particular property (such as hydrophobicity) divided by the total 

number of amino acids in a protein sequence. T characterizes the percent frequency 

with which amino acids of a particular property is followed by amino acids of a 

different property. D measures the chain length within which the first, 25%, 50%, 

75% and 100% of the amino acids of a particular property is located respectively.  

 

Overall, there are 21 elements representing these three descriptors: 3 for C, 3 for T 

and 15 for D [136, 158]. The feature vector of a protein is constructed by combining 

the 21 elements of all of these properties and the 20 elements of amino acid 

composition in sequential order. In this study, totally 188 elements are used as feature 

vector for each protein shown in Table 2-3. The following is a hypothetical protein 

sequence AEAAAEAEEAAAAAEAEEEAAEEAEEEAAE, as shown in Figure 2-8, 

which has 16 alanines (n1=16) and 14 glutamic acids (n2=14). The composition for 

these two amino acids are n1×100.00/(n1+n2)=53.33 and n2×100.00/(n1+n2)=46.67 

respectively. There are 15 transitions from A to E or from E to A in this sequence and 

the percent frequency of these transitions is (15/29)×100.00=51.72. The first, 25%, 

50%, 75% and 100% of alanines are located within the first 1, 5, 12, 20, and 29 

residues respectively. The D descriptor for alanines is thus 1/30 ×100.00=3.33, 

5/30×100.00=16.67, 12/30×100.00=40.0, 20/30×100.00=66.67, 29/30×100.00=96.67. 

Likewise, the D descriptor for glutamic is 6.67, 26.67, 60.0, 76.67, and 100.0. Overall, 

the amino acid composition descriptors for this sequence are C=(53.33, 46.67), 
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T=(51.72), and D=(3.33, 16.67, 40.0, 66.67, 96.67, 6.67, 26.67, 60.0, 76.67, 100.0) 

respectively. Descriptors for other properties can be computed by a similar procedure. 

Table 2-4 gives the computed descriptors of the cellular tumor antigen p53 

(Swiss-Prot AC P04637). The feature vector of a protein is constructed by combining 

all of the descriptors in sequential order. 

Table 2-2 Division of amino acids into 3 different groups by different physicochemical 
properties 

Property  Group 1 Group 2 Group 3 
Type Polar Neutral  Hydrophobic 

Hydrophobicity 
Amino acids RKEDQN GASTPHY CVLUMFW 
Value 0~2.78 2.95~4.0 4.43~8.08 Van der Waals 

volume Amino acids  GASCTPD NVEQIL MHKFRYW 
Value 0~0.456 0.6~0.696 0.792~1.0 

Polarity 
Amino acids  LIFWCMVY PATGS HQRKNED 
Value 0~0.108 0.128~0.186 0.219~0.409 

Polarizability 
Amino acids  GASDT CPNVEQIL KMHFRYW 
Type Positive Neutral Negative 

Charge 
Amino acids  KR ANCQGHILMFPSTWYV DE 
Value -0.20~0.16 -0.3~ -0.52 -0.98~ -2.46 

Surface tension 
Amino acids  GQDNAHR KTSEC ILMFPWYV 
Type Helix Strand Coil Secondary 

structure Amino acids  EALMQKRH VIYCWFT GNPSD 
Type Buried Exposed Intermediate Solvent 

accessibility Amino acids  ALFCGIVW RKQEND MPSTHY 
 
Table 2-3 List of features for proteins 

Feature Description Number of 
Dimensions 

Amino acid composition 20 
Hydrophobicity 21 
Van der Waals volume 21 
Polarity 21 
Polarizability 21 
Charge 21 
Surface tension 21 
Secondary structure 21 
Solvent accessibility 21 
Total 188 
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Table 2-4 Characteristic descriptors of cellular tumor antigen p53 (Swiss-Prot AC 
P04637). The feature vector of this protein is constructed by combining all of the 
descriptors in sequential order. 

Property Elements of Descriptors 
A C D E F G H I K L 
6.11 2.54 5.09 7.63 2.80 5.85 3.05 2.04 5.09 8.14
M N P Q R S T V W Y 

Amino acid 
composition 

3.05 3.56 11.45 3.82 6.62 9.67 5.60 4.58 1.02 2.29
31.81 44.02 24.17 26.02 16.58 19.39 0.51 33.33 58.02 81.17
100.0 1.02 22.39 43.26 74.55 99.75 0.25 24.68 46.31 65.39Hydrophobicity 
97.96  
46.31 29.77 23.92 23.98 17.10 14.29 1.02 20.87 42.24 70.74
100.0 0.51 24.68 51.14 72.77 98.73 0.25 34.10 59.29 81.68Van der waals 

volume 
98.22  
26.46 38.68 34.86 18.62 19.90 24.23 0.25 27.74 47.84 64.89
97.96 1.02 21.12 39.44 74.55 99.75 0.51 34.61 58.02 81.17Polarity 
100.0  
32.32 43.77 23.92 28.57 13.52 17.86 1.53 22.40 46.82 76.84
100.0 0.51 19.59 48.35 69.97 99.24 0.25 34.10 59.29 81.68Polarizability 
98.22  
11.70 75.57 12.72 16.07 2.30 18.37 6.11 44.27 71.76 85.24
98.22 0.25 23.66 45.55 69.97 99.74 0.51 12.98 52.67 74.81Charge 
100.0  
34.10 30.53 35.37 19.90 25.77 20.92 1.27 27.99 52.67 75.57
100.0 0.51 30.02 57.76 79.90 99.75 0.25 18.58 40.71 64.63Surface tension 
99.24  
43.51 20.87 35.62 17.86 27.30 11.22 0.25 25.70 51.40 81.17
98.73 2.54 31.04 46.31 63.87 98.47 1.02 20.36 47.58 74.55Secondary 

structure 
100.0  
33.08 31.81 35.11 22.45 25.0 20.15 2.54 24.68 47.84 69.72
98.98 0.51 33.33 58.02 81.17 100.0 0.25 22.14 43.00 68.45Solvent 

accessibility 
99.75  

 

Figure 2-8 The sequence of a hypothetical protein for illustration of derivation of the 
feature vector* 
 

 
*Sequence index indicates the position of an amino acid in the sequence. The index for each type of amino acids in 
the sequence (A or E) indicates the position of the first, second, third, … of that type of amino acid (The position 
of the first, second, third, …, A is at 1, 3, 4, …). A/E transition indicates the position of AE or EA pairs in the 
sequence. 
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2.4.2. MiRNA feature vectors 

The construction of feature vectors for miRNAs in this work was based on different 

kinds of physicochemical properties of nucleotides, including molecular weight, 

surface area, inter-base hydrogen bonds donor (IHD) and acceptor (IHA), dipole 

moment, polarizability and hydrogen bonds on the side. Three descriptors, 

composition (C), transition (T), and distribution (D), similar to those for protein 

features, are used to describe global composition of each of the properties. 

 

In order to calculate each group of properties, nucleotides are divided into distinct 

groups, each of which is expected to have the same property. Table 2-5 shows the 

grouping of nucleotides in according to their different physicochemical properties. 

The feature vectors of miRNAs are constructed by combining all of the descriptors in 

sequential order. Totally 115 elements are included in the feature vector for each 

miRNA as listed in Table 2-6. An example of computed descriptors of miRNA 

precursor (cel-mir-243) is shown in Table 2-7. 

 

Table 2-5 Division of nucleotides into different groups for different physicochemical 
properties 

Descriptors Group 1 Group 2 Group 3 

Molecular Weight* A (491.2) 
G (507.2) 

C (467.2) 
T (482.2)  

Solvent accessibility[159] * A (213.66)  
T( 212.67) C (195.84) G (236.76) 

Interbase H-bonds donator 
(IHD), Interbase H-bonds 
accepter (IHA) 

A, T C G 

Dipole moment[160]* G (6.82), C (6.90) A (2.68) 
T (4.53) - 

Polarizability*[160] A (88.4), G (91.8) T (75.8), C 
(69.5) - 

H-bonds on the side A, C T,G - 
* The property value of each nucleotide is shown in parentheses.  
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Table 2-6 List of features for miRNA 

Feature Description Number of 
Dimensions 

nucleotide composition 4 
nucleotide distribution 20 
nucleotide transition 16 
polarizability and molecular weight 16 
dipole moment 16 
hydrogen bonds on the side 16 
solvent accessibility and IHD and IHA 27 
Total 115 

 

Table 2-7 Example of computed descriptors of miRNA precursor (cel-mir-243). The 
feature vector of this precursor is constructed by combining all the descriptors in 
sequential order. 

Property Elements of Descriptors 
A G C U       Nucleotide 

composition 22.45 27.55 23.47 26.53       
6.12 21.43 52.04 80.61 100.0 2.04 29.59 64.29 78.57 98.98 Nucleotide 

distribution 5.10 23.47 44.90 62.24 90.82 1.02 22.45 43.88 70.41 96.94 
1.02 3.06 7.14 10.20 7.14 7.14 6.12 7.14 5.10 12.24 Nucleotide 

transition 2.04 4.08 9.18 5.10 8.16 4.08     
50.00 50.00 18.37 30.61 31.63 18.37 2.04 27.55 58.16 79.59 Polarizability and 

molecular weight 100.00 1.02 22.45 44.90 67.35 96.94     
51.02 48.98 27.55 23.47 23.47 24.49 2.04 27.55 48.98 75.51 Dipole moment 98.98 1.02 21.43 50.00 70.41 100.0     
45.92 54.08 15.31 29.59 30.61 23.47 5.10 21.43 48.98 69.39 Hydrogen bonds 

on the side 100.00 1.02 26.53 55.10 78.57 98.98     
23.47 27.55 48.98 2.04 12.24 9.18 6.12 7.14 14.29 15.31 
8.16 24.49 5.10 23.47 44.90 62.24 90.82 2.04 29.59 64.29 

Solvent 
accessibility and 
IHD and IHA 78.57 98.98 1.02 21.43 50.00 70.41 100.0    
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3. In silico search and characterization of 

multifunctional enzymes 

As introduced in the first chapter, multifunctional enzymes (MFEs) are enzymes that 

perform multiple functions. Characterization and identification of MFEs are critical 

for better understanding of molecular mechanisms underlying the crosstalk between 

different cellular processes. As an alternative approach, support vector machine (SVM) 

has been successfully applied for predicting different functional classes of proteins 

from their amino acid sequences with accuracies of 60.6%~97.8% [156, 157, 161]. It 

is thus expected that SVM might be equally applicable for the identification of MFEs. 

In this study, SVM was applied for the identification of MFEs from their primary 

sequences. We also analyzed the pathway, structure, and orthologs of MFEs. 

 

3.1. Selection of MFEs and non-MFEs 

A total of 3,120 MFEs were derived from a comprehensive search of Swiss-Prot 

database [162] using keyword “multifunctional enzyme” followed by manual check 

that each MFE performs at least two different kinds of catalytic activities as annotated 

in the database. They were further divided into two independent classes of positive 

datasets for model construction: MFEs with multiple catalytic domains (MCD-MFEs) 

(2,551 proteins) and MFEs with single multi-activity domain (SMAD-MFEs) (537 

proteins). The non-MFE proteins (NMFEPs), including non-enzymatic proteins and 

non-MFE enzymes, were selected from seed proteins of the domain families in Pfam 

database [163] excluding those that contain at least one MFE. Totally, 21,833 

NMFEPs were generated as the negative dataset. All these sequences were then 

converted into numerical vectors as described in last chapter.  
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These positive and negative datasets were divided into separate training, testing and 

independent evaluation sets by the following procedure: First, proteins were clustered 

into groups based on their distance in the structural and physicochemical 

feature-space by using the hierarchical clustering method. In the feature space, more 

homologous sequences will have shorter distance between them and an upper-limit of 

the largest separation of 20 was used for each cluster. One representative protein was 

randomly selected from each group to form a training set that is sufficiently diverse 

and broadly distributed in the feature space. One or up to 50% of the remaining 

proteins in each group were randomly selected to form the testing set. The selected 

proteins from each group were further checked to ensure that they are distinguished 

from the proteins in other groups. The remaining proteins were then designated as the 

independent evaluation set, which was also found in a reasonable level of diversity. 

Fragments of smaller than 50 residues were discarded. The statistics of the members 

and non-members in each dataset of MFE classes were given in Table 3-1.  

Table 3-1 Statistics of the datasets and prediction accuracy of individual class of MFE 
and that of all MFEs (б=21) 

Training set Testing set Independent evaluation set 
positive negative positive negative MFE 

Classes positive negative TP FN TN FP TP FN SE 
(%) TN FP SP 

(%) 

PPV 
(%) Q(%) 

All 
MFEs 1221 3897 1564 13 15435 16 303 19 94.1 2461 24 99.0 92.6 98.5 

MCD-
MFEs 918 2354 1342 13 16984 10 256 22 92.1 2474 11 99.6 95.9 99.8 

SMAD
-MFEs 263 1653 212 4 17694 1 54 4 93.1 2483 2 99.9 96.4 99.7 
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3.2. Evaluation and discussion 

3.2.1. Structural preference of MFEs  

Proteins perform their functions through structural and functional defined regions 

called domains. Knowledge of domain composition is able to provide valuable 

insights into the mechanism of MFEs. In this work, the domain composition of MFEs 

was investigated statistically against the Pfam database [163]. The distribution of top 

10 Pfam domains in two classes of MFEs was shown in Figure 3-1 and Figure 3-2 

respectively. The most abundant domain among SMAD-MFEs is ArgJ domain (Pfam 

ID: PF01960), which plays key role in both N-acetylglutamate synthase (EC 2.3.1.1) 

and ornithine acetyltransferase (EC 2.3.1.35) activities in the cyclic version of 

arginine biosynthesis [164]. Investigation of the structure of ArgJ domain indicates 

that the complete active-site is defined by some disconnected residues and potentially 

the protein C-terminus. “It is possible that the movement of the C-terminus in and out 

of the active site enables ArgJ to accept two different substrates by altering the 

substrate specificity of the binding pocket” [165]. Moreover, a number of eukaryotes 

enzymes contain both tetrahydrofolate dehydrogenase/cyclohydrolase 

NAD(P)-binding domain (PF02882) and catalytic domain (PF00763), which are also 

present separately in many prokaryotic single-function enzymes [166]. This indicates 

the emergence of gene fusion between these two ancient domains; they merged 

sometime during the evolution as a new protein performing double physiological 

functions under different conditions. 

 

Enzymes with different functions may share the same fold. To have an overview of 

their structural propensities, the distribution of MFEs in SCOP fold [167] was 
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investigated. As illustrated in Figure 3-3, 42% of MCD-MFEs and 69% of 

SMAD-MFEs are found to belong to alpha and beta protein class (a/b), contrast to 

about 10% of enzymes contain such fold (a/b) in nature. Previous studies indicated 

that the alpha and beta enzymes may have diverged from a common ancestor [168, 

169], which suggested that MFEs may have common evolutionary origin, while the 

alpha and beta fold topology is favored to preserve their multiple catalytic activities.  

 

Figure 3-1 Top 10 Pfam families for known enzymes of single multi-catalytic domain 
(SMAD-MFEs). It is noted that about 38% of SMAD-MFEs contain ArgJ domain, and 
majority of them are involved in Urea cycle and metabolism of amino groups pathway 
(amino acid metabolism map00220). 

 

 

Figure 3-2 Top 10 Pfam families of known enzymes of multiple catalytic domains 
(MCD-MFEs) 
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Figure 3-3 Distribution of known and predicted putative MFEs (enzymes of single 
multi-catalytic domain SMAD-MFEs, enzymes of multiple catalytic domains 
MCD-MFEs) in SCOP fold families. It is noted that 42% of MCD-MFEs and 69% of 
SMAD-MFEs belong to the alpha and beta fold class (a/b).  

 

 

3.2.2. Characteristics of MFEs from pathway and evolution 

perspective 

Biological pathways are networks of molecular interactions, which could provide 

valuable information of complex cellular reactions from molecular level. MFEs are 

believed to be involved in different biological pathways due to their multiple 

functionalities. To have an overview of the physiological preference of MFEs, 

statistics were demonstrated to investigate the distribution of MFEs in KEGG 

pathway database release 44.0 [170]. The physiological annotation of MFEs was 

acquired from the KEGG ontology (KO) annotation release 2007-08-17 by the 

cross-links between KEGG and the UniProt protein knowledgebase. To automate the 

searching and retrieving, a Perl script was programmed. 
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For 1,578 currently known MFEs with KEGG pathway information, nearly half of 

them, including 48.7% of currently known MCD-MFEs (630 out of 1,293 proteins) 

and 54% of SMCD-MFEs (154 out of 285 proteins), are involved in only one 

biological pathway (Figure 3-4). It suggests that MCD-MFEs integrate their functions 

together to accomplish a complicated metabolism step that might need several 

independent enzyme-catalyzed steps in the primitive pathway. About 38.9%, 5.34%, 

1.16%, 5.88% of MCD-MFEs and about 10.9%, 13.3%, 3.51%, and 18.2% of 

SMAD-MFEs participate in two, three, four and five distinct pathways respectively 

(Figure 3-4). These enzymes with different physiological roles are difficult to 

characterize using traditional experimental or homology-based methods; however, 

they can be properly probed by some learning algorithms like support vector 

machines adopted in present study. It is interesting that multiple functionalities of 

some MFEs are not well conserved across species. For example, bifunctional protein 

folD in Escherichia coli participates in glyoxylate and dicarboxylate metabolism 

(KEGG: map00630) as well as one carbon pool by folate pathway (KEGG: 

map00670). However, bifunctional protein folD in Mycoplasma synoviae just 

participates in one carbon pool by folate pathway (KEGG: map00670). Similar 

phenomena can be observed in bifunctional protein glum, bifunctional 

aminoacyl-tRNA synthetase, and etc. The loss of multiple functionalities of MFEs in 

some species is either an evolutionary phenomenon, or it may suggest potential 

unknown mechanism of the functional regulation of MFEs.  

 

The classification of MFEs according to their KEGG ontology (KO) annotation 

indicates that MCD-MFEs are involved in 4 level one, 17 level two, and 74 level three 

pathways (Figure 3-5); while SMAD-MFEs are involved in 3 level one, 10 level two 
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and 52 level three pathways (Figure 3-6). Almost all MFEs (99.5%) are involved in 

metabolism pathways, majority of which are carbohydrate metabolism (CAR, KEGG: 

map01110), lipid metabolism (LIP, KEGG: map01130), nucleotide metabolism (NUC, 

KEGG: map01140), amino acid metabolism (AAC, KEGG: map01150) and 

metabolism of cofactors and vitamins (COF, KEGG: map01190). Previous studies 

found that CAR, LIP, NUC and AAC are ancestral and part of early enzymatic burst 

from phylogenic analysis of protein architecture [171]. Furthermore, about 25% of 

MCD-MFEs, which are involved in two pathways, glyoxylate and dicarboxylate 

metabolism (CAR, KEGG: map00630) and one carbon pool by folate (COF, KEGG: 

map00670), contain both tetrahydrofolate dehydrogenase/cyclohydrolase NAD 

(P)-binding domain and catalytic domain. The conservation of MFEs in those 

essential cellular processes like carbohydrate metabolism, nucleotide metabolism and 

amino acid metabolism infer the critical roles of MFEs in the origin and evolution of 

life forms.  

 

In addition, MFEs are not evenly distributed in organisms. In this work, the 

orthologous proteins of MFEs were primarily identified by blasting the MFE protein 

sequences against the NCBI Clustering of Orthologous Groups (COGs) [172, 173]. A 

Perl script was coded to automatically BLAST [106] orthologous proteins of MFEs 

from local COG database downloaded from ftp://ftp.ncbi.nih.gov/pub/COG/COG/.  

A similarity E-value of 1.0e-7 was adopted as threshold to ensure maximum inclusion 

of proteins that have a homolog.  

 

The result seems that bacteria have more MFEs than eukaryotes and archaeabacteria 

with current knowledge (Figure 3-7 Table 3-2, and Table 3-3). The dominance of 
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bacteria is significant in both known and predicted MCD-MFEs, which is not only 

shown in the total number of MFEs, but also the average number in each organism. 

For known SMAD-MFEs, eukaryotic organisms tend to possess more MFEs. 

However, no significant difference could be found across organisms (Table 3-2 and 

Table 3-3). In addition, MFEs orthologs in S. cerevisiae and H. sapiens were searched 

and compared. As shown in Table 3-4, 60 MFEs of H. sapiens and 37 MFEs of S. 

cerevisiae were found to possess COGs. Comparing these COGs, 36.7% (22 out of 60) 

MFEs in H. sapiens had their orthologs in S. cerevisiae, meanwhile 56.8% (21 out of 

37) MFEs in S. cerevisiae had their orthologs in H. sapiens. This may implicate that 

MFEs are well preserved although some may be lost or gained during evolution. 

 

Figure 3-4 Statistics of known MFEs according to the number of biological pathways 
they anticipated in. Totally 1,293 known enzymes of multiple catalytic domains 
(MCD-MFEs) and 285 known enzymes of single multi-catalytic domain (SMAD-MFEs) 
were employed in this study. 
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Figure 3-5 Statistics of known and predicted enzymes of multiple catalytic domains 
(MCD-MFEs) with KEGG ontology (KO). MCD-MFEs are involved in 4 level one, 17 
level two, and 74 level three pathways. Majority of them anticipate in carbohydrate 
metabolism (CAR), lipid metabolism (LIP), nucleotide metabolism (NUC), amino acid 
metabolism (AAC) and metabolism of cofactors and vitamins (COF). Number with “*” 
denotes the number of predicted MCD-MFEs.  
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Figure 3-6 Statistics of known enzymes of single multi-catalytic domains (SMAD-MFEs) 
in KEGG ontology (KO). SMAD-MFEs are involved in 3 level one, 10 level two and 52 
level three pathways. Majority of them anticipate in the carbohydrate metabolism 
(CAR), amino acid metabolism (AAC) and metabolism of cofactors and vitamins (COF). 
Number with “*” denotes the number of predicted SMAD-MFEs.  
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Figure 3-7 Distribution of MFEs in different kingdoms. Totally, 2,551 known enzymes of 
multiple catalytic domains (MCD-MFEs), 4,075 predicted MCD-MFEs, 537 known 
enzymes of single multi-catalytic domain (SMAD-MFEs), and 245 predicted 
SMAD-MFEs were included in the statistics. It is noted the dominance of bacteria in 
both known and predicted MCD-MFEs and SMAD-MFEs in total enzyme number. 
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Table 3-2 Distribution of known and predicted enzymes of multiple catalytic domains in different kingdoms and in top 20 host species. Not all protein 
sequences studied in this work are included because the host species information of some protein sequences is not yet available in the protein sequence 
databases. 

Known enzymes of multiple catalytic domains Predicted potential enzymes of multiple catalytic domains
 

Kingdom or species No. of 
enzymes 

Mean of each 
kingdom Kingdom or species No. of  

enzymes 
Mean of each 

kingdom 
Archaea 41 2.1 Archaea 150 4.1 

Bacteria 1894 4.5 Bacteria 3102 6.4 

Eukaryota 373 4.3 Eukaryota 739 3.4 

MFEs 
distribution in 

kingdom 
Viridae 243 1.0 Viridae 84 1.0 

Saccharomyces 
cerevisiae 66 Homo sapiens 65 

Homo sapiens 53 Mus musculus 53 

Escherichia coli 38 Rattus norvegicus 50 

Mus musculus 37 Escherichia coli 45 

Bacillus subtilis 26 Bacillus subtilis 44 

Haemophilus influenzae 24 Arabidopsis thaliana 39 

Rattus norvegicus 22 Saccharomyces cerevisiae 35 

Salmonella typhimurium 21 Mycobacterium 
tuberculosis 35 

Escherichia coli 
O157:H7 21 Mycobacterium bovis 31 

Escherichia coli O6 18 Bacillus halodurans 31 

Pseudomonas 
aeruginosa 18 Mycobacterium leprae 30 

Shigella flexneri 17 Haemophilus influenzae 28 

Vibrio cholerae 17 Escherichia coli O157:H7 27 

MFEs 
distribution in 
top 20 species 

Salmonella typhi 16 Rhizobium meliloti 27 
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Table 3-3 Distribution of known and predicted enzymes with single multi-catalytic domain in different kingdoms and in top 20 host species 

Known enzymes of single multi-catalytic domain Predicted potential enzymes of single multi-catalytic domain 
 

Kingdom or species No. of 
enzymes 

Mean of each 
kingdom Kingdom or species No. of  enzymes Mean of each 

kingdom 
Archaea 43 1.7 Archaea 18 1.5 

Bacteria 274 1.4 Bacteria 145 1.3 

Eukaryota 139 2.8 Eukaryota 66 1.2 
MFEs distribution 

in kingdom 

Viridae 81 1.1 Viridae 16 1.3 

Mus musculus 17 Arabidopsis thaliana 5 

Homo sapiens 17 Haemophilus influenzae 4 

Arabidopsis thaliana 15 Thermoplasma volcanium 4 

Escherichia coli 12 Mycobacterium 
tuberculosis 3 

Rattus norvegicus 9 Mycobacterium bovis 3 

Saccharomyces 
cerevisiae 8 Saccharomyces cerevisiae 3 

Distribution of 
MFEs in top 20 

species 

Bos taurus 7 Corynebacterium efficiens 3 

Schizosaccharomyces 
pombe 15 Salmonella typhimurium 26 

Vibrio parahaemolyticus 15 Vibrio parahaemolyticus 23 

Mycobacterium 
tuberculosis 15 Escherichia coli O6 22 

Vibrio vulnificus 15 Pasteurella multocida 22 

Bos taurus 14 Vibrio cholerae 22 

Synechocystis sp. (strain 
PCC 6803) 14 Pseudomonas putida 

(strain KT2440) 22 
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Escherichia coli 
O157:H7 6 Bradyrhizobium 

japonicum 3 

Pongo pygmaeus 5 Chlamydia pneumoniae 3 

Salmonella typhimurium 5 
Buchnera aphidicola 

(subsp. Acyrthosiphon 
pisum) 

2 

Neurospora crassa 4 Escherichia coli 2 

Mycobacterium bovis 4 Brucella suis 2 

Pasteurella multocida 4 Brucella melitensis 2 

Mycobacterium 
tuberculosis 4 

Buchnera aphidicola 
(subsp. Schizaphis 

graminum) 
2 

Methanococcus 
jannaschii 4 Pseudomonas aeruginosa 2 

Thermoplasma 
volcanium 3 Synechocystis sp. (strain 

PCC 6803) 2 

Escherichia coli O6 3 Thermoplasma 
acidophilum 2 

Thermoplasma 
acidophilum 3 Mus musculus 2 

Pseudomonas 
aeruginosa 3 Bos taurus 2 

Salmonella typhi 3 Salmonella typhimurium 2 
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Table 3-4 Orthologs of multifunctional enzymes (MFEs) in S. cerevisiae and H. sapiens species. 
36.7% (22 out of 60) MFEs in H. sapiens had their orthologs in S. cerevisiae, while 56.8% (21 out 
of 37) MFEs in S. cerevisiae had their orthologs in H. sapiens. 

orthologs of MFEs in H. sapiens orthologs of MFEs in S. cerevisiae 
Entry Name OCG number Entry Name OCG number 

3BHS1_HUMAN COG1088 COG0451 ARG56_YEAST COG0548 COG0002 
3BHS2_HUMAN COG0451 ARGJ_YEAST COG1364 

AADAT_HUMAN COG1167 ARO1_YEAST COG0128 COG0337 
AASS_HUMAN COG1748 BPL1_YEAST COG0340 COG4285 
AMD_HUMAN COG3391 C1TC_YEAST COG2759 

BLVRB_HUMAN COG0702 C1TM_YEAST COG0190 COG2759 

BPL1_HUMAN COG0340 COAC_YEAST COG0439 COG4799 
COG0511 

C1TC_HUMAN COG2759 DUR1_YEAST COG0439 COG0154 
COG1984 

COA1_HUMAN COG0439 COG4799 EPT1_YEAST COG5050 
COA2_HUMAN COG0439 COG4799 FAS_YEAST COG0294 

COASY_HUMAN COG1019 COG0237 FAS1_YEAST COG0331 COG4981 
ECHA_HUMAN COG1250 FAS2_YEAST COG4982 COG0304 
ECHP_HUMAN COG1250 FDFT_YEAST COG1562 
ENPP1_HUMAN COG1524 FOX2_YEAST COG1028 
ENPP3_HUMAN COG1524 GAL10_YEAST COG2017 COG1087 
ERN1_HUMAN COG0515 GDE_YEAST COG3408 COG0366 
ERN2_HUMAN COG0515 GGPPS_YEAST COG0142 

F261_HUMAN COG0406 HFA1_YEAST COG0439 COG4799 
COG0511 

F262_HUMAN COG0406 HIS2_YEAST COG0141 
F263_HUMAN COG0406 HIS5_YEAST COG0107 
F264_HUMAN COG0406 IRE1_YEAST COG0515 
FAS_HUMAN COG3321 LKHA4_YEAST COG0308 
FCL_HUMAN COG0451 MET17_YEAST COG2873 

FDFT_HUMAN COG1562 NPP1_YEAST COG1524 
FOLH1_HUMAN COG2234 NPP2_YEAST COG1524 
FTCD_HUMAN COG3643 OGG1_YEAST COG0122 
G6PE_HUMAN COG0364 PABS_YEAST COG0147 
GDE_HUMAN COG3408 PUR2_YEAST COG0150 COG0151 

GEPH_HUMAN COG0303 PUR91_YEAST COG0138 
GGPPS_HUMAN COG0142 PUR92_YEAST COG0138 
GLCNE_HUMAN COG1940 COG0381 PYC1_YEAST COG1038 
LKHA4_HUMAN COG0308 PYC2_YEAST COG1038 

MAAI_HUMAN COG0625 PYR1_YEAST COG0458 COG0505 
COG0540 COG0044 

MCE1_HUMAN COG5226 THI6_YEAST COG0352 
MGA_HUMAN COG1501 TRNL_YEAST COG5324 

MTDC_HUMAN COG0190 TRPG_YEAST COG0512 
NALD2_HUMAN COG2234 YL345_YEAST COG0406 
NALDL_HUMAN COG2234 POK5_HUMAN COG2801 
NCOAT_HUMAN COG0454 POK6_HUMAN COG2801 
NTHL1_HUMAN COG0177 PRDX6_HUMAN COG0450 
OGG1_HUMAN COG0122 PUR2_HUMAN COG0150 COG0151 
P5CS_HUMAN COG0014 PUR6_HUMAN COG0152 

PAPS1_HUMAN COG0529 PUR9_HUMAN COG0138 
PAPS2_HUMAN COG0529 PYC_HUMAN COG1038 
PNKP_HUMAN COG0241 PYR1_HUMAN COG0458 
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POK10_HUMAN COG2801 PYR5_HUMAN COG0284 
POK17_HUMAN COG2801 SUIS_HUMAN COG1501 
POK2_HUMAN COG2801 SYEP_HUMAN COG0008 COG0442 
POK20_HUMAN COG2801   

 

3.2.3. Identification of novel MFEs 

Identification of novel MFEs is one of the best ways for understanding of multiple 

functionalities of enzymes; unfortunately, traditional experimental approaches or in 

silico homology-based methods have difficulties in proper and efficient identification 

of novel MFEs due to the variety of primary protein sequences. In present study, a 

SVM model was trained and optimized in an enriched way, which has been described 

previously [174]. The model was further evaluated independently by 322 positive and 

2,481 negative data, achieving sensitivity of 94.1%, specificity of 99.0%, positive 

prediction accuracy of 92.6% and overall accuracy of 98.5% (Table 3-1). The model 

was then applied to screen the ExPASy Enzyme database for the identification of 

novel MFEs. 

