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SUMMARY 

Drug discovery is an expensive and time-consuming process which requires large 

amount of financial investment. Efforts in bioinformatics and cheminformatics are 

extensively explored to increase the efficiency and reduce costs of drug discovery and 

development. Bioinformatics tools such as database and computational methods such 

as machine learning method based virtual screening (VS) have been developed for 

searching novel lead compounds. 

 

Database development is a promising approach which can accelerate drug discovery 

by systematically managing and providing medicinal chemicals and biomolecules 

information with a web accessible interface. This information is a useful resource for 

further drug discovery application besides a data storing pool. VS is known to 

contribute to discovery of hits and lead compounds and VS has been investigated and 

explored intensively. Various tools and applications have been developed according 

to VS. However, there are many issues of many conventional VS tools including 

insufficiency of compound diversity coverage, slow screening speed of large 

compound libraries and high false positive rate. It is demanded to overcome these 

problems and it would be very useful to develop application of VS tools to discover 

novel compounds by screening large compound libraries rapidly at good yields and 

low false-hit rates. 



 

IX 
 

In this work, several computational approaches for facilitating disease detection and 

drug discovery are presented. MicrobPad MD: Microbial pathogen diagnostic 

methods database is built to provide comprehensive information about the molecular 

detection for pathogens. It may help accurate, sensitive and low-cost detection of 

medical pathogens and diagnosis of disease. The updated TTD is expected to be a 

useful resource in complement to other related databases by providing comprehensive 

information about the primary targets and drug of the approved, clinical trial, and 

experimental drugs. These database lead to a better understanding of the disease and 

benefit for drug discovery. 

 

Src promotes tumour invasion and metastasis, and facilitates VEGF-mediated 

angiogenesis and survival in endothelial cells. Both Src and VEGFR-2 are very 

important for disease, particularly cancers. To facilitate drug discovery by saving time 

and cost in developing novel lead, the machine learning methods are used to build 

screening models for Src and VEGFR-2 inhibitors. It is shown that SVM based VS 

tools work efficiently in the discovery of Src, VEGFR-2 inhibitors and other active 

compounds at low false-hit rates. The virtual hits of models have been tested 

experimentally to further verify the models. These projects facilitate drug discovery 

by reducing the cost and time in developing novel drug lead.  
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Chapter 1 Introduction 

Disease detection and drug discovery is typically a costly and lengthy process which 

takes more than 10 years to develop a successful drug from initial design to market. 

Although a log of efforts have been made for drug discovery, the successful drugs did 

not increase significantly over the past few decades. Bioinformatics and 

cheminformatics tools are explored to make drug research and development more 

efficient and effective. To help achieve this purpose, this work on "Development of 

Database and Computational Methods for Disease Detection and Drug Discovery" is 

conducted as one of the strategies illustrated in this chapter. The thesis contains 

database development of disease detection and therapeutic targets as well as 

discovery of potential drug lead by silico virtual screening. This introduction chapter 

includes: (1) conventional and molecular detection methods of pathogen; (2) 

bioinformatics and cheminformatics in drug discovery; (3) database development; (4) 

virtual screening of drug discovery; (5) objectives and outlines. 

 

1.1 Overview of pathogen detection  

1.1.1 Application areas requiring pathogen detection. 

The detection of pathogens is the most important procedure for the identification and 

prevention of health and safety problems. It will cause terrible consequences in some 
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areas especially in clinical diagnostics, environment quality control and food industry 

where failure to detect pathogens. The pathogen detection has become the critical part 

in many research areas and application areas including pathology research, disease 

diagnosis, biodefense, food and water safety and epidemic prevention. Three 

application areas account for over two thirds of all research in the field of pathogen 

detection including food industry, water and environment quality control and clinical 

diagnosis [1-3]. Particularly in European Union, about 275 million pathogen detection 

of food were conducted in 2011 and this number in 2016 will to get to 350 million [4].  

 

1.1.2 Brief introduction to pathogens induced infectious diseases 

A biological agent that cause diseases to its host is known as pathogen. Pathogens are 

most often used to refer to numerous infectious microorganisms such as bacteria, 

viruses, fungi and parasites which infect unicellular or multicellular organisms 

including human, animals and plants by disrupting the normal physiological function 

[5]. Pathogenic diseases is a term used for the diseases clinically caused by pathogen. 

Usually there are four kinds of pathogens including bacteria, viruses, fungi and 

parasites [5, 6]. Brief Description of four categories of pathogen together with the 

associated diseases are described in Table 1-1. 

 

 



 
 

 3 

Table 1-1 Four categories of pathogen inducing infectious human disease. Their infection are briefly 
described. Examples of the types of pathogens are listed, along with the disease they cause. 
. 

Type of 
pathogen 

Typically 
size 

Description of infection  Examples of pathogen Associated diseases 

Bacteria 1-5 µm 

Inhibit immune system and 
released edotoxins, extoxins and 
toxic factors which will block 
host protein synthesis, make 
cell deficient or cause 
inflammatory reaction. 

Escherichia Coli Food poisoning 

Chlamydia pneumoniae [7] Atherosclerosis 

Helicobacter pylori [8] Psoriasis 

Francisella tularensis [9] Tularemia 

Mycobacterium tuberculosis 
[10] 

Tuberculosis 

Yersinia pestis [11] Plague 

Viruses 
20-300 
nm 

Infection and the severe level of 
disease symptoms are relied on 
the virus virulence factors. 
Receptor typically endocytosed 
protein are often required on 
host cells for virus binding. 
Virus virulence factors can 
block MHCI processing for host 
immune system dysfunction. 

Human immunodeficiency 
virus (HIV) [12] 

AIDS 

Dengue virus [13] Dengue fever 

SARS coronavirus [14] 
Severe acute respiratory 
syndrome (SARS) 

Ebola virus [15] Ebola hemorrhagic fever 

Coxsackie A virus, 
Enterovirus 71 (EV-71) [16] 

Hand, foot and mouth 
disease (HFMD) 

Influenzavirus A [17] Swine Flu 

Fungi 
Spore size 
of 1-40 
µm  

Fungi diseases are induced 
through host barriers 
penetration or immunological 
debilitation by fungi. Fungi 
infect host through three ways: 
iatrogenicity, trauma or 
inhalation [18]. The common 
fungal diseases include 
respiratory fungal allergy, 
immune reconstitution 
inflammatory syndrome, skin 
diseases, mucosal infections and 

Blastomyces dermatitidis [19] Blastomycosis 

Candida albicans [20] Thrush 

Histoplasma capsulatum [21] Histoplasmosis 
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Although medical advances have been made to protect human from pathogen 

infection, pathogens still threaten human life and difficult for treatment since the 

variation of the pathogens, particularly viruses, is significant fast. Over the decades, 

more serious pathogen diseases have been induced by viruses such as human 

immunodeficiency virus (HIV), hepatitis B, meningococcal disease [26] and some 

cancer such bladder cancer [27] and cervical cancer [28]. The pathogenic diseases are 

extremely harmful for human health and life quality. Table 1-2 shows the top 10 

leading cause of death worldwide in 2008 reported by WHO fact sheet [29]. Four 

eosinophilia-driven 
hypersensitivity diseases. Fungi 
can also induce opportunistic 
infection in AIDS and cancer 
patients. 

Parasite 
 

Up to 
1mm 

Traditionally, there are more 
than one host within lifestages 
of pararsite. Parasite can be 
divided into four types: 
roundworms, tapeworms, flukes 
and single celled protozoa. 
Some parsites can cause 
diseases by toxins, others 
directly cause diseases. Parasitic 
infection can be caused by 
contamination of soil, water, 
food, pet and insect. The 
parasite infection is typically 
chronic and immunology 
defection. 

Entameba histolytica [22] Amoebiasis 

Ascaris lumbricoides [23] Ascariasis 

Plasmodium malariae, 
Plasmodium ovale [24] 

Malaria 

Schistosoma mansoni [25] Schistosomiasis 
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pathogenic diseases involved in the top 10 causes of death worldwide and the total 

proportion of all the death is up to 15.90%.  

Table 1-2 The top 10 leading cause of death worldwide in 2008 reported by WHO fact sheet. 

World Deaths in millions % of deaths 

Ischaemic heart disease 7.25 12.80 

Stroke and other cerebrovascular disease 6.15 10.80 

Lower respiratory infections 3.46 6.10 

Chronic obstructive pulmonary disease 3.28 5.80 

Diarrhoeal diseases 2.46 4.30 

HIV/AIDS 1.78 3.10 

Trachea, bronchus, lung cancers 1.39 2.40 

Tuberculosis 1.34 2.40 

Diabetes mellitus 1.26 2.20 

Road traffic accidents 1.21 2.10 

 

Although the many effort have been made to diagnosis and treatment of pathogenic 

diseases, challenges exist in accurately identifying pathogens rapidly. According to 

the world health statistics report [30], pathogenic diseases mortality rate is still 

significant as shown in Table 1-3. Some pathogenic diseases e.g. H5N1 influenza 

[31] induce high mortality rate due to mutations. Some diseases e.g. poliomyelitis 

[32] cause very bad consequence even with low mortality rate. Therefore, early 

detection of pathogens to identify the pathogenic sources is extremely important for 

fast disease diagnosis, proper treatment and pathogenesis processes research. It is 

desired to enable fast, accurate, sensitive and low-cost diagnosis of pathogens [33-36]. 
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Table 1-3 Three pathogenic diseases mortality rate in 2013. 

WHO region Pathogenic diseases mortality rate (per 100 000 population) 

HIV/AIDS Malaria Tuberculosis among 

HIV-negative people 

2001 2011 2010 2000 2011 

African Region 219 139 72 37 26 

Region of the Americas 12 9 0.2 3.6 2.2 

South-East Asia Region 14 12 2.4 43 26 

European Region 5 11 NA 8 5 

Eastern Mediterranean 

Region 

4.8 7.7 3.5 29 16 

Western Pacific Region 2.4 4.4 0.2 12 6.9 

1.1.3 Conventional pathogen detection methods 

Traditionally, microbial morphology and growth variables are the predominant 

characteristics using for microorganisms identification and differentiation through 

morphologic features, growth variables, and biochemical utilization of organic 

substrates [37]. In addition to phenotypic approaches based on various medium, other 

methods have been developed and used for pathogen detection over decades. For 

instance, immunological methods using antigen and antibody, rapid microscopic 
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smear analysis and manually or semi-automated biochemical testing for 

characterization of pathogens have been widely applied. 

 

However, there are significant drawbacks existing in these conventional methods 

because they highly depend on traditional microbiology characteristics and chemical 

profiles monitoring approaches which are time-consuming, high cost, low sensitivity, 

high manpower cost and require labile natural products. Due to the cultivation time of 

microorganisms, high expense, false positives and causative agent, it is difficult to 

conduct high-throughput screening for environmental and clinical samples. Moreover, 

these techniques that are routinely established for pathogen identification but do not 

directly identify virulence factors [38]. These methods cannot provide important 

information of the identified pathogens about the potential pathogenesis and virulence 

factors for further research. In summary, to overcome the problems of conventional 

identification methods, more reliable, rapid and accurate tools for pathogen 

determination have been developed. 

 

1.1.4 Molecular pathogen detection methods 

There are numerous molecular techniques have developed to detect pathogens with 

the advantage of speed along with the relative simplicity, specific and sensitive 

detection [39]. Molecular detection methods mainly refer to nucleic acid based 
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molecular detection technology. It plays a key role when great efforts made to 

development of pathogen detection. Nucleic acid based methods rely on the premise 

that unique DNA or RNA sequences marker of an organism is specific and different 

from other species. The unique sequence can be used as a detection target of a 

pathogen. The nucleic acid based molecular methods include several kinds of nucleic 

acid amplification techniques such as polymerase chain reaction (PCR), reverse 

transcriptase polymerase chain reaction (RT-PCR) and quantitative PCR (Q-PCR), 

molecular beacon technology [40], fluorescent in situ hybridization (FISH) [41], 

microarray based strategies. Among these molecular detection methods, 

microarray-based detection is considered as the technique of high sensitivity, 

specificity and throughput because it can integrate nucleic acid amplification and high 

throughput screening technique  Nucleic acid probes using in microarray technique 

are able to identify pathogen organisms at, above, and below the species level [37]. 

However, microarray based detections cost a lot and require plenty of PCR reactions  

which are complex for arrangement. These disadvantages of microarray application 

have severely impeded the utilization and further development of this technique. 

 

Molecular detection methods are much safer using in laboratory than conventional 

methods. Some pathogens such as Mycobacterium tuberculosis, Influenza A virus and  

SARS virus causing serious fevers and symptoms are laboratory hazards and risks [42, 
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43]. These organisms have severe risks for laboratory worker and may contribute to 

severe diseases or mortality. 

1.2 Bioinformatics and cheminformatics in drug discovery 

The combination of random screening and rational drug design have played an 

important role in drug discovery [44]. The traditional drug discovery process 

comprise seven basic steps including disease selection, target selection, lead 

compound identification, lead optimization, preclinical trial evaluation, clinical trials 

and drug manufacturing [45]. Drug discovery process costs typically 10-17 years and 

$800 million totally, but success rate is still less than 10%. Definitely, it is a 

time-consuming, expensive and low success rate procedure [46]. Target, efficacy and 

safety are three major problems of current drug discovery strategy. Current drugs 

design aims at a few know targets, but many targets for existing diseases and new 

diseases are still unknown. Novel targets are demanded to be investigated to treat new 

disease or overcome drug resistances problems. Some drug candidates may lose 

efficacy or cause safety issues such as severe side effects during the clinical trials 

phage. 

New techniques have been utilized to drug discovery to make it more effective and 

efficient especially in early stage of drug discovery such as target selection, lead 

compound identification and optimization. Since the development of molecular 
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biology and genomics for comprehensive understanding disease mechanism and 

therapeutic intervention, new techniques including microarray, genomic DNA 

sequencing, RNA-seq, Chip-seq, and high throughput screening have been applied 

and shown great potential for solving current problems. For instance, genomic DNA 

sequencing and next generation sequencing combining bioinformatics may help 

identify up to 10,000 new molecular targets [47]. On the chemistry side, HTS and 

cheminformatics may help discover new leads from large compound library. 

Bioinformatics, an interdisciplinary of biology, mathematics and computer science, 

mostly refers to informatics processes in biotic systems [48]. Bioinformatics can 

develop computational methods and tools to obtain and analysis data as well as 

generate biological knowledge [48]. Cheminformatics aims to use computer and 

informational techniques to solve a serious of chemistry problems [49, 50]. 

 

Bioinformatics and cheminformatics tools are developed which are able to congregate 

all the required information regarding potential targets like nucleotide and protein 

sequencing, homologue mapping [51, 52], function prediction [53, 54], pathway 

information [55], structural information [56] and disease associations [57], chemistry 

information. The availability of that information can help pharmaceutical companies 

in saving time and money on target identification and validation. 
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1.3 Introduction of bioinformatics and cheminformatics database 

development 

Since the biological and chemistry data increase rapidly due to the new technology 

such as HTS and nucleotide sequencing, it is necessary to collect, store and manage 

data effectively to assist research on disease mechanisms and drug candidates. 

However, some data may lack of organization and standard format from different 

resource. Further process of validation and analysis are needed for the data to extract 

useful information. Implementation of tools is also required to provide an easy and 

powerful way for data access. Database is such a technique can meet these 

requirements by providing latest information and data that related to disease 

mechanism studies, pharmaceutical research and drug development. They provide 

interdisciplinary data of different areas such as biological information, chemistry 

information, bioinformatics and chemoinformatics data, system model of pathway, 

bimolecular interaction data and so on. Databases store data in various formats such 

as relational database tables, XML files, YML files, flat files, protein structure 3D 

object files. 

 

Databases have been developed over decades. There are many public bioinformatics 

cheminformatics databases available which are listed in Table 1-4 and Table 1-5. In 

this work, we focus on the development of web accessible databases for pathogen 
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detection and therapeutic targets and drugs. Owing to the effort of target discovery, 

hundreds of success targets and more than 1000 research targets have been identified 

[58-61]. There are several well known target and drug databases available such as 

SuperTarget [62], BindingDB and DrugBank. 

 
Table 1-4 Popular bioinformatics databases. 