 

Overall, 2,641 novel MFEs with probability (the confidence of the prediction) >80% 

(4,320 with probability >50%) were identified from 91,140 enzymes of ExPASy 

Enzyme database, excluding 2,806 known MFEs. Among these novel MFEs, 126 

MFEs contain single multi-activity domain, whereas 2,515 MFEs contain at least two 

catalytic domains (Figure 3-8). The complete list of known and predicted MFEs is 

searchable at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm.  
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Figure 3-8 Statistics of currently known MFEs and predicted MFEs by screening the 
ExPASy Enzyme database. Totally there are 3,120 currently known MFEs, including 
2,279 enzymes of multiple catalytic domains (MCD-MFEs), 572 known enzymes of single 
multi-catalytic domain (SMAD-MFEs). Totally, 2,641 novel MFEs with prediction 
probability >50% (4,320 with probability >80%), including 2,515 MCD-MFEs (4,075 
with probability >80%) and 126 SMAD-MFEs (245 with probability >80%) were 
identified from 91,140 enzymes of ExPASy Enzyme database 

 
 
 

3.2.4. Contribution of physicochemical properties in the 

classification of MFEs 

Not all enzymes of the same function have similar structural and chemical features. 

There are cases in which different functional groups, un-conserved with respect to 

position in the sequence, mediate the same mechanistic role, due to the flexibility at 

the active site [175]. This plasticity is unlikely to be sufficiently described by 

commonly used structural and physicochemical features. Therefore, the recognition of 

features that properly describe this plasticity may further improve the accuracy of 

identification of MFEs by statistical learning methods like SVM and artificial neural 

networks. In this work, a total of nine feature properties were used to describe 

physicochemical characteristics of each protein, which have been routinely used for 
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the prediction of proteins of different structural and functional classes [116, 136, 158, 

176-178]. It was acknowledged that not all these feature vectors contribute equally to 

the classification of proteins; some have been found to play relatively more prominent 

role than others in specific aspects of proteins [176]. It is thus of interest to examine 

which feature properties play more prominent role in the characterization of MFEs.  

 

In an earlier study, contribution of individual feature property to protein classification 

was investigated by separately conducting classification using each feature property 

[176]. Similar approach was employed in present study. It was found that the charge, 

polarizability, hydrophobicity, and solvent accessibility play more prominent role 

than other feature properties. Previous studies found that some MFEs, i.e. 

ADP-ribosyl cyclase and CD38 can switch functions at different pH, indicating the 

importance of polarity, charge distribution and solvent accessibility in determining 

their multifunctionality [179]. Multiple protein-interacting modules of some MFEs, i.e. 

High-voltage-activated Ca2+ channels, involve in hydrophobic interactions [180]. 

Some MFEs, i.e. neuronal nitric oxide synthase, have large solvent-exposed 

hydrophobic surface that contains a cavity rimmed with charges [181]. Therefore, 

sequence features we used in this study seem to be reasonable to catch underlying 

common characteristics of MFEs. 

 

3.3. Server for identification of multifunctional enzyme (SIME) 

Server for identification of multifunctional enzyme (SIME), is a web-server that uses 

SVM for predicting multifunctional enzyme with multiple catalytic domain or with 

single catalytic domain based on sequence-derived structural and physicochemical 

properties. SIME could be accessed at http://jing.cz3.nus.edu.sg/cgi-bin/sime.cgi 
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(Figure 3-9). The sequence of a protein, in RAW format and containing no non-amino 

acid letters, can be input in a window provided. The average computing time is about 

5 seconds for a typical protein and the computed result is displayed in a separate 

window. If the input protein is provided to SIME, the result page would show the 

length of the query sequence and whether it is predicted to be a multifunctional 

enzyme with multiple catalytic domains or with single catalytic domain (Figure 3-10a, 

Figure 3-10b, Figure 3-10c). If the input sequence contains invalid character or 

abnormal composition such as long stretch of consecutive single letters, then an error 

message of “Your input sequence is not a valid sequence” will be prompted. 

Figure 3-9 SIME interface. The sequence of a protein, in RAW format and containing 
no non-amino acid letters, can be input in a window provided. 
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Figure 3-10a Result page of SIME showing that a query sequence is predicted as a 
multifunctional enzyme with multiple catalytic domain 

 

 

Figure 3-10b Result page of SIME showing that a query sequence is predicted as a 
multifunctional enzyme with single catalytic domain 
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Figure 3-10c Result page of SIME showing that a query sequence is predicted as non 
multifunctional enzyme 

 

 

3.4. MFEs database 

A database was also developed to provide detailed information of known and putative 

MFEs, such as enzyme name, EC number, description of function, Pfam domain, 

prediction status and subtypes (Figure 3-11). The database can be accessed at 

http://bioinf.xmu.edu.cn/databases/MFEs/index.htm, as shown in Figure 3-12. Users 

can search MFEs by name, accession number, EC number and Pfam number (Figure 

3-13). The database also provides the analysis of known and potential MFEs, which 

would help users to further investigate the underlying mechanisms of MFEs (Figure 

3-14).  
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Figure 3-11 Graphical searching interface of MFEs database. 

 

 

Figure 3-12 Graphical user interface of MFEs database. 
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Figure 3-13 Graphical searching interface of MFEs database 

 

 
Figure 3-14 Biological analysis results interface of MFEs 
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3.5. Summary 

The characterization and identification of multifunctional enzymes (MFEs) attracts 

recent interests of biochemical communities for better understanding of the common 

mechanism underlying the crosstalk of various cellular processes. In the present study, 

we collected and systematically analyzed MFEs by grouping them into two categories: 

MFEs with multiple catalytic domains (MCD-MFEs) and MFEs with single 

multi-activity domain (SMAD-MFEs). No obvious evidence show complex life forms 

like human prefer more MFEs than simple life form like yeast. Combined with 

pathway ontology analysis showing that the majority of MFEs are involved in several 

essential cellular processes, MFEs are most likely ancestor enzymes in primitive life 

forms. They may play key roles in catalyzing essential cellular processes so that their 

functions are well conserved across species. This is also supported by the evidence 

that almost half of MFEs participate in only one biological pathway. At the meantime, 

new MFEs are generated by diversification and specification in various forms of 

genetic variations like gene fusion and exon shuffling, since there are about half of 

MFEs involving in as more as five independent pathways. The alpha and beta fold 

topology is found to be most favored to preserve multiple functions of MFEs during 

evolution. The analysis of feature contribution indicates that four physiochemical 

properties are most important to characterize MFEs. 

 

In this study, a sequence-based machine learning system, SVM classifier, was also 

constructed, which predicted 2,641 potential MFEs with statistic confidence within 

ExPASy enzyme database, including 2,515 MCD-MFEs and 126 SMAD-MFEs. This 

work introduced a new and efficient approach to identify and annotate enzymes with 

multiple activities in large scale. Several factors may more or less affect its 
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performance. One is the diversity of protein samples used for developing SVM 

classification system. It is likely that not all possible types of MFEs and non-MFEs 

are adequately represented in the training set. This can be improved with the 

availability of more diverse protein sequences and improved knowledge about MFEs. 

A broad spectrum of MFEs of diverse functions may also reduce the performance of 

our SVM classification system to some extent. An online classification system for 

novel MFEs identification and a database of known and putative MFEs were also 

constructed for public access, at http://jing.cz3.nus.edu.sg/cgi-bin/sime.cgi and 

http://bioinf.xmu.edu.cn/databases/MFEs/index.htm respectively. 
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4. Prediction of disease related proteins by support 

vector machine 

4.1. Prediction of antimicrobial proteins 

Antimicrobial peptides play important roles in innate immune defense against 

microbial infection. They were derived from antimicrobial proteins (AMPs) upon 

microbial attacks. The identification of AMPs will thus facilitate the search of 

therapeutic targets, which would help to design better drugs to fight against microbes. 

Due to their function and sequence diversity, it is desirable to develop alternative 

methods irrespective of sequence similarity to predict AMPs. This work explores the 

use of support vector machine (SVM) as such a method. 

 

4.1.1. Selection of antimicrobial proteins and non-antimicrobial 

proteins 

A total of 986 AMPs used in this study were collected from a comprehensive search 

of Swiss-Prot database at http://us.expasy.org/sprot/ [162]. The distribution of these 

proteins in top 10 host species is given in Table 4-1. It could be found that these 

proteins are from diverse range of species. These AMPs were later divided into two 

subclasses, antibiotic proteins and fungicide proteins.  

 

All distinct members in each class were used to construct a positive dataset for the 

corresponding SVM prediction system. A negative dataset, representing non-class 

members, was selected from seed proteins of the domain families in Pfam database 

[163] excluding those that contain at least one AMP. Members in other antimicrobial 
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classes were included in the negative dataset if they are not a member of the class 

being studied.  

 

These proteins were further divided into separate training, testing and independent 

evaluation sets, which were used for developing SVM models, fine-tuning parameters 

and evaluating performance, respectively, as described in the previous chapter. The 

statistics of AMPs and subclasses is given in Table 4-2.  

Table 4-1 Distribution of AMPs in top 10 host species  

 Species 

Homo sapiens (65) 
Mus musculus (59) 

Bombina maxima (50) 
Bos Taurus (44) 

Pan troglodytes (37) 
Sus scrofa (23) 

Drosophila melanogaster (20) 
Macaca mulatta (20) 

Penaeus vannamei (18) 

List of top 10 species 
and number of AMPs 

in each species 

Rattus norvegicus (17) 

 

Table 4-2 Statistics of the datasets and prediction accuracy of individual class of AMPs 
The predicted results are given in TP, FN, TN, FP, sensitivity SE=TP/(TP+FN), 
specificity SP=TN/(TN+FP), positive prediction value PPV=TP/(TP+FP)  and overall 
accuracy Q=(TN+TP)/(TP+FN+TN+FP). The number of members and non-members in 
the testing and independent evaluation sets is TP+FN or TN+FP respectively. 

Training set Testing set Independent evaluation set 
 

positive negative positive negative Classes 
positive negative 

TP FN TN FP TP FN SE(%) TN FP SP(%) 
Q 

(%) 
PPV 
(%) 

Antibiotic  
proteins  457 3545 148 18 12185 4 50 4 92.6 7874 12 99.8 96.2 92.5 

Fungicide 
proteins 124 3424 58 3 12408 1 9 2 81.8 7926 9 99.9 90.8 87.0 

All 
antimicrobial 

proteins 
631 1649 232 4 14132 4 108 11 90.8 7230 28 99.6 99.5 91.4 



Chapter 4. Prediction of disease related proteins by support vector machine                             68 

 

4.1.2. Prediction performance for antimicrobial proteins 

The statistics of prediction results is given in Table 4-2. The predicted sensitivity for 

fungicide proteins (б=11), antibiotic proteins (б=13) and all AMPs (б=20) is 81.1%, 

92.6% and 90.8% respectively, while the corresponding predicted specificity is 99.9%, 

99.8% and 99.6% respectively. The predicted PPV for fungicide proteins, antibiotic 

proteins and all AMPs is 87.0%, 92.5% and 91.4% respectively. These results suggest 

that SVM is capable to predict AMPs with reasonable high accuracy.  

 

The performance of our prediction system was further tested by using 5-fold cross 

validation [182]. In 5-fold cross validation, the group of positive and negative data is 

each randomly divided into five subsets of approximately equal size respectively. 

Four of the subsets are used as the training set, and the remaining subset is used as the 

testing set for AMPs and non-AMPs respectively. This process is repeated five times 

such that every subset is used as the test set once. The result of 5-fold cross validation 

is given in Table 4-3. The average sensitivity for fungicide proteins, antibiotic 

proteins and all AMPs is 74.9%, 86.7% and 80.2% respectively, and the average 

specificity is 99.9%, 99.9%, and 99.6% respectively, which are comparable to those 

derived from the use of independent set. Therefore both validation methods give 

roughly similar prediction performances.  
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Table 4-3 Statistics of prediction accuracy of antimicrobial proteins measured by 5-fold 
cross validation 

Classes Cross 
validation TP FN SE (%) TN FP SP (%) Q (%) 

1 26 8 76.5 4752 1 99.9 99.8 
2 23 10 69.7 4754 0 100.0 99.8 
3 29 4 87.8 4753 1 99.9 99.9 
4 23 11 67.6 4750 3 99.9 99.7 
5 24 9 72.7 4754 0 100.0 99.8 

Average   74.9   99.9 99.8 

Fungicide 
proteins 

SD   2.69   0.07 0.0 
1 93 19 83.0 4723 2 99.9 99.6 
2 98 16 86.0 4718 5 99.9 99.6 
3 97 17 85.1 4722 1 100.0 99.6 
4 100 13 88.5 4714 10 99.8 99.5 
5 101 10 91.0 4718 7 99.8 99.6 

Average   86.7   99.9 99.6 

Antibiotic 
proteins 

SD   5.65   0.07 0.0 
1 152 46 76.8 4593 15 99.7 98.7 
2 159 38 80.7 4583 26 99.4 98.7 
3 160 37 81.2 4593 16 99.6 98.9 
4 163 35 82.3 4587 21 99.5 98.8 
5 157 39 80.1 4591 18 99.6 98.8 

Average   80.2   99.6 98.8 

All AMPs 

SD   2.33   0.07 0.07 
 
 

4.1.3. Prediction of novel antimicrobial proteins 

To assess the ability of our model to identify novel AMPs, especially those without 

homologues to known AMPs, Swiss-Prot database [162] was searched for finding 

those proteins having no single homologous protein in the database based on BLAST 

[106] results. A similarity E-value threshold of 0.1 was used for homologues search to 

ensure maximum exclusion of proteins that have a homologue. It is found that 69 out 

70 proteins were correctly predicted by SVM as AMPs (Table 4-4). Only one protein, 

acanthoscurrin-2 precursor, was incorrectly predicted as non-antimicrobial protein. 

Investigation of amino acid composition of acanthoscurrin-2 precursor found more 

than 70% amino acids of its sequence are glycines, whose composition is much higher 

than other AMPs, which may account for its incorrect classification. Our SVM 
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classification system appears to show reasonably good capability for predicting AMPs 

based on the set of proteins tested, especially for those without homologues in known 

protein databases.  

 

Table 4-4 Prediction results of novel antimicrobial proteins by SVM-Prot, where “+” 
represents proteins correctly predicted as antimicrobial proteins, and “-” represents 
proteins incorrectly predicted as non-antimicrobial proteins. 

Protein Name Gene name 
Swiss-Prot 
accession 
number 

SVM 
prediction 

status 
Acanthoscurrin-1 precursor acantho1 Q8I948 + 
Acanthoscurrin-2 precursor acantho2 Q8I6R7 - 
Antifungal protein precursor afp P17737 + 
Antimicrobial peptide 1 precursor none P80915 + 
Antimicrobial peptides precursor AMP O24006 + 
Bacteriocin amylovorin-L precursor amyL P80696 + 
Antibacterial substance A none P01548 + 
Antifungal protein precursor none Q08617 + 
Armadillidin precursor none Q64HC7 + 
Beta-defensin 50 precursor Defb50 Q6TU36 + 
Colicin-M cma P05820 + 
Colicin-V precursor cvaC P22522 + 
Cicadin none P83282 + 
Beta-defensin 129 precursor DEFB129 Q9H1M3 + 
Dermcidin precursor (Preproteolysin) DCD P81605 + 
Defensin-1 precursor (Cll-dlp) none Q6GU94 + 
Big defensin none P80957 + 
Dermaseptin AA-2-5 precursor none O93222 + 
Dermaseptin PD-2-2 precursor none O93452 + 
Adenoregulin precursor ADR P31107 + 
Dermaseptin PD-3-3 precursor none O93453 + 
Dermaseptin PD-3-6 precursor none O93454 + 
Dermaseptin AA-3-4 precursor none O93225 + 
Dermaseptin PD-3-7 precursor none O93455 + 
Dermaseptin AA-3-6 precursor none O93226 + 
Dermaseptin DRG1 precursor DRG1 Q90ZK3 + 
Dermaseptin DRG2 precursor DRG2 Q90ZK5 + 
Dermaseptin DRG3 precursor DRG3 P81488 + 
Galensin precursor none Q90W78 + 
Gloverin none P81048 + 
Gomesin precursor none P82358 + 
Nonhistone chromosomal protein H6 none P02315 + 
Halocin-H4 precursor halH4 Q48236 + 
Holotricin-3 precursor none Q25055 + 
Hymenoptaecin precursor none Q10416 + 
Ixosin none Q2LKX9 + 
Bacteriocin lactocin-S precursor lasA P23826 + 
Uncharacterized protein in cib 5'region none P04481 + 
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Bacteriocin lactacin-F subunit lafX precursor lafX Q48509 + 
Lantibiotic lacticin 3147 A1 precursor ltnA1 O87236 + 
Lantibiotic lacticin 3147 A2 precursor ltnA2 O87237 + 
Lantibiotic epilancin precursor elkA Q57312 + 
Lantibiotic Pep5 precursor pepA P19578 + 
Locustin none P83428 + 
B-enzyme (EC 3.2.1.17) lyzB P10773 + 
Lysozyme (EC 3.2.1.17)  LYS4 Q27650 + 
Bacteriocin microcin B17 precursor 
(MccB17) mcbA P05834 + 

Microcin H47 precursor (MccH47) mchB P62531 + 
Microcin H47 precursor (MccH47) mchB P62530 + 
Microcin J25 precursor (MccJ25) mcjA Q9X2V7 + 
Lantibiotic mersacidin precursor mrsA P43683 + 
Metchnikowin precursor Mtk Q24395 + 
Neuropeptide-like protein 31 precursor nlp-31 O44662 + 
Neuropeptide-like protein 33 precursor nlp-33 Q95ZN4 + 
Perinerin none P84117 + 
Phylloseptin-12 precursor (PS-12) ppp-12 Q17UY9 + 
Phylloxin precursor PLX P81565 + 
Propionicin-F precursor pcfA Q6E3K9 + 
PYLa/PGLa precursor none Q99134 + 
Scarabaecin precursor scar Q86SC0 + 
Protein spaetzle precursor spz P48607 + 
Stomoxyn precursor none Q8T9R8 + 
SPBc2 prophage-derived lantibiotic 
sublancin-168 precursor sunA P68577 + 

Tachystatin-A2 precursor none Q9U8X3 + 
Temporin-B precursor none P79874 + 
Temporin-G precursor none P79875 + 
Tenecin-3 precursor none Q27270 + 
Lysozyme (EC 3.2.1.17) XV P13559 + 
Protein P35 (Holin) XXXV Q3T4L9 + 
Bacteriocin lactacin-F subunit lafA precursor lafA P24022 + 

 
 

With the application of AMPer tools [16], more information of antimicrobial proteins 

and peptides could be found. Their data were not included in our dataset and thus is 

useful as truly independent testing data for our model. 177 antimicrobial proteins with 

length above 50 amino acids were obtained from AMPer database to be predicted by 

our SVM model. The results showed that 105 of 177 proteins were predicted as 

antimicrobial proteins. Considering that AMPer also includes some predicted results, 

the picking-up rate of around 60% suggests that our SVM model is capable of 
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identifying antimicrobial proteins at a reasonably true positive rate. The result is listed 

in Table 4-5.  

 

Our model was also applied to scan the whole human genome sequences downloaded 

from Ensembl site. 411 proteins were predicted as potential antimicrobial proteins 

from a total of 43,570 human proteins (less than 1%), among which 56 have been 

experimentally verified as antimicrobial proteins.  

 

Table 4-5 List of prediction results of 177 antimicrobial proteins in AMPer database 
(“+” represents proteins correctly predicted as antimicrobial proteins, and “-” 
represents proteins incorrectly predicted as non-antimicrobial proteins) 

Swiss-Prot Entry 
Name Protein Name 

Prediction 
result by our 
SVM model 

10KD_VIGUN 10 kDa protein precursor (Clone PSAS10) + 
SRP_SOYBN 84 kDa sulfur-rich protein precursor (SE60 protein)  + 
Q9NL71_CAEEL ABF-2 precursor (Antibacterial factor related protein 2) + 
Q6KFT8_SAGLB Alpha defensin (Fragment) + 
Q6KFT9_ATEGE Alpha defensin (Fragment) + 
Q9TTZ8_MACMU Alpha-defensin 2 + 
CAS2_BOVIN Alpha-S2-casein precursor  + 
Q8MVY9_GALME Antifungal peptide gallerimycin + 
Q9FPM3_MEDSA Antifungal protein precursor + 
Q71QD7_PINSY Antimicrobial peptide 4 (Antimicrobial peptide 2) + 
Q8WTD3_GLOMR Antimicrobial peptide attacin AttA + 
Q9FR52_CAPBU Antimicrobial peptide shep-GRP + 
Q71U16_AMAHP Antimicrobial protein + 
APOA2_HORSE Apolipoprotein A-II  + 
APOA2_MACMU Apolipoprotein A-II  + 
P90683_ASCSU ASABF precursor (ASABF-alpha) + 
O19040_SHEEP Bactinecin 6 + 
O97942_CAPHI Beta defensin-2 precursor + 
Q865P6_HORSE Beta-defensin-1 + 
Q6TN20_CANFA Cathelicidin + 
Q95VE8_MUSDO Cecropin 1 + 
CCKN1_XENLA Cholecystokinin type 1 precursor  + 
CCKN_RAT Cholecystokinins precursor (CCK)  + 
Q71KM5_RAT CRAMP (Fragment) + 
Q9BK52_ACALU Defensin 1 precursor + 
P82378_STOCA Defensin 1a + 
P82379_STOCA Defensin 2a + 
Q86MY3_RHOPR Defensin A + 
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Q9BLJ3_ORNMO Defensin A + 
Q9BLJ4_ORNMO Defensin B + 
Q8MY08_ORNMO Defensin C + 
Q86MY1_RHOPR Defensin C + 
O77217_AEDAL Defensin D (Fragment) + 
Q8MY07_ORNMO Defensin D + 
Q3L180_MOUSE Defensin related cryptdin 26 + 
Q6XL51_TRIFG Defensin + 
Q6RSS6_PICGL Defensin + 
D230_PEA Disease resistance response protein 230 precursor + 
EMBP_HUMAN Eosinophil granule major basic protein precursor (MBP)  + 
EMBP_MOUSE Eosinophil granule major basic protein precursor (MBP)  + 
EMBP_RAT Eosinophil granule major basic protein precursor (MBP) + 
EMBP_CRIGR Eosinophil granule major basic protein precursor (MBP) + 
THGF_HELAN Flower-specific gamma-thionin precursor (Defensin SD2) + 
THG1_NICPA Gamma-thionin 1 precursor + 
THG_PETIN Gamma-thionin homolog PPT precursor + 

Q71MD5_MYXGL Hematopoietic antimicrobial peptide-29 precursor 
(Fragment) + 

Q71MD7_MYXGL Hematopoietic antimicrobial peptide-37 precursor + 
Q8T3C5_CAEEL Hypothetical protein abf-6 (ABF-6) + 
KAB7_OLDAF Kalata-B7 precursor + 
KNL2_BOMMX Kininogen-2 precursor (BMK-2)  + 

LCR69_ARATH Low-molecular-weight cysteine-rich protein LCR69 
precursor + 

LCR72_ARATH Low-molecular-weight cysteine-rich protein LCR72 
precursor + 

P82017_CAPHI MAP34-A protein (MAP34-B protein) + 
MEL_APIME Melittin precursor  + 
MEL_VESVN Melittin precursor + 
MEL_VESMC Melittin precursor + 
MEL_VESMG Melittin precursor + 
MEL_APICC Melittin precursor + 
MEL_POLHE Melittin precursor + 
MEL_APICE Melittin precursor + 
P79360_SHEEP Myeloid antimicrobial peptide + 
O62840_HORSE Myeloid cathelicidin 1 precursor + 
O62841_HORSE Myeloid cathelicidin 2 precursor + 
Q9Y0B1_MYTGA Mytilin B antimicrobial peptide + 
PFPN_ENTHI Nonpathogenic pore-forming peptide precursor (APNP) + 
OSMO_TOBAC Osmotin precursor + 
OSL3_ARATH Osmotin-like protein OSM34 precursor + 
OS13_SOLCO Osmotin-like protein OSML13 precursor (PA13) + 
OS35_SOLCO Osmotin-like protein OSML15 precursor (PA15) + 
OS81_SOLCO Osmotin-like protein OSML81 precursor (PA81) + 

OLPA_TOBAC Osmotin-like protein precursor (Pathogenesis-related protein 
PR-5d) + 

BPT1_BOVIN Pancreatic trypsin inhibitor precursor  + 
PR5_ARATH Pathogenesis-related protein 5 precursor (PR-5) + 
PRR3_JUNAS Pathogenesis-related protein precursor  + 
PRR1_TOBAC Pathogenesis-related protein R major form precursor  + 
PRR2_TOBAC Pathogenesis-related protein R minor form precursor (PR-R)  + 
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PLF4_HUMAN Platelet factor 4 precursor (PF-4)  + 
Q90WJ0_PSEAM Pleurocidin-like prepropolypeptide (Fragment) + 
Q90VX5_PSEAM Pleurocidin-like prepropolypeptide (Fragment) + 
Q9U8G5_ENTDI Pore-forming protein isoform B precursor + 
Q9U8G4_ENTDI Pore-forming protein isoform C precursor + 
CAER5_XENLA Preprocaerulein clone PXC202 precursor  + 
CAER2_XENLA Preprocaerulein type I' precursor (Fragment) + 

LCR68_ARATH Probable low-molecular-weight cysteine-rich protein LCR68 
precursor + 

P322_SOLTU Probable protease inhibitor P322 precursor + 
PENK_CAVPO Proenkephalin A precursor  + 
PENK_MESAU Proenkephalin A precursor  + 
PENK_RAT Proenkephalin A precursor  + 
PENK_HUMAN Proenkephalin A precursor  + 
PENK_MOUSE Proenkephalin A precursor  + 
LEVI_XENLA Prolevitide precursor  + 
P21_SOYBN Protein P21 + 
Q9FZ31_ARATH Putative antifungal protein + 
Q8WRP5_PENVA Putative antimicrobial peptide (Crustin P) + 
Q9XZN6_ANOGA Putative infection responsive short peptide + 

LCR66_ARATH Putative low-molecular-weight cysteine-rich protein LCR66 
precursor + 

Q948Z4_SOLTU Snakin-1 + 
TEMH_RANTE Temporin-H precursor + 
THM2_THADA Thaumatin-2 precursor (Thaumatin II) + 
TLP1_PRUPE Thaumatin-like protein 1 precursor (PpAZ44) + 
TLP1_PYRPY Thaumatin-like protein 1 precursor + 
TP1A_MALDO Thaumatin-like protein 1a precursor (Allergen Mal d 2)  + 
TP1B_MALDO Thaumatin-like protein 1b  + 
TLP2_PRUPE Thaumatin-like protein 2 precursor (PpAZ8) + 
TLP_PRUAV Thaumatin-like protein precursor + 
Q9NL72_CAEEL ABF-1 precursor (Antibacterial factor related protein 1) - 
O96447_LUMRU Antimicrobial peptide lumbricin1 - 
Q9U6U0_MYTGA Antimicrobial peptide MGD2b - 
APOA2_HUMAN Apolipoprotein A-II precursor  - 
APOA2_PANTR Apolipoprotein A-II precursor  - 
APOA2_MOUSE Apolipoprotein A-II precursor  - 
APOA2_RAT Apolipoprotein A-II precursor  - 
APOA2_MACFA Apolipoprotein A-II precursor  - 
Q9FER3_MAIZE Basal layer antifungal peptide precursor - 
Q9FER2_MAIZE Basal layer antifungal peptide precursor - 
Q9FER1_MAIZE Basal layer antifungal peptide precursor - 
Q9FER0_MAIZE Basal layer antifungal peptide precursor - 
Q30KT2_CANFA Beta-defensin 122 - 
Q9Y0X4_MESMA BmK3 (Bradykinin-potentiating peptide) - 
Q6QLQ5_CHICK Cathelicidin (Fowlicidin-1) - 
CATG_HUMAN Cathepsin G precursor (EC 342120) (CG) - 
CCKN2_XENLA Cholecystokinin type 2 precursor  - 
CCKN_MOUSE Cholecystokinins precursor (CCK)  - 
CCKN_RANCA Cholecystokinins precursor (CCK)  - 
CCKN_MACFA Cholecystokinins precursor (CCK)  - 
CCKN_HUMAN Cholecystokinins precursor (CCK)  - 
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CCKN_PIG Cholecystokinins precursor (CCK)  - 
CCKN_BOVIN Cholecystokinins precursor (CCK)  - 
CCKN_TRASC Cholecystokinins precursor (CCK)  - 
CCKN_CHICK Cholecystokinins precursor (CCK)  - 
CCKN_STRCA Cholecystokinins precursor (CCK)  - 
CCKN_PAROL Cholecystokinins precursor (CCK)  - 
CCKN_CARAU Cholecystokinins precursor (CCK8)  - 
CION_CIOIN Cionin precursor - 
COLI_BOVIN Corticotropin-lipotropin precursor  - 
Q9BMA5_APIME Defensin (Fragment) - 
Q9GYU6_AEDAL Defensin (Fragment) - 
Q8WQZ3_MAMBR Defensin - 
ELAF_HUMAN Elafin precursor  - 
ENV_SIVML Envelope glycoprotein gp160 precursor (Env polyprotein)  - 
ENV_HV1LW Envelope glycoprotein gp160 precursor (Env polyprotein)  - 
ENV_EIAVY Envelope glycoprotein precursor (Env polyprotein)  - 
HEMO_HYACE Hemolin precursor  - 
HEMO_MANSE Hemolin precursor (P4 protein)  - 
Q22690_CAEEL Hypothetical protein abf-5 (ABF-5) - 
KAB2_OLDAF Kalata-B2 precursor - 
KAB3_OLDAF Kalata-B3/B6 precursor  - 
Q8IX02_HUMAN Lactoferrin (Fragment) - 
P91817_TACTR Limulus factor D - 

LCR70_ARATH Low-molecular-weight cysteine-rich protein LCR70 
precursor - 

O18425_EISFO Lysenin-related protein (Hemolysin) - 
O62842_HORSE Myeloid cathelicidin 3 precursor - 
Q61903_MOUSE Myeloid secondary granule protein - 
Q9BKM2_NAEFO Naegleriapore A pore-forming peptide - 
Q9BKM1_NAEFO Naegleriapore B pore-forming peptide - 
ANFB_HUMAN Natriuretic peptides B precursor  - 
Q91X12_CAVPO Neutrophil cationic antibacterial polypeptide of 11 kDa - 
TRFE_CHICK Ovotransferrin precursor  - 
PRR3_JUNVI Pathogenesis-related protein precursor  - 
Q91322_RANCA Pepsinogen precursor - 
PERF_MOUSE Perforin-1 precursor (P1)  - 
CAER1_XENLA Preprocaerulein type-1 precursor (Preprocaerulein type I)  - 
CAER3_XENLA Preprocaerulein type-3 precursor (Preprocaerulein type III)  - 
CAER4_XENLA Preprocaerulein type-4 precursor (Preprocaerulein type IV)  - 
CAER4_XENBO Preprocaerulein type-4 precursor (Preprocaerulein type IV)  - 
PENKA_XENLA Proenkephalin A-A precursor  - 
PENKB_XENLA Proenkephalin A-B precursor (Fragment) - 
HEVE_HEVBR Pro-hevein precursor (Major hevein)  - 
RELX_HORSE Prorelaxin precursor (RXN) - 
PSPB_HUMAN Pulmonary surfactant-associated protein B precursor (SP-B)  - 
Q6K209_ORYSA Putative defensin (Os02g0629800 protein) - 
SECP_APIME Secapin precursor - 
SCG1_BOVIN Secretogranin-1 precursor  - 
Q948Z5_SOLTU Snakin2 precursor - 
P91818_TACTR Tachycitin - 
THM1_THADA Thaumatin-1 (Thaumatin I) - 
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TLPH_ARATH Thaumatin-like protein precursor - 
 

 

4.1.4. Contribution of feature properties 

The contribution of feature properties was also studied. It was found that amino acid 

composition and hydrophobicity play more prominent roles than other feature 

properties. Previous studies suggested the binding sites of antimicrobial peptides 

usually appear in clusters in hydrophobic environments[183, 184]. On the other hand, 

specific amino acid composition and sequence motifs have been used for predicting 

antimicrobial peptides [185]. Previous experimental analysis revealed that  

fundamental composition and sequence motifs determine not only the biochemical 

properties of antimicrobial proteins, but also their three-dimensional configuration, 

which would profoundly influence their antimicrobial properties [18]. It seems that 

our prediction results are consistent with these experimental findings. 

 

4.1.5. Server for antimicrobial protein identification (SAPI) 

A server for antimicrobial protein identification (SAPI) was also developed to 

facilitate the discovery of new AMPs. The server could be accessed at 

http://jing.cz3.nus.edu.sg/cgi-bin/sapi.cgi. The format of input sequences is the same 

as that of SIME server. The average computing time is about 3 seconds for a typical 

protein and the result is displayed with a separate window. Figure 4-1 shows the 

interface of SAPI. The result page shows that the input sequence is predicted as an 

antimicrobial protein (Figure 4-2).  

 



Chapter 4. Prediction of disease related proteins by support vector machine                             77 

Figure 4-1 Graphical user interface for SAPI 

 

Figure 4-2 Result page of SAPI showing that a query sequence is an antimicrobial 
protein. 

 

 

4.2. Prediction of antibiotic resistance proteins 

Increasing antibiotic resistance has become a worldwide challenge to the clinical 

treatment of infectious diseases. The identification of antibiotic resistance proteins 

(ARPs) would be helpful in the discovery of new therapeutic targets and the design of 

novel drugs to control the potential spread of antibiotic resistance. In this work, a 
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support vector machines (SVM) based ARP prediction system was developed to 

facilitate the identification of proteins involved in antibiotic resistance. 

 

4.2.1. Selection of ARPs and non-ARPs 

A total of 1,621 ARPs used in this study were retrieved from a comprehensive search 

of Swiss-Prot database at http://us.expasy.org/sprot/ [162] using keyword “antibiotic 

resistance” followed by manual check that each protein is involved in antibiotic 

resistance. The distribution of these ARPs in top 10 bacteria species is given in Table 

4-7 showing that these ARPs are from diverse sources. 

 

All of these 1,621 ARPs were then used for constructing a positive dataset for the 

SVM classification system. The negative dataset, representing non-ARPs, was 

selected by a similar procedure as that of MFEs. In this procedure, representative 

proteins of curated protein families in the Pfam database [163] that contain no single 

known ARPs are selected as non-ARPs. These ARPs and non-ARPs are divided into 

separate training, testing and independent evaluation sets by the following procedure: 

first, proteins are clustered into groups based on their distance in the structural and 

physicochemical feature-space by using the hierarchical clustering method. One 

representative protein is randomly selected from each group to form a training set that 

is sufficiently diverse and broadly distributed in the feature space. One or up to 50% 

of the remaining proteins in each group is randomly selected to form the testing set. 

The selected proteins from each group are further checked to ensure that they are 

distinguished from the proteins in other groups. The remaining proteins are then 

designated as the independent evaluation set, which is also found in a reasonable level 
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of diversity. The statistics of ARPs and non- ARPs in each dataset is given in Table 

4-8. 

 

Table 4-7 Distribution of ARPs in top 10 bacteria species 

Species Number of ARPs 
Escherichia coli K12 56 

Staphylococcus aureus 35 

Pseudomonas aeruginosa 33 

Bacillus subtilis 26 
Salmonella typhimurium 26 

Escherichia coli O157:H7 26 
Staphylococcus aureus Mu50 20 

Shigella flexneri 20 
Staphylococcus aureus N315 19 

Enterococcus faecalis 19 
 

4.2.2. Prediction performance 

The prediction result assessed by independent test (Table 4-8) shows that 277 of 313 

ARPs, and 7099 of 7156 non-ARPs were successfully predicted by SVM, which 

means that the predicted sensitivity, specificity and overall accuracy are 88.5%, 

99.2% and 98.7%, respectively.  

 

Table 4-8 Statistics of the datasets and prediction accuracy of ARPs (σ =18) 

Antibiotic 
resistance 
proteins 

Non-antibiotic 
resistance 
proteins 

Prediction Accuracy Data set 

TP FN TN FP SE 
(%) 

SP 
(%) Q (%) PPV 

(%) MCC 

Training 734 0 2372 0 100 100 100 100 1.0 

Testing 572 2 13180 35 99.6 99.7 99.7 94.2 0.97 

Independent 
evaluation 277 36 7099 57 88.5 99.2 98.7 82.9 0.85 
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The model was further tested by using 10-fold cross validation method [182]. As 

shown in Table 4-9, the average sensitivity, specificity and overall accuracy measured 

by 10-fold cross validation are 82.1%, 99.5%, and 98.3%, respectively, which are 

comparable with those derived from the use of independent test. Therefore, both 

validation methods give roughly similar prediction performance. 

Table 4-9 Statistics of accuracy for SVM prediction of antibiotic resistance proteins 
evaluated by using 10-fold cross validation 

Cross 
validation TP FN SE (%) TN FP SP (%) Q (%) 

1 127 36 78.0 2257 17 99.3 97.8 
2 140 23 85.9 2264 10 99.6 98.6 
3 135 28 82.8 2265 9 99.6 98.5 
4 130 31 80.7 2264 12 99.5 98.2 
5 132 30 81.5 2259 15 99.3 98.1 
6 137 26 84.0 2262 11 99.5 98.5 
7 128 33 79.5 2263 12 99.5 98.2 
8 134 27 83.2 2266 9 99.6 98.5 
9 136 26 84.0 2262 12 99.5 98.4 
10 132 30 81.5 2264 10 99.6 98.4 

Average   82.1   99.5 98.3 
SD   2.47   0.21 0.42 

 

 

4.2.3. Prediction of novel ARPs 

To assess the capability of the model to identify novel ARPs, especially those without 

homologous to available members, Swiss-Prot database[162] was searched to find 

ARPs without homologous proteins in the database based on BLAST[106]. A 

similarity E-value threshold of 0.1 was used for homologue search to ensure 

maximum exclusion of proteins that have homologues. As shown in Table 4-10, a 

total of 11 proteins were found from this process, all of which were correctly 

predicted as ARPs by our SVM classification system. Therefore, SVM appears to 
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show good capability for predicting ARPs based on the set of proteins tested, 

especially for those ARPs without homologues in known protein databases. 

 

Table 4-10 Prediction results of novel ARPs. 

Protein Name Gene name 
Swiss-Prot 
accession 
number 

Blasticidin S-acetyltransferase bls P19997 
Protein vanZ vanZ Q06242 
Bacitracin transport permease protein BCRB bcrB P42333 
Pentamidine resistance factor, mitochondrial PNT1 P38969 
Tunicamycin resistance protein tmrB P12921 
Albicidin resistance protein albR P10488 
Uncharacterized HTH-type transcriptional 
regulator in mcrB 3'region ymcr P43458 

Mitomycin resistance protein mcrB mcrB P43486 
Hygromycin-B kinase hph P00557 
Acridine resistance protein ac P18924 
Curromycin resistance protein cre P16961 
 
 
 

4.2.4. Scanning bacteria genomes  

Our model was further tested by scanning two common bacterial genomes, 

Escherichia coli K12 and Staphylococcus aureus Mu50 to search for potential new 

ARPs. These two complete genomes are retrieved from NCBI website 

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/). It was found that 144 of total 4,131 

proteins in E. coli K12 were predicted as ARPs, among which 64 known ARPs, 

including 10 ARPs not included in our dataset, were successfully predicted. Similarly, 

86 of total 2,697 proteins in S. aureus Mu50 were predicted as potential ARPs, whilst 

36 known ARPs, including 17 ARPs not included in our dataset, were successfully 

predicted. These results suggest that SVM is able to pick out most of known ARPs 

with low false positive rate. The details of full list of potential new ARPs in E. coli 

K12 and S. aureus Mu50 are provided in Table S1 and Table S2.  
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4.2.5. Contribution of feature properties to the classification of 

ARPs 

Contribution of individual feature properties to ARP classification was also  

investigated by separately conducting classification using each feature property[186]. 

Hydrophobicity and amino acid composition were found to play more prominent role 

than other feature properties. Previous experimental analysis revealed that many 

antibiotic resistance proteins contain hydrophobic pockets, which are essential to 

multi-drug transporters[187-189]. Some specific amino acids are essential to 

antibiotic resistance. For example, serine at the active site of ser-β-lactamases 

performs a ring opening nucleophilic attack on the lactam ring [40]. Therefore, 

sequence features we used in this study seem to be reasonable to catch underlying 

common characters of ARPs from our results. 

 

4.2.6. Server for antibiotic resistance protein identification 

(SARPI) 

SARPI is a prediction server for antibiotic resistance proteins, which can be accessed 

at http://jing.cz3.nus.edu.sg/cgi-bin/sarpi.cgi. The format of input query sequence is 

the same as that of SIME server described in the previous chapter. The average 

computing time is about 3 seconds for a typical protein and the computed result is 

also displayed in a separate window. Figure 4-3 shows the interface of SARPI. The 

result page would show you whether a query sequence is predicted to be an antibiotic 

resistance protein (Figure 4-4). 

Figure 4-3 Interface for SARPI 
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Figure 4-4 Result page of SARPI showing that the query sequence is not antibiotic 
resistance protein 
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4.3. Prediction of cancer associated proteins 

As described in the introduction chapter, the identification of cancer associated 

proteins would help to understand the mechanism of cancer, and also to find better 

treatments for cancer therapies. In this study, a SVM based prediction system was 

developed to facilitate the identification of cancer associated proteins. 

 

4.3.1.  Data preparation 

A total of 784 cancer associated proteins (CAPs) were collected from a 

comprehensive search of Swiss-Prot database at http://us.expasy.org/sprot/ [162] 

using keyword “tumor suppressor” and “proto-oncogene” followed by manual check 

that each protein is related with cancer. They were further divided into two separate 

classes: proto-oncogene (499 proteins) and tumor suppressors (286 proteins). The 

negative dataset was also selected in a similar way as that for MFEs. These positive 

and negative datasets were further divided into separate training set, testing set and 

independent evaluation set. The statistics of positives and negatives in each CAP class 

is given in Table 4-11, as well as the distribution of these proteins in top 10 host 

species is given in Table 4-12, which shows that these proteins are from diverse range 

of species. 

 

Table 4-11 Statistics of datasets and prediction accuracy of cancer associated proteins 

Training set Testing set Independent evaluation set 
positive negative positive negative CAP 

Classes positive negative 
TP FN TN FP TP FN SE 

(%) TN FP SP 
(%) 

PPV 
(%) 

Q 
(%) 

CAPs 403 2082 241 0 14646 3 133 7 95.0 7505 30 99.6 81.6 99.5 

Tumor 
suppressors 142 1377 83 0 15887 0 50 11 82.0 7790 14 99.8 78.1 99.7 

Proto- 
oncogenes 283 2107 137 0 14871 0 77 2 97.5 7626 29 99.6 72.6 99.6 
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Table 4-12 Distribution of cancer associated proteins in top 10 bacteria species 

Proto-oncogene Tumor suppressor 

Species Number Species Number 
Homo sapiens 219 Homo sapiens 108 
Mus musculus 82 Mus musculus 65 

Rattus norvegicus 30 Rattus norvegicus 36 
Gallus gallus 26 Bos taurus 16 

Bos taurus 17 Canis familiaris 5 
Sus scrofa 9 Pongo pygmaeus 5 

Felis silvestris catus 9 Sus scrofa 4 
Canis familiaris 8 Mesocricetus auratus 3 
Pongo pygmaeus 7 Gallus gallus 3 

Mesocricetus auratus 5 Danio rerio 3 
 
 

4.3.2. Overall prediction accuracies and performance 

evaluation 

The statistics of prediction results is given in Table 4-11. The predicted sensitivity for 

tumor suppressor (σ =26), proto-oncogenes (σ =15) and all CAPs (σ =23) is 82.0%, 

97.5% and 95.0% respectively, while the corresponding predicted specificity is 99.8%, 

99.6% and 99.6% respectively. The predicted PPV for tumor suppressor, 

proto-oncogenes and all CAPs is 78.1%, 72.6% and 81.6% respectively. These results 

suggest that SVM is capable to predict CAPs at a reasonable accuracy. It was also 

found that the prediction accuracy of tumor suppressors is much lower than other 

classes. This may be due to the following two factors. One is the inadequate 

representatives of tumor suppressors, because of the small number in the training data. 

The other is the result of unbalanced dataset, which will lead to a reduced accuracy 

for the dataset either with a smaller number of samples or of less diversity[119]. In 

order to improve the accuracy of tumor suppressors, accumulation of more positive 
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data, and application of additional computational methods for re-adjusting biased shift 

of hyperplane[190] should be considered. 

 

Our model was further tested by scanning sequences with human genome (NCBI 

release 36), to identify potential new CAPs. It was found that 714 of total 43,367 

proteins in human genome were predicted as tumor suppressors, while 100 of 108 

known tumor suppressors were successfully predicted. Similarly, 2,234 of total 

43,367 proteins in human genome were predicted as potential proto-oncogene, while 

204 of 219 known proto-oncogenes were successfully predicted. These results suggest 

that SVM is able to pick out most of known CAPs at low false positive rate. 

 

4.3.3. Contribution of feature properties to the classification of 

cancer associated proteins 

The contribution of feature properties to the classification of cancer associated 

proteins was also studied. Amino acid composition and hydrophobicity were found to 

most important to characterize cancer associated proteins. Previous studies indicated 

that binding sites of proto-oncogenes usually appear in hydrophobic regions 

[191-193]. On the other hand, specific amino acid composition and sequence motifs 

are essential to for the proto-oncogene interactions [194-196]. Therefore our 

prediction results are some sort of consistent with these experimental findings. 

 



Chapter 4. Prediction of disease related proteins by support vector machine                             87 

4.3.4. Analysis of individual feature contribution by feature 

selection 

A more rigorous feature selection method, recursive feature elimination (RFE), as 

described in Method chapter, was applied to SVM classification of cancer associated 

proteins to select those features most relevant to the prediction of cancer associated 

proteins.  

 

A total of 33 features were selected by RFE, which are given in Table 4-13. In order 

of prominence, hydrophobicity, secondary structure, surface tension normalized Van 

der Waals volume, and polarity are found to be important for predicting cancer 

associated proteins. This conclusion is roughly consistent with that derived from the 

other feature evaluation method used in this work. We further tested the usefulness of 

these 33 selected features by constructing a SVM classification system based solely 

on these features. The prediction accuracies of this new system are 96.4% and 99.9% 

for cancer associated proteins and non-cancer associated proteins respectively, which 

is slightly improved against those of 95.0% and 99.6% by using all features. This 

suggests that the use of selected subset of features enhances prediction performance 

by reducing the noise created by the redundant and irrelevant features. 

 

Table 4-13 Features important for characterizing cancer associated proteins as selected 
by recursive feature elimination method 

Feature 
Rank 

Feature 
Index Feature Description 

1 F76 Polarity Group 2 2/4th Distribution 
2 F91 Polarizability Group 1 1/4th Distribution 
3 F23 Hydrophobicity Composition Group 3 
4 F31 Hydrophobicity Group 1 4/4th Distribution 
5 F72 Polarity Group 1 3/4th Distribution 
6 F155 Secondary structure Group 1 2/4th Distribution 
7 F134 Surface tension Group 1 2/4th Distribution 
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8 F141 Surface tension Group 2 4/4th Distribution 
9 F49 Normalized Van der Waals volume Group 1 1/4th Distribution 
10 F156 Secondary structure Group 1 3/4th Distribution 
11 F183 Solvent accessibility Group 2 4/4th Distribution 
12 F48 Normalized Van der Waals volume Group 1 First Distribution 
13 F57 Normalized Van der Waals volume Group 2 4/4th Distribution 
14 F160 Secondary structure Group 2 2/4th Distribution 
15 F51 Normalized Van der Waals volume Group 1 3/4th Distribution 
16 F26 Hydrophobicity Transition Group 3 
17 F62 Normalized Van der Waals volume Group 3 4/4th Distribution 
18 F112 Charge Group 1 1/4th Distribution 
19 F41 Hydrophobicity Group 3 4/4th Distribution 
20 F140 Surface tension Group 2 3/4th Distribution 
21 F149 Secondary structure Composition Group 3 
22 F69 Polarity Group 1 First Distribution 
23 F176 Solvent accessibility Group 1 2/4th Distribution 
24 F127 Surface tension Composition Group 2 
25 F145 Surface tension Group 3 3/4th Distribution 
26 F98 Polarizability Group 2 3/4th Distribution 
27 F154 Secondary structure Group 1 1/4th Distribution 
28 F146 Surface tension Group 3 4/4th Distribution 
29 F40 Hydrophobicity Group 3 3/4th Distribution 
30 F161 Secondary structure Group 2 3/4th Distribution 
31 F153 Secondary structure Group 1 First Distribution 
32 F45 Normalized Van der Waals volume Transition Group 1 
33 F128 Surface tension Composition Group 3 

 
 

4.3.5. Cancer associated protein identification server (CAPIS) 

Cancer associated protein identification server (CAPIS) was also developed to predict 

cancer associated proteins based on primary sequences. It is easily accessible at 

http://jing.cz3.nus.edu.sg/cgi-bin/capis.cgi as shown in Figure 4-5. The average 

computing time is around 3 seconds for a typical protein and the result is displayed in 

a separate window (Figure 4-6). Given a sequence, CAPIS will output whether this 

sequence is a cancer associated protein or not. If yes, it will also indicate whether it is 

a proto-oncogene or tumor suppressor. 
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Figure 4-5 CAPIS interface. The sequence of a protein, in RAW format and containing 
no non-amino acid letters, can be input in a window provided. 

 

Figure 4-6 Result page of CAPIS showing that the query sequence is a proto-oncogene. 
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4.4. Comparison with other statistical learning methods 

The performance of our SVM classification systems (Gaussian kernel SVM) for 

predicting disease related proteins such as AMPs, ARPs and CAPs were also 

compared with other statistical learning methods, including decision tree (DT), 

k-nearest neighbors (KNN) and probabilistic neural networks (PNN). The same 

datasets of these 3 classes of disease related proteins were used for constructing and 

testing the classifiers developed by each of these methods. 

 

Table 4-14 shows the results of predicting antimicrobial proteins. The prediction 

accuracies for AMPs were in the range of 73.2%~90.8% with SVM giving the best 

accuracy at 90.8%. For non-AMPs, the prediction accuracies were in the range of 

92.1%~99.6% with SVM giving the best accuracy at 99.6%. Table 4-15 shows the 

results of predicting antibiotic resistance. The accuracies of each method were in the 

range of 72.8%~88.5% with SVM giving the best accuracy at 88.5%. For non-ARPs, 

the prediction accuracies were found in the range of 91.3%~99.2% with SVM giving 

the best performance. Table 4-16 shows the results of predicting cancer associated 

proteins. The accuracies of each method were in the range of 69.3%~95.0% with 

SVM giving the best accuracy at 95.0%. For non-CAPs, the prediction accuracies 

were found in the range of 97.8%~99.8% with PNN giving the best performance. 