Database Description Web link 

National Center for 
Biotechnology Information 
(NCBI) 

Biomedical and genomic 
resource funded by U.S. 
government. 

http://www.ncbi.nlm.nih.gov/ 

EMBL-EBI Integrated bioinformatics 
research and services  

http://www.ebi.ac.uk/services 

NCBI GenBank Publicly available annotated 
DNA sequences 

http://www.ncbi.nlm.nih.gov/genbank/ 

DNA Data Bank of Japan 
(DDBJ) 

Sole nucleotide sequence data 
in Asia and other countries 

http://www.ddbj.nig.ac.jp/ 

European Nucleotide 
Archive (ENA) 

Worldwide nucleotide 
sequencing information 

http://www.ebi.ac.uk/ena/ 

NCBI Genome Sequence and map data of the 
whole genomes 

http://www.ncbi.nlm.nih.gov/genome/ 

Genomes OnLine Database 
(GOLD) 

Worldwide genome and 
metagenome sequencing 

http://www.genomesonline.org/cgi-bin/
GOLD/index.cgi 

TIGR  Plant Transcript Assemblies http://plantta.jcvi.org/ 

PEDANT Genomes protein analysis 
tools 

http://pedant.gsf.de/index.jsp 

Comprehensive Microbial 
Resource (CMR)  

Publicly available prokaryotic 
genomes 

http://cmr.jcvi.org/tigr-scripts/CMR/C
mrHomePage.cgi 

Microbial Genome Database 
for Comparative Analysis 
(MBGD) 

Comparative analysis of 
microbial genomes 

http://mbgd.genome.ad.jp/ 

Clusters of Orthologous 
Groups of proteins (COG) 

Comparative protein 
sequences based on complete 
genomes 

http://www.ncbi.nlm.nih.gov/COG/ 

Mitomap human mitochondrial genome http://www.mitomap.org/MITOMAP 

Uniprot Protein knowledgebase http://www.uniprot.org/ 

http://insilico.charite.de/supertarget�


 
 

 13 

(UniProtKB/Swiss-Prot:manu
ally annotated and reviewed; 
UniProtKB/TrEMBL: 
automatically annotated and 
not reviewed 

BRENDA Collection of enzyme data http://www.brenda-enzymes.org/ 

ExPASy -ENZYME Enzymes information http://enzyme.expasy.org/ 

CAZy Carbohydrate-Active 
enZYmes 

http://www.cazy.org/ 

Pfam Collection of protein families http://pfam.sanger.ac.uk/ 

TIGRFAMs Resource of protein sequence 
classification 

http://www.jcvi.org/cgi-bin/tigrfams/in
dex.cgi 

SUPFAM Homologous protein domain 
families 

http://supfam.mbu.iisc.ernet.in/ 

ExPASy - PROSITE Patterns and profiles of protein 
domains, families and 
functional sites 

http://prosite.expasy.org/ 

CATH:Protein Structure 
Classification Database 

Hierarchical domain 
classification of PDB protein 
structures 

http://www.cathdb.info/ 

PRINTS Protein fingerprints http://www.bioinf.man.ac.uk/dbbrowse
r/PRINTS/index.php 

SCOP: Structural 
Classification of Proteins 

Detailed structural and 
evolutionary relationships of 
PDB protein 

http://scop.mrc-lmb.cam.ac.uk/scop/ 

Protein Data Bank Structures of proteins, nucleic 
acids, and Complex  

http://www.rcsb.org/pdb/home/home.d
o 

MMDB Protein structure at NCBI http://www.ncbi.nlm.nih.gov/Structure/
MMDB/mmdb.shtml 

BIND The Biomolecular 
Interaction Network 
Database 

Molecular interactions http://bond.unleashedinformatics.com/ 

Database of Interacting 
Proteins (DIP)  

Experimentally verified 
protein interaction 

http://dip.doe-mbi.ucla.edu/dip/Main.c
gi 

MINT  Experimentally verified 
protein interaction 

http://mint.bio.uniroma2.it/mint/Welco
me.do 

KEGG  Collection and manually 
drawn pathway maps 

http://www.genome.jp/kegg/pathway.ht
ml 

Signaling PAthway 
Database (SPAD) 

Signal transduction and 
genetic information  

http://www.grt.kyushu-u.ac.jp/spad/ 
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BioCarta Dynamic graphical pathway 
map 

http://www.biocarta.com/ 

cPath Pathway collection and 
software suite 

http://cbio.mskcc.org/software/cpath/ 

ExPASy -Biochemical 
Pathways 

Biochemical Pathways http://web.expasy.org/pathways/ 

 

 

Table 1-5 Popular chemical databases 

Database Description Web link 

BindingDB Binding affinities of proteins and 
protein ligand 

http://www.bindingdb.org/bind/index.jsp 

MDDR Information of biologically active 
molecules 

http://accelrys.com/products/databases/bioa
ctivity/mddr.html 

PubChem  Information on the biological active 
molecules 

http://pubchem.ncbi.nlm.nih.gov/ 

ZINC  Commercially-available compounds 
for virtual screening 

http://zinc.docking.org/  

ChEMBL Bioactive molecules http://www.ebi.ac.uk/chembl/  

DrugBank  Drug data with drug target http://www.drugbank.ca/  

eMolecules  Chemical molecules commercial 
available 

http://www.emolecules.com/  

WOMBAT Chemogenomics with bioactivity 
annotations 

http://www.sunsetmolecular.com 

4SC Targeted small molecule drugs www.4sc.de 

chemspider Over 28 million free chemical structure http://www.chemspider.com/ 

NIST Chemistry 
WebBook 

Thermochemical, thermophysical, and 
ion energetics properties 

http://webbook.nist.gov/chemistry/ 

chemexper Over 200,000 different chemicals with 
physical characteristics 

http://www.chemexper.com/ 

Chemical 
Structure Lookup 
Service (CSLS) 

46 million unique structures http://cholla.chemnavigator.com/cgi-bin/loo
kup/search 

ChemDB Nearly 5 million small molecules http://cdb.ics.uci.edu/CHEM/ 

AffinDB Affinity data of PDB protein-ligand http://pc1664.pharmazie.uni-marburg.de/aff
inity/index.php 

ChemBank Small molecules library with over 
36,000 biological assays 

http://chembank.broadinstitute.org/ 
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ChemIDplus Free 350000 chemical compounds http://chem.sis.nlm.nih.gov/chemidplus/ 

ACB Blocks 90,000 combinatorial chemistry http://www.acbblocks.com/content/view/pa
ge/services 

Advanced 
ChemTech 

Manufacturer of amino acids, 
chemicals and reagents 

https://www.advancedchemtech.com/ 

Asinex Libraries of medicinal chemistry, 
including biodesign, synergy, 
medchem building blocks. 

http://www.asinex.com/ 

COMBI-BLOCK
S 

Combinatorial building blocks, 
organics and chemicals 

http://www.combi-blocks.com 

ComGenex Freely accessible chemicals catalog http://www.rdchemicals.com/index.html 

EMC 
microcolection  

Organic chemical and Biochemicals  http://www.microcollections.de/ 

InterBioScreen 
Biologically active natural organic 
compounds  

http://www.ibscreen.com/ 

Maybridge 
Chemical Building Blocks and 
Screening Compounds, 

http://www.maybridge.com/ 

MicroSource 
Discovery  
Systems 

Biocompatible compounds and pure 
natural products 

http://www.msdiscovery.com 

Polyphor Innovative pharmaceutical compound http://www.polyphor.com 

Sigma-Aldrich  Drug-like compounds 
http://www.sigmaaldrich.com/chemistry/dru
g-discovery.html 

Specs.net Over 240,000 true novel compounds 
http://www.specs.net/snpage.php?snpageid=
home 

TimeTec Over 1,000,000 Chemical Structure http://www.timtec.net/ 

Tripos 
Over 50,000 compounds of biological 
activity  

http://leadquest.tripos.com/ 

ChemBridge  
Over 900,000 diverse compounds and 
14,000 chemical building blocks 

http://www.chembridge.com/index.php 

ChemDiv Drug discovery compounds http://eu.chemdiv.com/ 

 

1.4 Overview of virtual screening in drug discovery 

High throughput screening (HTS) known as a fast test large amount of chemicals tool 

has been used extensively in pharmaceutical industry. However, HTS has problems of 

over-reliance, no assurance of success and high cost. Without assay development, 
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HTS process still costs approximately US $75,000.[63]. The cost will get much higher 

if expensive assay is integrated. Moreover, the entire chemical space is too huge to be 

covered by natural and synthesized compounds which only occupy limited proportion 

of the chemical space [64, 65]. Even if only drug-like compounds are considered, 

chemical space of drug-like compounds is still magnitude larger than that of 

pharmaceutical industry screening collection [66]. Considering these drawbacks, it is 

necessary to explore technologies to complement HTS assay and synthesis. 

 

Virtual screening (VS) is a computational technique used in drug discovery research. 

It involves rapid in silico assessment of large libraries of chemical structures in order 

to identify those structures that are most likely to bind to a drug target, typically a 

protein receptor or enzyme [67, 68]. VS has been used to describe a process of 

computationally analyzing large compound collections in order to prioritize 

compounds for synthesis or assay. During the last decade, a broad range of 

computational techniques have been applied to search for novel bioactive compounds 

for many targets. VS has been extensively explored for facilitating lead discovery 

[69-72], identifying agents of desirable pharmacokinetic and toxicological properties 

[73, 74] and other areas. There are two broad categories of screening techniques: 

structure-based virtual screening (SBVS) and ligand-based virtual screening (LBVS) 

[75]. SBVS involves the virtual docking of candidate ligands into a protein target 
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followed by the estimation of the probability of the high affinity binding between 

them calculated by a scoring function. LBVS methods, such as pharmacophore 

methods and chemical similarity analysis methods, require the ligand structure 

information, they focus on discovery the new drug hits by analyzing the physical and 

chemical similarities of known compound pools by computational means. Figure 1-1 

shows the general procedure used in SBVS and LBVS.  
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Figure 1-1 SBVS and LBVS for drug discovery procedure (adopted from Ref [76]). SBVS is shown on 
the left and LBVS is shown on the right. 

 

Structure-based virtual screening (SBVS) starts with a 3-D structure of a target 

protein and a database of the 3-D structures of ligands as the screening pool. It is 

usually applied when the 3D structure of a protein target, derived either from 

experimental data (X-ray or NMR spectroscopy) or from homology modeling, when 
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available. The SBVS procedure consists of docking and scoring. Docking is most 

straightforward VS method and it is preferred by the chemists. The docking 

algorithms [77, 78] are designed to predict the ligand conformation and orientation 

within the targeted active site of the target. The scoring methods are empirically or 

semi-empirically derived to attempt [79] to estimate the binding tightness of the 

ligand and the protein in bound complexes. Docking and scoring algorithms are 

combined to detect the compounds with higher affinity against a target by predicting 

their binding mode (by docking) and affinity (by scoring), and retrieving those with 

the highest scores. To date, more than 60 docking programs and 30 scoring functions 

have been reported [80, 81]. The major drawback with SBVS is the unavailability of 

appropriate scoring functions to differentiate between correct and incorrect poses of 

bound ligands and identifying false negative and positive hits. Some of the key 

challenges encountered by SBVS include the appropriate treatment of ionization,  

tautomerization of ligand and protein residues, target/ligand flexibility, choice of force 

fields, solvation effects, dielectric constants, exploration of multiple binding modes 

and, most importantly, the approximations in the scoring functions that lead to 

false-positives and miss true-hits. Moreover, most docking algorithms and scoring 

functions are tuned towards high throughput, which requires a compromise between 

the speed and accuracy of binding mode and energy prediction. The hit enrichment is 

defined as the fraction of true active compounds in, for example, the upper 1% of the 
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ranked VS hit list compared with the average fraction of active compounds in the 

search space. The performance of a docking program is difficult to evaluate in 

advance, and depends on the nature and quality of the target structure [80-82]. Despite 

all optimization efforts, the available scoring functions do not provide reliable 

estimates of free binding energies, and are not able to rank-order compounds 

according to affinity [81, 83]. The published comparisons of docking programs have 

been critically reviewed [84-86].  

 

As compared with structure-based methods, LBVS methods including pharmacophore 

methods and chemical similarity analysis methods have shown better performance in 

terms of speed, yield and enrichment factor. Hit rate is defined as the relation between 

the number of true hits found in the hit list respect to the total number of compounds 

in the hit list; and the enrichment factor (EF) is the hit rate divided by the total 

number of hits in the full database relative to the total number of compounds in the 

database. To improve the coverage, performance and speed of VS tools, machine 

learning (ML) methods, including SVM, neural network and etc, have been used for 

developing LBVS tools [87-94] to complement or to be combined with SBVS [69, 

95-106] and other LBVS [70, 107-110] tools. ML methods have been used as part of 

the efforts to overcome several problems that have impeded progress in more 

extensive applications of SBVS and LBVS tools [69, 111]. These problems include 
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the vastness and sparse nature of chemical space needs to be searched, limited 

availability of target structures (only 15% of known proteins have known 3D 

structures), complexity and flexibility of target structures, and difficulties in 

computing binding affinity and solvation effects. ML methods have been explored for 

developing such alternative VS tools [87-89] because of their high speed [112] and 

capability for covering highly diverse spectrum of compounds [113]. Han et al [114] 

did a comparative study for reported performance of different VS methods in 

screening large libraries of compounds as shown in Table 1-6. ML methods show 

good potential for a better performance at VS of extremely large libraries with over 

1M compounds. The reported yield, hit-rate and enrichment factor of ML tools are in 

the range of 55%~81%, 0.2%~0.7% and 110~795 respectively [88, 91, 93], compared 

to those of 62%~95%, 0.65%~35% and 20~1,200 by SBVS tools [98, 99]. Moreover, 

he also developed a new putative negative generation method in which negatives were 

generated from 3M PubChem compounds. With this method he significantly 

improved yield, hit-rate and enrichment factor to 52.4%~78.0%, 4.7%~73.8%, and 

214~10,543 respectively in screening libraries of over 1 million compounds. For 

SBVS methods, approaches of using additional filters are often required in order to 

further minimize the false positives. One approach is the selection of top-ranked hits, 

which has been extensively used in LBVS [88, 89, 93, 94, 115, 116] and SBVS [98, 

100-102, 117, 118]. The second approach is the elimination of potentially 
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unpromising hits in pre-screening stage by using such filters as Lipinski’s rule of five 

[119] [99], and recognition of pharmacophore [101] and specific chemical groups or 

interaction patterns [98, 100, 104, 120]. The last one is the combination of LBVS and 

SBVS methods. All these approaches take quite some time. However, they are not 

required for SVM based approaches which already have a low false positives rate. 
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Table 1-6 Comparison of the reported performance of different VS methods in screening large libraries of compounds (adopted from Han et al[114]). 

Type of VS method 
and  size of 
compound libraries 
screened 

VS method 
(number of 
studies) 
[references] 

Compounds screened Virtual hits selected by 
VS method 

Known hits selected by VS method 

No of 
compou
nds 

No of 
known 
hits  

Percent of 
known 
hits  

No of 
compound
s selected 
as virtual 
hits 

Percent of 
screened 
compounds 
selected as 
virtual hits 

No of 
known 
hits 
selected 

Yield Hit rates Enrichment 
factor 

Structure-based VS, 
extremely large 
libraries ( ≥1M) 

Docking + 
pre-screening 
filter (2) [98, 99] 

1M~2M 355~63
0 

~0.03% 1K~60K 0.08%~3% 340~390 62%~ 95% 0.65%~ 35% 20~1200 

Structure-based VS, 
large libraries 

Docking + 
pre-screening 
filter (11) 
[100-106] 

134K~4
00K 

100~ 
1016 

0.12%~ 
0.76% 

375~4.5K 0.28%~3% 5~231 2%~ 30% 
 

0.11%~ 17% 4~66 

Ligand-based VS 
(machine learning), 
extremely large 
libraries ( ≥1M) 

Machine learning 
- SVM (2)[88, 91, 
93] 

2.5M 22~46 0.0009%~ 
0.0018% 

2.5K~11K 0.1%~0.45% 18~25 55%~ 81% 0.2%~ 0.7% 110~795 

Ligand-based VS 
(machine learning), 
large libraries 

Machine learning 
– SVM (2)[89] 
 

172K 118~12
8 

~0.07% 1.7K 1% 26~70 22%~ 55% 1.5%~ 4.1% 22~55 

Machine learning 
– SVM (11)[92] 

98.4K 259~ 
1146 

0.26%~ 
1.16% 

984 1% 131~710 44%~ 69% 14%~ 72% 44~69 
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Machine learning 
– BKD (12)[89, 
91, 93, 94] 

101K~1
03K 

259~ 
1166 

0.25%~ 
1.2% 

5.1K 5% 65~972 14%~ 94% 1.2%~ 18.9% 3~19 

Machine learning 
– LMNB (1)[91, 
93] 

172K 118 0.069% 1.7K 1% 19 16% 1% 15 

Machine learning 
– CKD (18)[92] 

98.4K 259~ 
1211 

0.26%~ 
1.23% 

984 1% 132~960 34%~ 94% 13%~ 98% 53~94 

Ligand-based VS 
(clustering), large 
libraries 

Hierarchical 
k-means (5)[108]  

344.5K 91~155
6 

0.026% 
~0.45% 

3750~2128
5 

1.1%~6.2% 27~761 23% ~55% 0.72%~5% 7.97~31.2 

NIPALSTREE 
(5)[108]  

344.5K 91~155
6 

0.026% 
~0.45% 

3469~2812
5 

1.0%~8.2% 17~625 18% ~50% 0.49%~ 2.8% 3.51~18.7 

Hierarchical 
k-means + 
NIPALSTREE 
disjunction 
(5)[108] 

344.5K 91~155
6 

0.026% 
~0.45% 

7317~4316
5 

2.1%~12.3% 30~980 33% ~72% 0.41% ~2.9% 4.86~17.6 

Hierarchical 
k-means + 
NIPALSTREE 
conjunction 
(5)[108] 

344.5K 91~155
6 

0.026% 
~0.45% 

538~6692 0.16%~1.9% 14~406 6% ~32% 1.1% ~10.2% 7.77~98 

Ligand-based VS 
(structural signatures), 

Pharmacophore 
(3)[109, 121, 

1.77M~3
.8M 

55~144 0.0014% 
~0.0081% 

20K~1M 1.15%~26% 6~39 11% ~70% 0.0039%~ 
0.084% 

3~10.3 
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extremely large 
libraries ( ≥1M) 

122] 

Ligand-based VS 
(structural signatures), 
large libraries 

Pharmacophore 
(1)[110] 

380K 30 0.0079% 6917 1.82% 23 76.7% 0.33 41.8 

Ligand-based VS, 
extremely large 
libraries ( ≥1M) for 
HIV protease, 
inhibitors DHFR 
inhibitors, Dopamine 
antagonists, CNS 
active agents 

SVM[114] 2.986M 2351 0.076% 8157 0.27% 1833 78.0% 22.5% 296 

SVM[114] 2.986M 225 0.007% 160 0.0054% 118 52.4% 73.8% 10543 

SVM[114] 2.986M 37 0.0012% 299 0.01% 23 62.2% 7.7% 6417 

SVM[114] 2.986M 664 0.022% 9502 0.32% 442 66.6% 4.7% 214 
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As it is common for the pharmaceutical industry to screen >1 million compounds per 

high-throughput screening campaign [123]. A small rise in the hit rate will lead to 

hundreds or thousands compounds to test. Improvement in screening performance is 

therefore very significant. We want to further improve SVM based VS as a well 

accepted VS method like docking. Current models were generated by using two-tier 

supervised classification SVM methods [87-89, 91-94, 111]. The inactive compounds 

in these models have been collected from up to a few hundred known inactive 

compounds or/and putative inactive compounds from up to a few dozen biological 

target classes in MDDR database [87-89, 91-94, 111], which may not always be 

sufficient to fully represent inactive compounds in the vast chemical space, thereby 

making it difficult to optimally minimize false hit prediction rate of ML models. Han 

et al[114]  has demonstrated the potential of putative negatives generation method in 

helping to increase the performance of SVM based VS methods. We will carry on the 

study to further improve the method to generate more diverse negatives for training. 