Therefore, it seems that SVM is able to predict disease related proteins with highest 

accuracy comparing with other machine learning methods. 
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Table 4-14 Comparison of prediction performance of all AMPs and non-AMPs with 
different machine learning methods  

Method Parameter TP FN TN FP AMPs 
SE (%) 

Non- AMPs 
SP (%) Q (%) 

DT  92 27 7138 120 77.3 98.3 98.0 
PNN б =2 87 32 6685 573 73.2 92.1 91.8 
KNN k=17 89 30 7216 42 74.8 99.4 99.0 
SVM б =35 108 11 7230 28 90.8 99.6 99.5 
 

Table 4-15 Comparison of prediction performance of antibiotic resistances and 
non-antibiotic resistances with different machine learning methods  

Method Parameter TP FN TN FP ARPs  
SE (%) 

Non- ARPs 
SP (%) Q (%) 

DT  228 85 6933 223 72.8 96.9 95.9 
PNN б =1.3 233 80 6720 463 74.4 94.0 93.1 
KNN k=9 232 81 6535 621 74.1 91.3 90.6 
SVM б =18 277 36 7099 57 88.5 99.2 98.7 

 

Table 4-16 Comparison of prediction performance of all CAPs and non-CAPs with 
different machine learning methods  

Method Parameter TP FN TN FP CAPs  
SE (%) 

Non- CAPs 
SP (%) Q (%) 

DT  97 43 7372 163 69.3 97.8 97.3 
PNN б =0.8 109 31 7520 15 77.9 99.8 99.4 
KNN k=3 124 16 6781 754 88.6 90.0 90.0 
SVM б =35 133 7 7505 30 95.0 99.6 99.5 

 
 

4.5. Summary 

This chapter presents my work in the prediction of disease related proteins through 

support vector machine approach. Three disease related protein classes, including 

antimicrobial proteins, antibiotic resistance proteins and cancer associated proteins 

were investigated in details. The accuracies for predicting members and non-members 

for each class were in the range of 81.8%~97.5% and 99.2%~99.9% respectively. 

Moreover, most of non-homologous disease related proteins were successfully 

predicted by our method. Genome screening was also performed to identify potential 

disease related proteins. Furthermore, the comparison with other machine learning 



Chapter 4. Prediction of disease related proteins by support vector machine                             92 

methods like KNN, DT and PNN indicates that SVM has better performance in 

disease related protein prediction. These results suggest the usefulness of SVM for 

facilitating the identification of disease related proteins. It should be noted that the 

performance of SVM critically depends on the diversity of training samples. The 

datasets used in this study are not expected to be fully representative of all the 

functional proteins with and without a particular functional profile. Various degrees of 

inadequate sampling representation are likely to affect, to a certain extent, the 

prediction performance.  
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5. Prediction of microRNAs by machine learning 

methods 

MicroRNAs (miRNAs) are endogenous short non-coding RNAs of approximately 22 

nucleotides long. They are able to regulate gene expression at both the transcription 

and translation level, targeting mRNA for degradation or translational repression. 

Prediction of miRNAs is important to uncover post-transcriptional gene regulatory 

network. Computational methods have been developed based on sequence similarity, 

structure properties, and probabilistic models. These methods have achieved 

impressive accuracies in the prediction of known miRNAs. However, their false 

positive rates are still too high. In this work, we applied machine learning methods to 

the prediction of miRNAs, which achieved relatively lower false positive rate. 

 

5.1. Data preparation 

5.1.1. Retrieval of precursor miRNAs and non-precursor 

miRNAs 

A total of 5,299 precursor miRNAs were collected from miRBase database (Release 

10.1) [85, 197]. The distribution of these miRNAs in top 10 species is given in Table 

5-1. 

 

Non-precursor miRNAs consists of two parts. The first part contains representative 

examples of each non-coding RNA functional class except miRNAs extracted from 

Rfam database (Version 8.1) [198]. The second part came from representative cDNA 

sequences retrieved from an annotated human gene database, H-Invitational Database 
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[199]. These cDNA sequences were then cut into strands with 100 nucleotides, in 

order to maximize including characterized precursor miRNA sequence information. 

These non-precursor miRNAs were then clustered with known precursor miRNAs. 

Sequences which were not clustered with true precursor miRNAs were selected as 

non-precursor miRNAs. The final negative dataset contains 14,626 cDNA sequences 

and 36,431 functional RNA sequences. 

 

Table 5-1 Distribution of precursor miRNAs in top 10 host species  

 

 

5.1.2. Retrieval of mature miRNAs and non-mature miRNAs 

Mature miRNA sequences were also collected from miRBase database (Release 10.1) 

[85, 197]. 5,149 sequences were left after removing those with unknown nucleotides. 

The distribution of these mature miRNAs in top 10 species, as shown in Table 5-1, is 

similar to that of precursor miRNAs. 

 

Non-mature miRNAs were generated by following procedures. Each mature sequence 

was excised from its corresponding precursor miRNA. The remaining sequences of 

precursor strands were processed in such a way that sequences with less than 21 

nucleotides were kept aside while those with longer than 21 nucleotides were cut into 

 Species 

Homo sapiens (541) 
Mus musculus (443) 

Rattus norvegicus (287) 
Oryza sativa (243) 

Physcomitrella patens (220) 
Populus trichocarpa (215) 
Arabidopsis thaliana (184) 

Xenopus tropicalis(184) 
Drosophila melanogaster (152) 

List of top 10 species 
and the number of 

miRNAs in each of them 

Caenorhabditis elegans (137) 
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fragments with 21, 22 and 23 nucleotides long. All of these short fragments were 

clustered with known mature miRNAs. Those short fragments which were not 

clustered with true mature miRNAs were selected as non-mature miRNA. The final 

negative dataset contains 36,677 short sequences. 

 

5.2. Evaluation and discussion 

5.2.1. Prediction performance for precursor miRNAs and 

mature miRNAs 

The statistics of the dataset and prediction results of miRNAs and their precursors is 

given in Table 5-2. The predicted sensitivity for precursor miRNAs and mature 

miRNAs is 92.2% and 94.8% respectively, while the corresponding predicted 

specificity is 98.4% and 99.5% respectively. These results suggest that SVM is 

capable to predict miRNAs and their precursor with reasonably high accuracy.  

 

Table 5-2 Statistics of the datasets and prediction accuracy for precursor miRNAs and 
mature miRNAs 

Training set Testing set Independent evaluation set 
positive negative positive negative Classes 

positive negative 
TP FN TN FP TP FN SE 

(%) TN FP SP (%) 
PPV 
(%) 

Q 
(%) 

Precursor  
miRNAs 1841 3183 2884 11 41825 12 519 44 92.2 5942 95 98.4 84.5 97.9 

Mature  
miRNAs 2244 7354 2294 0 22603 0 579 32 94.8 6686 34 99.5 94.5 99.1 

 

A recent work done by Yue et al. identified 245 putative precursor miRNAs in rhesus 

genome [200], which share high homology (>90%) with verified human precursor 

miRNAs. These precursor miRNAs were not included in our training dataset, thus 

constituted an additional independent testing data for our model. 192 (or 78%) of 
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them were predicted as potential precursor miRNAs by our SVM prediction system, 

indicating that both methods are consistent to some extent. The list of these precursor 

miRNAs could be found in Appendices Table S3. 

 

Among 245 potential rhesus precursor miRNAs, eight rhesus precursor sequences 

were randomly selected by Yue et al [200]. Of these, three mature miRNAs were 

experimentally validated as novel mature miRNAs. All of them were also successfully 

predicted by our model, although the specific region is slightly different as shown in 

Table 5-3.  

 

Table 5-3 Location of predicted and validated rhesus miRNAs within putative precursor 
sequences. Sequences in italic denote those predicted by MiRDetector while those with 
underline denote experimentally validated miRNAs. 

miR-379 Precursor Sequences 

Predicted by 
MiRDetector 

AGAGAUGGUAGACUAUGGAACGUAGGCGUUAUGAUUUUUGACCUA 
UGUAACAUGGUCCACUAACUCU 

Experimentally 
validated 

AGAGAUGGUAGACUAUGGAACGUAGGCGUUAUGAUUUUUGACCUA 
UGUAACAUGGUCCACUAACUCU 

 
miR-422 Precursor Sequences  

Predicted by 
MiRDetector 

GAGAGAAGCACUGGACUCAGGGUCAGAAGGCCUGAGUCUCCCUG 
CUGCAGAUGGGCUGUGUGUCCCUGAGCCAAGCCUUGUCCUCCCUGG 

Experimentally 
validated 

GAGAGAAGCACUGGACUCAGGGUCAGAAGGCCUGAGUCUCCCUG 
CUGCAGAUGGGCUGUGUGUCCCUGAGCCAAGCCUUGUCCUCCCUGG 

 
miR-648 Precursor Sequences  

Predicted by 
MiRDetector 

AGCACAGACGCCUCCAAGUGUGCAGGGCACUGAUGGGGGCCAGG 
GCAGGCCCAGCCAAAGUGCAGGACCUGGCACUUAGUCGGAGGUGA 
GGAUG 

Experimentally 
validated 

AGCACAGACGCCUCCAAGUGUGCAGGGCACUGAUGGGGGCCAGG 
GCAGGCCCAGCCAAAGUGCAGGACCUGGCACUUAGUCGGAGGUGA 
GGAUG 
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5.2.2. Screening non-coding RNAs within four representative 

genomes 

In order to further test the ability of our model to identify miRNAs, non-coding RNA 

sequences from four representative genomes were screened by our model, including 

Drosophila melanogaster, Homo sapiens, Mus musculus, and Saccharomyces 

cerevisiae. The sequence data were downloaded from Ensembl database [201], and all 

known miRNAs were removed.  

 

As shown in Table 5-5, 2.6%, 5.6%, 2.2% and 4.2% of non-coding RNAs in 

Drosophila melanogaster, Homo sapiens, Mus musculus and Saccharomyces 

cerevisiae were predicted as potential miRNA precursors respectively. Considering 

that some of them are un-characterized precursor miRNAs, it indicates that our model 

has a false positive rate less than 5%, which is relative lower than previous studies 

(10%)[93].  

 

Table 5-5 Screening results of non-coding RNAs from four representative genomes 

Negative set 

Species No. of predicted 
precursors (NP) 

No. of total 
non-coding RNA 
sequences (NT) 

Percentage of 
positive 

Drosophila melanogaster 16 623 2.6% 

Homo sapiens 357 6363 5.6% 

Mus musculus 47 2089 2.2% 

Saccharomyces cerevisiae 18 426 4.2% 

 

5.2.3. Comparison with other statistical learning methods 

The performance of our SVM classification systems (Gaussian kernel SVM) for 

predicting precursor miRNAs and mature miRNAs were also compared with other 
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statistical learning methods, including decision tree (DT), k-nearest neighbors (KNN) 

and probabilistic neural networks (PNN). The same datasets of the precursor and 

mature miRNAs were used for constructing and testing the classifiers developed by 

each of these methods. 

 

Table 5-6 shows the results of predicting precursor miRNAs. The prediction 

accuracies for precursor miRNAs were in the range of 72.6%~92.2% with SVM 

giving the best accuracy at 92.2%. For non-precursor miRNAs, the prediction 

accuracies were in the range of 78.8%~98.4% with SVM giving the best accuracy at 

98.4%. Table 5-7 shows the results of predicting mature miRNAs. The accuracies of 

each method were in the range of 78.2%~94.8% with SVM giving the best accuracy 

at 94.8%. For non-mature miRNAs the prediction accuracies were found in the range 

of 89.8%~99.5% with SVM and PNN giving the same best performance. Therefore, it 

seems that SVM is able to predict both precursor miRNA and mature miRNA 

prediction with highest accuracy comparing with other machine learning methods. 

Table 5-6 Comparison of prediction performance of precursor miRNAs and 
non-precursor miRNAs with different machine learning methods  

Method Parameter TP FN TN FP 
Precursor 

miRNA 
SE (%) 

Non- 
precursor 

miRNA SP (%)
Q (%) 

DT  409 154 5874 163 72.6% 97.3% 95.2% 
PNN б =4 444 119 4757 1280 78.9% 78.8% 78.8% 
KNN k=1 437 126 4807 1230 77.6% 79.6% 79.5% 
SVM б =35 519 44 5942 95 92.2% 98.4% 97.8% 

 
Table 5-7 Comparison of prediction performance of mature miRNAs and non-mature 
miRNAs with different machine learning methods 

Method Parameter TP FN TN FP 
Mature 

miRNAs 
SE (%) 

Non- 
mature 
miRNA 
SP (%) 

Q (%) 

DT  549 62 6393 327 89.9% 95.1% 94.7%
PNN б =2 562 49 6687 33 92.0% 99.5% 98.9%
KNN k=3 478 133 6035 685 78.2% 89.8% 88.8%
SVM б =53 579 32 6,686 34 94.8% 99.5% 99.1%
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5.3. MiRNA prediction server 

A web server, MicroRNA Detector (MiRDetector), was developed to facilitate the 

identification of novel miRNAs based on sequence derived physicochemical 

properties. MiRDector could be freely accessible at 

http://ang.cse.nus.edu.sg/cgi-bin/mirna/mirna.cgi. Figure 5-1 shows its graphical user 

interface. The query sequence containing only the valid nucleotide characters such as 

‘A’, ‘U or T’, ‘G’ and ‘C’ can be submitted to this prediction server. If a query 

sequence contains non-AU(T)GC characters, it would be rejected with a 

corresponding error message. Two steps are taken in our prediction server. First, 

MiRDetector will determine whether the query sequence is a precursor miRNA or not 

(Figure 5-2). If yes, MiRDetector will continue to identify its potential mature 

miRNA and the location within the precursor sequence (Figure 5-3). If not, 

MiRDetector will output the result without going to the second step. Figure 5-3 shows 

the predicted potential mature miRNA and the location within the precursor sequence. 

Predicted mature miRNA is highlighted in red. A predicted secondary hairpin 

structure is also displayed, which is generated from RNAfold [202]. The open bracket 

on the far left end of the sequence indicates a match with the closed bracket on the far 

right end. The full-stop character indicates mismatches resulting in loops or bulges. 

 

5.3.1. Comparison with other micoRNA prediction servers 

Many methods like MiRPred [203] and miRNA SVM [100] utilize knowledge of 

characteristic loops and bulges such as minimum free energy rule [204] for novel 

miRNA prediction [93, 205]. Recent studies also indicate that the hairpin is a good 

evaluating feature for miRNA prediction [206]. However, such characteristics do not 



Chapter 5. Prediction of microRNAs by machine learning methods                                   100 

exclusively exist in miRNAs. In addition, the short length of precursors compared to 

that of the genome brings more complexity to this problem. MiRFinder [207] 

attempted to use multiple sequence alignment to remove non-hairpin-like sequences 

in the hope of reducing the number of false positives, but the computation cost 

increase significantly with little benefit. To make the problem worse, this approach 

may result in the loss of true precursors which are not well conserved across species. 

MiRDetector, on the other hand, was developed just by nucleotides derived 

physicochemical, without any sequence or structure conservation limitation. As it 

allows the characteristic features to be captured based on the input sequences alone, 

conserved sequence information within the samples can be extracted too. This helps 

to reach in higher sensitivities and specificities in the prediction of miRNAs across 

different species as tabulated in Table 5-2, implying that our method works well 

without the use of any structural information. On the other hand, it does not mean that 

structural features are not important. Current comparison is merely to test the 

possibility to exclude structural characteristics to the prediction of miRNAs. Since the 

use of physicochemical features produces satisfactory results, it forms an alternative 

solution for identifying miRNAs. It is likely that the combination of these features 

with the structural knowledge of miRNAs would reach even better prediction 

performance. 

 

Comparative genomics based methods which apply conserved sequence and 

secondary structure features were found inferior to MiRDetector. miRseeker[208] 

achieved an accuracy of 75% in the prediction of miRNAs with Drosophila genome 

while miRAlign [209] achieved an accuracy of 89.9% in the prediction of miRNAs in 

animal genomes but 70% for  plants. The comparatively higher sensitivity of 99.5% 
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in MiRDetector reassures the findings from other similar approaches in that the use of 

cross-species information may have a prediction advantage over species-specific 

models. A recent but different approach adopted by MiRPred also verified this point 

[203]. Although it aimed at using an ab intio method which relied only on precursor 

miRNA structural characteristics, the model was trained on human dataset, achieving 

95% sensitivity over human data but later dropped to 90% for other non-human 

datasets. Thus MiRDetector, uses only sequence information instead, its application to 

cross-species data would expect to achieve better performance than MiRPred. 

 

Comparing with other SVM based approaches, such as RNAmicro [210] and 

triplet-SVM [99], MiRDetector does not zoom into any specific regions of input 

sequences. Furthermore, triplet-SVM was trained on human dataset, resulting in an 

overall accuracy of 90% for human precursor miRNAs, which is comparatively lower 

than that of MiRDector (99.4%). mirCoS [93] which implemented three SVM models 

simultaneously on human and mouse miRNA achieved a sensitivity of 85%. 

MiR-abela [205] is designed to predict species-specific samples. The work was built 

on the property that miRNA sequences are usually found in genomic clusters as some 

miRNAs are transcribed as polycistronic transcripts [211]. This idea is similar to the 

feature used for MiRDetector construction. MiRDetector was constructed based on 

physicochemical properties within the sample sequences, and miRNA with related 

sequence information are usually those which are located close to each other. Due to 

the similarity between the two concepts, a comparison test was performed to evaluate 

the specificity of each method. 40 randomly selected non-coding RNA sequences 

(Ensembl release 48) from Drosophila melanogaster, Homo sapiens, Mus musculus 
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and Saccharomyces cerevisiae were tested on both models. Both methods achieve 

very high accuracy indicating that they are comparable.  

 

Figure 5-1 Graphical user interface of MiRDetector. The sequence of a query sequence, 
in RAW format and containing non-AU(T)GC characters, can be input in a window 
provided. 
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Figure 5-2 Result page of MiRDetector showing that a query sequence is a potential 
precursor miRNA  

 
 

Figure 5-3 Result page of MiRDetector showing the location of the predicted mature 
miRNA within the precursor 
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5.4. Summary 

The discovery of miRNAs has driven intensive interest towards better understanding 

of their biogenesis and functional roles. As regulatory components involved in many 

diverse cellular development and physiological processes, miRNAs are emerging as a 

promise gene regulation therapy. More and more efforts have been devoted to identify 

miRNAs and their targets. In this work, a SVM based predictor, MiRDetector, was 

developed to identify miRNAs based on primary sequences of RNAs. The overall 

accuracy of predicting precursor miRNAs and mature miRNAs was 97.9% and 99.1% 

respectively, which is slightly higher than previous studies. A further test by using 

245 putative precursor miRNAs and three novel mature miRNAs from Macaca 

mulatta genome showed that 78% of precursor miRNAs and all of mature miRNA 

were correctly classified. In addition, genome screening found that an average of 4% 

of non-coding RNAs was predicted as precursor miRNAs, which indicates that our 

model has a relatively low false positive rate. Furthermore, the comparison with other 

machine learning methods like KNN, DT and PNN indicates that SVM has better 

performance in both precursor miRNA and mature miRNA prediction. These results 

suggest the usefulness of SVM for facilitating the prediction of miRNAs.  
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6. Conclusion and future work 

The characterization of novel biochemical class, disease related proteins and miRNAs 

is essential for in-depth understanding of biological processes, and helpful to 

accelerate the drug target discovery. Due to the limitation of experimental approaches, 

various computational tools have been developed to facilitate the identification of 

these proteins and miRNAs. In this work, one machine learning method, support 

vector machine (SVM), was employed to develop prediction systems for 

multifunctional enzymes (MFEs), disease related proteins and miRNAs from their 

primary sequences derived physicochemical properties. Corresponding prediction 

servers were also developed to serve scientific community who are interested in 

further investigating these protein and RNA classes.  
 

6.1. Major findings 

In the study of MFEs, we collected and systematically analyzed MFEs by grouping 

them into two categories: MFEs with multiple catalytic domains (MCD-MFEs) and 

MFEs with single multi-activity domain (SMAD-MFEs). No obvious evidences were 

found species distribution analysis that complex life forms like human prefer more 

MFEs statistically than simple life form like yeast. Combined with the finding in later 

pathway ontology analysis that the majority of MFEs are involved in several essential 

cellular processes, it suggests that MFEs are most likely to be early enzymes in 

primitive life forms. They may play key roles in catalyzing essential cellular 

processes so that their functions are well conserved across species. This is also 

supported by the evidence that almost half of MFEs participate in only one biological 

pathway. At the meantime, some MFEs are generated by diversification and 
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specification in various forms of genetic variation like gene fusion or exon shuffling, 

since about half of MFEs are involving more than one pathway, as more as five 

independent pathways. According to current available 3D structures and orthologous 

analysis, the alpha and beta fold topology is the most favored to preserve multiple 

functions of MFEs during evolution. Later principle feature analysis found that four 

physiochemical properties are important for characterizing MFEs. A support vector 

machine based classifier was also constructed and successfully identified 2,641 novel 

MFEs from the ExPASy Enzyme database. In additional, from the domain 

information, we know that most MFEs are composed of multiple catalytic domains, 

which is similar with MFPs [212], so the same procedure may be extended to the 

identification of other types of MFPs. An online prediction system (SIME) and 

database, was also developed to facilitate the study of MFEs.  

 

In the study of disease related proteins, three prediction systems were developed to 

identify antimicrobial proteins (including fungicide proteins, antibiotic proteins and 

all antimicrobial proteins), antibiotic resistance proteins and cancer associated 

proteins (including proto-oncogenes and tumor suppressors). Independent evaluation 

of these functional classes showed that the prediction accuracies for members and 

non-members were in the range of 81.8%~97.5% and 99.2%~99.9% respectively. The 

comparison with other machine learning methods like KNN, DT and PNN indicates 

that SVM performed better for disease related protein prediction. Moreover, a 

majority of novel proteins which do not have homologues in known protein databases 

were successfully predicted by our prediction systems. Potential disease related 

proteins were also identified through scanning bacterial and human genomes. These 

result shows that our prediction systems are potentially useful tools for the prediction 
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of disease related proteins and may serve as a promising complementary method to 

sequence similarity approach.  

 

Three SVM prediction systems are developed to identify AMPs, ARPs and CAPs. 

They appear to be potentially useful tools to identify antimicrobial proteins, antibiotic 

resistances, proto-oncogenes and tumor suppressors with satisfying accuracy, 

especially for those novel disease related proteins without homologues in known 

protein databases. The prediction accuracy may be further enhanced with future 

accumulation of our knowledge about these disease related proteins particularly for 

those small sub classes, more refined representation of the structural and 

physicochemical properties of proteins, and the improvement of prediction algorithms 

such as the better treatment of imbalanced dataset.  

 

In the study of miRNAs, a SVM based predictor, MiRDector, reached the accuracies 

of 92.2% and 94.8% for precursor miRNAs and mature miRNAs, and 98.4% and 

99.5% for non-precursors and non-mature respectively. Sequences of non-coding 

RNAs from four representative genomes were also screened to identify potential 

miRNAs. An average of 4% of non-coding RNAs was predicted as precursor 

miRNAs, indicating our predictor is able to reach a relatively low false positive rate 

than previous study [213]. The comparison with other machine learning methods like 

KNN, DT and PNN indicates that SVM performed slightly better for both members 

and non-members prediction. These results suggest that our miRNA prediction system 

is capable of identifying miRNAs with satisfactory accuracy. Similar methodology 

could be ideally applied to predict other functional RNAs.  
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6.2. Limitition of methods applied in this work 

It is found that the prediction accuracy of non-members appears to be better than that 

of members. This is because the negative data set is generally more diverse than 

positive data, which enables SVM to perform a better statistical learning to recognize 

non-members. Based on the statistics provided on the webpage of Pfam and Rfam 

database, there are over 9,000 families of proteins and 600 families of RNAs, from 

which one can generate a diverse set of non-members for each class. Because of the 

differences in the number of members and that of non-members in each class, there is 

an imbalance between each dataset. SVM based on an imbalanced datasets tends to 

produce feature vectors that push the hyperplane towards the side with smaller 

number of data, which can lead to a reduced accuracy for the dataset either with a 

smaller number of samples or of less diversity. This may be another reason why the 

prediction accuracy for members is generally lower than that for non-members. It is 

however inappropriate to simply reduce the size of non-members to artificially match 

that of members, since this compromises the diversity needed to fully represent all 

non-members. On the other hand, the number of actual negatives is much larger than 

the number of positives in reality. To solve the imbalance problem, resampling 

methods, such as oversampling and undersampling, are commonly used [214]. The 

idea of resampling methods is to either oversample the small class to make it reach to 

a size comparable to that of the larger class, or to undersample the lager class until it 

reaches to a size comparable to that of the smaller class [215].  

 

It should be noted that the procedure for determing the contribution of feature 

properties in this study does not take into account of interactions between the different 
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feature properties. Special care should be taken if such procedures are used to analyze 

non-orthogonal features. 

 

6.3. Future studies 

The performance of our prediction system could be further improved with future 

accumulation of our knowledge about proteins and small RNAs. In addition, new 

protein and miRNA descriptors will be introduced to better represent certain types of 

protein functional profiles, such as structural characteristics and localization features, 

while folding energy can be added to small RNA features. Moreover, resampling 

methods would also be applied to solve the imbalance problem and further improve 

the prediction accuracy.  
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APPENDICES 

S1 Scanning results of E. coli K12 genome (# indicates that data were not included in our model development) 

Access 
number in 

NCBI 

Gene 
Name 

Entry Name in 
Swiss-Prot Protein Name Function described Swiss-Prot Status 

AAC73137.1 ileS SYI_ECOLI Isoleucyl-tRNA synthetase (EC 6.1.1.5) 
(Isoleucine--tRNA ligase) (IleRS) 

Aminoacyl-tRNA synthetase; Antibiotic resistance; 
ATP-binding; Complete proteome; Cytoplasm; 
Direct protein sequencing; Ligase; Metal-binding; 
Nucleotide-binding; Protein biosynthesis; Zinc. 

known 

AAC73159.1 folA DYR_ECOLI Dihydrofolate reductase (EC 1.5.1.3) 

3D-structure; Antibiotic resistance; Complete 
proteome; Direct protein sequencing; Methotrexate 
resistance; NADP; One-carbon metabolism; 
Oxidoreductase; Trimethoprim resistance. 

known 

AAC73162.1 ksgA KSGA_ECOLI 

Dimethyladenosine transferase (EC 2.1.1.-) 
(S-adenosylmethionine-6-N', N'-adenosyl(rRNA) 
dimethyltransferase) (16S rRNA dimethylase) 
(High level kasugamycin resistance protein ksgA) 
(Kasugamycin dimethyltransferase) 

3D-structure; Antibiotic resistance; Complete 
proteome; Methyltransferase; RNA-binding; rRNA 
processing; S-adenosyl-L-methionine; Transferase. 

known 

AAC73195.1 ftsI FTSI_ECOLI 
Peptidoglycan synthetase ftsI precursor (EC 
2.4.1.129) (Peptidoglycan glycosyltransferase 3) 
(Penicillin-binding protein 3) (PBP-3) 

Antibiotic resistance; Cell cycle; Cell division; Cell 
shape; Cell wall biogenesis/degradation; Complete 
proteome; Glycosyltransferase; Inner membrane; 
Membrane; Multifunctional enzyme; 
Peptidoglycan synthesis; Transferase; 
Transmembrane. 

known 

AAC73260.1 mrcB PBPB_ECOLI Penicillin-binding protein 1B (PBP-1b) (PBP1b) 
(Murein polymerase) 

Alternative initiation; Antibiotic resistance; Cell 
shape; Cell wall biogenesis/degradation; Complete 
proteome; Direct protein sequencing; 
Glycosyltransferase; Hydrolase; Inner membrane; 
Membrane; Multifunctional enzyme; 
Peptidoglycan synthesis; Signal-anchor; 
Transferase; Transmembrane. 

known 

AAC73290.1 lpxD LPXD_ECOLI UDP-3-O-[3-hydroxymyristoyl] glucosamine 
N-acyltransferase (EC 2.3.1.-)  

Acyltransferase; Antibiotic resistance; Complete 
proteome; Direct protein sequencing; Lipid A 
biosynthesis; Lipid synthesis; Repeat; Transferase. 

known 
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AAC73581.1 fsr FSR_ECOLI Fosmidomycin resistance protein Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Transmembrane. known 

AAC73928.1 ybjG YBJG_ECOLI 
Putative undecaprenyl-diphosphatase ybjG (EC 
3.6.1.27) (Undecaprenyl pyrophosphate 
phosphatase). 