Besides SVM, some other common ML methods include artificial neural network 

(ANN), probabilistic neural network (PNN), k nearest neighbor (kNN), C4.5 decision 

tree (C4.5DT), linear discriminate analysis (LDA) and logistic regression (LR) were 

used.  Some of these methods will be explained in Chapter 2 and attempted for 

comparison. Several types of pharmaceutical agents, including Src kinase inhibitors, 

VEGFR-2 inhibitors will be investigated. Moreover, our SVM based VS system is 
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also evaluated in terms of prediction on novel types structures because it is also one 

goal of VS [75]. 

 

1.5 Objective and outline of this thesis 

The ultimate goal of this thesis is to develop comprehensive databases to facilitate 

disease detection and drug discovery for the disease using computation methods. 

Overall, there are three major objectives for this work: 

1. To develop and update databases with enhanced storage, management, integration 

and provide the customized biological and chemistry information data for pathogen 

detection, disease diagnosis, therapeutic targets and drugs. 

2 To develop SVM based virtual screening method for prediction of potential Src 

and VEGFR-2 inhibitors from large compound libraries and test the model 

experimentally. 

3 To compare the virtual screening performances of several the machine learning 

methods SVM, kNN, PNN and similarity searching in identification of inhibitors. 

 

The complete outline of this thesis is as follows: 

Chapter 1 describes pathogen induced diseases and their detection methods, and 

introduces background of cheminformatics and bioinformatics. Then the introduction 

of virtual screening methods is given. 
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Chapter 2 shows methods used in this work, including database development method 

and procedure of the application of VS tools. In particular, data collection, theoretical 

backgrounds of machine learning methods, virtual screening model validation and 

performance measurements. 

 

Chapter 3 and Chapter 4 elaborate the development of MicrobPad MD: Microbial 

pathogen diagnostic methods database and update of therapeutic targets database. 

 

Chapter 5 and Chapter 6 are devoted to the application of our SVM based VS 

system for pharmaceutical agents Src and VEGFR-2 inhibitors from large compound 

libraries. In these chapters, SVM based VS system combined with a novel putative 

negative generation method is evaluated as a highly efficient VS tool. The comparison 

between kNN and PNN based VS model are described. 

 

Chapter 7 summarizes major findings and contributions of current work and also 

rationalizes the limitations and suggestions for future studies.  
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Chapter 2 Methodology 

This chapter includes methods of database development and virtual 

screening for drug agents. The database development methods is usually 

consisted of the following four components: (1) database design; (2) data 

collection; (3) data integration and organization; (4) user interface. Methods 

of virtual screening include (1) Datasets collection and quality analysis; (2) 

Molecular descriptors calculation; (3) Machine learning methods; (4) 

Machine learning methods model development and evaluations; 

2.1 Database development 

A database is a well-organized data collection of information and their 

supporting data structures, typically in digital form. It involves the data and 

their supporting data structures. Database development is comprehensive and 

time consuming involving collecting relevant data, designing reasonable 

database scheme, integrating data from various resource, designing database 

interface and implementing database function. 

 

2.1.1 Database model and rational schema design 

A database model is a theoretical foundation of a database and 

fundamentally determines in which manner data can be stored, organized, 
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and manipulated in a database system. There are several different basic ways 

of constructing databases including flat file model, hierarchical model, 

network model, relational model, dimensional model, multi-value model and 

object-oriented model. The relational model has been extensively used in 

biological database development. Relational database comprises multiple 

tables of data, related to each other by primary keys and foreign keys. Each 

table is a collection of records and each record in a table has the same 

attributes. Relational database is the predominant form of database in use 

today, especially in biological research field. In this study, the relational 

model was applied in the database development. After relational model was 

selected, a rational schema is important for the database construction. 

 

A rational schema is designed before the construction of the database to help 

define the scope of the database and focus on relevant problem. Information 

need to be collected to pave the way for the information collection stage. The 

database performance, the ease with which users retrieve information, the 

search engine coding and other database function implementations are 

greatly influenced by the schema design. Therefore, schema design is the 

fundamental step in planning a new database is to identify and design the 
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tables to be included in the database, specify their contents, and define the 

relationships among them. 

 

Use MicroPad MD for an example, as described in Chapter 1, medical 

pathogens of bacterial, fungal, and viral species induce infections, disease 

and sometimes serious medical conditions in the infected hosts. Fast, 

accurate, sensitive and low-cost diagnosis of medical pathogens is important 

and desired for proper treatment and investigation of pathogenesis processes. 

To facilitate the development of diagnostic methods and device, MicrobPad 

MD was designed to provide comprehensive information about diagnostic 

technique, targets, and primers/probes for the known bacterial, fungal and 

viral pathogens. Based on this preliminary architecture, the more details 

schema including several tables and their relationships was built. 

 

2.1.2 Data collection 

Generally, a database is supposed to provide enough domain knowledge 

around a specific subject together with information of related subjects. For 

instance, MicrobPad MD provides integrated molecular diagnostic 

information including molecular diagnostic techniques, targets, 

primers/probes, virulence factors, disease, etc. Data collection of these 
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information can be done by various ways. Data can be captured from 

literature, books, experiments or software output, customized data collected 

programmatically from other databases locally or over the internet, text 

mining by programs, and so on. Literature is typically on unstructured data 

source. Names of the subjects that are stored in different synonymous terms, 

various abbreviations, or totally different expressions, are difficult to be 

recognized by automatic language processing. It is very difficult to invent a 

fully automated literature information extraction system to gather useful 

information from literature efficiently. Manual data collection from literature 

or manual curation of collected data is considered be one of the most feasible 

ways for information data collection. However, it is too time consuming and 

expensive [124]. A number of solutions for this problem are in practice. Data 

curation and annotation can be done in collaboration with other groups or 

providing online facility to edit or submission of data [125]. 

 

In this work, automatic data retrieval methods with manual curation process 

was combined to ensure good quality. It is useful to have program parser to 

filter the data since the amount of biological data is generally very huge. 

Automated text retrieval programs developed in PERL with efficient use of 

regular expression were implemented in retrieving information from 



 

 33 

literatures that contained the key word related to searching the subject via 

local Medline packages [126]. The useful subject information was selected 

manually and the full literature was referred to facilitate information 

searching. Meanwhile, the detail biological information of subject and 

cross-links were automatically extracted from some general or specific 

biological databases, such NCBI genome, SwissProt and UniProt. Moreover, 

an html parser was also written to parse some html pages with unstructured 

data. The information obtained by the program were extracted and verified 

manually. 

 

2.1.3 Data integration and organization 

Data is still often available in an unstructured manner even when it does 

have a strong internal structure. Data integration is a necessary procedure 

when data from different sources needs to be standardized before 

implementation. The integration of biological and chemical data coming 

from various source sometimes become a big challenge. Improper integration 

can lead to missing of some part of data or even can induce mistakes. The 

correct way of data integration for biological databases can generally be 

divided into two parts: syntactic integration and semantic integration. In 

syntactic integration, data from different sources and of different file formats 
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are standardized to have single file format. In semantic integration, data from 

different databases are formalized to have a relational schema which holds 

relational tables and integrity constraints. For syntactic integration, the 

standardized file format to which other data should be converted is generally 

XML (extensive markup languages). The structure of XML is such that it 

can hold data of various types such as simple plain table, tree like data, 

relational tables and web pages. This easy conversion capability of XML 

makes it extremely useful format for exchange of data over web and database 

software. In this work, the powerful feature of XML has been utilized for 

various purposes e.g. collection of PubMed extracts for the medical pathogen 

as keywords using NCBI E-utilities. On the other hand, semantic data 

integration gives flexibility to mix complex biological data in semi structured 

way when it is difficult to standardize a part of data to the convention of 

unified single file format. In addition, data can be integrated manually. 

Information curation process is time consuming and tedious but sometimes it 

becomes indispensible to ensure data achieves high quality. Manual data 

integration is also achieved through scripting languages like PERL or Python 

which are handy to use yet very powerful. Scripts can help manipulate 

database tables by integrating plain unformatted text taken from literature or 

web page. Relied on the power of programming languages, major public 
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databases hosted by NCBI and EMBL provide data access service though 

user written program. As an example, E-utilities provides many example 

scripts to obtain customized data by constructing user defined pipeline over 

its database. 

 

After data integration, standardized data will be organized based on the 

schema for efficient and effective data creation, storage and manipulation. 

Formal definitions of all the included information in a database, a couple of 

relational tables of relevant data and the relationship among them will be 

established. In these relation tables, certain fields may be designated as keys, 

by which the separated tables can be linked together for facilitating to search 

specific values of that field. Primary key uniquely identifies each record in 

the table. Foreign key matching the primary key of other tables can be used 

to cross-reference tables. 

 

2.1.4 Database management system 

After database construction, the database should be organized and managed 

effectively by Database Management System (DBMS). DBMS is a couple of 

programs and tools that used to store, maintain, and extract information from 

a database [127]. There are several DBMS software available e.g. Oracle, 
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Microsoft SQL Server, Access, MySQL and PostgreSQL. In this work, 

Oracle and Access based relational database management systems have been 

built to manage involving define, create and modify the various information 

as well as privilege. By using Structured Query Language (SQL) queries, all 

entry data from the related tables can therefore be retrieved together for 

display and output. 

 

2.1.5 User Interface 

A web based user interface allows the user to submit query, obtain data and 

interact with database. Without user interface, the database is less useful to 

end user even if the database is complete, well organized and maintained. A 

good database interface can help the user get information stored in database 

quickly and convenient as well as multi-level search capability. A bad 

interface will cause difficulty in searching, locating and displaying data. 

There are two main categories of web based user interface: static web pages 

and dynamic web pages. 

 

Static web pages are also called flat page or stationary page. In contrast to 

dynamic webpage, static web pages are delivered to user exactly as stored 

and the same information to all users. They are usually HTML document 
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files stored in the file system and are available through the HTTP web 

service. Dynamic pages present various content to different users according 

to the parameters provided by them. Dynamic pages are often produced by 

Common Gateway Interface (CGI) with the assistant of server-side 

languages such as Active Server Pages (ASP), Java Server Pages (JSP), Perl, 

Hypertext Preprocessor (PHP) and other languages. The client side dynamic 

web page creation is generally achieved through JavaScript or ActionScript. 

 

In this work, ASP technology is used for server side dynamic web page 

creation and JavaScript is used for client side dynamic web page creation. 

Server side dynamic web page generation over database includes submission 

of user customized query to web server which further interacts with DBMS 

such as MySQL and Oracle. The client side technology is based on Internet 

browsers with support of JavaScript e.g. Internet Explorer, Mozzila Firefox 

and Google Chrome to extract and display the data. The client side dynamic 

web page is generally used to present content more friendly and convenient 

such as change in color or short string tips when mouse is on or off some part 

of the content. 

 

http://en.wikipedia.org/wiki/ActionScript�
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2.2 Dataset collection and preprocess for building models 

2.2.1 Dataset resource 

Currently, massive amount of data about small molecules and their related 

annotation information have been accumulated in scientific literatures and 

cheminiformatics databases. Table 1-5 lists some of the widely known small 

molecule databases. For instance, BindingDB is a public, web-accessible 

database of measured binding affinities, focusing chiefly on the interactions 

of protein targets with small drug-like molecules. DrugBank is also a unique 

bioinformatics and cheminformatics resource that combines detailed drug 

(i.e. chemical, pharmacological and pharmaceutical) data with 

comprehensive drug target (i.e. sequence, structure, and pathway) 

information. MDDR is a database covering the patent literature, journals, 

meetings and congresses produced by Symyx and Prous Science. 

 

The datasets used in this work mainly are retrieved from the following two 

types of sources. First, we collected small molecular data from credible 

journals such as Bioorganic & Medicinal Chemistry Letters, Bioorganic & 

Medicinal Chemistry, European Journal of Medicinal Chemistry, European 

Journal of Organic Chemistry and Journal of Medicinal Chemistry, etc. 

Second, we use cheminformatics databases that contain accurate and reliable 

data such as PubChem and ChEMBL [128]. 



 

 39 

2.2.2 Dataset quality 

The sufficient and high quality data with low experimental errors is 

important for the development of reliable machine learning classification 

model which depends on the quality and quantity of data. Many factors such 

as quality, size and relevance of the dataset can affect machine learning 

process greatly. The data quality is usually assessed during the produce of 

data collection. The data collected from less credit resource will lead to 

faulty models which will induce weak predictive power or even wrong 

prediction. Ideally, the measurements of pharmacological data properties 

should be conducted with a same protocol so that there is a common ground 

to compare different compounds with each other. However, some 

pharmacological properties measurements have been used only for a limited 

number of compounds and most pharmacological properties measurements 

are rarely determined by the same protocol. Thus the collected data consist 

of compound data measured by different protocols and the incorporation of 

additional experimental information. To maintain the stability of data quality, 

in this work, several methods are adopted to ensure that inter-laboratory 

variations caused by different experimental protocols do not significantly 

affect the quality of the training sets. The pharmacological property 

measurements for data were investigated and the ones that contain large 
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variations in experimental protocols compared to the majority of the data are 

filtered. It is estimated that the most common range of the pharmacological 

properties measurements for the compounds investigated in more than one 

source was used to select compounds for the different classes [129].  

 

In this work, the data were collected from varied sources. This approach can 

enrich the diversity in the datasets and reduce the potential bias that may arise 

from a monotonic due to the preferences of the researchers. However, since 

the data are presented by independent researchers who don’t share 

pre-existing agreement on their individual data collection. It is likely that there 

is a certain level of redundancy between the datasets from different sources. 

The redundancy could contrarily deduce diversity in the datasets. Therefore, 

compounds are checked for redundancy by comparing exact match of 

chemical descriptors. In this work, scripts are written to find exact match of 

chemical descriptors to remove redundancy from dataset. 

 

2.2.3 Dataset structural diversity 
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Diversity Index (DI) is applied to evaluate the structural diversity of a 

collection of compounds. It is defined as the average value of the similarity 

between pairs of compounds in a dataset [130], 

 

                                  (1) 

where  is a measure of similarity between compounds  and , D is 

the dataset and |D| is set cardinality (number of elements of the set). The dataset 

is more diverse when DI approaches 0. Tanimoto coefficient [131] were used to 

compute  in this study, 

 

               (2) 

where  is the number of descriptors calculated for the compounds in the 

datasets. A compound i is considered to be similar to a known active j in the 

active dataset if the corresponding sim(i,j) value is greater than a cut-off 

value. 

 

2.3 Molecular descriptor 

Molecular descriptors are frequently used to quantitatively represent various 

physicochemical or structural properties of molecules for many 
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computational studies small molecules. A descriptor is the final result of a 

logical and mathematical procedure which transforms chemical information 

encoded within a symbolic representation of a compound into a useful 

number or the result of some standardized experiment. Molecular descriptors 

have been extensively used in deriving structure-activity relationships [132, 

133], quantitative structure activity relationships [134, 135], and machine 

learning prediction models for pharmaceutical agents [136-143]. They 

represent compounds in the form of mathematical vectors. This 

transformation enables the statistical analysis of chemical compounds. 

 

A number of programs e.g. DRAGON[144], Molconn-Z[145], MODEL[146], 

Chemistry Development Kit(CDK) [147, 148], JOELib [149], and Xue 

descriptor set [140] are available to calculate chemical descriptors. These 

methods can be used for deriving >3,000 molecular descriptors including 

constitutional descriptors, topological descriptors, RDF descriptors [150], 

molecular walk counts [151], 3D-MoRSE descriptors [152], BCUT 

descriptors [153], WHIM descriptors [154], Galvez topological charge 

indices and charge descriptors [155], GETAWAY descriptors [156], 2D 

autocorrelations, functional groups, atom-centred descriptors, aromaticity 

indices [157], Randic molecular profiles [158], electrotopological state 
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descriptors [159], linear solvation energy relationship descriptors [160], and 

other empirical and molecular properties. Not all of the available descriptors 

are needed for representing features of a particular class of compounds. 

Moreover, without properly selecting the appropriate set of descriptors, the 

performance of a developed machine learning VS tool may be affected to 

some degrees due to the noise arising from the high redundancy and 

overlapping of the available descriptors. 

 

In this work, 98 1D and 2D descriptors are computed which are widely used 

in machine learning based virtual screening models. These 98 descriptors 

were selected from the descriptors derived from MODEL program by 

discarding those that were redundant and unrelated to the problem studied 

here. These 98 descriptors are showed in Table 2-1. 

 
Table 2-1 98 molecular descriptors used in this work. 

Descriptor Class No of 

Descriptors 

in Class 

Descriptors 

Simple molecular 

properties 

18 Number of C,N,O,P,S, Number of total atoms, Number of  rings, 

Number of bonds, Number of non-H bonds, Molecular weight,, 

Number of rotatable bonds, number of H-bond donors, number of 

H-bond acceptors, Number of 5-member aromatic rings, Number of 

6-member aromatic rings, Number of N heterocyclic rings, Number 
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of O heterocyclic rings, Number of S heterocyclic rings. 

Chemical 

properties 

3 Sanderson electronegativity, Molecular polarizability, ALogp 

Molecular 

Connectivity and 

shape 

35 Schultz molecular topological index, Gutman molecular topological 

index, Wiener index, Harary index, Gravitational topological index, 

Molecular path count of length 1-6, Total path count, Balaban Index 

J, 0-2th valence connectivity index, 0-2th order delta chi index, 

Pogliani index, 0-2th Solvation connectivity index, 1-3th order Kier 

shape index, 1-3th order Kappa alpha shape index, Kier Molecular 

Flexibility Index, Topological radius, Graph-theoretical shape 

coefficient, Eccentricity, Centralization, Logp from connectivity. 

Electro-topological 

state 

42 Sum of Estate of atom type sCH3, dCH2, ssCH2, dsCH, aaCH, 

sssCH, dssC, aasC, aaaC, sssC, sNH3, sNH2, ssNH2, dNH, ssNH, 

aaNH, dsN, aaN, sssN, ddsN, aOH, sOH, ssO, sSH; Sum of Estate 

of all heavy atoms, all C atoms, all hetero atoms, Sum of Estate of 

H-bond acceptors, Sum of H Estate of atom type HsOH, HdNH, 

HsSH, HsNH2, HssNH, HaaNH, HtCH, HdCH2, HdsCH, HaaCH, 

HCsats, HCsatu, Havin, Sum of H Estate of H-bond donors 

In this work, the 2D structure of each of the compounds was generated by 

using ChemDraw [106] or downloaded from databases such as PubChem and 

BindingDB [161]. Then they were subsequently converted into 3D structure 

by using CORINA [162]. The 3D structure of each compound was manually 

inspected to ensure the proper chirality of each chiral agent. All salts and 

elements, such as sodium or calcium, were removed prior to descriptor 
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calculation. The optimization of generated geometries was conducted 

without symmetry restrictions. The 3D structures of the compounds then 

were used to compute the molecular descriptors by the in-house programs 

and scripts. 

 

2.4 Scaling of molecular descriptors 

Molecular descriptors are usually scaled before they can be employed for 

machine learning methods. Scaling of chemical descriptors ensures that each 

of descriptor have unbiased contribution in constructing the prediction 

models[163]. Scaling can be done by various of ways e.g. auto-scaling, range 

scaling, Pareto scaling [164], and feature weighting [165, 166]. In this work, 

range scaling is used to scale the chemical descriptor data. Range scaling is 

done by dividing the difference between descriptor value and the minimum 

value of that descriptor with the range of that descriptor: 

𝑑𝑖𝑗𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑑𝑖𝑗−𝑑𝑗,𝑚𝑖𝑛

𝑑𝑗,𝑚𝑎𝑥−𝑑𝑗,𝑚𝑖𝑛
                                 (3) 

where 𝑑𝑖𝑗𝑠𝑐𝑎𝑙𝑒𝑑, 𝑑𝑖𝑗 ij , 𝑑𝑗,𝑚𝑎𝑥 and 𝑑𝑗,𝑚𝑖𝑛 are the scale descriptor value of 

compound i, absolute descriptor value of compound i, maximum and 

minimum  values of descriptor  j respectively. The scaled descriptor value 

falls in the range of 0 and 1.  
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2.5 Machine learning classification methods 

A machine learning (ML) method takes a training set of objects that have 

previously been classified into two or more classes as input. 

 

Machine learning classification methods employ computational and statistical 

methods to construct mathematical models from a training set of objects which 

is used to classify independent test sample. The training samples are represented 

by vectors which can binary, categorical or continuous. Machine learning can be 

divided into two types: Supervised and Unsupervised. Supervised machine 

learning, as the name indicates, generally needs feeding which generally involve 

already labeled or classified training data. Example of supervised machine 

learning includes SVM, ANN, Decision tree learning, Inductive logic 

programming, Boosting, Gaussian process regression etc. Unsupervised 

machine learning, as the name indicates, gets unlabeled training data and the 

learning task involve to find the organization of data. Examples of unsupervised 

machine learning include Clustering, Adaptive Resonance Theory, and Self 

Organized Map (SOM). Some of machine learning methods employed in this 

work are SVM, PNN, kNN. They are explained below in subsequent sub 

sections. For a comparative study, Tanimoto similarity searching method is 
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also introduced. Websites for codes of some machine learning methods are 

given in Table 2-2.  

 

Table 2-2 Websites that contain codes of machine learning methods 

Decision Tree 

PrecisionTree http://www.palisade.com.au/precisiontree/ 

DecisionPro http://www.vanguardsw.com/decisionpro/jdtree.htm 

C4.5 http://www2.cs.uregina.ca/~hamilton/courses/831/notes/ml/dtrees/c4.5/tutorial.html 

C5.0 http://www.rulequest.com/download.html 

KNN 

k Nearest Neighbor  http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html 

PERL Module for 

KNN 
http://aspn.activestate.com/ASPN/CodeDoc/AI-Categorize/AI/Categorize/kNN.html 

Java class for KNN http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/classify/old/KNN.html 

LDA 

DTREG http://www.dtreg.com/lda.htm 

LR 

Paul Komarek's 

Logistic Regression 

Software 

http://komarix.org/ac/lr/lrtrirls 

Web-based logistic 

regression calculator 
http://statpages.org/logistic.html 

Neural Network 

BrainMaker http://www.calsci.com/ 

Libneural http://pcrochat.online.fr/webus/tutorial/BPN_tutorial7.html 

fann http://leenissen.dk/fann/ 

NeuralWorks Predict http://www.neuralware.com/products.jsp 

NeuroShell Predictor http://www.mbaware.com/neurpred.html 

SVM 

SVM light http://svmlight.joachims.org/ 

LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

mySVM http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html 

BSVM  http://www.csie.ntu.edu.tw/~cjlin/bsvm/ 

SVMTorch http://www.idiap.ch/learning/SVMTorch.html 

 

http://www2.cs.uregina.ca/~hamilton/courses/831/notes/ml/dtrees/c4.5/tutorial.html�
http://statpages.org/logistic.html�
http://statpages.org/logistic.html�
http://www.neuralware.com/products.jsp�
http://svmlight.joachims.org/�
http://www.csie.ntu.edu.tw/~cjlin/libsvm/�
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html�
http://www.csie.ntu.edu.tw/~cjlin/bsvm/�
http://www.idiap.ch/learning/SVMTorch.html�
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2.5.1 Support vector machine (SVM) 

Support vector machine (SVM) is based on the structural risk minimization 

principle of statistical learning theory [167, 168], which consistently shows 

outstanding classification performance, is less penalized by sample 

redundancy, and has lower risk for over-fitting [169, 170]. 

 

In linearly separable cases, SVM constructs a hyper-plane to separate active 

and inactive classes of compounds with a maximum margin. A compound is 

represented by a vector xi composed of its molecular descriptors. The 

hyper-plane is constructed by finding another vector w and a parameter b 

that minimizes 2w  and satisfies the following conditions: 

 1,  for 1i ib y⋅ + ≥ + = +w x  Class 1 (active)   (4) 

 1,  for 1i ib y⋅ + ≤ − = −w x  Class 2 (inactive)  (5) 

where yi is the class index, w is a vector normal to the hyperplane, /b w  

is the perpendicular distance from the hyperplane to the origin and 2w  is 

the Euclidean norm of w. Based on w and b, a given vector x can be 

classified by f(x) = [( ) ]sign b⋅ +w x . A positive or negative f(x) value 

indicates that the vector x belongs to the active or inactive class respectively.  

In nonlinearly separable cases, which almost always occur in classifying 

compounds of diverse structures [111, 171-177], SVM maps the input 
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vectors into a higher dimensional feature space by using a kernel function 

K(xi, xj). We used RBF kernel 
2 2/ 2( , ) j i

i jK e σ− −= x xx x which has been 

extensively used and consistently shown better performance than other 

kernel functions [178-180]. Linear SVM can then applied to this feature 

space based on the following decision function: 

0
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belongs to the active or inactive class respectively. For a given training set of 

instance-label pairs (xi, yi), i=1, …,l where xi ∈Rn and yi ∈ { 1, −1 }inl , in 

SVM, the task of finding the hyper-plane which is able to separate active and 

inactive classes with a maximum margin, in essence, is to look for the 

solution of the following optimization problem: 

, , 1

1min
2

l
T

iw b i
w w C

ξ
ξ

=

+ ∑
 

subject to   ( ( ) 1 ,
                 0.

T
i i i

i

y w x b ξ
ξ

Φ + ≥ −
≥  



 

 50 

In developing our SVM VS tool, a hard margin C=100,000 was used. The 

margin parameter C is penalty parameter that controls the trade-off between 

the training errors and sample separation. Increasing C imposes a higher 

penalty for training errors. Our chosen value corresponds to a very high 

penalty. Software LibSVM [181], an integrated software for support vector 

classification, regression and distribution estimation, was chosen to do the 

machine learning in this work. 

The process of training and using a SVM VS model for screening 

compounds based on their molecular descriptors is schematically illustrated 

in Figure 2-1. 
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Figure 2-1 Schematic diagram of the process of the training a prediction model and using it 
for predicting active compounds of a compound class from their structurally-derived 
properties (molecular descriptors) by using support vector machines; A, B, E, F and (hj, pj, 
vj,…) represents such structural and physicochemical properties as hydrophobicity, volume, 
polarizability, etc. 

  



 

 52 

2.5.2 k-nearest neighbors (kNN) 

kNN measures the Euclidean distance 2
iD = −x x  between a compound x 

and each individual inhibitor or non-inhibitor xi in the training set[182, 183]. 

A total of k number of vectors nearest to the vector x are used to determine the 

decision function f(x): 

1

ˆ ( ) arg max ( , ( ))
k

v V i
i

f v fδ∈
=

← ∑x x                                    (6) 

where ( , ) 1 if  and ( , ) 0 if a b a b a b a bδ δ= = = ≠  , arg max is the maximum 

of the function, V is a finite set of vectors {v1,...,vs}  and ˆ ( )f x  is an 

estimate of f(x). Here estimate refers to the class of the majority compound 

group (i.e. inhibitors or non-inhibitors) of the k nearest neighbors. The 

procedure of kNN is illustrated in Figure 2-2. 
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Figure 2-2 Schematic diagram illustrating the process of the prediction of compounds of a 
particular property from their structure by using k-nearest neighbors (kNN). Feature vector 
(hj, pj, vj,…) represents such structural and physicochemical properties as hydrophobicity, 
volume, polarizability, etc; green dots: agents with the property; black box : agents without 
the property. 
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2.5.3 Probabilistic neural network (PNN) 

Probabilistic neural network (PNN) belongs to the neural network methods. 

It is designed for classification through the use of Bayes’ optimal decision 

rule [129]: ( ) ( )i i i j j jh c f h c f>x x , where hi and hj are the prior probabilities, ci 

and cj are the costs of misclassification and fi(x) and fj(x) are the probability 

density function for class i and j respectively. An unclassified vector x is 

classified into population i if the product of all the three terms is greater for 

class i than for any other class j (not equal to i). In most applications, the 

prior probabilities and costs of misclassifications are treated as being equal. 

The probability density function for each class for a univariate case can be 

estimated by using the Parzen’s nonparametric estimator[184], 

           
1

1( ) ( )
n

i

i
g W

nσ σ=

−
= ∑ x xx                  (7) 

where n is the sample size, σ is a scaling parameter which defines the width 

of the bell curve that surrounds each sample point, W(d) is a weight function 

which has its largest value at d = 0 and (x – xi) is the distance between the 

unknown vector and a vector in the training set. The Parzen’s nonparametric 

estimator was later expanded by Cacoullos for the multivariate case. 
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The Gaussian function is frequently used as the weight function because it is 

well behaved, easily calculated and satisfies the conditions required by 

Parzen’s estimator. Thus the probability density function for the multivariate 

case becomes 

           
2

1 1

1( ) exp( )
pn

j ij

i j j

x x
g

n σ= =

 −
= −   

 
∑ ∑x         (9) 

The network architectures of PNN are determined by the number of 

compounds and descriptors in the training set. PNN are constituted of four 

layers, the input layer, the pattern layer, the summation layer and the output 

layer. The input layer provides input values to all neurons in the pattern layer 

and has as many neurons as the number of descriptors in the training set. The 

number of pattern neurons is determined by the total number of compounds in 

the training set. Each pattern neuron computes a distance measure between the 

input and the training case represented by that neuron and then subjects the 

distance measure to the Parzen’s nonparametric estimator. The summation 

layer has a neuron for each class and the neurons sum all the pattern neurons’ 

output corresponding to members of that summation neuron’s class to obtain 

the estimated probability density function for that class. Finally, the single 

neuron in the output layer then estimates the class of the unknown vector x by 

comparing all the probability density function from the summation neurons 
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and choosing the class with the highest probability density function. Figure 

2-3 illustrates the procedure of PNN method. 
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Figure 2-3 Schematic diagram illustrating the process of the prediction of compounds of a 
particular property from their structure by using probabilistic neural networks (PNN). A, B: 
feature vectors of agents with the property; E, F: feature vectors of agents without the 
property; feature vector (hj, pj, vj,…) represents such structural and physicochemical 
properties as hydrophobicity, volume, polarizability, etc.  
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2.5.4 Tanimoto similarity searching method 

Determining if two compounds are similar to each other or not in a training 

dataset can be conducted by using the Tanimoto coefficient sim(i,j) [131] 

                (10)

 

where l is the number of molecular descriptors. A compound i is considered to 

be similar to a known active j in the active dataset if the corresponding sim(i,j) 

value is greater than a cut-off value. In this work, in computing sim(i,j), the 

molecular descriptor vectors xis were scaled with respect to all of the MDDR. 

The cut-off values for similarity compounds are typically in the range of 0.8 to 

0.9 [185, 186]. A stricter cut-off value of 0.9 was used in this work. 

 

2.5.5 Generation of putative negatives 

Both positive data (e.g. active compounds) and negative data (e.g. inactive 

compounds) are compulsory for building machine learning prediction models. 