Antibiotic resistance; Cell shape; Cell wall 
biogenesis/degradation; Complete proteome; 
Hydrolase; Inner membrane; Membrane; 
Peptidoglycan synthesis; Transmembrane. 

known 

AAC74137.1 mdtG MDTG_ECOLI Multidrug resistance protein mdtG 
Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Transmembrane; 
Transport. 

known 

AAC74149.2 mdtH MDTH_ECOLI Multidrug resistance protein mdtH 
Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Transmembrane; 
Transport. 

known 

AAC74370.1 fabI FABI_ECOLI Enoyl-[acyl-carrier-protein] reductase [NADH]  

3D-structure; Antibiotic resistance; Complete 
proteome; Direct protein sequencing; Fatty acid 
biosynthesis; Inner membrane; Lipid synthesis; 
Membrane; NAD; Oxidoreductase. 

known 

AAC74671.1 mdtI MDTI_ECOLI Multidrug resistance protein mdtI Complete proteome; Inner membrane; Membrane; 
Transmembrane; Transport. #known 

AAT48136.1 mdtK MDTK_ECOLI Multidrug resistance protein mdtK 
(Multidrug-efflux transporter) 

Antibiotic resistance; Antiport; Complete 
proteome; Inner membrane; Ion transport; 
Membrane; Sodium; Sodium transport; 
Transmembrane; Transport. 

known 

AAC75243.1 bcr BCR_ECOLI Bicyclomycin resistance protein (Sulfonamide 
resistance protein) 

Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Transmembrane; 
Transport. 

known 

AAC75271.1 yojI YOJI_ECOLI ABC transporter ATP-binding protein yojI 
Antibiotic resistance; ATP-binding; Complete 
proteome; Inner membrane; Membrane; 
Nucleotide-binding; Transmembrane; Transport. 

known 

AAC75291.1 gyrA GYRA_ECOLI DNA gyrase subunit A (EC 5.99.1.3) 
3D-structure; Antibiotic resistance; Complete 
proteome; DNA-binding; Isomerase; 
Topoisomerase. 

known 

AAC75319.2 pmrD PMRD_ECOLI Signal transduction protein pmrD  Antibiotic resistance; Complete proteome. known 

AAC75523.1 acrD ACRD_ECOLI Probable aminoglycoside efflux pump  Complete proteome; Inner membrane; Membrane; 
Transmembrane; Transport. #known 

AAC76066.1 parE PARE_ECOLI DNA topoisomerase 4 subunit B (EC 5.99.1.-)  
3D-structure; Antibiotic resistance; ATP-binding; 
Complete proteome; Isomerase; 
Nucleotide-binding; Topoisomerase. 

known 
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AAC76093.1 bacA UPPP_ECOLI Undecaprenyl-diphosphatase (EC 3.6.1.27)  

Antibiotic resistance; Cell shape; Cell wall 
biogenesis/degradation; Complete proteome; 
Hydrolase; Inner membrane; Membrane; 
Peptidoglycan synthesis; Transmembrane. 

known 

AAC76209.2 folP DHPS_ECOLI Dihydropteroate synthase (EC 2.5.1.15)  
3D-structure; Antibiotic resistance; Complete 
proteome; Direct protein sequencing; Folate 
biosynthesis; Transferase. 

known 

AAC76214.1 dacB PBP4_ECOLI Penicillin-binding protein 4 precursor (PBP-4)  

3D-structure; Antibiotic resistance; Cell cycle; Cell 
division; Cell shape; Cell wall 
biogenesis/degradation; Complete proteome; 
Direct protein sequencing; Hydrolase; 
Peptidoglycan synthesis; Periplasm; Signal. 

known 

AAC76321.1 rpsD RS4_ECOLI 30S ribosomal protein S4 

3D-structure; Antibiotic resistance; Complete 
proteome; Direct protein sequencing; Repressor; 
Ribonucleoprotein; Ribosomal protein; 
RNA-binding; rRNA-binding; Transcription; 
Transcription regulation; Transcription 
termination; Translation regulation. 

known 

AAC76328.1 rpsE RS5_ECOLI 30S ribosomal protein S5 

3D-structure; Acetylation; Antibiotic resistance; 
Complete proteome; Direct protein sequencing; 
Ribonucleoprotein; Ribosomal protein; 
RNA-binding; rRNA-binding. 

known 

AAC76330.1 rplF RL6_ECOLI 50S ribosomal protein L6 

3D-structure; Antibiotic resistance; Complete 
proteome; Direct protein sequencing; 
Ribonucleoprotein; Ribosomal protein; 
RNA-binding; rRNA-binding. 

known 

AAC76336.1 rpsQ RS17_ECOLI 30S ribosomal protein S17 

3D-structure; Antibiotic resistance; Complete 
proteome; Direct protein sequencing; 
Ribonucleoprotein; Ribosomal protein; 
RNA-binding; rRNA-binding. 

known 

AAC76344.1 rplD RL4_ECOLI 50S ribosomal protein L4 

3D-structure; Antibiotic resistance; Complete 
proteome; Direct protein sequencing; Repressor; 
Ribonucleoprotein; Ribosomal protein; 
RNA-binding; rRNA-binding; Transcription; 
Transcription regulation; Transcription 
termination; Translation regulation. 

known 

AAC76364.1 tufA EFTU_ECOLI Elongation factor Tu (EF-Tu) (P-43) 3D-structure; Acetylation; Antibiotic resistance; 
Complete proteome; Cytoplasm; Direct protein #known 



Appendices                                                                                                                                126 

sequencing; Elongation factor; GTP-binding; 
Membrane; Methylation; Nucleotide-binding; 
Phosphorylation; Protein biosynthesis. 

AAC76367.1 rpsL RS12_ECOLI 30S ribosomal protein S12 

3D-structure; Antibiotic resistance; Complete 
proteome; Direct protein sequencing; 
Ribonucleoprotein; Ribosomal protein; 
RNA-binding; rRNA-binding; tRNA-binding. 

known 

AAT48201.1 gyrB GYRB_ECOLI DNA gyrase subunit B (EC 5.99.1.3) 
3D-structure; Antibiotic resistance; ATP-binding; 
Complete proteome; Direct protein sequencing; 
Isomerase; Nucleotide-binding; Topoisomerase. 

known 

AAC76733.1 mdtL MDTL_ECOLI Multidrug resistance protein mdtL 
Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Transmembrane; 
Transport. 

known 

AAC76961.1 rpoB RPOB_ECOLI 
DNA-directed RNA polymerase subunit beta (EC 
2.7.7.6) (RNAP subunit beta) (Transcriptase 
subunit beta) (RNA polymerase subunit beta) 

Complete proteome; DNA-directed RNA 
polymerase; Nucleotidyltransferase; Transcription; 
Transferase. 

#known 

AAC77074.1 basR BASR_ECOLI Transcriptional regulatory protein basR/pmrA. 

Antibiotic resistance; Complete proteome; 
Cytoplasm; DNA-binding; Phosphorylation; 
Transcription; Transcription regulation; 
Two-component regulatory system. 

known 

AAC77110.1 ampC AMPC_ECOLI Beta-lactamase precursor (EC 3.5.2.6)  
3D-structure; Antibiotic resistance; Complete 
proteome; Direct protein sequencing; Hydrolase; 
Periplasm; Signal. 

known 

AAC77293.1 mdtM MDTM_ECOLI Multidrug resistance protein mdtM 
Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Transmembrane; 
Transport. 

known 

AAC73564.1 acrB ACRB_ECOLI Acriflavine resistance protein B 
3D-structure; Complete proteome; Inner 
membrane; Membrane; Transmembrane; 
Transport. 

#known 

AAC73565.1 acrA ACRA_ECOLI Acriflavine resistance protein A precursor 
3D-structure; Antibiotic resistance; Complete 
proteome; Inner membrane; Lipoprotein; 
Membrane; Palmitate; Signal; Transport. 

known 

AAC73736.1 mrdA PBP2_ECOLI Penicillin-binding protein 2 (PBP-2) 

Antibiotic resistance; Cell shape; Cell wall 
biogenesis/degradation; Complete proteome; Inner 
membrane; Membrane; Multifunctional enzyme; 
Peptidoglycan synthesis. 

known 

AAC73965.2 macA MACA_ECOLI Macrolide-specific efflux protein macA precursor Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Signal; Transport. known 
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AAC73966.1 macB MACB_ECOLI Macrolide export ATP-binding/permease protein 
macB (EC 3.6.3.-) 

Antibiotic resistance; ATP-binding; Complete 
proteome; Hydrolase; Inner membrane; Membrane; 
Nucleotide-binding; Transmembrane; Transport. 

known 

AAC74511.1 tehA TEHA_ECOLI Tellurite resistance protein tehA 
Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Tellurium resistance; 
Transmembrane. 

known 

AAC74512.1 tehB TEHB_ECOLI Tellurite resistance protein tehB Antibiotic resistance; Complete proteome; 
Cytoplasm; Tellurium resistance. known 

AAC74602.1 marC MARC_ECOLI Multiple antibiotic resistance protein marC Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Transmembrane. known 

AAC74603.2 marR MARR_ECOLI Multiple antibiotic resistance protein marR 
3D-structure; Antibiotic resistance; Complete 
proteome; DNA-binding; Repressor; Transcription; 
Transcription regulation. 

known 

AAC74604.2 marA MARA_ECOLI Multiple antibiotic resistance protein marA 
3D-structure; Activator; Antibiotic resistance; 
Complete proteome; DNA-binding; Repeat; 
Transcription; Transcription regulation. 

known 

AAC74605.1 marB MARB_ECOLI Multiple antibiotic resistance protein marB Antibiotic resistance; Complete proteome. known 

AAC75136.1 mdtB MDTB_ECOLI Multidrug resistance protein mdtB  Complete proteome; Inner membrane; Membrane; 
Transmembrane; Transport. #known 

AAC75137.1 mdtC MDTC_ECOLI Multidrug resistance protein mdtC  Complete proteome; Inner membrane; Membrane; 
Transmembrane; Transport. #known 

AAC75138.1 mdtD MDTD_ECOLI Putative multidrug resistance protein mdtD Complete proteome; Inner membrane; Membrane; 
Transmembrane; Transport. #known 

AAC75313.3 arnB ARNB_ECOLI UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate 
aminotransferase (EC 2.6.1.-)  

Aminotransferase; Antibiotic resistance; Complete 
proteome; Lipid A biosynthesis; Lipid synthesis; 
Lipopolysaccharide biosynthesis; Pyridoxal 
phosphate; Transferase. 

known 

AAC75314.1 arnC ARNC_ECOLI 
Undecaprenyl-phosphate 
4-deoxy-4-formamido-L-arabinose transferase 
(EC 2.7.8.-)  

Antibiotic resistance; Complete proteome; 
Glycosyltransferase; Inner membrane; Lipid A 
biosynthesis; Lipid synthesis; Lipopolysaccharide 
biosynthesis; Membrane; Transferase; 
Transmembrane. 

known 

AAC75315.1 arnA ARNA_ECOLI Bifunctional polymyxin resistance protein arnA 
(Polymyxin resistance protein pmrI)  

3D-structure; Antibiotic resistance; Complete 
proteome; Lipid A biosynthesis; Lipid synthesis; 
Lipopolysaccharide biosynthesis; 
Methyltransferase; Multifunctional enzyme; NAD; 
Oxidoreductase; Transferase. 

known 
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AAC75732.1 emrA EMRA_ECOLI Multidrug resistance protein A 
Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Transmembrane; 
Transport. 

known 

AAC75733.1 emrB EMRB_ECOLI Multidrug resistance protein B 
Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Transmembrane; 
Transport. 

known 

AAC76297.1 acrE ACRE_ECOLI Acriflavine resistance protein E precursor 
(Protein envC) 

Cell cycle; Cell division; Complete proteome; 
Inner membrane; Lipoprotein; Membrane; 
Palmitate; Signal. 

#known 

AAC76298.1 acrF ACRF_ECOLI Acriflavine resistance protein F (Protein envD) 
Cell cycle; Cell division; Complete proteome; 
Inner membrane; Membrane; Transmembrane; 
Transport. 

#known 

AAC76340.1 rplV RL22_ECOLI 50S ribosomal protein L22 

3D-structure; Antibiotic resistance; Complete 
proteome; Direct protein sequencing; 
Ribonucleoprotein; Ribosomal protein; 
RNA-binding; rRNA-binding. 

known 

AAC76421.2 mrcA PBPA_ECOLI Penicillin-binding protein 1A (PBP-1a) (PBP1a)  

Antibiotic resistance; Cell shape; Cell wall 
biogenesis/degradation; Complete proteome; 
Direct protein sequencing; Glycosyltransferase; 
Hydrolase; Inner membrane; Membrane; 
Multifunctional enzyme; Peptidoglycan synthesis; 
Signal-anchor; Transferase; Transmembrane. 

known 

AAC76538.1 mdtE MDTE_ECOLI Multidrug resistance protein mdtE precursor 
Antibiotic resistance; Complete proteome; Inner 
membrane; Lipoprotein; Membrane; Palmitate; 
Signal; Transport. 

known 

AAC76539.1 mdtF MDTF_ECOLI Multidrug resistance protein mdtF 
Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Transmembrane; 
Transport. 

known 

AAC76954.1 tufB EFTU_ECOLI Elongation factor Tu (EF-Tu) (P-43) 

3D-structure; Acetylation; Antibiotic resistance; 
Complete proteome; Cytoplasm; Direct protein 
sequencing; Elongation factor; GTP-binding; 
Membrane; Methylation; Nucleotide-binding; 
Phosphorylation; Protein biosynthesis. 

known 

AAD13463.1 mdtP MDTP_ECOLI Multidrug resistance outer membrane protein 
mdtP precursor 

Antibiotic resistance; Complete proteome; 
Lipoprotein; Membrane; Outer membrane; 
Palmitate; Signal. 

known 

AAD13464.2 mdtO MDTO_ECOLI Multidrug resistance protein mdtO Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Transmembrane; known 
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Transport. 

AAD13465.1 mdtN MDTN_ECOLI Multidrug resistance protein mdtN 
Antibiotic resistance; Complete proteome; Inner 
membrane; Membrane; Transmembrane; 
Transport. 

known 

AAC73176.1 yabI YABI_ECOLI Inner membrane protein yabI Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC73309.1 metI METI_ECOLI D-methionine transport system permease protein 
metI 

Amino-acid transport; Complete proteome; Inner 
membrane; Membrane; Transmembrane; 
Transport. 

predicted 

AAC73356.2 ykfA YKFA_ECOLI Uncharacterized protein ykfA Complete proteome; GTP-binding; 
Nucleotide-binding. predicted 

AAC73388.1 yagS YAGS_ECOLI Putative xanthine dehydrogenase yagS 
FAD-binding subunit (EC 1.17.1.4) 

Complete proteome; FAD; Flavoprotein; NAD; 
Oxidoreductase; Purine metabolism; Purine 
salvage. 

predicted 

AAC73424.1 yahG YAHG_ECOLI Uncharacterized protein yahG. Complete proteome; Membrane; Transmembrane. predicted 

AAC73443.1 cynS CYNS_ECOLI Cyanate hydratase (EC 4.2.1.104)  3D-structure; Complete proteome; Direct protein 
sequencing; Lyase. predicted 

AAC73456.2 mhpT MHPT_ECOLI Putative 3-hydroxyphenylpropionic acid 
transporter 

Complete proteome; Inner membrane; Membrane; 
Symport; Transmembrane; Transport. predicted 

AAC73499.1 araJ ARAJ_ECOLI Protein araJ Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC73511.1 secD SECD_ECOLI Protein-export membrane protein secD 
Complete proteome; Inner membrane; Membrane; 
Protein transport; Translocation; Transmembrane; 
Transport. 

predicted 

AAC73543.1 hupB DBHB_ECOLI DNA-binding protein HU-beta  Complete proteome; Direct protein sequencing; 
DNA condensation; DNA-binding. predicted 

AAC73676.1 cusA CUSA_ECOLI Cation efflux system protein cusA 
Complete proteome; Copper; Copper transport; 
Inner membrane; Ion transport; Membrane; 
Transmembrane; Transport. 

predicted 

AAC73692.1 entS ENTS_ECOLI Enterobactin exporter entS  Complete proteome; Inner membrane; Membrane; 
Transmembrane; Transport. predicted 

AAC73735.1 mrdB RODA_ECOLI Rod shape-determining protein rodA Cell shape; Complete proteome; Inner membrane; 
Membrane; Transmembrane. predicted 

AAC75729.1 ygaZ YGAZ_ECOLI Inner membrane protein ygaZ Complete proteome; Inner membrane; Membrane; 
Transmembrane; Transport. predicted 

AAC75730.1 ygaH YGAH_ECOLI predicted inner membrane protein Complete proteome. predicted 
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AAC76341.1 rpsS RS19_ECOLI 30S ribosomal protein S19 

3D-structure; Complete proteome; Direct protein 
sequencing; Ribonucleoprotein; Ribosomal 
protein; RNA-binding; rRNA-binding; 
tRNA-binding. 

predicted 

AAC76420.2 hofM YRFD_ECOLI predicted pilus assembly protein Complete proteome. predicted 

AAT48187.1 rbbA YHIH_ECOLI Uncharacterized ABC transporter ATP-binding 
protein yhiH 

ATP-binding; Complete proteome; Inner 
membrane; Membrane; Nucleotide-binding; 
Repeat; Transmembrane; Transport. 

predicted 

AAC76512.1 yhiI YHII_ECOLI Uncharacterized protein yhiI precursor Complete proteome; Signal. predicted 

AAC76955.1 secE SECE_ECOLI Preprotein translocase subunit secE 
3D-structure; Complete proteome; Inner 
membrane; Membrane; Protein transport; 
Translocation; Transmembrane; Transport. 

predicted 

AAC75282.1 atoA ATOA_ECOLI Acetate CoA-transferase subunit beta (EC 
2.8.3.8)  

Complete proteome; Fatty acid metabolism; Lipid 
metabolism; Transferase. predicted 

AAC75284.1 atoB ATOB_ECOLI Acetyl-CoA acetyltransferase (EC 2.3.1.9)  
Acyltransferase; Complete proteome; Cytoplasm; 
Fatty acid metabolism; Lipid metabolism; 
Transferase. 

predicted 

AAC73796.1 ybfB YBFB_ECOLI predicted inner membrane protein Complete proteome; Membrane; Transmembrane. predicted 

AAC73831.1 tolQ TOLQ_ECOLI membrane spanning protein in TolA-TolQ-TolR 
complex 

Bacteriocin transport; Complete proteome; Inner 
membrane; Membrane; Protein transport; 
Transmembrane; Transport. 

predicted 

AAC73878.1 ybhQ YBHQ_ECOLI Inner membrane protein ybhQ Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC73882.1 ybhG YBHG_ECOLI UPF0194 membrane protein ybhG precursor Coiled coil; Complete proteome; Periplasm; 
Signal. predicted 

AAC73915.1 iaaA ASGX_ECOLI Putative L-asparaginase precursor (EC 3.5.1.1)  3D-structure; Complete proteome; Hydrolase; 
Signal. predicted 

AAC73917.1 gsiB GSIB_ECOLI Glutathione-binding protein gsiB precursor 3D-structure; Complete proteome; Periplasm; 
Signal; Transport. predicted 

AAC73923.1 bssR BSSR_ECOLI Biofilm regulator bssR Complete proteome. predicted 

AAC73991.2 ycaO YCAO_ECOLI UPF0142 protein ycaO Complete proteome. predicted 

AAC74110.1 ycdT YCDT_ECOLI Inner membrane protein ycdT Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC74274.1 dadX ALR2_ECOLI Alanine racemase, catabolic  Complete proteome; Isomerase; Pyridoxal 
phosphate. predicted 
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AAC74388.1 pspC PSPC_ECOLI Phage shock protein C Activator; Complete proteome; Stress response; 
Transcription; Transcription regulation. predicted 

ABD18660.1 rzoR RZOR_ECOLI Outer membrane lipoprotein Rz1 from lambdoid 
prophage Rac precursor 

Complete proteome; Lipoprotein; Membrane; 
Outer membrane; Palmitate; Phage lysis protein; 
Signal. 

predicted 

AAC74534.1 yncE YNCE_ECOLI Uncharacterized protein yncE precursor ATP-binding; Complete proteome; 
Nucleotide-binding; Signal. predicted 

AAD13437.3 yddG YDDG_ECOLI Inner membrane protein yddG Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC74648.1 ydfD YDFD_ECOLI Uncharacterized protein ydfD Complete proteome. predicted 

AAC74668.1 ynfM YNFM_ECOLI Inner membrane transport protein ynfM Complete proteome; Inner membrane; Membrane; 
Transmembrane; Transport. predicted 

AAC74675.1 pntA PNTA_ECOLI NAD(P) transhydrogenase subunit alpha (EC 
1.6.1.2)  

3D-structure; Complete proteome; Direct protein 
sequencing; Inner membrane; Membrane; NAD; 
NADP; Oxidoreductase; Transmembrane. 

predicted 

AAC74703.1 rsxG RNFG_ECOLI Electron transport complex protein rnfG 
Complete proteome; Electron transport; Inner 
membrane; Membrane; Transmembrane; 
Transport. 

predicted 

AAC74712.1 anmK ANMK_ECOLI Anhydro-N-acetylmuramic acid kinase (EC 
2.7.1.-) (AnhMurNAc kinase) 

ATP-binding; Carbohydrate metabolism; Complete 
proteome; Kinase; Nucleotide-binding; 
Transferase. 

predicted 

AAC74716.2 ydhJ YDHJ_ECOLI Uncharacterized protein ydhJ Complete proteome; Membrane; Transmembrane. predicted 

AAC74729.1 ydhP YDHP_ECOLI Inner membrane transport protein ydhP Complete proteome; Inner membrane; Membrane; 
Transmembrane; Transport. predicted 

AAC74740.1 ydhU PHSC_ECOLI Protein phsC homolog Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC74828.2 ynjF YNJF_ECOLI Inner membrane protein ynjF Complete proteome; Inner membrane; Membrane; 
Transferase; Transmembrane. predicted 

AAC74858.2 yoaI YOAI_ECOLI Uncharacterized protein yoaI Complete proteome; Membrane; Transmembrane. predicted 

AAC74868.1 leuE YEAS_ECOLI neutral amino-acid efflux system Complete proteome; Membrane; Transmembrane. predicted 

AAC74896.1 mgrB YOBG_ECOLI Uncharacterized protein yobG Complete proteome. predicted 

AAC74898.2 yebQ YEBQ_ECOLI Uncharacterized transporter yebQ Complete proteome; Inner membrane; Membrane; 
Transmembrane; Transport. predicted 

AAC75121.2 wzc WZC_ECOLI Tyrosine-protein kinase wzc (EC 2.7.10.2) 
Complete proteome; Exopolysaccharide synthesis; 
Inner membrane; Kinase; Membrane; 
Phosphorylation; Transferase; Transmembrane; 

predicted 
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Tyrosine-protein kinase. 

AAC75153.1 gatC PTKC_ECOLI Galactitol permease IIC component  

Complete proteome; Galactitol metabolism; Inner 
membrane; Membrane; Phosphotransferase 
system; Sugar transport; Transmembrane; 
Transport. 

predicted 

AAC75206.1 yeiS YEIS_ECOLI predicted inner membrane protein Complete proteome; Membrane; Transmembrane. predicted 

AAC75218.1 yeiE YEIE_ECOLI Uncharacterized HTH-type transcriptional 
regulator yeiE 

Complete proteome; DNA-binding; Transcription; 
Transcription regulation. predicted 

AAC75372.1 purF PUR1_ECOLI Amidophosphoribosyltransferase (EC 2.4.2.14)  

3D-structure; Complete proteome; Direct protein 
sequencing; Glutamine amidotransferase; 
Glycosyltransferase; Magnesium; Metal-binding; 
Purine biosynthesis; Transferase. 

predicted 

AAC75382.1 yfcJ YFCJ_ECOLI UPF0226 protein yfcJ Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC75387.1 yfcA YFCA_ECOLI Inner membrane protein yfcA Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC75468.1 ptsH PTHP_ECOLI Phosphocarrier protein HPr  

3D-structure; Complete proteome; Cytoplasm; 
Direct protein sequencing; Phosphorylation; 
Phosphotransferase system; Sugar transport; 
Transport. 

predicted 

AAC75556.1 yfgF YFGF_ECOLI Inner membrane protein yfgF Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC75589.1 hcaT HCAT_ECOLI Probable 3-phenylpropionic acid transporter Complete proteome; Inner membrane; Membrane; 
Symport; Transmembrane; Transport. predicted 

AAC75599.1 yphD YPHD_ECOLI Probable ABC transporter permease protein yphD Complete proteome; Inner membrane; Membrane; 
Transmembrane; Transport. predicted 

AAC75736.1 yqaA YQAA_ECOLI Inner membrane protein yqaA Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC76003.1 yqgA YQGA_ECOLI predicted inner membrane protein Complete proteome; Membrane; Transmembrane. predicted 

AAC76008.2 pppA PPPA_ECOLI bifunctional prepilin leader peptidase/ methylase Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC76134.1 yqjE YQJE_ECOLI Inner membrane protein yqjE Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC76167.2 agaV PTPB2_ECOLI 
N-acetylgalactosamine-specific 
phosphotransferase enzyme IIB component 2 (EC 
2.7.1.69)  

Complete proteome; Cytoplasm; Phosphorylation; 
Phosphotransferase system; Sugar transport; 
Transferase; Transport. 

predicted 
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AAC76273.1 aaeA AAEA_ECOLI p-hydroxybenzoic acid efflux pump subunit aaeA  Complete proteome; Inner membrane; Membrane; 
Transmembrane; Transport. predicted 

AAC76353.1 gspG GSPG_ECOLI Putative general secretion pathway protein G 
precursor  Complete proteome; Methylation; Transport. predicted 

AAC76610.1 yiaV YIAV_ECOLI Inner membrane protein yiaV precursor Complete proteome; Inner membrane; Membrane; 
Signal; Transmembrane. predicted 

AAC76645.1 rfaC RFAC_ECOLI Lipopolysaccharide heptosyltransferase 1  
Complete proteome; Direct protein sequencing; 
Glycosyltransferase; Lipopolysaccharide 
biosynthesis; Transferase. 

predicted 

AAC76700.1 yidI YIDI_ECOLI Inner membrane protein yidI Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAT48222.1 rhtC RHTC_ECOLI Threonine efflux protein Complete proteome; Inner membrane; Membrane; 
Transmembrane; Transport. predicted 

AAT48224.1 pldB PLDB_ECOLI Lysophospholipase L2 (EC 3.1.1.5) Complete proteome; Hydrolase; Inner membrane; 
Lipid synthesis; Membrane. predicted 

AAC76860.1 yihG YIHG_ECOLI Probable acyltransferase yihG (EC 2.3.-.-) 
Acyltransferase; Complete proteome; Inner 
membrane; Membrane; Transferase; 
Transmembrane. 

predicted 

AAC77004.1 malE MALE_ECOLI Maltose-binding periplasmic protein precursor  
3D-structure; Complete proteome; Direct protein 
sequencing; Periplasm; Signal; Sugar transport; 
Transport. 

predicted 

AAC77023.1 alr ALR1_ECOLI Alanine racemase, biosynthetic (EC 5.1.1.1) 
Cell shape; Cell wall biogenesis/degradation; 
Complete proteome; Isomerase; Peptidoglycan 
synthesis; Pyridoxal phosphate. 

predicted 

AAC77043.1 nrfD NRFD_ECOLI Protein nrfD Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC77089.1 yjdK YJDK_ECOLI Uncharacterized protein yjdK Complete proteome. predicted 

AAC77118.1 yjeO YJEO_ECOLI Inner membrane protein yjeO Complete proteome; Inner membrane; Membrane; 
Transmembrane. predicted 

AAC77182.1 chpB CHPB_ECOLI PemK-like protein 2 Complete proteome; DNA-binding. predicted 

AAC77288.1 yjiJ YJIJ_ECOLI predicted inner membrane protein Complete proteome; Membrane; Transmembrane. predicted 
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S2 Scanning results of S. aureus Mu50 genome (*indicates functional classification by SVMProt followed by probability of correct characterization P-value, 
while # indicates the data are not included in our model data set) 

Access number 
in NCBI Gene Name Entry Name in 

Swiss-Prot Protein Name Protein Function Status 

NP_370529.1 gyrB GYRB_STAAM DNA gyrase subunit B (EC 5.99.1.3) 
ATP-binding; Complete proteome; 
Isomerase; Nucleotide-binding; 
Topoisomerase. 