As for prediction of compound inhibitors, positives can be formed from 

known active compounds but negatives are usually lacking. Previous studies 

have used known inactive compounds and active compounds of other 

biological target classes as putative inactive compounds [87, 111, 171-174, 

187, 188].  In our group a new approach extensively used for generating 
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inactive proteins in SVM classification of various functional classes of 

proteins [189-191] has been attempted for generating putative inactive 

compounds[114]. An advantage of this approach is its independence on the 

knowledge of known inactive compounds and active compounds of other 

biological target classes, which enables more expanded coverage of the 

“inactive” chemical space in cases of limited knowledge of inactive 

compounds and compounds of other biological classes. A drawback of this 

approach is the possible inclusion of some yet-to-be-discovered active 

compounds in the “inactive” class, which may affect the capability of SVM 

for identifying novel active compounds. As has been demonstrated in an 

earlier study[114], such an adverse effect is expected to be relatively small 

for many biological target classes. In applying this approach to proteins, all 

known proteins are clustered into ~8,933 protein domain families in based on 

the clustering of their amino acid sequences [149], and a set of putative 

inactive proteins can be tentatively extracted from a few representative 

proteins in those families without a single known active protein. 

Undiscovered active proteins of a specific functional class typically cover no 

more than a few hundred families, which gives a maximum possible “wrong” 

family representation rate of <10.2% even when all of the undiscovered 

active proteins are misplaced into the inactive class [192]. Importantly, 
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inclusion of the representative of a “wrong” family into the inactive class 

does not preclude other active family members from being classified as 

active. Statistically, a substantial percentage of active members can be 

classified by ML methods as active even if its family representative is in the 

inactive class [114, 192]. Therefore, in principle, a reasonably good SVM 

classification model can be derived from these putative inactive samples, 

which has been confirmed by a number of studies of proteins [189-192]. 

 

In a similar manner, known compounds can be grouped into compound 

families by clustering them in the chemical space defined by their molecular 

descriptors [193, 194]. As SVM predict compound activities based on their 

molecular descriptors, in developing SVM VS tools, it makes sense to cluster 

as well as to represent compounds in terms of molecular descriptors. By 

using a K-means method [193, 194] and molecular descriptors computed 

from our own software [195], we generated 8,423 compound families from 

the 13.56M compounds in the PUBCHEM and MDDR databases that we 

were able to compute the molecular descriptors, which is consistent with the 

12,800 compound-occupying neurons (regions of topologically close 

structures) for 26.4 million compounds of up to 11 atoms [65], and the 2,851 

clusters for 171,045 natural products [196]. 
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The number of compound inhibitors of a specific target is usually around 

1000 and distributed in several hundred families respectively.  Because of 

the extensive effort in searching the known compound libraries for 

identifying active compounds in these target classes, the number of 

undiscovered “active” families in PUBCHEM database is expected to be 

relatively small, most likely no more than several hundred families. The ratio 

of the discovered and undiscovered “active” families (hundreds) and the 

families that contain no known active compound (~8423 based on the current 

versions of PUBCHEM and MDDR) for these and possibly many other 

target classes is expected to be <15%. Therefore, putative inactive training 

datasets can be generated by extracting a few representative compounds of 

those families that contain no known active compound in the active training 

set, with a maximum possible “wrong” family representation rate of <15% 

even when all of the undiscovered active compounds are misplaced into the 

inactive class, and with the expectation that a substantial percentage of active 

members in the putative “inactive” families can be classified as active 

despite of their family representatives are placed into the inactive training 

sets. As has been shown in a study of SVM VS tools, a substantial 

percentage of identified virtual hits are from these “inactive” families [114]. 
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2.6 Virtual screening model optimization, validation 

and performance measurements 

2.6.1 Model optimization and validation 

In-silico modeling offers the prediction of the pharmacological properties of 

compounds which have not been clinically or biologically tested. Therefore it 

is important to estimate and validate the predicting ability of the 

pharmacological-data-derived models by their performances with the 

compounds that are not present in the training set. In this work, 5-fold 

cross-validation and independent validation datasets were used for this 

purpose. In 5-fold cross-validation, compounds are randomly divided into five 

subsets of approximately equal size. Four subsets are used as the training set 

for developing a model; the remaining one is used as a testing set for 

evaluating the prediction performance of the model. This procedure is 

repeated five times such that every subset is used as a testing set once. 

Through this procedure, the optimal parameter can be obtained. Models have 

types of parameters that must be optimized. In this work, SVM is trained by 

using a radial basis function kernel which has an adjustable parameter σ. For 

PNN, the only parameter to be optimized is a scaling parameter σ. In kNN, the 

optimum number of nearest neighbors, k, needs to be derived for each training 

set. Optimization of the parameter for each of these methods is conducted by 
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scanning the parameter through a range of values. The average accuracy of the 

five time models is seen as the accuracy predicting capability of the model 

constructed with the machine learning method. Five-fold cross-validation can 

reflect the average performance of a model, however, it has the tendency of 

underestimating the prediction capability of a classification model, especially 

if important molecular features happen to be contained only in a minority of 

the compounds in the training set [197, 198]. Hence if a model has relatively 

low cross-validation accuracy, it can still be predictive [197]. Therefore, 

cross-validation alone is not decisive to the performance of a model. To 

complement cross-validation, independent validation datasets are used. They 

may provide a more reliable estimation of the prediction capability of a 

pharmacological property prediction model [199, 200]. The independent 

validation dataset should be strictly independent from the training.  

 

2.6.2 Performance evaluation 

Measurements such as sensitivity, specificity and the overall prediction 

accuracy are employed to quantitatively assess the performance of virtual 

screening models. They are defined in terms of true positives TP 

(pharmaceutical agents possessing a specific pharmacological property), true 

negatives TN (pharmaceutical agents not possessing a specific 
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pharmacological property), false positives FP (pharmaceutical agents not 

possessing a specific pharmacological property but predicted as agents 

possessing the specific pharmacological property) and false negatives FN 

(pharmaceutical agents possessing a specific pharmacological property but 

predicted as agents not possessing the specific pharmacological property). 

Sensitivity and specificity are the measurement of prediction accuracy for 

pharmaceutical agents possessing a specific pharmacological property and 

agents not possessing that pharmacological property respectively. The 

overall prediction accuracy (Q) and Matthews correlation coefficient (MCC) 

[201] are used to measure the overall prediction performance. They are 

defined as follows: 

                                         (11) 

                                         (12) 

                                  (13) 

              (14) 

The typical measurements of a model performance in screening large libraries 

include [202] yield (percentage of known positives predicted as virtual hits), 
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Yield = SE                                            (15) 

Hit-rate = TP/(TP+FP)                                  (16) 

False hit-rate = FP/(TP+FP)                              (17) 

Enrichment factor EF = hit-rate / (TP+FN)/(TP+FN+TN+FP)   (18) 

 

2.6.3 Overfitting problem and its detection 

Overfitting is a major concern in machine learning classification methods. It 

happens when a model that agrees well with the observed data but has no 

predictive ability, which means it does not have any value to unseen or future 

data. There are two main types of overfitting situations: (1) a model more 

flexible than it needs to be and (2) a model including irrelevant descriptors 

[198]. An over-fitted classification system tends to obtain much higher 

prediction accuracies in the cross-validation sets than in the independent 

validation sets. Hence frequently used method for checking whether a model is 

overfitted is to compare the prediction accuracies in the cross-validation 

procedure with those found in testing independent validation sets [198]. 
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Chapter 3 Development of MicrobPad MD: microbial 

pathogen diagnostic methods database  

 

3.1 Introduction 

Medical pathogens of bacterial, fungal, and viral species induce infections，illnesses 

and sometimes serious medical conditions in the infected hosts [35, 36, 203, 204]. 

Diagnosis of these pathogens is important for proper treatment and investigation of 

pathogenesis processes, and extensive efforts have been made for developing 

molecular techniques that enable fast, accurate, sensitive and low-cost diagnosis of 

these pathogens [33-36]. Based on these molecular techniques, advanced diagnostic 

devices have been developed for a number of medical pathogens [35, 205]. More 

devices are needed for comprehensive coverage and faster diagnosis of medical 

pathogens, and for direct detection of multiple species [33, 205, 206]. 

 

Several databases have been developed and explored for providing the information 

and tools about the molecular diagnostic methods of specific classes of pathogenic 

species. For instance, the RIDOM website provides medical micro-organism 

differentiation services based on the analysis of small subunit ribosomal 16S rDNA 

sequences [207]. An expanded MicroSeq 500 16S rDNA sequence library database 

[208] and an integrated database network system [209] are useful for the identification 
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of nocardia species. The fourth international spoligotyping database [210] has been 

explored for the identification of mycobacterium species. A three-locus DNA 

sequence database is useful for the identification of the 69 Fusarium species 

associated with human or animal mycoses [211]. The 16SpathDB database supports 

automated identification of medically important bacteria by 16S rRNA gene 

sequencing [212]. Another database provides pulsed-field gel electrophoresis patterns 

of epidemic-type oxacillin-resistant Staphylococcus aureus strains [213]. 

GenoBASE-pylori is useful for genotype searching of the human gastric pathogen 

Helicobacter pylori [214]. TrED is a relational database that provides integrated 

access to various expression data of Trichophyton rubrum for developing effective 

diagnostic and treatment strategies [215]. 

 

These databases and web-tools are highly useful for the development of diagnostic 

devices of specific classes of medical pathogens. To facilitate the development of 

diagnostic devices for more diverse groups of medical pathogens, a database with 

integrated information about diagnostic methods, targets, and primers/probes for the 

known bacterial, fungal and viral pathogens is needed. Therefore, we developed the 

Microbial pathogen diagnostic methods database, MicrobPad MD 

(http://bidd.nus.edu.sg/group/MicrobPad/MicrobPad.asp or 

http://pha-bidd.nus.edu.sg/group/MicrobPad/MicrobPad.asp), to provide 
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comprehensive information about the molecular diagnostic techniques, targets, 

primers/probes, detection procedures and conditions, and tested diagnostic accuracies 

and limit of diagnosis for 314 bacterial, fungal and viral species from 61 genera.  

 

3.2 Database construction 

MicrobPad MD is intended as a comprehensive resource for facilitating the research, 

development, and evaluation of molecular diagnostic methods for faster detection of 

pathogens that conventional diagnostic methods are inadequate to meet the treatment 

demand. For instance, more than half of the Tuberculous meningitis (TB) cases cannot 

be confirmed microbiologically and the conventional diagnostic method CSF takes 

over two weeks time for the test outcome, resulting in many patients being treated on 

the basis of clinical suspicion before the diagnosis is confirmed [216]. Partly for 

dealing with this problem, two PCR-based molecular diagnostic devices, TB 

Amplicor and E-MTD, have been developed and approved by the FDA for diagnosis 

of TB from clinical specimens [217]. 

 

In addition to the development of MicrobPad MD as a resource for microbial 

pathogen diagnostic methods, we also aim to provide additional information useful for 

understanding the characteristics and mechanisms of the microbial pathogens. These 

include pathogen strains and hosts, tissue distribution or habitats, cultivation methods, 
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biochemical characteristics, virulence factors, morphology, diseases, symptoms, 

treatment and prevention methods are provided for facilitating the study of the 

molecular mechanisms of medical pathogens. Cross-links to the NCBI genome and 

SwissProt/UniProt databases are provided. 

 

MicrobPad MD is a freely accessible public online database and the full version of the 

database in text format can also be downed from the download page. Users are 

recommended to use the web-version because of its user friendly format. Our 

database continues to be regularly updated and supported. Queries and suggestions are 

welcome and can be sent via email link provided in the MicrobPad MD webpage. 

Users are also welcome to send their new data via email or the new data upload page. 

 

3.3 Data collection and access 

The relevant data were collected from the literature searched from the Pubmed 

database [218] by using keyword combinations of “diagnosis”, “diagnostic”, 

“detection”, “detect”, “bacterial”, “fungal” and “microbial”, “viral”, “pathogen”, and 

“pathogenetic”, and from the information described in such review journals as Expert 

Rev Mol Diagn, Nature Rev Microbiology, and Trends in Biotechnology (The journal 

titles were listed in the Appendix A). A total of 382 papers were collected, which 

report or describe the molecular diagnostic methods, gene targets, primers/probes, 
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detection procedures and conditions, and the tested diagnostic accuracies and limit of 

diagnosis for 205 bacterial species from 25 bacteria genera, 17 fungal species from 6 

fungal genera, and 92 viral species from 30 virus genera. We further extracted the 

information from these papers and additional literature searched from Pubmed [218] 

for finding the pathogen strains and hosts, tissue distribution or habitats, cultivation 

methods, biochemical characteristics, virulence factors, morphology, diseases, 

symptoms, treatment and prevention methods for each species. 

 

The MicrobPad MD data can be accessed by keyword or customized search. The 

keyword search is case insensitive and wildcards are supported. In a query, a user can 

specify full name or any part of the name in a text field. Wild characters of '*' and '?' 

are allowed in text field. Here, '?' represents any one character and '*' represents a 

string of characters of any length. For example, input of 'toxin' in the query field finds 

entries containing 'toxin' in their names, such as alpha toxin, beta toxin, epsilon toxin, 

RTX toxin, enterotoxins, etc. On the other hand, input of 'Clostridium*' finds all the 

species start their genus names with 'Clostridium'. In this case, '*' represents 

'perfringens A' , 'perfringens B', 'septicum', 'difficile', etc. 

 

Figure 3-1 shows the home page of the database. Customized search (Figure 3-2) 

fields include genus name, species name, target name, disease indication and 
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virulence factor. The result of a search is illustrated in Figure 3-3, in which all entries 

that satisfy the search criteria are listed. This list includes the MicrobPad entry ID, 

genus name, species name, virulence factor, target gene, disease indications, and the 

number of diagnostic methods. The related species and diagnosis method page 

(Figure 3-4) can be obtained by clicking the “MicrobPad ID” link of a selected 

MicrobPad entry. The page of species and diagnostic method contains two sections. 

The first and second section provides detailed description about the medical species 

and the diagnostic methods respectively. Further information about the genome of the 

species, target genes and virulence factors can be accessed via crosslink to NCBI 

genome databases [218] and SwissProt/UniProt database [219]. The whole MicrobPad 

methods data can be downloaded via the download link as showed in Figure 3-5. It 

also allow users to contribute to the database by uploading data in certain format 

illustrated in Figure 3-6. 
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Figure 3-1 Home page of MicrobPad MD database 
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Figure 3-2 Customized search page. This page provides search fields of genus name, species 
name, target name, disease indication and virulence factor. 
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Figure 3-3 List result page. This page provides genus name, species name, virulence factor, 
target gene, disease indications, and the number of diagnostic methods. 
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Figure 3-4 Related species and diagnostic methods page. This page provides detailed 

description about the related species and the diagnostic methods. 
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Figure 3-5 Data download page of MicrobPad MD database 
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Figure 3-6 Data upload page of MicrobPad MD database 



 

 78 

3.4 Database usage and validation 

Users of MicrobPad MD are expected to have basic knowledge about the popular 

molecular diagnostic techniques such as PCR, Multiplex PCR, real-time PCR, the 

diagnostic markers of microbial pathogens including the targets, primers, and probes, 

and the commonly used detection procedures. To facilitate the users for studying the 

relevant techniques, all the techniques used in the diagnostic methods described in the 

MicrobPad MD are provided in the help page. For searching MicrobPad MD, users 

are also expected to have the knowledge of at least one of the following items: 

pathogen genus name, pathogen species name, virulence factor, detection target name, 

and disease indication. Users can use both keyword search and browsing facilities 

(with pull-down manuals of pathogen, Target Name, Disease Indication and Virulence 

Factor lists) for selecting the relevant diagnostic method. Keyword search function 

supports incomplete word search such that all items that partially match the input 

keywords are displayed for user to select appropriate entries. Our database is built 

based on IIS HTTP server, ASP (Microsoft's server-side script engine for dynamically 

generated web pages) and Access (Microsoft's database manage system). There is no 

special requirement for client users. It can be easily accessed on various operation 

systems by common Internet Browsers such as Internet Explorer, Chrome, Firefox 

and Safari. 

 

http://en.wikipedia.org/wiki/Microsoft�
http://en.wikipedia.org/wiki/Server-side_scripting�
http://en.wikipedia.org/wiki/Active_Scripting�
http://en.wikipedia.org/wiki/Dynamic_web_page�
http://en.wikipedia.org/wiki/Dynamic_web_page�
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As an illustrative example, in order to find the diagnostic method for detecting the 

disease “Brucellosis” from clinical samples, the keyword “Brucellosis” can be entered 

into the MicrobPad MD keyword search field, and the search leads to the list of 

species and corresponding molecular diagnostic method, specifically the 8 species and 

the 17 methods. After obtaining the relevant information, users are expected to 

prepare the primer/probe, DNA polymerase and other necessary reagents, and use 

PCR amplifier and other relevant equipments for developing diagnostic tools.  

 

Validation study was conducted on a molecule diagnostic method for detecting 

Mycobacterium tuberculosis. It has been reported that the Mycobacterium 

tuberculosis specific probe KY172-T3 (59-GGTGGAAAGCGCTTTAGCGGT-39) 

has been selected from a hypervariable region within the 16S rRNA gene that are 

conserved among mycobacterial species [220]. The sequence of these probe and 

sequence was used for searching all similarity sequences in 16S ribosomal RNA 

sequences (Bacteria and Archaea) database by using NCBI blast 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) The sequence of Mycobacterium tuberculosis 

strain NCTC 7416 H37Rv 16S ribosomal RNA is one of the top-6 hits among 123 

Blast Hits with max score 42.1, total score 62.4, query coverage 100%, e value 2e-05 

and max ident 100%. Base on this probe, Roche AMPLICOR for Mycobacterium 

tuberculosis PCR test (TB AMPLICOR) has been developed which is a rapid 
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diagnostic test and has been shown in clinical tests to have a sensitivity of 66.7% and 

a specificity of 99.6% [221]. 

 

3.5 Concluding remarks 

Extensive studies of medical pathogens have led to the identification of high numbers 

of molecular diagnosis signatures and their recognition techniques useful for the 

development of fast and low cost pathogen diagnostic tools [35, 36, 203-205]. While 

significant progress has been made in developing molecular diagnostic devices [35, 

205], new methods of rapid diagnosis of infectious pathogens are still in urgently 

demand, particularly for such serious infections such as septic shock wherein the 

survival rates degrease on hourly basis if appropriate treatment is delayed [206]. 

General databases such as MicrobPad MD and the specialized databases such as 

RIDOM [207], MicroSeq 500 16S rDNA sequence library [208], the fourth 

international spoligotyping [210], 16SpathDB [212], GenoBASE-pylori [214], and 

TrED [215] are useful resources and tools for facilitating the development of new 

diagnostic devices. New technologies, such as mass spectrometry [222], 

next-generation sequencing [223] and single-molecule detection methods [224, 225], 

in combination with existing diagnostic technologies [35, 36, 203-205] and 

knowledge of antimicrobial resistances [226], are expected to further improve the 

speed and precision of the identification of infectious organisms and the 
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determination of their sensitivities to antimicrobial agents [205, 206, 227]. The new 

methods and data can be added into MicrobPad MD and other databases to facilitate 

the development of new diagnostic devices for comprehensive sets of medical 

pathogens. 
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Chapter 4 Development of TTD: therapeutic target 

database 

 

4.1 Introduction 

Pharmaceutical drugs or agents generally exert their therapeutic effects by 

binding to and subsequently modulating the activity of particular protein, 

nucleic acid or other molecular (such as membrane) targets [228, 229]. Target 

discovery efforts have led to the discovery of hundreds of successful targets 

(targeted by at least one approved/marketed drug), several hundred clinical 

trial targets (targeted by drug in clinical trial but not any approved/marketed 

drug) and more than 1,000 research targets (targeted only by experimental 

drugs only) [58-61]. Rapid advances in genomic, proteomic, structural, 

functional and systems studies of the known targets and other disease proteins 

[230-236] enable the discovery of drugs, multi-target agents, combination 

therapies and new drug targets [58, 61, 230, 237, 238], analysis of on-target 

toxicity [239] and pharmacogenetic responses [240], and development of 

discovery tools [241-244]. 

To facilitate the access of therapeutic targets information, publicly accessible 

databases such as Drugbank [245], Potential Drug Target Database (PDTD) 
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[246] and our own Therapeutic Target Database (TTD) [247] have been 

developed. These databases complement each other to provide target and drug 

profiles. DrugBank is an excellent source for comprehensive drug data with 

information about drug actions and multiple targets [245]. PDTD contains 

active-sites as well as functional information for the potential targets with 

available 3D structures [246] in PDB. TTD provides information about the 

primary therapeutic targets of a comprehensive set of both approved and 

experimental drugs [247]. 

While drugs and agents typically modulate the activities of multiple proteins 

[248] and up to 14,000 drug-targeted-proteins have been published [249], the 

reported number of primary targets directly related to the therapeutic actions 

of approved drugs is limited to 324 [60]. Information about the primary targets 

of more comprehensive sets of approved, clinical trial and experimental drugs 

is highly useful for facilitating focused investigations and discovery efforts 

against the most relevant and proven targets [61, 230, 237, 239, 240, 243]. 

Therefore, we updated TTD by significantly expanding the target data to 

include 348 successful, 292 clinical trial, and 1,254 research targets, and 

added drug data for 1,514 approved, 1,212 clinical trial and 2,302 

experimental drugs linked to their primary targets (3,382 small molecule and 

649 antisense drugs with available structure and sequence). 
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We collected a slightly higher number of successful targets than the reported 

number of 320 targets [60] due to the identification of protein subtypes as the 

targets of some approved drugs and the inclusion of multiple drug targets of 

approved multi-target drugs and non-protein/nucleic acid targets of 

anti-infectious drugs (e.g. bacterial cell wall and membrane components). 

Clinical trial drugs are based on reports since 2005 with the majority since 

2008, their corresponding clinical trial phase is specified. We also added new 

features for data access by drug mode of action, sequence and tanimoto 

similarity search of targets and drugs, customized and whole data download, 

and standardized target ID. TTD is now available online, and can be accessed 

at http://bidd.nus.edu.sg/group/cjttd/TTD.asp. 

4.2 Target and drug data collection and access 

Additional information about the approved, clinical trial and experimental 

drugs and their primary targets were collected by comprehensive search of 

literatures, FDA Drugs of FDA webpage 

(http://www.accessdata.fda.gov/scripts/cder/drugsatfda/) with data about FDA 

approved drugs, latest reports from 17 pharmaceutical companies that describe 

clinical trial and other pipeline drugs (Astrazeneca, Bayer, Boehringer 

Ingelheim, Genentech, GSK, Idenix, Incyte, ISIS, Merck, Novartis, Pfizer, 

Roche, Sanofi Aventis, Schering-Plough, Spectrum, Takeda and Teva). 

http://bidd.nus.edu.sg/group/cjttd/TTD.asp�
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/�
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Literature search was conducted by combinational searching the PubMed 

database by using keyword “therapeutic” and “target”, “drug” and “target”, 

“clinical trial” and “drug”, “clinical trial” and “target”, and by searching 

reputable review journal like Nature Reviews Drug Discovery, Drug 

Discovery Today, Current Opinion in Pharmacology, Current Drug Targets, 

Current Topics in Medicinal Chemistry, Science, Mini-Reviews in Medicinal 

Chemistry, Anti-Cancer Agents in Medicinal Chemistry, and so on (The 

journal titles were listed in the Appendix B). In the meantime, we also 

extracted data from 2008 Report of Medicines in Development biotechnology, 

and 2008 Report of Medicines in Development for HIV/AIDS, cancer, 

children, diabetes, neurological disorders, women, and rare diseases, which 

explicitly mentioned the targets and theirs corresponding drugs. In particular, 

these searches identified 198 recent papers reporting approved and clinical 

trial drugs and their targets. As many of the experimental antisense drugs are 

described in US patents, we specifically searched US patent databases to 

identify 745 antisense drugs targeting 104 targets. Primary targets of 211 

drugs and drug binding modes of 79 drugs are not specified in our collected 

documents. Further literature search was conducted to find the relevant 

information for these drugs. The criteria for identifying the primary target of a 

drug or targets of a multi-target drug is based on the developer or literature 
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reported cell-based or in vivo evidence that links the target to the therapeutic 

effect of the drug. These searched documents are listed in the respective target 

or drug entry page of TTD and many cross links are provided for the 

respective PubMed abstracts, US patents, or developer web-page. 

However, in order to double check and have an overall understanding on the 

status of these targets, we have searched from the literature of reported 

IC50/EC50 values against the target/targets and cell-lines and the reports of in 

vivo studies to confirm that the reported primary targets are accurate. 

4.3 Ways to access therapeutic targets database 

TTD data can be accessed by both whole database (Figure 4-1) and 

customized (Figure 4-2) keyword search, and by target sequence similarity 

(Figure 4-3) and drug tanimoto similarity search (Figure 4-4). Full TTD data 

download is also provided. Two optional whole database searches are 

provided: one is to search by target name, and another is by drug name. 

Different whole database search options will list search results in different 

manners, which is designed to facilitate users with different initial searching 

information. Customized search fields include target name, drug name, disease 

indication, target biochemical class, drug mode of action, and drug therapeutic 

class. In current TTD, 112 disease indications, 61 target biochemical classes, 
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20 drug mode of actions, and 157 drug therapeutic classes are available for 

customized selection. 

 

Figure 4-1 Home page of TTD 2010 
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Figure 4-2 Customized search page of TTD 2010 

 

Figure 4-3 Sequence similarity search page of TTD 2010 
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Figure 4-4 Drug tanimoto similarity search page of TTD 2010 

 

After input keywords and search in TTD database, the intermediate searching 

results will be displayed for user to choose from. For example, “VEGFR” was 

used into the search box–“List search results by targets” at the home page. The 

intermediate search results page (Figure 4-5) will display Vascular endothelial 

growth factor receptor 1, Vascular endothelial growth factor receptor 2, 

Vascular endothelial growth factor receptor 3 and mRNA of VEGFR1 for 

users to make further selection. 
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Figure 4-5 Targets list page of “VEGFR” 
 

Target detail information page (Figure 4-6) lists target name, target status 

(successful, clinical trial and research), synonyms, disease, corresponding 

drugs, target bio-chemical class, pathway involved, target uniprot accession 

number, PDB structure, protein function, sequence information, US patents, 

drug mode of action, references, and so on. Moreover, further information 

about each target can be accessed via crosslink to external databases, like 

SwissProt/UniProt, PDB, KEGG, OMID, and Brenda database. 
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Figure 4-6 TTD target detail information page 
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Drug detail information page (Figure 4-7) lists drug name, drug synonyms, 

trade name, company information, disease indication, 3D drug structure 

displayed, 2D&3D structural MOL files for download, target therapeutic class, 

CAS number, formula, PubChem ID, ChEBI ID, SuperDrug ATC & CAS IDs, 

primary therapeutic target(s), references, and so on. Furthermore, further drug 

information can be accessed via cross links to the external databases, such as 

PubChem, DrugBank, SuperDrug, and ChEBI. 

 
 

 
Figure 4-7 TTD drug detail information page 
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Related target or drug entries can be recursively searched by clicking a disease 

or drug name. Similarity targets of an input protein sequence in FASTA 

format can be searched by using the NCBI BLAST sequence alignment tool 

[250]. Similarity drugs of an input drug structure can be searched by using 

molecular descriptor based tanimoto similarity searching method[251, 252]. 

Target and drug entries are assigned standardized TTD IDs for easy 

identification, analysis and linkage to other related databases. The whole TTD 

data, target sequences along with Swissprot and Entrez gene IDs, and drug 

structures can be downloaded via the download link. A separate downloadable 

file contains the list of TTD drug ID, drug name and the corresponding IDs in 

other cross-matching database PubChem, DrugBank, SuperDrug, and ChEBI. 

The corresponding HGNC name and Swissprot and Entrez gene ID of each 

target is provided in the target page. The SMILES and InCHI of each drug is 

provided in the drug page. 

4.4 Target and drug similarity searching 

Target similarity search is based on BLAST [250] algorithm to determine the 

similarity level between the sequence of an input protein and the sequence of 

each of the TTD target entries. The NCBI website 

(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/) is used for downloading 
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BLAST program. The result of similarity targets searched out are ranked by 

E-value and BLAST score [250]. E-value has been reported to give reliable 

predictions of the homologous relationships [253] and a cutoff of 0.001 can be 

used to find 16% more structural relationships in the SCOP database than 

when using a standard sequence similarity with a 40% sequence-identity 

threshold[254]. The majority of protein pairs sharing ~50% (or higher) 

sequence-identity differ by < 1 Å RMS deviation[255, 256]. A larger 

structural deviation alters drug-binding properties probably. 

Drug similarity search is based on the tanimoto similarity search method 

[251]. An input compound structure in MOL or SDF format is converted into a 

vector composed of molecular descriptor by using MODEL[161]. These 

molecular descriptors are quantitative representations of structural and 

physicochemical features of molecules, which have been extensively used in 

deriving structure-activity relationships, quantitative structure-activity 

relationship and virtual screening tool for drug discovery[146, 202]. Based on 

the results of our earlier studies[47], a total of 98 1D and 2D descriptors were 

used as the components of the compound vector, which include 18 descriptors 

in the class of simple molecular property, 3 descriptors in chemical property, 

35 descriptors in molecular connectivity and shape, and 42 descriptors in 
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electro-topological state. The vector of an input compound i is then compared 

to drug j in TTD by using the Tanimoto coefficient sim(i,j)[251]: 

 

where l is the total number of molecular descriptors. Tanimoto coefficient of 

similarity compounds are typically in the range of 0.8 to 0.9[185, 186]. Hence 

compound i is considered to be very similar, similar, moderately similar, or 

un-similar to drug j if  sim(i,j) > 0.9, 0.85< sim(i,j) <0.9, 0.75< sim(i,j) <0.85, 

or sim(i,j) > 0.75 respectively. 

In conclusion, TTD 2010 update is intended to be a more useful resource in 

complement to other related databases by providing comprehensive 

information to the primary targets and other drug data for the approved, 

clinical trial, and experimental drugs. In addition to the continuous update of 

new target and drug information, efforts will be devoted to the incorporation 

of more features into TTD. Increasing amounts of data about the genomic, 

proteomic, structural, functional and systems profiles of therapeutic targets 

have been and are being generated[230-236]. Apart from establishing 

crosslink to the emerging sources, some of the profiles extracted or derived 

from the relevant data[58] may be further incorporated into TTD. Target data 
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has been used for developing target discovery methods[241-243], some of 

these methods may be included in TTD in addition to the BLAST tool for 

similarity target searching. As in the case of PDTD[246], some of the virtual 

screening methods and datasets may also be included in TTD for facilitating 

target oriented drug lead discovery. 
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Chapter 5 Development and experimental test of 

support vector machines virtual screening method for 

searching Src inhibitors from large compound libraries  

 

5.1 Introduction 

Src promotes tumour invasion and metastasis, facilitates VEGF-mediated 

angiogenesis and survival in endothelial cells, and enhances growth factor 

driven proliferation in fibroblasts [257]. Src is known to modulate cell 

proliferation and cancers through several signaling pathways such as STAT3 

pathway, the PI3K pathway and the MAPK pathway [258]. Src consists of 6 

functional domain: homology domain 4 (SH4), unique domain, homology 

domain (SH3), homology domain (SH2), catalytic domain (SH1), and 

C-terminal regulatory tail [259]. Src activation can be altered by many 

different cell processes through upstream kinases or phosphatases. Src 

associated pathway, its structure and activity regulation [260] have 

been explored. 

 

Src is one of the multiple kinase targets of a number of multi-target kinase 

inhibitors effective in the clinical treatment of leukemia and in clinical trials of 

other cancers [261-263]. The successes and problems of these inhibitors have 

raised significant interest and efforts in discovering new Src inhibitors 

[264-266]. Several in-silico methods have been used for facilitating the search 
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and design of Src inhibitors, which include pharmacophore [267], Quantitative 

Structure Activity Relationship (QSAR) [268], and molecular docking [265]. 

 

While these in-silico methods have shown impressive capability in the 

identification of potential Src inhibitors, their applications may be affected by 

such problems as the vastness and sparse nature of chemical space needing to 

be searched, complexity and flexibility of target structures, difficulties in 

accurately estimating binding affinity and solvation effects on molecular 

binding, and limited representativeness of training active compounds [69, 269, 

270]. It is desirable to explore other in-silico methods that complement these 

methods by expanded coverage of chemical space, increased screening speed, 

and reduced false-hit rates without necessarily relying on the modelling of 

target structural flexibility, binding affinity and salvation effects.  

 

Support vector machines (SVM) has recently been explored as a promising 

ligand-based virtual screening (VS) method that produces high yields and low 

false-hit rates in searching active agents of single and multiple mechanisms 

from large compound libraries [114] and in identifying active agents of 

diverse structures [114, 171-174]. Good VS performance can also be achieved 

by SVM trained from sparsely distributed active compounds [252]. SVM 

classifies active compounds based on the separation of active and inactive 

compounds in a hyperspace constructed by their physicochemical properties 

rather than structural similarity to active compounds per se, which has the 

advantage of not relying on the accurate computation of structural flexibility, 
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activity-related features, binding affinity and solvation effects. Moreover, the 

fast speed of SVM enables efficient search of vast chemical space. Therefore, 

SVM may be a potentially useful VS tool to complement other in-silico 

methods for searching Src inhibitors from large libraries. 

 

In this work, we developed a SVM VS model for identifying Src inhibitors, 

and evaluated its performance by both 5-fold cross validation test and large 

compound database screening test. In 5-fold cross validation test, a dataset of 

Src inhibitors and non-inhibitors was randomly divided into 5 groups of 

approximately equal size, with 4 groups used for training a SVM VS tool and 

1 group used for testing it, and the test process is repeated for all 5 possible 

compositions to derive an average VS performance. In large database 

screening test, a SVM VS tool was developed by using Src inhibitors 

published before 2011, its yield (percent of known inhibitors identified as 

virtual-hits) was estimated by using Src inhibitors reported since 2011 and not 

included in the training datasets, virtual-hit rate and false-hit rate in searching 

large libraries were evaluated by using 13.56M PubChem and 168K MDDR 

compounds, and an additional set of 9,305 MDDR compounds similar in 

structural and physicochemical properties to the known Src inhibitors.  