#known 

NP_370530.1 gyrA GYRA_STAAM DNA gyrase subunit A (EC 5.99.1.3) Antibiotic resistance; Complete proteome; 
DNA-binding; Isomerase; Topoisomerase. known 

NP_370558.1 bleO BLE_STAAM Bleomycin resistance protein 
(Bleomycin-binding protein) (BRP) Antibiotic resistance; Complete proteome. #known 

NP_370565.1 mecA Q54113_STAAM penicillin binding protein 2 prime Complete proteome. #known 

NP_370566.1 mecR1 MECR_STAAM Methicillin resistance mecR1 protein Antibiotic resistance; Complete proteome. known 

NP_370567.1 mecI MECI_STAAM Methicillin resistance regulatory protein mecI 
Antibiotic resistance; Complete proteome; 
DNA-binding; Repressor; Transcription; 
Transcription regulation. 

known 

NP_371066.1 rpoB RPOB_STAAM 
DNA-directed RNA polymerase beta chain (EC 
2.7.7.6) (RNAP betasubunit) (Transcriptase beta 
chain) (RNA polymerase subunit beta) 

Complete proteome; DNA-directed RNA 
polymerase; Nucleotidyltransferase; 
Transcription; Transferase. 

#known 

NP_371067.1 rpoC RPOC_STAAM 
DNA-directed RNA polymerase beta' chain (EC 
2.7.7.6) (RNAP beta'subunit) (Transcriptase 
beta' chain) (RNA polymerase beta' subunit) 

Complete proteome; DNA-directed RNA 
polymerase; Nucleotidyltransferase; 
Transcription; Transferase. 

#known 

NP_371898.1 femA FEMA_STAAM 
Aminoacyltransferase femA (EC 2.3.2.-) (Factor 
essential forexpression of methicillin resistance 
A) 

Acyltransferase; Antibiotic resistance; 
Cell shape; Cell wall 
biogenesis/degradation; Complete 
proteome; Cytoplasm; Peptidoglycan 
synthesis; Transferase. 

known 

NP_371899.1 femB FEMB_STAAM 
Aminoacyltransferase femB (EC 2.3.2.-) (Factor 
essential forexpression of methicillin resistance 
B) 

Acyltransferase; Antibiotic resistance; 
Cell shape; Cell wall 
biogenesis/degradation; Complete 
proteome; Cytoplasm; Peptidoglycan 
synthesis; Transferase. 

known 

NP_372179.1 ermA ERMA_STAAM 

rRNA adenine N-6-methyltransferase (EC 
2.1.1.48) (Macrolide-lincosamide-streptogramin 
B resistance protein) (Erythromycinresistance 
protein) 

Antibiotic resistance; Complete proteome; 
Methyltransferase; RNA-binding; 
S-adenosyl-L-methionine; Transferase. 

known 
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NP_372180.1 ant(9) S3AD_STAAM Streptomycin 3''-adenylyltransferase (EC 
2.7.7.47) (AAD(9)) 

Antibiotic resistance; Complete proteome; 
Nucleotidyltransferase; Transferase; 
Transposable element. 

known 

NP_372408.1 vraR VRAR_STAAM Response regulator protein vraR 

Antibiotic resistance; Activator; Complete 
proteome; Cytoplasm; DNA-binding; 
Phosphorylation; Transcription; 
Transcription regulation; Two-component 
regulatory system. 

known 

NP_372409.1 vraS VRAS_STAAM Sensor protein vraS (EC 2.7.13.3) 

Complete proteome; Kinase; Membrane; 
Phosphorylation; Transferase; 
Transmembrane; Two-component 
regulatory system. 

#known 

NP_372786.1 fmhB FEMX_STAAM 
Aminoacyltransferase femX (EC 2.3.2.-) (Factor 
essential forexpression of methicillin resistance 
X) 

Acyltransferase; Antibiotic resistance; 
Cell shape; Cell wall 
biogenesis/degradation; Complete 
proteome; Cytoplasm; Peptidoglycan 
synthesis; Transferase. 

known 

NP_370858.1 mepA MEPA_STAAM Multidrug export protein mepA Antibiotic resistance; Complete proteome; 
Membrane; Transmembrane; Transport. known 

NP_370922.1 tetM TETM_STAAM Tetracycline resistance protein tetM (TetA(M)) Antibiotic resistance;Tetracycline 
resistance protein tetM (TetA(M)). known 

NP_371017.2 ksgA KSGA_STAAM 

Dimethyladenosine transferase (EC 2.1.1.-) 
(S-adenosylmethionine-6-N',N'-adenosyl(rRNA) 
dimethyltransferase) (16S rRNA dimethylase) 
(Highlevel kasugamycin resistance protein 
ksgA) (Kasugamycindimethyltransferase) 

Antibiotic resistance; Complete proteome; 
Methyltransferase; RNA-binding; rRNA 
processing; S-adenosyl-L-methionine; 
Transferase. 

known 

NP_371038.1 folP DHPS_STAAM Dihydropteroate synthase (EC 2.5.1.15) 
(Dihydropteroatepyrophosphorylase) (DHPS) 

Antibiotic resistance; Complete proteome; 
Folate biosynthesis; Transferase. known 

NP_371069.1 rpsL RS12_STAAM 30S ribosomal protein S12 
Complete proteome; Ribonucleoprotein; 
Ribosomal protein; RNA-binding; 
rRNA-binding; tRNA-binding. 

#known 

NP_371207.1 uppP UPPP_STAAM 
Undecaprenyl-diphosphatase (EC 3.6.1.27) 
(Undecaprenyl pyrophosphatephosphatase) 
(Bacitracin resistance protein) 

Antibiotic resistance; Cell shape; Cell 
wall biogenesis/degradation; Complete 
proteome; Hydrolase; Membrane; 
Peptidoglycan synthesis; Transmembrane. 

known 

NP_371581.1 fmt FMTA_STAAM Protein fmtA precursor 
Antibiotic resistance; Cell wall 
biogenesis/degradation; Complete 
proteome; Membrane; Secreted; Signal. 

known 
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NP_371705.1 pbpA Q99UT1_STAAM Penicillin-binding protein 1 Complete proteome. #known 

NP_371756.1 hmrB ACP_STAAM Acyl carrier protein (ACP) 
Antibiotic resistance; Complete proteome; 
Cytoplasm; Fatty acid biosynthesis; Lipid 
synthesis; Phosphopantetheine. 

known 

NP_371788.1 polC DPO3_STAAM DNA polymerase III polC-type (EC 2.7.7.7) 
(PolIII) 

Complete proteome; Cytoplasm; DNA 
replication; DNA-directed DNA 
polymerase; Exonuclease; Hydrolase; 
Nuclease; Nucleotidyltransferase; 
Transferase. 

#known 

NP_371879.1 parC PARC_STAAM DNA topoisomerase 4 subunit A (EC 5.99.1.-) 
(Topoisomerase IV subunitA) 

Complete proteome; Lipoprotein; 
Membrane; Palmitate; Signal; 
Transmembrane. 

#known 

NP_371884.1 fmtC MPRF_STAAM 
Probable lysylphosphatidylglycerol synthetase 
(LPG synthetase)(Multiple peptide resistance 
factor) 

Antibiotic resistance; Complete proteome; 
Lipid metabolism; Membrane; 
Transmembrane; Virulence. 

known 

NP_371950.1 dfrA DYR_STAAM Dihydrofolate reductase (EC 1.5.1.3) (DHFR) Complete proteome; NADP; One-carbon 
metabolism; Oxidoreductase. #known 

NP_372243.1 rpsD RS4_STAAM 30S ribosomal protein S4 
Complete proteome; Ribonucleoprotein; 
Ribosomal protein; RNA-binding; 
rRNA-binding. 

#known 

NP_372757.1 rpsE RS5_STAAM 30S ribosomal protein S5 
Complete proteome; Ribonucleoprotein; 
Ribosomal protein; RNA-binding; 
rRNA-binding. 

#known 

NP_372765.1 rpsQ RS17_STAAM 30S ribosomal protein S17 
Complete proteome; Ribonucleoprotein; 
Ribosomal protein; RNA-binding; 
rRNA-binding. 

#known 

NP_372773.1 rplD RL4_STAAM 50S ribosomal protein L4 
Complete proteome; Ribonucleoprotein; 
Ribosomal protein; RNA-binding; 
rRNA-binding. 

#known 

NP_372857.1 fosB FOSB_STAAM Metallothiol transferase fosB (EC 2.5.1.-) 
(Fosfomycin resistanceprotein). 

Antibiotic resistance; Complete proteome; 
Cytoplasm; Magnesium; Metal-binding; 
Transferase. 

known 

NP_373212.1 drp35 DRP35_STAAM Lactonase drp35 
3D-structure; Calcium; Complete 
proteome; Cytoplasm; Hydrolase; 
Metal-binding. 

#known 

NP_370559.1 aadD O87369_STAAM Kanamycin nucleotidyltransferase. Complete proteome; Transferase. #known 

NP_372784.1 -  hypothetical protein *Transmembrane (65.4%); EC 1.9: predicted 
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Oxidoreductases - Acting on a heme 
group of donors (62.2%);  Iron-binding 
(58.6%);  Calcium-binding (58.6%);  
EC 3.6: Hydrolases - Acting on Acid 
Anhydrides (58.6%);  Virulence 
(58.6%);  Copper-binding (58.6%);  
Magnesium-binding (58.6%); 

NP_372785.1 - - similar to acriflavin resistance protein 

*Transmembrane (99.2%);  EC 3.6: 
Hydrolases - Acting on Acid Anhydrides 
(92.9%);  All lipid-binding proteins 
(92.1%);  Metal-binding (85.4%);  TC 
3.A.3 P-type ATPase (P-ATPase) family 
(58.6%);  Copper-binding (58.6%);  
Calcium-binding (58.6%);  TC 1.C. 
Channels/Pores - Pore-forming toxins 
(proteins and peptides)  (58.6%); 

predicted 

NP_373226.1 vraE Q7A2K2_STAAM VraE protein. Complete proteome; Membrane; 
Transmembrane. predicted 

NP_373227.1 - - hypothetical protein 

*TC 1.E. Channels/Pores -  Holins  
(58.6%);  Zinc-binding (58.6%);  
Metal-binding (58.6%);  Transmembrane 
(58.6%);  Photoreceptor (58.6%);  TC 
3.A.5 Type II (general) secretory pathway 
(IISP) family (58.6%);  
Magnesium-binding (58.6%); 

predicted 

NP_370597.1 kdpB(SCCmec) ATKB1_STAAM 

Potassium-transporting ATPase B chain 1 (EC 
3.6.3.12) (Potassium-translocating ATPase B 
chain 1) (ATP phosphohydrolase 
[potassium-transporting] B chain 1) 
(Potassium-binding and translocating subunitB 
1). 

ATP-binding; Complete proteome; 
Hydrolase; Ion transport; Magnesium; 
Membrane; Metal-binding; 
Nucleotide-binding; Phosphorylation; 
Potassium; Potassium transport; 
Transmembrane; Transport. 

predicted 

NP_370797.1 - - hypothetical protein 

*EC 2.7: Transferases - Transferring 
Phosphorus-Containing Groups (78.4%);  
All lipid-binding proteins (71.3%);  
Nickel-binding (58.6%);  DNA repair 
(58.6%);  Calcium-binding (58.6%);  
Magnesium-binding (58.6%); 

predicted 

NP_370820.1 - - hypothetical protein *Transmembrane (93.6%);  Virulence predicted 
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(80.4%);  All lipid-binding proteins 
(62.2%); 

NP_370855.1 - - hypothetical protein 

*EC 2.5: Transferases - Transferring 
Alkyl or Aryl Groups, Other than Methyl 
Groups (80.4%);  All lipid-binding 
proteins (68.5%);  EC 3.1: Hydrolases - 
Acting on Ester Bonds (62.2%);  
Chlorophyll biosynthesis (58.6%);  EC 
3.4: Hydrolases - Acting on peptide bonds 
(Peptidases) (58.6%);  TC 3.A.1 
ATP-binding cassette (ABC) family 
(58.6%);  Outer membrane (58.6%);  
Magnesium-binding (58.6%); 

predicted 

NP_370876.1 - - hypothetical protein 

*Transmembrane (78.4%);  EC 1.9: 
Oxidoreductases - Acting on a heme 
group of donors (76.2%);  Iron-binding 
(58.6%);  EC 3.6: Hydrolases - Acting 
on Acid Anhydrides (58.6%);  TC 3.A.5 
Type II (general) secretory pathway 
(IISP) family (58.6%);  TC 3.A.1 
ATP-binding cassette (ABC) family 
(58.6%);  Magnesium-binding (58.6%); 

predicted 

NP_370942.1 - - probable transposase 

*All DNA-binding (58.6%) Zinc-binding 
(58.6%) DNA recombination (58.6%) 
Repressor (58.6%) DNA repair (58.6%) 
DNA-directed RNA polymerase (58.6%) 

predicted 

NP_370973.1 - - hypothetical protein 

*Photosynthesis (58.6%);  All 
lipid-binding proteins (58.6%);  
Transmembrane (58.6%);  Photosystem I 
(58.6%);  Photosystem II (58.6%);  TC 
1.C. Channels/Pores - Pore-forming 
toxins (proteins and peptides)  (58.6%); 

predicted 

NP_370980.1 - - hypothetical protein 

*Transmembrane (98.7%);  
Calcium-binding (58.6%);  TC 3.A.1 
ATP-binding cassette (ABC) family 
(58.6%); 

predicted 

NP_370987.1 - - ABC transporter permease protein - predicted 
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NP_371057.1 - - hypothetical protein 

*Zinc-binding (73.8%);  EC 3.6: 
Hydrolases - Acting on Acid Anhydrides 
(65.4%);  Nickel-binding (62.2%);  All 
DNA-binding (62.2%);  EC 2.3: 
Transferases - Acyltransferases (58.6%);  
EC 4.2: Lyases - Carbon-Oxygen Lyases 
(58.6%);  RNA-binding Proteins 
(58.6%);  DNA repair (58.6%);  
Magnesium-binding (58.6%); 

predicted 

NP_371172.1 fhuB Q99VX2_STAAM Ferrichrome transport permease Complete proteome. predicted 

NP_371185.1 vraF Q99VW0_STAAM ABC transporter ATP-binding protein ATP-binding; Complete proteome; 
Nucleotide-binding. predicted 

NP_371188.1 - - low-affinity inorganic phosphate transporter - predicted 

NP_371233.1 - - hypothetical protein 

*Transmembrane (88.1%);  EC 2.7: 
Transferases - Transferring 
Phosphorus-Containing Groups (65.4%);  
Lipoprotein (65.4%);  Virulence 
(62.2%);  Iron-binding (58.6%);  TC 
3.D. Primary Active Transporters -  
Oxidoreduction-driven transporters  
(58.6%);  Lipopolysaccharide 
biosynthesis (58.6%);  TC 2.A.3 Amino 
acid-polyamine-organocation (APC) 
family (58.6%); 

predicted 

NP_371251.1 - - di-tripeptide ABC transporter - predicted 

NP_371279.1 - - hypothetical protein 

*EC 3.5: Hydrolases - Acting on 
Carbon-Nitrogen Bonds, other than 
Peptide Bonds (78.4%);  All 
lipid-binding proteins (73.8%);  EC 3.4: 
Hydrolases - Acting on peptide bonds 
(Peptidases) (62.2%);  Plant defense 
(58.6%);  Metal-binding (58.6%);  
Lipopolysaccharide biosynthesis (58.6%);  
Photosystem I (58.6%); 

predicted 

NP_371302.1 secG SECG_STAAM Probable protein-export membrane protein secG 
Complete proteome; Membrane; Protein 
transport; Translocation; Transmembrane; 
Transport. 

predicted 
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NP_371328.1 - - hypothetical protein 

*EC 3.1: Hydrolases - Acting on Ester 
Bonds (71.3%);  Lipoprotein (68.5%);  
TC 1.C. Channels/Pores - Pore-forming 
toxins (proteins and peptides)  (58.6%); 

predicted 

NP_371335.1 fnb CLFA_STAAM 
Clumping factor A precursor 
(Fibrinogen-binding protein A) 
(Fibrinogenreceptor A) 

Cell wall; Complete proteome; 
Peptidoglycan-anchor; Secreted; Signal; 
Virulence. 

predicted 

NP_371446.1 - - hypothetical protein 

*Transmembrane (95.7%);  All 
lipid-binding proteins (71.3%);  
Metal-binding (58.6%);  
Calcium-binding (58.6%); 

predicted 

NP_371534.1 - - Na+/H+ antiporter homolog  predicted 

NP_371556.1 - - hypothetical protein 

*Antimicrobial (58.6%);  Photosynthesis 
(58.6%);  Fungicide (58.6%);  Innate 
immunity (58.6%);  Growth factor 
(58.6%);  TC 1.C. Channels/Pores - 
Pore-forming toxins (proteins and 
peptides)  (58.6%);  Immune response 
(58.6%);  All lipid-binding proteins 
(58.6%);  Hormone (58.6%);  
Inflammatory response (58.6%);  
Lipid-binding (58.6%);  Antibiotic 
(58.6%);  rRNA-binding Proteins 
(58.6%); 

predicted 

NP_371641.1 - - hypothetical protein 

*Transmembrane (95.7%);  Iron-binding 
(62.2%);  TC 3.A.3 P-type ATPase 
(P-ATPase) family (58.6%);  TC 3.A.1 
ATP-binding cassette (ABC) family 
(58.6%); 

predicted 

NP_371845.1 - - similar to two-component sensor histidine 
kinase 

*EC 2.7: Transferases - Transferring 
Phosphorus-Containing Groups (94.7%);  
Transmembrane (92.1%);  All 
lipid-binding proteins (76.2%);  Lipid 
transport (62.2%);  Metal-binding 
(58.6%);  TC 3.A.1 ATP-binding 
cassette (ABC) family (58.6%);  EC 
1.16: Oxidoreductases - Oxidising metal 
ions (58.6%);  Copper-binding (58.6%);  

predicted 
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Magnesium-binding (58.6%); 

NP_371924.1 lysA Q7A2R9_STAAM Diaminopimelate decarboxylase (EC 4.1.1.20) 
Amino-acid biosynthesis; Complete 
proteome; Decarboxylase; Lyase; Lysine 
biosynthesis. 

predicted 

NP_371975.1 - - hypothetical protein 

*EC 2.4: Transferases - 
Glycosyltransferases (73.8%); 
Zinc-binding (62.2%); EC 3.6: 
Hydrolases - Acting on Acid Anhydrides 
(58.6%); Manganese-binding (58.6%); 
RNA-binding Proteins (58.6%); EC 4.2: 
Lyases - Carbon-Oxygen Lyases (58.6%); 

predicted 

NP_372076.1 pbp3 Q99TU2_STAAM Penicillin-binding protein 3 Complete proteome. predicted 

NP_372140.1 - - putative Holliday junction resolvase 

*Cobalt-binding(62.2%) All 
DNA-binding (62.2%) EC 3.6.-.-: 
Hydrolases - Acting on Acid Anhydrides 
(62.2%) Iron-binding (58.6%) 
Metal-binding (58.6%) DNA 
condensation (58.6%) Outer membrane 
(58.6%) DNA repair (58.6%) 

predicted 

NP_372144.1 - - hypothetical protein 

*EC 3.1: Hydrolases - Acting on Ester 
Bonds (76.2%); Zinc-binding (71.3%); 
EC 2.4: Transferases - 
Glycosyltransferases (62.2%); 
mRNA-binding Proteins (58.6%); Proto 
oncogene (58.6%); 

predicted 

NP_372203.1 rpmI RL35_STAAM 50S ribosomal protein L35. Complete proteome; Ribonucleoprotein; 
Ribosomal protein. predicted 

NP_372214.1 polA Q99TH2_STAAM DNA polymerase I. Complete proteome; Hydrolase; Nuclease. predicted 

NP_372238.1 - - hypothetical protein 

*Transmembrane (98.0%); TC 2.A.1 
Major facilitator family (MFS) (58.6%); 
TC 3.A.15 The Outer Membrane Protein 
Secreting Main Terminal Branch (MTB) 
family (58.6%); TC 3.A.1 ATP-binding 
cassette (ABC) family (58.6%); 

predicted 

NP_372299.1 - - similar to glucosaminidase 
*All lipid-binding proteins (97.3%);  
Zinc-binding (73.8%);  Metal-binding 
(58.6%);  Copper-binding (58.6%);  

predicted 
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Calcium-binding (58.6%); TC 1.C. 
Channels/Pores - Pore-forming toxins 
(proteins and peptides)  (58.6%); 

NP_372324.1 - - hypothetical protein 

*Zinc-binding (88.1%); Immune response 
(62.2%); EC 3.1: Hydrolases - Acting on 
Ester Bonds (62.2%);  Antigen (62.2%); 
All DNA-binding (58.6%);  
Metal-binding (58.6%);  DNA repair 
(58.6%);  Calcium-binding (58.6%);  
Magnesium-binding (58.6%); 

predicted 

NP_372450.1 - - hypothetical protein 
*All lipid-binding proteins (76.2%); 
Virulence (62.2%); Outer membrane 
(58.6%); 

predicted 

NP_372549.2 - - hypothetical protein 
*All lipid-binding proteins (65.4%); DNA 
repair (58.6%); Magnesium-binding 
(58.6%); 

predicted 

NP_372573.1 - - similar to O-sialoglycoprotein endopeptidase 

*Zinc-binding (98.8%);  EC 2.3: 
Transferases - Acyltransferases (96.4%);  
EC 3.4: Hydrolases - Acting on peptide 
bonds (Peptidases) (96.1%);  EC 2.7: 
Transferases - Transferring 
Phosphorus-Containing Groups (94.7%);  
EC 4.2: Lyases - Carbon-Oxygen Lyases 
(94.2%);  All lipid-binding proteins 
(92.9%);  Manganese-binding (92.9%);  
Lipid synthesis (85.4%);  Metal-binding 
(76.2%);  EC 4.1: Lyases - 
Carbon-Carbon Lyases (73.8%);  
Lipid-binding (71.3%);  EC 2.5: 
Transferases - Transferring Alkyl or Aryl 
Groups, Other than Methyl Groups 
(62.2%);  Chlorophyll biosynthesis 
(58.6%);  Photosystem I (58.6%); 

predicted 

NP_372600.1 kdpB ATKB2_STAAM 

Potassium-transporting ATPase B chain 2 (EC 
3.6.3.12) (Potassium-translocating ATPase B 
chain 2) (ATP phosphohydrolase 
[potassium-transporting] B chain 2) 
(Potassium-binding and translocating subunitB 

ATP-binding; Complete proteome; 
Hydrolase; Ion transport; Magnesium; 
Membrane; Metal-binding; 
Nucleotide-binding; Phosphorylation; 
Potassium; Potassium transport; 

predicted 
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2) Transmembrane; Transport. 

NP_372614.1 - OXAA_STAAM Membrane protein oxaA precursor 
Complete proteome; Lipoprotein; 
Membrane; Palmitate; Signal; 
Transmembrane. 

predicted 

NP_372632.1 atpE Q99SF0_STAAM ATP synthase C chain (EC 3.6.3.-) 
CF(0); Complete proteome; Hydrogen ion 
transport; Ion transport; Lipid-binding; 
Membrane; Transmembrane; Transport. 

predicted 

NP_372744.1 - - similar to cobalt transport protein 

*Transmembrane (98.5%); Zinc-binding 
(71.3%); Copper-binding (58.6%); Lipid 
transport (58.6%); TC 3.A.1 ATP-binding 
cassette (ABC) family (58.6%) 

predicted 

NP_372907.1 - - hypothetical protein 

*EC 3.4: Hydrolases - Acting on peptide 
bonds (Peptidases) (58.6%); TC 1.C. 
Channels/Pores - Pore-forming toxins 
(proteins and peptides) (58.6%); 

predicted 

NP_372934.1 - - hypothetical protein 
*Hormone (58.6%); Lipid-binding 
(58.6%); Lipid synthesis (58.6%); 
Magnesium-binding (58.6%); 

predicted 

NP_373037.1 - - alkaline phosphatase - predicted 

NP_373154.1 clfB CLFB_STAAM 
Clumping factor B precursor 
(Fibrinogen-binding protein B) 
(Fibrinogenreceptor B) 

Cell wall; Complete proteome; 
Peptidoglycan-anchor; Secreted; Signal; 
Virulence. 

predicted 

NP_373199.1 hisH HIS5_STAAM 

Imidazole glycerol phosphate synthase subunit 
hisH (EC 2.4.2.-) (IGPsynthase glutamine 
amidotransferase subunit) (IGP synthase 
subunithisH) (ImGP synthase subunit hisH) 
(IGPS subunit hisH) 

Amino-acid biosynthesis; Complete 
proteome; Cytoplasm; Glutamine 
amidotransferase; Histidine biosynthesis; 
Transferase. 

predicted 

NP_373219.1 - - 2-oxoglutarate/malate translocator - predicted 
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S3 Prediction result of potential precursor miRNAs (“+” and “–” indicates that the RNA is 
predicted as precursor miRNA and non-precursor miRNA, respectively) 

miRNA Id Sequence information 
SVM 

prediction 
status 

mml-miR-10b 
CCAGAGGTTGTAACGTTGTCTATATATACCCTGTAGAAC
CGAATTTGTGTGGTATCCATATAGTCACAGATTCGATTC
TAGGGGAATATATGGTCGATGCAAAAACTTCA 

+ 

mml-miR-122a 
CCTTAGCAGAGCTGTGGAGTGTGACAATGGTGTTTGTG
TCTAAACTATCAAACGCCATTATCACACTAAATAGCTA
CTACTAGGC 

+ 

mml-miR-125a 
TGCCAGTCTCTGGGTCCCTGAGACCCTTTAACCTGTGAG
GACATCCAGGGTCACAGGTGAGGTTCTTGGGAGCCTGG
CGTCTGGCC 

+ 

mml-miR-126 
CGCTGGTGATGGGACATTATTACTTTTGGTACGCGCTGT
GACACTTCAAACTCGTACCGTGAGTAATAATGCGCTGT
CCACAGCA 

+ 

mml-miR-130b 
GGCCTGCCCGACACTCTTTCCCTGTTGCACTACTGTGGG
CCACTGGGAAGCAGTGCAATGATGAAAGGGCATCGGTC
AGGTC 

+ 

mml-miR-134 CAGGGTGTGTGACTGGTTGACCAGAGGGGCGTGCACTG
TGTTCACCCTGTGGGCCACCTAGTCACCAACCCTC + 

mml-miR-143 
GCGCAGCGCCGTGTCTCCCAGCCTGAGGTGCAGTGCTG
CATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGT
AGCTCAGGAAGAGAGAAGTTGTTCTGCAGC 

+ 

mml-miR-144 
TGGGGCCCTGGCTGGGATATCATCATATACTGTAAGTTT
GTGATGAGACACTACAGTATAGATGATGTACTAGTCCG
GGCACCCCC 

+ 

mml-miR-146a 
CCTATGTGTATCCTCAGCTTTGAGAACTGAATTCCATGG
GTTGTGTCAGTGTCAGACCTGTGAAATTCAGTTCTTCAG
CTGGGATATCTCTGTCGTCGT 

+ 

mml-miR-147 AATCTAAAGAAAACATTTCTGCACACACACCAGACTAT
TGAAGCCAGTGTGTGGAAATGCTTCTGCTACATT + 

mml-miR-147b 
TATAAATCTAGTGGAAACATTTCCGCACAAACTAGATT
CTGGACACCAGTGTGCGGAAGTGCTTCTGCTGCATTTTT
AGG 

+ 

mml-miR-149 
GCCGGCGCCCAAGCTCTGGCTCCGTGTCTTCACTCCCGT
GTTTGTCCGAGGAGGGAGGGAGGGACGGGGGCTGTGCT
GGGGCAGCCGGA 

+ 

mml-miR-154 
GAGGTACTTGAAGATAGGTTATCCGTGTTGCCTTCGCTT
TATTTGTGACGAATCATACACGGTTGACCTATTTTTCAG
TACCAA 

+ 

mml-miR-155 CTGTTAATGCTAATCGTGATAGGGGTTTTTACCTCCAAC
TGACTCCTACATGTTAGCATTAACAG + 

mml-miR-16-2 
GTTCCACTCTAGCAGCACGTAAATATTGGCGTAGTGAA
ATATGTATTAAACACCAATATTACTGTGCTGCTTCAGTG
TGAC 

+ 

mml-miR-181b-2 
CTGATGGCTGCACTCAACATTCATTGCTGTCGGTGGGTT
TGAGTCTGAATCAACTCACTGATCGATGAATGCAAACT
GCGGACCAAACA 

+ 

mml-miR-184 
TCAGTCACGTCCCCTTATCACTTTTCCAGCCCAGCTTTA
TGACTGTAAGTGTTGGACGGAGAACTGATAAGGGTAGG
TGATTGA 

+ 

mml-miR-185 AGGGCGCGAGGGATTGGAGAGAAAGGCAGTTCCTGAT
GGTCCCCTCCTCAGGGGCTGGCTTTCCTCTGGTCCTTCC + 
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CTCCCA 

mml-miR-186 
TGCTTGTAACTTTCCAAAGAATTCTCCTTTTGGGCTTTCT
GGTTTTATTTTAAGCCCAAAGGTGAATTTCTTGGGAAGT
TTGAGCT 

+ 

mml-miR-187 
GGTCAGGCTCACTATGACACAGTGTGAGACCTCGGGCT
ACAACACAGGACCCGGGTGCTGCTCTGACCCCTCGTGT
CTTGTGTTGCAGCCGGAGGGACGCAGGTCCGCA 

+ 

mml-miR-190b 
TGCTTCTGTGTGATATGTTTGATATTGGGTTGTTTAATT
AGGAACCAACTAAATGTCAAACATATTCTTACAGCAGC
TG 

+ 

mml-miR-192 
GCTGAGACCGAGTGCACAGGGCTCTGACCTATGAATTG
ACAGCCAGTGCTCTCGTCTCCCCTCTGGCTGCCAATTCC
ATAGGTCACAGGTATGTTCGCCTCAATGCCAGC 

+ 

mml-miR-193a 
GGATGGGAGCTGAGGGCTGGGTCTTTGCGGGCGAGATG
AGGGTGTCGGATCAACTGGCCTACAAAGTCCCAGTCCT
CGGCCCCCG 

+ 

mml-miR-194-2 
TGGCTCCCGCCCCCTGTAACAGCAACTCCATGTGGAAG
TGTCCACTGATTCCAGTGGGGCTGCTGTTATCTGGGGCG
AGGGCCGG 

+ 

mml-miR-195 
AGCTTCCCTGGCTCTAGCAGCACAGAAATATTGGCACA
GGGAAGCAAGTCTGCCAATATTGGCTGTGCTGCTCCAG
GCAGGGTGGTG 

+ 

mml-miR-199a-2 GCCAACCCAGTGTTCAGACTACCTGTTCAGGAGGCTCT
CAACGTGTACAGTAGTCTGCACATTGGTTAGGC + 

mml-miR-203 
GTGCTGGGGACTCGCGCGCTGGGTCCAGTGGTTCTTAA
CAGTTCAACAGTTCTGTAGCGCAATTGTGAAATGTTTAG
GACCACTAGACCCGGCGGGCACGGCGACAGCGA 

+ 

mml-miR-208 TGACAGGCGAGCTTTTGGCCCGGGTTATACCTGATGCTC
ACGTATAAGACGAGCAAAAAGCTTGTTGGTCA + 

mml-miR-210 
ACCCGGCAGTCCCTCCAGGCGCAGGGCAGCCCCTGCCC
ACCGCACACTGCGCTGCCCCAGACCCACTGTGCGTGTG
ACAGCGGCTGATCTGTGCCTGGGCAGCGCGACCC 

+ 

mml-miR-212 
CGGGGCACCCCGCCCGGACAGCGCGCCGGCACCTTGGC
TCTAGACTGCTTACTGCCCGGGCCGCCCTCAGTAACAGT
CTCCAGTCAGGGCCACCGACGCCTGGCCCCGCC 

+ 

mml-miR-216a 
GATGGCTGTGAGTTGGCTTAATCTCAGCTGGCAACTGT
GAGATGTTCATACAATCCCTCACAGTGGTCTCTGGGATT
ACGCTAAACAGAGCAATTTCCTTGCCCTCGCGA 

+ 

mml-miR-216b 
GCAGACTGGAAAATCTCTGCAGGCAAATGTGATGTCAC
TGAAGAAATCACACACTTACCCGTAGAGATTCTACAGT
CTGACA 

+ 

mml-miR-220c 
GACAGCGTGGCATTGTAGGGCTCCACCACTGTGTCTGA
CACCTTGGGCGAGGGCACGACGCTGAAGGTGTTCATGA
TGCGGTCCGGATACTCCTCACG 

+ 

mml-miR-220d 
GTGGCGTTGTAGGGCTCCACCACCGTGTCTGACACCTTG
GGTGAGGGCATGACGCTGAAGGTGTTCATGATGCGGTC
TGGGTACTCTTCCCGGATCTTGCTGATG 

+ 

mml-miR-222 
GCTGCTGGAAGGTATAGGTACCCTCAATGGCTCAGTAG
CCAGTGTAGATCCTGTCTTTCGTAATCAGCAGCTACATC
TGGCTACTGGGTCTCTGATGGCATCTTCTAGCT 

+ 

mml-miR-298 
TCAGGTCTTCAGCAGAAGCCGGGTGGTTCTCCCAGTGG
TTTTCCTTGACTGTGAGGAACTAGCCTGCTGTTTTGCTC
AGGAATGAGCT 

+ 

mml-miR-299-5p AAGAAATGGTTTACCGTCCCACATACATTTTCAATATGT
ATGTGGGACGGTAAACCGCTTCTT + 

mml-miR-302d CCTCTACTTTAACATGGAGGCACTTGCTGTGGTATGACA + 
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AAAATAAGTGCTTCCATGTTTGAGTGTGG 

mml-miR-30c-2 AGATACTGTAAACATCCTACACTCTCAGCTGTGGAAAG
TAAGAAAGCTGGGAGAAGGCTGTTTACTCTCTCT + 

mml-miR-325 
ATGCAGTGCTTGGTTCCTAGTAGGTGTCCAGTAAGTGTT
TGTTACATAATTTGTTTATTGAGGACCTCCTATCAATCA
AGCACTGTGCTAGGCTCTGG 

+ 

mml-miR-329-1 
GTGGTACCTGAAGGGAGGTTTTCTGGGTTTCTGTTTCTT
TAATGAGGATGAAACACACCTGGTTAACCTCTTTTCCA
GTATCAA 

+ 

mml-miR-329-2 
GGTACCTGAAGGGAGGTTTTCTGGGTCTCTGTTTCTTTA
CTGAGGATGAAACACACCTGGTTAACCTCTTTTCCAGTA
TC 

+ 

mml-miR-331 
GAGTTTGGTTTTGTTTGGGTTTGTTCTAGGTATGGTCCC
AGGGATCCCAGATCAAACCAGGCCCCTGGGCCTATCCT
AGAACCAACCTAAACTC 

+ 

mml-miR-338 TCTCCAACAATATCCTGGTGCTGAGTGATGACTCAGGT
GACTCCAGCATCAGTGATTTTGTTGAAGA + 

mml-miR-339 
CGGGGCGGCCGCTCTCCCTGTCCTCCAGGAGCTCACGT
GTGCCTGCCTGTGAGCGCCTCGACGACAGAGCCGGCGC
CCGCCCCAGTGTCTGCGC 

+ 

mml-miR-33b 
GCGGGCGGCCCCGCGGTGCATTGCTGTTGCATTGCACG
TGTGTGAGGCGGGTGCAGTGCCTCGGCAGTGCAGCCCG
GAGCCGGCCCCTGGCACCGC 

+ 

mml-miR-34c AGTCTAGTTACCAGGCAGTGTAGTTAGCTGATTGCTGAT
AGTACCAATCACTAACCACACGGCCAGGTAAAAAGATT + 

mml-miR-365-2 
AGAGTGTTCAAGGACAGCAAGAAAAATGAGGGACTTTC
AGGGGCAGCTGTGTTTTCTGACTCAGTCATAATGCCCCT
AAAAATCCTTATTGTTCTTGCAGTGTGCATCAGG 

+ 

mml-miR-367 CCACTACTGTTGCTAATATGCAACTCTGTTGAACACAAA
TTGGAATTGCACTTTAGCAATGGTGATGG + 

mml-miR-370 AGACAGAGAAGCCAGGTCACGTCTCTGCAGTTACACAG
CTCATGAGTGCCTGCTGGGGTGGAACCTGGTCTGTCT + 

mml-miR-371 GTGGCACTCAAACTGTGGGGGCACTTTCTGCTCTCTGGT
GAAAAAAGTGCCGCCATGTTTTGAGTGTTAC + 

mml-miR-372 GTGATCCTCAAATGTGGAGCACTATTCTGATGTCCAAGT
GGAAAGTGCTGCGACATTTGAGCGTCAC + 

mml-miR-374a TACATCGGCCATTATAATACAACCTGATAAGTGTTACA
GCACTTATCAGATTGTATTGTAATTGTCTGTGTA + 

mml-miR-380-5p AAGATGGTTGACCATAGAACATGCGCTATCTCTGTGTC
GTATGTAATATGGTCCACGTCTT + 

mml-miR-410 
GGTACCTGAGGAGAGGTTGTCTGTGATGAGTTCGCTTTT
ATTAATGACGAATATAACACAGATGGCCTGTTTTCAGT
ACC 

+ 

mml-miR-422a 
GAGAGAAGCACTGGACTCAGGGTCAGAAGGCCTGAGT
CTCCCTGCTGCAGATGGGCTGTGTGTCCCTGAGCCAAG
CCTTGTCCTCCCTGG 

+ 

mml-miR-425-5p 
GAAAGCGCTTTGGAATGACACGATCACTCCCGTTGAGT
GGGCCCCCGAGAAGCCATCGGGAATGTCGTGTCCGCCC
AGTGCTCTTTC 

+ 

mml-miR-429 
CGCCGGCCGATGAGCGTCTTACCAGACACGGTTAGACC
TGGCTCTCTGTCTAATACTGTCTGGTAAAACCGTCCATC
CGCGGC 

+ 

mml-miR-432 
TGACTCCTCCATGTCTTGGAGTAGGTCATTGGGTGGATC
CTCTATTTCCTTATGTGGGCCACTGGATGGCTCCTCCAT
GTCTTGGAGTAGATCA 

+ 

mml-miR-433 CCAGGGAGAAGTACGGTGAGCCTGTCATTATTCAGAGA + 
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GGCTAGATCCTCTGTGTTGAGAAGGATCATGATGGGCT
CCTCGGTGTTCTCCAGG 

mml-miR-448 
GCCGGGAGGTTGAACATCCTGCATAGTGCTGCCAGGAA
ATCCCTATTTCATACTAAGAGGGGCTGGCTGGTTGCATA
TGTAGGATGTCCCATCTCCCAGCCTACTTCGTCA 

+ 

mml-miR-449a 
CTGTGTGTGATGAGCTGGCAGTGTATTGTTAGCTGGTTG
AATATGTGAATGGCATCAGCTAACATGCAACTGCTGTC
TTATTGCATATACA 

+ 

mml-miR-449b 
TGACCTGAATCAGGTAGGCAGTGTATTGTTAGCTGGCT
GCTTGAGTCAAGTCAGCAGCCACAACTACCCTGCCACT
TGCTTCTGGATAAATTCTTCT 

+ 

mml-miR-450a-1 
AAATGATACTAAACTGTTTTTGCGATGTGTTCCTAATAT
GTACTATAAATATATTGGGAACATTTTGCATGTGTAGTT
TTGTATCAATATA 

+ 

mml-miR-451 CTTGGGAATGGCAAGGAAACCGTTACCATTACTGAGTT
TAGTAATGGTAAGGGTTCTCTTGCTATATCCAGA + 

mml-miR-454 
TCTGTTTATCACCAGATCCTAGAACCCTATCAATATTGT
CTCTGCTGTGTAAATAGTTCTGAGTAGTGCAATATTGCT
TATAGGGTTTTGGTGTTTGGGAAGAACAATGGGCAGG 

+ 

mml-miR-487a 
GGTACTTGGAGAGTGGTCATCCCTGCTGTGTTCGCTTTG
TTTATGACGAATCATACAGGGACATCCAGTTTTTCAGTA
TC 

+ 

mml-miR-487b 
TTGGTACTTGGAGAGTGGTTATCCCTGTCCTGTTCGTTT
TGCTCGTGTCGAATCGTACAGGGTCATCCACTTTTTCAG
TATCAA 

+ 

mml-miR-488 
GAGAATCATCTCTCCCAGATAATGGCACTCTCAAACAA
GTTTCCAAGTTGTTTGAAAGGCTATTTCTTGGTCAGATG
ACTCTC 

+ 

mml-miR-489 
GTGGCAGCTTGGTGGTCGTATGTGTGGCGCCATTTACTT
GAACCTTTAGGAGTGACATCACATATACGGCAGCTAAA
CTGTTAC 

+ 

mml-miR-494 
GATACTCGAAGGAGAGGTTGTCCGTGTTGTCTTCTCTTT
ATTTATGATGAAACATACACGGGAAACCTCTTCTTTAGT
ATC 

+ 

mml-miR-496 
CCCGAGTCAGGTACTCGAATGGAGGTTGTCCATGGTGT
GTTCATTTTATTTATGATGAGTATTACATGGCCAATCTC
CTTTCGGTACTCAATTCTTCTTGGG 

+ 

mml-miR-499-5p 

GCCCTGTCCCCGTGTCTTGGGCGGGCAGCTGTTAAGACT
TGCAGTGATGTTTAACTCCTCTCCACGTGAACATCACAG
CAAGTCTGTGCTGCTTCCCGTCCCTACGCTGCCTGGGCA
GGGT 

+ 

mml-miR-500 
GCTCCCCCTCTCTAATCCTTGCTACCTGGGTGAGAGTGC
TATCTGAATGCAATGCACCTGGGCAAGGATTCTGAGAG
CGAGAGC 

+ 

mml-miR-501-5p 
GCTCTTCCTCTCTAATCCTTTGTCCCTGGGTGAGAGTGC
TTTCTGAATGCAGTGCACCCAGGCAAGGATTCTGAGAG
GGTGAGC 

+ 

mml-miR-502-5p 
CCCTCTCTAATCCTTGCTATCTGGGTGCTAGTGCTGTCT
CAATGCAATGCACCTGGGCAAGGATTCAGAGAGGGGG
AGCT 

+ 

mml-miR-503 TGCCCTAGCAGCGGGAACAGTTCTGCAGTGAGTGATCA
GTACTCTGGAGTATTGTTTCCGCTGCCAGGGTA + 

mml-miR-504 
GCTGCTGTTGGGAGACCCTGGTCTGCACTCTATCTGTAT
TCTTACTGAAGGGAGCGCAGGGCAGGGTTTCCCATACA
GAGGGC 

+ 

mml-miR-506 GCCACCACCATCAGCCATGCTATGTGTAGTGCCTTATTC + 
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AGGAAGGTGTTACTTAATATATTAATATTTGTAAGGCA
CCCTTCTGAGTAGAGTAATGTGCAACATGGACATCATTT
GTGGTGGC 

mml-miR-507 
GTGCTGTGTGTAGTGCTTCACTTCAATAAGTGCCATTCA
TGTGTCTAGAAATATGTTTTGCACCTTTTGGAGTGAAAT
AATGCACAACAGGTAC 

+ 

mml-miR-508 
CCATCTTCAGCTGAGTGTCGTGCTCTACTCCAGAGGGCG
TCACTCACATAAACTAAAACATGATTGTCGCCTTTTTGA
GTAGAGTAATACACATCACGTAAGGCATATTTGGTGG 

+ 

mml-miR-509-1 
CATGCTGTGTGTGGTACCCTACTACAGGCAGTGGCAAT
CATGTATAGTTAAAAATGATTGGTATGTCTGTGGGTAG
AGTAATGCATGACACATG 

+ 

mml-miR-509-2 
CATGTTGTGTGTGGTACCCTACTGCAGGCAGTGGCAAT
CATGTATAGTTAAAAATGATTGGTATGTCTGTGGGTAG
AGTAATGCATGACACATG 

+ 

mml-miR-510 GTGGTATCCTACTCCGGAGAGTGGCAATCACATATAAT
TAAGTGTGATTGAAACCTCTAAGAGTGGAGTAACAC + 

mml-miR-511-1 
CAATAGACACCCAcCtTGTCTTTTGCTCTGCAGTCAGTAA
ATATTTTTTTGTGAATGTGTAGCAAAAGACAGAATGGgG
GTCCATTG 

+ 

mml-miR-511-2 
CAATAGACACCCACCTTGTCTTTTGCTCTGCAGTCAGTA
AATATTTTTTTGTGAATGTGTAGCAAAAGACAGAATGG
GGGTCCATTG 

+ 

mml-miR-513-1 

GGGATGCCACATTCAGCCATTCAGTGTACAGTGCCTTTC
ACAGGGAGGTGTCATTTATGTGAACTAAAATATAAATT
TCACCTTTCTGAGAAGAGTAATGTACAGCATGCACTGC
ATATGTGGTGTCCC 

+ 

mml-miR-513-2 

GGGATGCCGCATTCAGCCATTCAGTGGTGTACAGTGCC
TTTCACAGGGAGGTGTCATTTATGTGAACTAAACTATA
AATGTCACCTTTCTGCGAAGGGTAATGTACATCATGCA
CTGCATATGTGGTGTCCC 

+ 

mml-miR-513-3 

GGGATGCCACATTCACCCATTTACTGTACATTGCCTTTC
ACAGGGAGGTGTCATTTATGTGAACTAAACTATAAATG
TCACTTTTCTGAGAAGAGTAATGTACAGCATGCACTGC
ATATGTGGTGTCCC 

+ 

mml-miR-513b-1 

GGGATGCCACATTCAGCCATTCAGTGTGCAGTGCCTTTC
ACAAGGAGGTGTCATTTATGTGAACTAAACTATAAATG
TCACCTTTTTGGGAAGAGTAATGTACAACATGCACTGC
ATATGTGGTGTCCCT 

+ 

mml-miR-513b-2 

GGGATGCCACATTCAGCCATTCGGTTTACAGTGCCTTTC
ACAAGGAGGTGTCATTTATGTGAACTAAACTATAAATG
TCACCTTTTTGGGAAGAGTAATGTACAACATGCACTGC
AAATGTGGTGTCCC 

+ 

mml-miR-514-1 
AACATGTTGTCTGTGGTACCCTACTCTGGAGAGTGACA
ATCATGTATAATTAAATTTGATTGACACTTCTGTGAGTA
GAGTAATGCATGACACGTGCG 

+ 

mml-miR-514-2 
GTTGTCTGTGGTACCCTACTCTGGAGAGTGACAATCATG
TATAATTAAATTTGATTGACACTTCTGTGAGTAGAGTAA
TGCATGACAC 

+ 

mml-miR-516a-1-5p 
TCTCAGGCTGTGACCgTCTCGAGGAAAGAAGCACTTTCT
GTTGTCTAAAGAAAAGgAAGTGtTTCCTTcCcGAGGGTTA
CGGTTTGAGA 

+ 

mml-miR-516a-2-5p 
TCTCAGGCTGTGACCGTCTCGAGGAAAGAAGCACTTTC
TGTTGTCTAAAGAAAAGGAAGTGTTTCCTTCCCGAGGG
TTACGGTTTGAGA 

+ 

mml-miR-517a CTCATGCAGTGACCCTCTAGATGGAAGCACTGTCTGTG + 
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GTCTAAAAGAAAAGATCGTGCATCCTTTTAGAGTGTTA
CCGTTTGAGA 

mml-miR-517b GTGACCCTCTAGATGGAAGCACTGTCTGTGGTCTAAAA
GAAAAGATCGTGCATCCTTTTAGAGTGTTAC + 

mml-miR-518a-1 
TCTCAtGCTGTGACccTaCAAAGGGAAGCCCTTTCTGTTG
TCTaAAcGAAaAGAAAGtGCTTCtCTTTGCTGGgTTACGGT
TTGAGA 

+ 

mml-miR-518b 
TCAGGCTGTGACCCTCCAGAGGGAAGCACTTTCTGTTGT
CTGAAAGAAAGCAAAGCGCTCCCCTTTAGAGGATTACG
GTTTGA 

+ 

mml-miR-518d 
CATGCTGTGACTCTCTGGAGGGAAGCGCTTTCTGTTGTC
TGAAAGAAAACAAAGCGCTTCTCTTTAGAGAGTTACGG
TTTGAGA 

+ 

mml-miR-518e 
TCTCAGGCTGTGACCCTCTAGAGGGAAGCGaTTTCTGTga
tCTgAAAGAAAAGAAAatGgTTCCCTTtAGAGTGTTActgTT
TGAGA 

+ 

mml-miR-519a-1 
CTCAGGCTGTGACCCTCTAGAGGGAAGCGCTTTCTGTG
GTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGGTTA
CCGTTTGAG 

+ 

mml-miR-519b 
CATGCTGTGACCCTCTGGAGGGAAGCGCTTTCTGTTGTC
TGAAAGAAAAGAACGTGCATCCCTTTAGAGGGTTACTC
TTTG 

+ 

mml-miR-519c 
TCTCAGTCTGTGACCCTCTAGAAGGAAGCACTTTCTGTT
GTTTGAAAGAAAAGAAAGTGCATCATTTTAGAGGATTA
CAGTTTGAGA 

+ 

mml-miR-519d 
TCCCAAGCTGTGACCCTCCAAAGGGAAGCACTTTCTGTT
TGTTGTCTGAGAGAAAACAAAGTGCTTCCTTTTAGAGT
GTGACCGCTTGGGA 

+ 

mml-miR-520a 
CTCAGGCTGTGACCCTCCAGAGGGAAGTATTTTCTGTTG
TCTGAAGGAAAAGAAAGTGCTTCCCTTTGGACTGTTTC
GGTTTGAG 

+ 

mml-miR-520b CCCTCTAGAGGGAAGCGCTTTCTGTGGTCTGAAAGAAA
AGAAAGTGCTTCCTTTTAGAGGG + 

mml-miR-520c 
TCTCAGGCTGTgacCCTCTAGAGGGAAGCgCTTTCTGTgG
TCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGGTTAC
CGTTTGAGA 

+ 

mml-miR-520d 
TCTCATGCTGTGACCCTACAAAGGGAAGCCCTTTCTGTT
GTCTAAACGAAAAGAAAGTGCTTCTCTTTGCTGGGTTA
CGGTTTGAGA 

+ 

mml-miR-520e 
GCTGTGACCCTCTAGAGGGAAGCGCTTTCTGTGGTCTG
AAAGAAAAGAAAGTGCTTCCTTTTAGAGGGTTACCGTT
TGAGA 

+ 

mml-miR-520f 
TCTCAGGCTGTGACCCTCTAGAGGGAAGCGCTTTCTGTG
GTCTGAAAGAAAAGAAAGTGCTTCCTTTTAGAGGGTTA
CCGTTTGAGA 

+ 

mml-miR-520g 
TCCCATGCTGTGGCCCTCTAGAGAAAGCACTTTCTGTTT
GTTGTCTGAGGAAAAACAAAGTGCTTCCCTTCAGAGTG
TGGCTGTTTGGGA 

+ 

mml-miR-520h 
TCCCAAGCTGTGACCCTCCAAAGGGAAGCACTTTCTGTT
TGTTGTCTGAGAGAAAACAAAGTGCTTCCTTTTAGAGT
GTG 

+ 

mml-miR-521 
TCTCATGCTGTGACCCTCCAAAGGGAAGTACTTTCTGTT
GTCTAAAAGAAAAGAACGCACTTCCCTTTGGAGTGTTA
CCGTTTGAGA 

+ 

mml-miR-522 TCTCAGGCTGTGACCCTCTAGAGGGAAGCGATTTCTGT
GATCTGAAAGAAAAGAAAATGGTTCCCTTTAGAGTGTT + 
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ACTGTTTGAGA 

mml-miR-523a 
TCTCAGGCTGTGACCCTCTAGAGGGAAGCACTTTCTGTT
GTCTGGAAGAAAAGAATGCGCTTCCCTTTAGAGGGTTA
CTCTCTGAGA 

+ 

mml-miR-523c-1 
CATGCTGTGACCCTCTGGAGGGAAGCGCTTTCTGTTGTC
TGAAAGAAAAGAACGTGCATCCCTTTAGAGGGTTACTC
TTTGAGA 

+ 

mml-miR-523c-2 
TCCCATGCTGTGACCCTCTGGAGGGAAGCGCTTTCTGTT
GTCTGAAAGAAAAGAACGTGCATCCCTTTAGAGGGTTA
CTCTTTGAGAAGA 

+ 

mml-miR-542-5p 
CAGACCTCAGACATCTCGGGGATCATCATGTCACGAGA
TACCACTGTGCACTTGTGACAGATTGATAACTGAAAGG
TCTGGGAGCCATTCATCTTCA 

+ 

mml-miR-548a 
TCCAGGGAGGTATTAAGTTGGTGCAAAAGTAATTGTGG
TTTTTTGCCATTAAAAGTAATGACAATACTGGCAATTAC
TTTTCCTCCAAACCTGATATT 

+ 

mml-miR-548b 
CAGGCTATGTATTTAGGTTGGTGCAAAAGTAATTGGGG
CTTGGGCCTTTATTTTCAATGGCAAAAACCTCAATTGCT
TTTGTGCCAACCTAATACTT 

+ 

mml-miR-548c 
TGTGATGTATTAGGTTGATGCAAAAGTAATTGGGGTTTT
TTGTCATTAAAAGTAGTGACAAAACCGGCAATTACTTC
TGCACCAAACTAATATAA 

+ 

mml-miR-548d 
AAACAAGTTGTATTAGGTTGGTGCAAAAGTAATTGTGG
TTCTTGCCTATAAAAGTAATGGCAAAAACCACAATTTCT
TTTGCACCAAACTAATAAAG 

+ 

mml-miR-548f 
ATTTAGGTTGGTGCAAAAGTAATTGCGGATTTTGCCATT
GAAAGTAATGGCCAAAACCACAGTTCCTTTTGCACCAA
TCTATAGA 

+ 

mml-miR-549 
AGACATGCAACTCAAGAATATATTGAGAGCTCATCCAT
AGTTGTCACTGTCTCAGATCATGACAATTATGGATGAG
CTCTTAATATATCCCAGGC 

+ 

mml-miR-550-1 
TGATGCTTTGCTGGCTGGTGCAGTGCCTGAGGGAGTAA
GAGCCCTGTTGTTGTAAGATAGTGTCCTACTCCCTCAGG
CACATCTCCAGCAAGT 

+ 

mml-miR-551a 
GGGGACTGCCGGGTGACCCTGGAAATCCAGAGTGGGTG
GGGCCTGTCTGACCATTTCTAGGCGACCCACTCTTGGTT
TCCAGGGTTGCCCTGGAAA 

+ 

mml-miR-552 
ACCATTCAAATATACCACAGTTTGTTTGACCATTAACCT
GTTTGTTGAAGATGCCTTTCAACGGGTGACTGGTTAGAC
AAACTGTGGTATATTCA 

+ 

mml-miR-557 
AGAATGGGCAAATGAATAGTAAATTTGGAGGCCTGGGG
CCCTCCCTGCTGCTGGACAAGTGTCTGCATGGGTGAGC
CTTATCTTTGAAAGGAGGTGGA 

+ 

mml-miR-558 
GTGTGTGTGTGTGTTTGTGTTTATTTTGGCATAGTAGCT
CTAGACTCTATTATAGTTTCCTGAGCTGCTGTACCAAAA
TACCACAAACTGCCTG 

+ 

mml-miR-56 
GGTATTGTTAGATTAATTTTGTGGGACATTAACAACAGC
ATCAGCAGCAACATCAGCTTTAGTTAATGAATCCTGGA
AAGTTAAGTGACTTTATTT 

+ 

mml-miR-562 
AGTGAAATTGCTGGGTCATATGGTCAGTCTACTTTCAGA
GTAATTGTGAAAGTATTTTTCAAAGTAGCTGTACCATTT
GCATTCCCTGTGGCAAT 

+ 

mml-miR-570 
TATTAGGTTGGTGCAAACGTAATTGCAGTTTTTGCCATT
ACTTTTAAAGGCAAAAGTAGCAATTACCTTTGCACCAA
CCT 

+ 

mml-miR-576 TACAATCCAGTGAGGATTCTAATTTCTCCACATCTTTGG + 
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TAATAAGTTTTGGCAAAGATGTGGAAAAATTGGAATCC
TCATTGGATTGGTTATAA 