 

Moreover, VS performance of SVM was compared to those of two 

similarity-based VS methods, Tanimoto similarity searching and k nearest 

neighbour (kNN), and an alternative but equally popularly used machine 

learning method, probabilistic neural network (PNN) method, based on the 



 

 100 

same training and testing datasets (same sets of PubChem and MDDR 

compounds) and molecular descriptors. In a study that compares the 

performance of SVM to 16 classification methods and 9 regression methods, it 

has been reported that SVMs shows mostly good performances both on 

classification and regression tasks, but other methods proved to be very 

competitive [271]. Therefore, it is useful to evaluate the VS performance of 

SVM in searching large compound libraries by comparison with those of both 

similarity-based approaches and other typical machine learning method. 

 

PubChem and MDDR contain high percentages of inactive compounds 

significantly different from the known Src inhibitors, and the easily 

distinguishable features may make VS enrichments artificially good [272]. 

Therefore, VS performance may be more strictly tested by using subsets of 

compounds that resemble the physicochemical properties of the known Src 

inhibitors so that enrichment is not simply a separation of trivial 

physicochemical features [186]. To further evaluate whether our SVM VS tool 

predict Src inhibitors and non-inhibitors rather than membership of certain 

compound families, distribution of the predicted active and inactive 

compounds in the compound families were analyzed. 
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5.2 Materials and methods 

5.2.1 Compound collections and construction of training and 

testing datasets 

 

We collected 1,703 Src inhibitors reported before 2011, with IC50<10µM, 

from the literatures [273-277] and the BindingDB database [161]. The 

inhibitor selection criterion of IC50<10µM was used because it covers most of 

the reported HTS and VS hits [278, 279]. The structures of representative Src 

inhibitors are shown in Figure 5-1. As few non-inhibitors have been reported, 

putative non-inhibitors were generated by using our method for generating 

putative inactive compounds [246, 252]. This method requires no knowledge 

of known inactive compounds and active compounds of other target classes, 

which enables more expanded coverage of the “non-inhibitor” chemical space. 

Although the yet-to-be-discovered inhibitors are likely distributed in some of 

these “non-inhibitor” families, a substantial percentage of these inhibitors are 

expected to be identified as inhibitors rather than non-inhibitors even-though 

representatives of their families are putatively assigned as non-inhibitors 

[246]. 13.56M PubChem and 168K MDDR compounds were grouped into 

8,423 compound families by clustering them in the chemical space defined by 

their molecular descriptors [193, 194]. The number of generated families is 

consistent with the 12,800 compound-occupying neurons (regions of 

topologically close structures) for 26.4 million compounds of up to 11 atoms 

[65], and the 2,851 clusters for 171,045 natural products [196].  
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Figure 5-1 The structures of representative c-Src inhibitors. Comppound 1:SKI-606 
IC50=0.25µm [144]; Compound 2: AG-1879, IC50=0.085µm; Compound 3: Sunitinib, SU 
11248, IC50=1µm [282]; Compound 4: IC50=0.5µm [280]; Compound 5: IC50=0.26µm 
[281]; Compound 6: IC50=0.001µm [282]. 
 

Our collected Src inhibitors are distributed in 493 families. Because of the 

extensive efforts in searching kinase inhibitors from known compound 

libraries, the number of undiscovered Src inhibitor families in PubChem and 
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MDDR databases is expected to be relatively small, most likely no more than 

several hundred families. The ratio of the discovered and undiscovered 

inhibitor families (hundreds) and the families that contain no known Src 

inhibitor (8,423 based on the current versions of PubChem and MDDR) is 

expected to be <15%. Therefore, putative non-inhibitor training dataset can be 

generated by extracting a few representative compounds from each of those 

families that contain no known inhibitor, with a maximum possible “wrong” 

classification rate of <15% even when all of the undiscovered inhibitors are 

misplaced into the non-inhibitor class. The noise level generated by up to 15% 

“wrong” negative family representation is expected to be substantially smaller 

than the maximum 50% false-negative noise level tolerated by SVM [172]. 

Based on earlier studies [246, 252] and this work, it is expected that a 

substantial percentage of the un-discovered inhibitors in the putative 

“non-inhibitor” families can be classified as inhibitor despite their family 

representatives are placed into the non-inhibitor training sets.  

 

In the database screening test, 60.1% of the families that contain Src inhibitors 

reported since 2011 [283-288] are not covered by the Src inhibitor training 

dataset (inhibitors reported before 2011). The representative compounds of 

these families, none of which happen to be Src inhibitor, were deliberately 

placed into the inactive training sets because the inhibitors in these families 

are not supposed to be known in our study. As shown in earlier studies [246, 

252] and in this work, a substantial percentage of the inhibitors in these 

misplaced inhibitor-containing “non-inhibitor” families were predicted as 
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inhibitors by our SVM VS tool. Moreover, a small percentage of the 

compounds in these putative non-inhibitor datasets are expected to be 

un-reported and un-discovered inhibitors, their presence in these datasets is 

not expected to significantly affect the estimated false hit rate of SVM.  

 

5.3 Results and discussion 

5.3.1 Performance of SVM, kNN and PNN identification of 

Src inhibitors based on 5-fold cross validation test 

 

The parameters of our SVM, kNN and PNN models were determined by 

5-fold cross-validation studies of Src inhibitors and non-inhibitors. The results 

of these tests for SVM, kNN and PNN are shown in Tables 5-1, 5-2, 5–3 and 

Figure 5-2 respectively. Overall, the sensitivity of SVM, k-NN and PNN is in 

the range of 93.53%~95.01%, 88.56%~92.94% and 93.53%~97.06%, the 

specificity in the range of 99.81%~99.90%, 99.57%~99.77% and 

97.76%~98.03%, and overall accuracy Q in the range of 99.67%~99.76%, 

99.35%~99.48% and 97.69%~97.91% respectively. The inhibitor accuracies 

of our SVM are comparable to or slightly better than the reported accuracies 

of 58.3%~67.3% for protein kinase C inhibitors by SVM-RBF and CKD 

methods [192], 83% for Lck inhibitors by SVM method [289], and 74%~87% 

for inhibitors of any of the 8 kinases (3 Ser/Thr and 5 Tyr kinases) by SVM, 

ANN, GA/kNN, and RP methods [290]. The non-inhibitor accuracies are 

comparable to the value of 99.9% for Lck inhibitors [289] and substantially 
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better than the typical values of 77%~96% of other studies [192, 290]. Caution 

needs to be exercised about straightforward comparison of these results, which 

might be misleading because the outcome of VS strongly depends on the 

datasets and molecular descriptors used. Based on these rough comparisons, 

SVM appears to show good capability in identifying Src inhibitors at low 

false-hit rates.  

 
Table 5-1 Performance of SVM for identifying Src inhibitors and non-inhibitors evaluated by 
5-fold cross validation study 

Cross 

-Validation 

Src inhibitors Src non-inhibitors   

Q  

 

 C 

No of 

training/ 

testing 

inhibitors 

TP F

N 

SEN 

 

No of 

training/ 

testing 

non-inhibitor

s 

TN FP SP 

 

  

1 1362/341 320 21 93.84% 50654/12664 12651 13 99.90% 99.74% 0.948 

2 1362/341 324 17 95.01% 50654/12664 12650 14 99.89% 99.76% 0.953 

3 1362/341 324 17 95.01% 50654/12664 12640 24 99.81% 99.68% 0.939 

4 1363/340 318 22 93.53% 50655/12663 12642 21 99.83% 99.67% 0.935 

5 1363/340 322 18 94.71% 50655/12663 12643 20 99.84% 99.71% 0.943 

Average    94.42%    99.85% 99.71% 0.944 

Std Dev    0.0069    0.0004 0.0004 0.0072 

Std Err    0.0031    0.0002 0.0002 0.0032 
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Table 5-2 Performance of kNN for identifying Src inhibitors and non-inhibitors evaluated by 
5-fold cross validation study 
 

Cross 

-Validation 

Src inhibitors Src non-inhibitors   

Q  

 

 C 

No of 

training/ 

testing 

inhibitors 

TP FN SEN No of 

training/ 

testing 

non-inhibitors 

TN FP SP   

1 1362/341 302 39 88.56% 50654/12664 12635 29 99.77% 99.48% 0.896 

2 1362/341 313 28 91.79% 50654/12664 12620 44 99.65% 99.45% 0.894 

3 1362/341 311 30 91.20% 50654/12664 12610 54 99.57% 99.35% 0.878 

4 1363/340 316 24 92.94% 50655/12663 12619 44 99.65% 99.48% 0.901 

5 1363/340 302 38 88.82% 50655/12663 12632 31 99.76% 99.47% 0.895 

Average    90.66%    99.68% 99.44% 0.893 

Std Dev    0.0191    0.0008 0.0005 0.0085 

Std Err    0.0085    0.0004 0.0002 0.0038 
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Table 5-3 Performance of PNN for identifying Src inhibitors and non-inhibitors evaluated by 5-fold 
cross validation study 

 

Cross 

-Validation 

Src inhibitors Src non-inhibitors   

Q  

 

 C 

No of 

training/ 

testing 

inhibitors 

TP FN SEN No of 

training/ 

testing 

non-inhibitors 

TN FP SP   

1 1362/341 319 22 93.55% 50654/12664 12413 251 98.02% 97.90% 0.715 

2 1362/341 324 17 95.01% 50654/12664 12380 284 97.76% 97.69% 0.702 

3 1362/341 330 11 96.77% 50654/12664 12395 269 97.88% 97.85% 0.722 

4 1363/340 330 10 97.06% 50655/12663 12389 274 97.84% 97.82% 0.720 

5 1363/340 318 22 93.53% 50655/12663 12413 250 98.03% 97.91% 0.715 

Average    95.19%    97.90% 97.83% 0.715 

Std Dev    0.0169    0.0012 0.0009 0.0075 

Std Err    0.0076    0.0005 0.0004 0.0034 
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Figure 5-2 The 5-fold cross-validation studies of Src inhibitors across methods with the averaged 
sensitivity together with their respective error bars. 

 

5.3.2 Virtual screening performance of SVM in searching Src 

inhibitors from large compound libraries  

As outlined in the methods section, we developed a SVM VS tool for searching Src 

inhibitors from large were developed by using Src kinases reported before 2011. The 

VS performance of SVM in identifying Src inhibitors reported since 2011 and in 

searching MDDR and PubChem databases is summarised in Table 5-4. The yield in 

searching Src inhibitors reported since 2011 is 70.45%, which is comparable to the 

reported 50%~94% yields of various VS tools [291]. Strictly speaking, direct 

comparison of the reported performances of these VS tools is inappropriate because of 

the differences in the type, composition and diversity of compounds screened, and in 
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the molecular descriptors, VS tools and their parameters used. The comparison cannot 

go beyond the statistics of accuracies. 

 

Table 5-4 Virtual screening performance of support vector machines for identifying Src inhibitors from 
large compound libraries 

 

Inhibitors in Training 

Set 

Number of Inhibitors 1703 

Number of Chemical Families Covered by Inhibitors 493 

Inhibitors in Testing 

Set 

Number of Inhibitors 44 

Number of Chemical Families Covered by Inhibitors 35 

Percent of Inhibitors in Chemical Families Covered by Inhibitors in 

Training Set 
51.43% 

Virtual Screening 

Performance 

Yield 70.45% 

Number and Percent of Identified True Inhibitors Outside Training 

Chemical Families 
15(34.1%) 

Number and Percent of 13.56M PubChemCompounds Identified as 

Inhibitors 

44,843 

(0.33%) 

Number and Percent of the 168K MDDR Compounds Identified as 

Inhibitors 

1,496 

(0.89%) 

Number and Percent of the 9,305 MDDR Compounds Similar to the 

Known Inhibitors Identified as Inhibitors 
719 (7.73%) 
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We also evaluated virtual-hit rates and false-hit rates of SVM in screening compounds 

that resemble the structural and physicochemical properties of the known Src 

inhibitors by using 9,305 MDDR compounds similar to an Src inhibitor in the training 

dataset. Similarity was defined by Tanimoto similarity coefficient ≥  0.9 between a 

MDDR compound and its closest inhibitor [252]. This stricter similarity metric was 

used for conducting a stricter test of our SVM model. SVM identified 719 virtual-hits 

from these 9,305 MDDR similarity compounds (virtual-hit rate 7.73%), which 

suggests that SVM has some level of capability in distinguishing Src inhibitors from 

non-inhibitor similarity compounds. Significantly lower virtual-hit rates and thus 

false-hit rates were found in screening large libraries of 168K MDDR and 13.56M 

PubChem compounds. The numbers of virtual-hits and virtual-hit rates in screening 

168K MDDR compounds are 1,496 and 0.89% respectively. The numbers of 

virtual-hits and virtual-hit rates in screening 13.56M PubChem compounds are 44,843 

and 0.33% respectively.  

 

Substantial percentages of the MDDR virtual-hits belong to the classes of 

antineoplastic, tyrosine-specific protein kinase inhibitors, signal transduction 

inhibitors, antiangiogenic, and antiarthritic (Table 5-5, details in next section). As 

some of these virtual-hits may be true Src inhibitors, the false-hit rate of our SVM is 

at most equal to and likely less than the virtual-hit rate. Hence the false-hit rate is 
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<7.73% in screening 9,305 MDDR similarity compounds, <0.89% in screening 168K 

MDDR compounds, and <0.33% in screening 13.56M PubChem compounds, which 

are comparable and in some cases better than the reported false-hit rates of 

0.0054%~8.3% of SVM [246, 252], 0.08%~3% of structure-based methods, 

0.1%~5% by other machine learning methods, 0.16%~8.2% by clustering methods, 

and 1.15%~26% by pharmacophore models [291]. 

5.3.3 Experimental test of a SVM identified virtual-hit 

Three virtual hits of the same novel scaffold from in-house libraries not found in the 

known the Src inhibitor were evaluated for inhibitory activity against Src. Src kinase 

was incubated with substrates, compounds and ATP in a final buffer of 25mM 

HEPES (pH 7.4), 10mM MgCl2, 0.01% Triton X-100, 100µg/mL BSA, 2.5mM DTT 

in 384-well plate with the total volume of 10µl. The assay plate was incubated at 30℃ 

for 1h and stopped with the addition of equal volume of kinase glo plus reagent. The 

luminescence was read at envision. The signal was correlated with the amount of ATP 

present in the reaction and was inversely correlated with the kinase activity. One of 

three virtual hits showing in Figure 5-3 was found to inhibit Src at a moderate rate of 

4.85% at 20µM. 
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Figure 5-3 Virtual hit inhibiting Src at a moderate rate of 4.85% at 20µM 

 

5.3.4 Evaluation of SVM identified MDDR virtual-hits 

SVM identified MDDR virtual-hits were evaluated based on the known biological or 

therapeutic target classes specified in MDDR. Table 5-5 gives the MDDR classes that 

contain higher percentage (≥3%) of SVM virtual -hits and the percentage values. We 

found that 623 (41.6%) of the 1,496 virtual-hits belong to the antineoplastic class, 

which represent 2.9% of the 21,557 MDDR compounds in the class. In particular, 231 

(15.4%) of the virtual-hits belong to the tyrosine-specific protein kinase inhibitor 

class, which represent 19.6% of the 1,181 MDDR compounds in the class. Moreover, 

194 (13.0%) and 75 (5.0%) of the virtual-hits belong to the signal transduction 

inhibitor and antiangiogenic classes, representing 9.5% and 4.6% of the 2,037 and 

1,629 members in these classes respectively. Therefore, many of the SVM virtual-hits 

are antineoplastic compounds that inhibit tyrosine kinases and possibly other kinases 

involved in signal transduction and angiogensis pathways. While some of these kinase 
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inhibitors might be true Src inhibitors, a significant percentage of them are expected 

to arise from false selection of inhibitors of other kinases.  

 

Table 5-5 MDDR classes that contain higher percentage (≥3%) of SVM virtual -hits and the percentage 
values. Virtual-hits are identified by SVMs in screening 168K MDDR compounds for Src inhibitors. 
The total number of SVM identified virtual hits is 1,496. 

 

MDDR Classes that Contain Higher Percentage 

(≥3%) of Virtual Hits 

No of Virtual 

Hits in Class 

Percentage of Class Members 

Selected as Virtual Hits 

Antineoplastic 623 2.9% 

Tyrosine-Specific Protein Kinase Inhibitor 231 19.6% 

Signal Transduction Inhibitor 194 9.5% 

Antiarthritic 176 1.5% 

Antiallergic/Antiasthmatic 83 0.8% 

Antihypertensive 76 0.7% 

Antiangiogenic 75 4.6% 

Treatment for Osteoporosis 55 2.2% 

Antidepressant 49 0.8% 

 

A total of 176 (11.8%) SVM virtual-hits belong to the antiarthritic class. A primary 

feature of rheumatoid arthritis in synovial tissues is the abnormal stimulation of fibrin 

deposition, angiogenesis and proinflammatory processes, which are promoted by 
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thrombin increased IL-6 production via the PAR1 receptor/PI-PLC/PKC 

alpha/c-Src/NF-kappaB and p300 signaling pathways [292]. Therefore, Src inhibitors 

may have some effects against arthritis via interference with some of these processes. 