mml-miR-578 
GATAAATATATAGACAAAATACAATCCTGGACTATAAG
AAGCTCCTATAGCTCCTGTAGCTTCTTGTGCTCTGGGAT
TGTATTTTGTTTATATAT 

+ 

mml-miR-579 
CATATTAGGTTAATGCAAAAGTAATCGCGGTTTGTGCC
AAATGGCGATTTGAATTAATAAATTCATTTGGTACAAA
CCGCGATTACTTTTGCATCAGC 

+ 

mml-miR-580 
ATAAAATTTCCAGTTGGAACCTAATGATTCATCAGACTC
AGATATTTAAGTTAACAGTATTTGAGTCTGATGAATCAT
TAGGTTCCAGTCAGAAATT 

+ 

mml-miR-581 
GTTCTGTGAACGTATTCTTGTGTTCTGTAGATCAGTGCT
TTTAGAAAATTTGTGTGATCTAGAGAACACAAAGAATA
CCTACACAGAACCATCTGC 

+ 

mml-miR-582 
ATCTGTGCTCTTTGATTACAGTTGTTCAACCAGTTACTA
ATCTACCTAATTGTAACTGGTTGAACAACTGAACCCAA
AGGGTGCAAAGTAGAAACATT 

+ 

mml-miR-584 
TAGGGTGACCAGCCATTATGGTTTGCCTGGGACTGAGG
AATTTGCTGGGATATGTCAGTTCCAGGCCAACCAGGCT
GGTTGGTTTCCCTGAAGCAAC 

+ 

mml-miR-586 
ATGGGGTAAAACCATTATGCATATTGTATTTTTAGGTCC
CAATACGTGTGGACCCTAAAAATGCAATGCATAATGGT
TTTATACTCTTTATCTTCTTAT 

+ 

mml-miR-593 
CCCCCAGAGTGTGTCAGGCATCAGCCAGGCATCGCTCA
GCCCCTTTCCCTCTGGGGGAGCAAGGAGTGGTGCTGGG
TTTGTCTCTGCTGGGGTTTCTCCT 

+ 

mml-miR-597 
TACTTACTCTACATGTGTGTCACTTGACGACCACTGTGA
AGAGAGTAAAATGTACAGTGGTTCTCTTGGGGCTCAAG
CGTAACGTAGAGTGCTGGTC 

+ 

mml-miR-601 
TGCATGAGTTCATCTTGGTCTAGGATTGTTGGAGGAGTC
AGAAAAATTACCCCAGGGATCCTGAAGTCATTGGGGTG
GA 

+ 

mml-miR-609 
TGCTCTGCTTTTCCTAGGGTGTTGCTCTCATCTCTGGTCT
ATAATGGGGTAAATGTAGAGATGAGGGCAACAGCCTA
GGAACAGCAGAGGAACC 

+ 

mml-miR-611 AAAATGGTGAGAGGGTTAAGGGGAGTTCCCGACGGAG
ATGCGAGGACCCCTCGGGGTCTGACCCACA + 

mml-miR-615 
CTCGGGAGGGGCGGAAGGGGGGTCCCCGGTGCTCGGAT
CTCGAGGGTGCTTATTGTTCGGTCCGAGCCTGGGTCTCC
CTCTTCCCCCCAACCCCCC 

+ 

mml-miR-616 
TTAGGTAATTCCTCCTCTCAAAACCCTCCAATGACTTCC
CTGACATGACATAGGAAGTCACTGGAGAGTTTTGAGCA
GAGGAATGACCTGTTTTAAAA 

+ 

mml-miR-619 
CGCCCACCTCAGCCTCCCAAAATGCTGGGATTACAGGC
ATGAGCCACCGCAGTCGACCATGATCTGGACATGTTTG
TGCCTGGGATTGTCAGTTTGCAG 

+ 

mml-miR-625 
AGGGTAGAGGTATAAGGGGGGAAAGTTCTGCAGGCCT
GTAATTAGATCTCAGGACTGTAGAACTTTCTCCCTCACC
TCTGCCCT 

+ 

mml-miR-626 
ACCGATATCTTTGTCTTATTTCTGAGCTGAGGGGTTATT
TTTATGCAGTCTAAATGATCTCAGCTGTCCGAAAATGTC
TTCAAGTTTAAAGGCTT 

+ 

mml-miR-628 
ATAGCTGTTGTGTCACTTCCTCATGCTGACATATTTACT
AGAGGGTAAAATTAATAACCTTCTAGTAAGAGTGGCAG
TCGAAGGGAAGGACTCAT 

+ 

mml-miR-632 CGCCTCCTGCCGCAGTGCCTGACGGGAGGCGGAGCGGC + 
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GAACGAGGCCGTCGGCCATTTTGTGTCTGCTTCCTGTGG
GACGCGGTCGTAGCCGT 

mml-miR-636 
TGGCGGCCTGGGCGGGAGCGCGCGGGCGGGGCCGGCC
CCGCTGCCTGGAATTAACCCCGCTGTGCTTGCTCGTCCC
GCCTGCAGCCCTAGGCGGCGTCG 

+ 

mml-miR-638 
GTAAGCGGGCGCGGCAGGGATCGCGGGCGGGCGGCGG
CCTAGGGTGCGGAGGGCGGACCGGGAATGGCGCTCCCT
GCGCCGCCGGCGTAACTGCGGCGCT 

+ 

mml-miR-639 
TGGCCGACGGGGCGCGCGCGGCCGGGAGGGGCGGGGC
GGACGCACAGCCGCGTTTAGTCTAGCGCAGCGGTCGCG
AGCGCTCTGGGTATCCTGTCCTG 

+ 

mml-miR-640 
GTGACCCTGGGCAAGTTCCTGAAGATCAAACACATCAG
ATCCCTTATCTGTAAAATGGGCATGATCCAGGAACCTG
CCTCTATGGTTGCCTTGGAG 

+ 

mml-miR-650a-2 
CAGTGCTGGGATCTCAGGAGGCAGCGCTCTCAGGACTT
CTCCACCATGGTCTGGGCTCTGCTCCTCCTCACCCTCCT
CACTCAGGGCACAGGTGA 

+ 

mml-miR-650c 
CAGTGCTGGGGTGTCAGGAGGCAGCGCTCTCAGTCTCC
ACCATGGCCTGGGCTCTGCTCCTCCTCACTCTCCTCACT
CATGGCACGGGTGA 

+ 

mml-miR-650d 
CAGTGCTGGGGTCTCAGGAGACAGTGCTGTCGGGACGT
CTCCACCATGGCCTGGGCTCTGCTCCTCCTCACCCTTCT
CACTCAAGGCACAGG 

+ 

mml-miR-652 
ACGAATGGCTATGCACTGCACAACCCTAGGAGAGGGTG
CCATTCACATAGACTATAATTGAATGGCGCCACTAGGG
TTGTGCAGTGCACAACCTGCAC 

+ 

mml-miR-653 
TTCATTCCTTCAGTGTTGAAACAATCTCTACTGAACCAG
CTTCAAACAAATTCACTGGAGTTTGTTTCAATATTGCAA
GAATGATAAGATGGAAGC 

+ 

mml-miR-656 CTGAAATAGGTTGTCTGTGAGGTGTTCACTTTCTATATG
ATGAATATTATACAGTCAACCTCTTTCCGATATCGAATC + 

mml-miR-657 
GGAGGAGAGGGTCCTGGAGAAGCGTGGACGGCTCCAG
GTGGGTTCTGGCAGGTCCTCACCCTCTCTAGGCCCCATT
CTC 

+ 

mml-miR-660 
CTGCTCCTTCTCCCATACCCATTGCATATCGGAGTTGTA
AATTCTCAAAACACCTCCTGTGTGCATGGATTACAGGA
GGGTGAGCCTTGTCATCGTG 

+ 

mml-miR-662 
GCTGTTGAGGCTGTACAGCCAGGACCTGACGGTGGGGT
GGCTTCGGGCCTTCTGCAGGTCTCCCACGTTGTGGCCCA
GCAGCGCAGTCACGTTGC 

+ 

mml-miR-663 
CCGTTCGGCGTCCCAGGCGGGGCGCTGCGGGACCGCCC
TCGTGTCTGTGGCGGTGGGATCCCGTGGCCGTGTTTTCC
TGGTGGCCCGGCC 

+ 

mml-miR-664 CTGGCTAGGGAAAATGATTGGATAGAAAATGTTATTCT
ATTCATTTATCCCCAGCCTA + 

mml-miR-675 CCCAGGGTCTGGTGCGGAGAGGGCCCACAGTGGACTTG
GTGACACTGTATGCCCTCACCGCTCAGCCCCTGGG + 

mml-miR-7-1 
TTGGATGTTGGCCTAGTTCTGTGTGGAAGACTAGTGATT
TTGTTGTTTTTAGATAACTAAATTGACAACAAATCACAG
TCTGCCATATGGCACAGGCCATGCCTCTACAG 

+ 

mml-miR-7-2 
CTGGATACAGAGTGAAGTGGCTGGCCCCGTCTGGAAGA
CTAGTGATTTTGTTGTTGTCTTACTGCGCTCAACAACAA
ATCCCAGTCTGCCGAATGGTGCCAGCCATTGCA 

+ 

mml-miR-7-3 
AGATTAGAGTGGCTATGGTCTAGTGCTGTGTGGAAGAC
TAGTGATTTTGTTGTTCTGATGTGCTACGACAACAAATC
ACAGCCGGCCTCATAGCGCAGACTCCCTTCGAC 

+ 
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mml-miR-758 
GCCTGGATACGTGAGATGGTTGACCAGAGAGCACACGC
TTTATATGTGCCGTTTGTGACCTGGTCCACTACCCCTCA
GTATCTAATGC 

+ 

mml-miR-767 
GCTTTTATATTGTAGGTTTTTGCTCATGCACCATGGTTG
TCTGAGCATGCAGCATGCTTGTCTGCTCATACCCCATGG
TTTCTGAGCAGGAATCTTCATTGTCTACTGCT 

+ 

mml-miR-768 
CTGTGCTTTGTGTGTTGGAGGATGAAAGTACGGAGTGA
TCCATCGGCTAAGTGTCTTATCACAATGCTGACACTCAA
ACTGCTGACAGCACACGTTTTTCACAG 

+ 

mml-miR-874 
TTAGCCCTGCGGCCCCACGCACCAGGGTAAGAGAGAGT
CTCGCTTCCTGCCCTGGCCCGAGGGACCGACTGGCTGG
GC 

+ 

mml-miR-875-5p TTAGTGGTACTATACCTCAGTTTTATCAGGTGTTCCTAA
AATCACCTGGAAATACTGAGGTTGTGTCTCACTGAAC + 

mml-miR-877 
GCTAGAGAAGGTAGAGGAGATGGCGCAGGGGACACGG
GCTAAGACTCGGGGGTTCCTGGGACCCTCAGACATGTG
TCCTCTTCTCCCTCCTCCCAGGTGT 

+ 

mml-miR-886-5p 
CCGGGTCGGAGTTAGCTCAAGCGGTTACCTCCTCATGC
CGCACTTTCTAACTGTCCATCTCTGTGCTGGGGTTCGAG
ACCCGCGGGTGCTTACTGACCCTTTTATGCACTAA 

+ 

mml-miR-888 GGCAGTGCCCTACTCAAAAAGCTGTCAGTCACTTATGTT
ACATGTGACTGACACCTCTTTAGATGAAGGAAGGCTCA + 

mml-miR-892 GCAGTGCTCTACTTAGAAAGGTGCCAGTCACTTACATT
ACATGTCACTGTGTCCTTTCTGCGTAGAGTAAGGCTC + 

mml-miR-920 GTAGTTGTTCTgCAGAAGACCTGGATGTGgAaGAGCTAA
GACACACTCCAGGGGAGCTGTaGAAGCgGTAACACG + 

mml-miR-922 
TGGCGTTCTCTCTCTCCCTGTCCTGGACTGGGGTCAGAC
CGTGCCCCGAGGAGAAGCAGCAGAGAATGAGACTACG
TCGT 

+ 

mml-miR-924 AATAGAGTCTTGTGTTGTCTTGCTTAAAGGCCATCCAAC
CTAGAGTCTA + 

mml-miR-92b 
CGGGCCCCGGGCGGGCGGGAGGGACGGGACGCGGTGC
AGTGTTGTTCTTTCCCCCGCCAATATTGCACTCGTCCCG
GCCTCCGGCCCCCCCGGCCC 

+ 

mml-miR-9-3 
GGAGGCCCGTTTCTCTCTTTGGTTATCTAGCTGTATGAG
TGCCACAGAGCCGCTCTCAAGCTAGATAACCGAAAGTA
GAAATGACTCTCA 

+ 

mml-miR-937 
AGCACTGCCCCCGGTGAGTCAGGGTGGGGCTGGCCCCC
TGCTTCGCGCCCATCCGCACTCTGACTCTCCACCTGCCT
GCAGGAGCT 

+ 

mml-miR-939 
TGTGGGCAGGGCCCTGGGGAGCTGAGGCTCTGGGGGTG
GCCGGGGCTGACCCCTGGGCCTCTGCTCCCCAGTGTCTG
ACCGTG 

+ 

mml-miR-940 
GTGGGGTGTGGGCCCGGCCCCAGGAGCGGGGCCTGGGC
AGCCCCGTGTGTTGAGGAAGGAAGGCAGGGCCCCCGCT
CCCCGGGCCTGACCCCAC 

+ 

mml-miR-942 
ATTAAGAGAGTACCTTCTCTGTTTTGGCCATGTGTGTAC
TCACAGCCCCTCACACGTGGCCGAAACAGAGAAGGTAC
TTTCCTAAT 

+ 

mml-miR-944 
GTTCCAGACACATCTCATCTGATATACAATATTTTCTTA
AATTGTAAAAAGAGAAATTATTGTATATCAGATGAGAT
GTGTCTGGGGT 

+ 

mml-miR-let-7a-2 AGGCTGAGGTAGTAGGTTGTATAGTTTAGAATTACATC
AAGGGAGATAACTGTACAGCCTCCTAGCTTTCCT + 

mml-miR-133b CCTCAGAAGAAAGATGCCCCCTGCTCTGGCTGGTCAAA
CGGAACCAAGTCCGTCTTCCTGAGAGGTTTGGTCCCCTT - 
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CAACCAGCTACAGCAGGGCTGGCAATTCCCAGTCCTTG
GAGA 

mml-miR-181d 

GTCCCCTCCCCTAGGCCACAGCCAAGGTCACAATCAAC
ATTCATTGTTGTCGGTGGGTTGTGAGGACCGAGGCCAG
ACCCACCGGGGGATGAATGTCACTGTGGCTGGGCCAGA
CACGGCTTAAGGGGAATGGGGAC 

- 

mml-miR-217 
AATATAATTATTACATAGTTTTTGATGTCGCAGATTCTG
CATCAGGAACTGATTGGATAAGAATCAGTCACCATCAG
TTCCTAATGCATTGCCTTCAGCATCTAAACAAG 

- 

mml-miR-220b 
GACAGCGTGGCGTTGTAGGGCTCCACCACCGTGTCCGA
CACCTTGGGCGAGGGCATGACGCTGAAGGTGTTCATGA
TGCGGTCCGGGAACTCCTCGCGGATCTTGCTGATG 

- 

mml-miR-297 TGTATGTATGTGTGCATGTGCATATATGTGTGTGTATAT
ATATATATGTATTATGTACTCATATATCA - 

mml-miR-30e 
GGGCAGTCTTCGCTACTGTAAACATCCTTGACTGGAAG
CTGTAAGGTGTTCAGAGGAGCTTTCAGTCGGATGTTTAC
AGCGGCAGGCTGCCA 

- 

mml-miR-340 
TTGTACCTGGTGTGATTATAAAGCAATGAGACTGATTGT
CATATGTTGTTTGTGGGATCCGTCTCAGTTACTTTATAG
CCATACCTGGTATCTTA 

- 

mml-miR-345 
AAACCCTAGGTCGGCTGACTCCTAGTCAAGGGCTCGTG
GTGGCTGGTGGGCCCTGAACGAGGGTTCTGGAGGCCTG
GGTTTGAATATC 

- 

mml-miR-362 CTCGAATCCTTGGAACCTAGGTGTGAGTGCTATTTCAGT
GCAACACACCTATTCAAGGATTCAAA - 

mml-miR-378 AGGGCTCCTGACTCCAGGTCCTGTGTGTTACCTCGAAAT
AGCACTGGACTTGGAGTCAGAAGGCCT - 

mml-miR-379 AGAGATGGTAGACTATGGAACGTAGGCGTTATGATTTT
TGACCTATGTAACATGGTCCACTAACTCT - 

mml-miR-384 
TGTTAAATTAGGAATTGTAAACAATTCCTAGGCAATAT
GTATAATGTTCATAAGACATTCCTAGAAATTGTTCATAA
TGCCTGTAACA 

- 

mml-miR-450b-5p GCAGAATTATTTTTGCAATATGTTCCTGAATATGTAGTA
TAAGCGTATTGGGATCATTTTGCATCCATAGTTTTGTAT - 

mml-miR-492 
ACTACAGCCACTACTACAAGACCTTCGAGGACCTGCGG
GACAAGATTCTTGGTGCCGTCAATGAGAACTCCAGGAT
TGTCCTGCAGATCAACAATGCCTGTCTGGCTGCAGATG 

- 

mml-miR-498 

AATCCTCCTTGGGAAGTGAAGCTCAGGCTGTGATTTCA
AGCCAGGGGGCGTTTTTCTGTGACTGGATGAAAAGCAC
CTCCGGGGCTTGAAGCTCACAGTTTGAGAGCAATCATC
TAAGGAAGTT 

- 

mml-miR-512-1-5p 
TCTCACTCTGTGGCACTCAGCCTCGGGGGCACTTTCTGG
TGTCAGAATGAAAGTGCTGTCATTGCTGAGATCCAATG
ACTGAGG 

- 

mml-miR-512-2-5p 
GGTACTTCTCACTCTGTGGCACTCAGCCTCGGGGGCACT
TTCTGGTGTCAGAATGAAAGTGCTGTCATTGCTGAGATC
CAATGACTGAGGCGAGCACC 

- 

mml-miR-523b 
TCTCATGATGTGACCCTCTAGAGCGAAGCGCTTTCTGTT
GGCTAGAAAAGAATAGGAAGCGCTTCCCTTTAGAGTGT
TACGCTTTGAGA 

- 

mml-miR-548e 
CCTAGAATGTTACTAGGTTGGTGCAAAAGTAATTGCGA
GTTTTACCATTACTTTCAATGGCAAAACCGGCAGTTACT
TTTGCACCAACGTAATACTT 

- 

mml-miR-551b 
AGATGTGCTCTCCTGGCCCATGAAATCAAGCGTGGGTG
AGACCTGGTGCAGAACAGGAAGGCGACCCATACTTGGT
TTCAGAGGCTGCGAGAATA 

- 
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mml-miR-553 CTTCAATTTTATTTGAAAAAGGTGAGGTTTTGTTTTGTC
TGAGAAAATCTCACTGTTTTAGACTGAGG - 

mml-miR-554 
ACCTGAGTAACCTTTGCTAGTCCTGACTCAGCCAGTACT
GATCTTACACTGGCAGTGGGTCAGGGTTCATATTTTGGC
ATCTCTCTCTGGGCATCT 

- 

mml-miR-556 
GATAGTAATGAGAAAGATGAACTCATTGTAATATGAGC
TTCATTTATGCATTTCATATTACAATTAGCTGATCTTTTT
TTTT 

- 

mml-miR-563 
AGCAAAGAAGTGTGTTGCCCTCCAGGAAATGTGTGTTG
CTCTGATGTAATTAGGCTGACATACATTTCCCTGGTAGC
CA 

- 

mml-miR-567 
GGATTCTTACAGGACACTATGTTCTTCCAGGACAGAAC
ATTCTTTGCTATTTTGTACTGGAAGAACATGCAAAACTT
TAAAAAAAGTTATTGCT 

- 

mml-miR-572 
GTCGAGGCCGTGGCCCGGAAGTGATCGGGGCCGCCGCG
GACGGAAGGGCGCCTCTGCTTCGTCCGCTCGGCGGTGG
CCCAGCCAGGCCCGCGGGA 

- 

mml-miR-577 
TGGGGGAATGAAGAGTAGATAAAATATTGGTACCTGAT
GAGTGTGAGGCCAGGTTTCAATACTTTATCTGCTCTTCA
TTTTCCCATATCTACTTAC 

- 

mml-miR-583 AACTCGCACATTTACCAAAGAGGAAGGTCCCAGTACTG
CAGGGATCTTAGCAGTACTGGGACCTACCTCTTTGGT - 

mml-miR-587 
CTCCTAGGCACCCTCTTTCCACAGGTGATGAGTTACAGG
GCCCAGGGAATGTGTCTGCACCTGTGACTCATCACTGG
TGGAAGCCCATAC 

- 

mml-miR-589 
TCCAGCCTGTGCCCAGCAGCCCCTGAGAACCACGTCTG
CTCTGAGCTGGGTACTGCCTGTTCAGAACAGACGCTGC
TTCCCAGACGCTGCCAGCTGGCC 

- 

mml-miR-590 
TAGCCAGTCAGAAATGAGCTTATTCATAAAAGTGCAGT
ATGGTGGAGTCAGTCTGTAATTTTATGTATAAGCTGGTC
TCTAACTGAAACGTGCAGCA 

- 

mml-miR-600 
AAGTCACTTACTGTGTCTCCAGCTTCACAGGAAGGCTCT
TGTCTGTCAGGCAGTGGAGTTACAGACAAGAGCCTTGC
TCAGGCCAGCCCTGCCC 

- 

mml-miR-604 
AGAGCATCGTGCTTGACCTTCCACGCTCCCGTGTCCACT
AGCAGGCAGGTTTTCTGACACGGGCTGCGGGATTCAGG
ACAGCGCATCACGGAGA 

- 

mml-miR-605 
CCCTAGCTTGGTTCTAAATCCCACGGTGCCTTCTCCTTG
GGAAAAACAGAGAAGGCACTGTGGGATTTAGAACCAA
GTTAGG 

- 

mml-miR-607 
TCGCCCAAAGTCACACAGGTTATAGATCTGGATTGGAA
CCCAGGTAGCCAGACTGCCTGGGTTTGAATCCAGATCT
GTAACCTGTGTGACTTTGG 

- 

mml-miR-612 
TCTCATCTGGACCCCACTGGGGAGGGCTTCTGAGCTCCT
CAGCACTGGCAGGAGGGGCTCCAGGGGCCCTCCCTCCA
TGGCAGCCAGGACAGGACTCTCA 

- 

mml-miR-618 
TCTTGTTCACAACCAAACTCTACTTGTCCTTCTGAGTGT
GATTACGCCCATGGAGTAGCTCAGGAGGCAAACAGGGT
TACCCTGTGGATAGGTCTGAAAA 

- 

mml-miR-624 
AATGCTGTTTCAAGGTAGTACCAGTATCTTGTGTTCAGT
GGAACCAAGGTAAACACAAGATACTGGTATTACCTTGA
GATAGCATTAACACCTAAGTG 

- 

mml-miR-633 
AACCTCTCTTAGCCTCTGTTTCTTTACTGTGGTAGATAC
TATTAGCCTAAAATAAGAAGGCTAATAGTATCTACCAC
AATAAAATTGTTGTGATGATA 

- 

mml-miR-643 ACCAACTGATACGCATTATCTACGTGAGCTAGAATACA - 
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AGTAGTTGGTGTCTTCAGAGACACTTGTATTCTAGCTCA
GGTAGATACTGAATGGAAAA 

mml-miR-644 
TTTTATTTAGTATTCTTCCATCAGTGTTCATAAGGGATG
TTGGTCTGTAGTTTTCTTATAGTGTGGCTTGCTTAGAGC
AAAGGTGGTTCCCT 

- 

mml-miR-648 
AGCACAGACGCCTCCAAGTGTGCAGGGCACTGATGGGG
GCCAGGGCAGGCCCAGCCAAAGTGCAGGACCTGGCACT
TAGTCGGAGGTGAGGATG 

- 

mml-miR-649 
GCCCTAGCCAAATACTGTATTTTTTATCAACATTTGGTT
GAAAAACATCTGTGTATTAGTAAACCTGTGTTGTTCAA
GAGTCCGCTGTGCTTTGCTG 

- 

mml-miR-650a-1 
CAGTGCTGGGATCTCAGGAGGCAGCGCTCTCAGGACGT
CTCCACCATGGTCTGGGCTCTGCTCCTCCTCACCCTCCT
CACTCAGGGCACAGGTGA 

- 

mml-miR-650b 
CAGTGCTGGGGTCTCAGGAGGCAGCGCTCTCGGGACAT
CTCCACCATGGCCTGGGATCTGCTCCTCTTCACCCTCCT
CACTCAGGGCACAGGTGA 

- 

mml-miR-651 
AAGCTATCACTGCTTTTTAGAATAAGCTTGACTTTTGTT
CAAATAAAAACGCAAAAGGAAAGTGTATCTTAAAAGG
CAATGACAGTTTAATATGTTT 

- 

mml-miR-661 
GGAGAGGCTGTGCTGTGGGGCAGGCGCTGGCCTGGGTG
GCCTGAGCCCTGATTTTGGGCTGCCTGGGTATCTGGCCC
GTGCGTGACCTTGGGGCGGCT 

- 

mml-miR-765 
TTTAGGGGCTGATGAAAGTGGAGTTCAGTAGACAACCC
TTTTCAAGCCCTGCAAGAAACTGGGGTTTCTGGAGGAG
AGGGAAGGTGCTGAAGGGGCTGCTCTCGTGAGCCTGAA 

- 

mml-miR-802 
GTTCTGTTATTTGCAATCAGTAACAAAGATTCATCCTTG
TGTCCATCATGCAGCAAGGAGAATCTTTGTCACTTAGTG
TAATTAATAGCTGGAC 

- 

mml-miR-934 
AGgAATAAGGCTTCTGTCTACTACTGGAGACACTGaTAG
TgTAAAACCCAGAGTCTtCgGTAATGGACGGGAGCCTTA
TTTCT 

- 

mml-miR-936 
AGGAATAAGGCTTCTGTCTACTACTGGAGACACTGATA
GTGTAAAACCCAGAGTCTTCGGTAATGGACGGGAGCCT
TATTTCT 

- 

mml-miR-936 
AGGAATAAGGCTTCTGTCTACTACTGGAGACACTGATA
GTGTAAAACCCAGAGTCTTCGGTAATGGACGGGAGCCT
TATTTCT 

- 

mml-miR-938 GAAAGTGTACCATGTGCACTTAAAGATGAAGCCGGTGC
ACCTTCATGAACTGTGGTACACCTTTAAGAACTTGGT - 
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