Moreover, several other kinases have been implicated in arthritis. An Abl inhibitor 

Gleevec has been reported to be effective in treatment of arthritis, which is probably 

due to its inhibition of other related kinases such as c-kit and PDGFR [293]. 

EGFR-like receptor stimulates synovial cells and its elevated activities may be 

involved in the pathogenesis of rheumatoid arthritis [294]. VEGF has been related to 

such autoimmune diseases as systemic lupus erythematosus, rheumatoid arthritis, and 

multiple sclerosis [295]. FGFR may partly mediates osteoarthritis [296]. PDGF-like 

factors stimulates the proliferative and invasive phenotype of rheumatoid arthritis 

synovial connective tissue cells [297]. Lck inhibition leads to immunosuppression and 

has been explored for the treatment of rheumatoid arthritis and asthma [298]. 

Therefore, some of the SVM virtual-hits in the antiarthritic class may be inhibitors of 

these kinases or their kinase-likes capable of producing antiarthritic activities.  

 

Moreover, 83 (5.5%), 76 (5.1%), 55 (3.7%) and 49 (3.3%) of the SVM virtual hits are 

in the antiallergic/antiasthmatic, antihypertensive, osteoporosis treatment and 

antidepressant classes respectively. Src or Src family kinases have been implicated in 

and the respective inhibitors have shown observable effects against these diseases. For 
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instance, Src family kinases and lipid mediators have been found to partly control 

allergic inflammation [299]. Inhibition of Src family kinase-dependent signaling 

cascades in mast cells may exert anti-allergic activity [300]. Up-regulation of Src 

signaling has been suggested to be important in the profibrotic and proinflammatory 

actions of aldosterone in a genetic model of hypertension, which can be significantly 

reduced by mineralocorticoid receptor blocker and Src inhibitor [301]. Src signalling 

pathways play critical roles in osteoclasts and osteoblasts, and Src inhibitors have 

been developed as therapeutic agents for bone diseases [302, 303]. Src-family protein 

tyrosine kinases negatively regulate cerebellar long-term depression, which can be 

recovered by the application of Src-family protein tyrosine kinase inhibitors [304]. 

Therefore, some of the SVM virtual hits in these four MDDR classes may be Src 

inhibitors or Src family kinase inhibitors capable of regulating allergic inflammation, 

hypertension, osteoporosis and depression respectively. 

 

5.3.5 Comparison of virtual screening performance of SVM with 

those of other vrtual screening methods 

To evaluate the level of performance of SVM and whether the performance is due to 

the SVM classification models or to the molecular descriptors used, SVM results were 

compared with those of three other VS methods based on the same molecular 

descriptors, training dataset of Src inhibitors reported before 2011, and the testing 
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dataset of Src inhibitors reported since 2011 and 168K MDDR compounds. The three 

other VS methods include two similarity-based methods, Tanimoto-based similarity 

searching and kNN methods, and an alternative machine learning method PNN. As 

shown in Table 5-6, the yield and maximum possible false-hit rate of the 

Tanimoto-based similarity searching, kNN and PNN methods are 36.84%  and 

5.54%, 38.64% and 2.49%, and 50.00% and 2.60% respectively. Compared to these 

results, the yield of SVM is better than these similarity-based VS method, and the 

false-hit rate of SVM is significantly reduced by 6.22, 2.80, and 2.92 fold 

respectively. These suggests that SVM performance is due primarily to the SVM 

classification models rather than the molecular descriptors used, and SVM is capable 

of achieving comparable yield at substantially reduced false-hit rate as compared to 

both similarity-based approach and alternative machine learning method. Our results 

are consistent with the report that SVM shows mostly good performances both on 

classification and regression tasks, but other classification and regression methods 

proved to be very competitive [271]. 
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Table 5-6 Comparison of virtual screening performance of SVM with those of other methods 

Method Inhibitors in Training Set Inhibitors in Testing Set Virtual Screening Performance  

 No of 
Inhibitors 

No of 
Chemical 
Families 
Covered by 
Inhibitors 

No of 
Inhibitors  

No of 
Chemical 
Families 
Covered by 
Inhibitors 

Percent of 
Inhibitors in 
Chemical 
Families 
Covered by 
Inhibitors in 
Training Set 

Yield  No and Percent 
of Identified  
True Inhibitors 
Outside Training 
Chemical 
Families 

No and Percent of 
the 168K MDDR 
Compounds 
Identified as 
Inhibitors 

No and Percent of 
the 9,305 MDDR 
Compounds Similar 
to the Known 
Inhibitors Identified 
as Virtual Inhibitors 

Support Vector 

Machines 

1703 493 44 35 51.43% 

70.45% 15(34.1%) 1,496 (0.89%) 719 (7.73%) 

Tanimoto 

Similarity 
36.84% 9(20.5%) 9,305 (5.54%) 9,305 (100%) 

K Nearest 

Neighbour 
38.64% 10(22.7%) 4,182 (2.49%) 1,169 (12.57%) 

Probabilistic 

Neural Network 
50.0% 13(29.5%) 4,386 (2.60%) 1,184 (12.72%) 
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5.3.6 Does SVM select Src inhibitors or membership of compound 

families? 

To further evaluate whether SVM identifies Src inhibitors rather than membership of 

certain compound families, compound family distribution of the identified Src 

inhibitors and non-inhibitors were analyzed. 34.1% of the identified inhibitors belong 

to the families that contain no known Src inhibitors. For those families that contain at 

least one known Src inhibitor, >70% of the compounds (>90% in majority cases) in 

each of these families were predicted as non-inhibitor by SVM. These results suggest 

that SVM identify Src inhibitors rather than membership to certain compound 

families. Some of the identified inhibitors not in the family of known inhibitors may 

serve as potential “novel” Src inhibitors. Therefore, as in the case shown by earlier 

studies [114], SVM has certain capacity for identifying novel active compounds from 

sparse as well as regular-sized active datasets. 

 

5.4 Conclusions 

Our study suggested that SVM is capable of identifying Src inhibitors at comparable 

yield and in many cases substantially lower false-hit rate than those of typical VS 

tools reported in the literatures. It can be used for searching large compound libraries 

at sizes comparable to the 13.56M PubChem and 168K MDDR compounds at low 

false-hit rates. The performance of SVM is substantially improved against several 
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other VS method based on the same datasets and molecular descriptors, suggesting 

that the VS performance of SVM is primarily due to SVM classification models rather 

than the molecular descriptors used. Three SVM virtual hits of the same novel 

scaffold were experimentally tested, one of which showed moderate Src inhibition 

rate. Because of its high computing speed and generalization capability for covering 

highly diverse spectrum compounds, SVM can be potentially explored to develop 

useful VS tools to complement other VS methods or to be used as part of integrated 

VS tools in facilitating the discovery of Src inhibitors and other active compounds 

[305-307]. 
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Chapter 6 Support vector machines virtual screening of 

VEGFR-2 Inhibitors from large compound libraries: model 

development and experimental test 

 

6.1 Background 

VEGFR regulates angiogenesis, growth, migration and survival [308]. There are 3 main 

VEGFR subtypes, VEGFR-2 mediates almost all of the known cellular responses to VEGF, 

VEGFR-1 modulates VEGFR-2 signaling and acts as a dummy/decoy receptor, and 

VEGFR-3 mediates lymphangiogenesis in response to VEGF-C and VEGF-D [308]. 

VEGFR inhibitors have been successfully used for cancer treatments [261, 309]. While 

increasing number of VEGFR inhibitors have been developed and tested, several problems 

limit the scope of their practical applications. These problems include increased toxicity 

partly due to the targeting of multiple kinases, acquired resistances, and reduced tumor 

responses (VEGFR inhibitors can cause extensive tumor necrosis without a marked 

decrease in tumor size) [310]. Moreover, on-target toxicity against specific VEGFR 

subtypes in various tissues is also a significant problem for the applications of VEGFR 

inhibitors [311]. The successes of VEGFR inhibitors and the encountered problems have 

led to further efforts for discovering new inhibitors [261, 309]. 

 

In-silico methods such as pharmacophore [312], QSAR [313-315], fragment-based method 

[316], molecular docking [317, 318], and their combinations [312, 315] have been used for 

facilitating the search and design of VEGFR inhibitors, which have shown impressive 
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capability in the identification of potential VEGFR inhibitors, but their applications may be 

affected by such problems as the vastness and sparse nature of chemical space needing to 

be searched, complexity and flexibility of target structures, difficulties in accurately 

estimating binding affinity and solvation effects on molecular binding, and limited 

representativeness of training active compounds [69, 269, 270]. Therefore, it is desirable to 

explore other in-silico methods that complement these methods by expanded coverage of 

chemical space, increased screening speed, and reduced false-hit rates without necessarily 

relying on the modelling of target structural flexibility, binding affinity and salvation 

effects.  

 

Support vector machines (SVM) has been explored as such a VS method capable of 

producing high yields and low false-hit rates in searching active agents of single and 

multiple mechanisms from large compound libraries [319] and in identifying active agents 

of diverse structures [171-174, 319]. Good VS performance can also be achieved by SVM 

trained from sparsely distributed active compounds [252]. SVM classifies active 

compounds based on the separation of active and inactive compounds in a hyperspace 

constructed by their physicochemical properties rather than structural similarity to active 

compounds per se, which has the advantage of not necessarily relying on the modeling of 

target structural flexibility and the computation of activity-related features, binding affinity 

and solvation effects. Moreover, the fast speed of SVM enables efficient search of vast 

chemical space. Therefore, SVM may be a potentially useful VS tool to complement other 

in-silico methods for searching VEGFR inhibitors from large libraries. 
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In this work, SVM was tested for its capability in searching VEGFR-2 inhibitors from large 

compound libraries. Our focus on inhibitors of VEGFR-2 subtype was based on the 

availability of reported inhibitors of the subtype and the consideration that VEGFR-2 

mediates almost all of the known cellular responses to VEGF [308]. The performance of 

SVM was evaluated by both 5-fold cross validation test and large database screening test. 

In 5-fold cross validation test, VEGFR-2 inhibitors and non-inhibitors was randomly 

divided into 5 groups of approximately equal size, with 4 groups used for training a SVM 

VS tool and 1 group used for testing it, and the test process is repeated for all 5 possible 

compositions to derive an average VS performance. In large database screening test, SVM 

was developed by using VEGFR-2 inhibitors published before 2012, its yield (percent of 

known inhibitors identified as virtual-hits) was estimated by using VEGFR-2 inhibitors 

reported since 2012 and not included in the training datasets, virtual-hit rate and false-hit 

rate of the SVM in searching large libraries were evaluated by using 13.56M PubChem, and 

168K MDDR, and an additional set of 13,872 MDDR compounds similar in structural and 

physicochemical properties to the known VEGFR-2 inhibitors.  

 

Moreover, VS performance of SVM was compared to those of two similarity-based VS 

methods, Tanimoto similarity searching and k nearest neighbour (kNN), and an alternative 

but equally popularly used machine learning method, probabilistic neural network (PNN) 

method, based on the same training and testing datasets (same sets of PubChem and MDDR 

compounds) and molecular descriptors. In a study that compares the performance of SVM 

to 16 classification methods and 9 regression methods, it has been reported that SVMs 

shows mostly good performances both on classification and regression tasks, but other 

methods proved to be very competitive [271]. Therefore, it is useful to evaluate the VS 
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performance of SVM in searching large compound libraries by comparison with those of 

both similarity-based approaches and other typical machine learning method. 

 

Databases such as PubChem and MDDR contain high percentages of inactive compounds 

significantly different from VEGFR-2 inhibitors, and the easily distinguishable features 

may make VS enrichments artificially good [272]. Therefore, VS performance may be 

more strictly tested by using subsets of compounds that resemble the physicochemical 

properties of the known VEGFR-2 inhibitors so that enrichment is not simply a separation 

of trivial physicochemical features [186]. To further evaluate whether SVM predict 

VEGFR-2 inhibitors and non-inhibitors rather than membership of certain compound 

families, distribution of the predicted active and inactive compounds in the compound 

families were analyzed. Moreover, VS performance of SVM for screening MDDR 

compounds was compared with that of Tanimoto similarity search method on the same 

molecular descriptors, training dataset to determine whether the performance of SVM is 

due to the SVM classification models or to the molecular descriptors used. 

 

6.2 Materials and methods 

6.2.1 Compound collections and construction of training and testing 

datasets 

Using the inhibitor selection criterion of IC50<10µM, which covers most of the reported 

HTS and VS hits [278, 279], we collected 3,653 VEGFR-2 inhibitors regardless of their 

activities against other VEGFR subtypes from the literature reported before 2012 [319-334] 

and the BindingDB database [161]. The structures of representative VEGFR-2 inhibitors 
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are shown in Figure 6-1. As few non-inhibitors have been reported, putative non-inhibitors 

were generated by using our method for generating putative inactive compounds [246, 

252]. This method requires no knowledge of known inactive compounds and active 

compounds of other target classes, which enables more expanded coverage of the 

“non-inhibitor” chemical space. Although the yet-to-be-discovered inhibitors are likely 

distributed in some of these “non-inhibitor” families, a substantial percentage of these 

inhibitors are expected to be identified as inhibitors rather than non-inhibitors even-though 

representatives of their families are putatively assigned as non-inhibitors [246]. 13.56M 

PubChem and 168K MDDR compounds were grouped into 8,423 compound families by 

clustering them in the chemical space defined by their molecular descriptors [193, 194]. 

The number of generated families is consistent with the 12,800 compound-occupying 

neurons (regions of topologically close structures) for 26.4 million compounds of up to 11 

atoms [65], and the 2,851 clusters for 171,045 natural products [196].  
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Figure 6-1 The structures of representative VEGFR-2 inhibitors. Compound 1: Sunitinib,IC50=0.009µm,; 
Compound 2:IC50=0.032µm [335]; Compound 3:Vatalanb (PTK787), IC50=0.037µm; Compound 4: 
IC50=0.012µm [336]; Compound 5: IC50=0.004 µm [337]; Compound 6:IC50=0.111µm[338]. 
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Our collected VEGFR-2 inhibitors are distributed in 845 families. Because of the extensive 

efforts in searching kinase inhibitors from known compound libraries, the number of 

undiscovered VEGFR-2 inhibitor families in PubChem and MDDR databases is expected 

to be relatively small, most likely no more than several hundred families. The ratio of the 

discovered and undiscovered inhibitor families (hundreds) and the families that contain no 

known inhibitor of each kinase (8,423 based on the current versions of PubChem and 

MDDR) is expected to be <15%. Therefore, putative non-inhibitor training dataset can be 

generated by extracting a few representative compounds from each of those families that 

contain no known inhibitor, with a maximum possible “wrong” classification rate of <15% 

even when all of the undiscovered inhibitors are misplaced into the non-inhibitor class. The 

noise level generated by up to 15% “wrong” negative family representation is expected to 

be substantially smaller than the maximum 50% false-negative noise level tolerated by 

SVM [172]. Based on earlier studies [246, 252] and this work, it is expected that a 

substantial percentage of the un-discovered inhibitors in the putative “non-inhibitor” 

families can be classified as inhibitor despite their family representatives are placed into the 

non-inhibitor training sets.  

 

In conducting large database screening test, 3,653 VEGFR-2 inhibitors reported before 

2012 were used as a training dataset for developing SVM and 92 VEGFR-2 inhibitors 

reported since 2012 [339-345] were used as an independent testing dataset for testing SVM. 

Only 28.57% of the families that contain VEGFR-2 inhibitors reported since 2012 are 

covered in the families that contain at least one VEGFR-2 inhibitor reported before 2012, 

and the representative compounds of these families, none of which happen to be VEGFR-2 

inhibitor, were deliberately placed into the inactive training sets because the inhibitors in 
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these families are not supposed to be known in our study. As shown in earlier studies [246, 

252] and in this work, a substantial percentage of the inhibitors in these misplaced 

inhibitor-containing “non-inhibitor” families were predicted as inhibitors by SVM. 

Moreover, a small percentage of the compounds in these putative non-inhibitor datasets are 

expected to be un-reported and un-discovered inhibitors, their presence in these datasets is 

not expected to significantly affect the estimated false hit rate of SVM.  

 

 

6.3 Results and Discussion 

6.3.1 VEGFR-2 Inhibitor prediction Performance of SVM, kNN and 

PNN evaluated by 5-fold cross validation test 

Table 6-1, 6-2 and 6-3 give the 5-fold cross validation test results of SVM, kNN and PNN 

models in identifying VEGFR-2 inhibitors and non-inhibitors. Figure 6-2 shows 5-fold 

cross validation performance for identifying VEGFR-2 inhibitors across methods with the 

averaged sensitivity together with their respective error bars. Overall, the sensitivity of 

SVM, kNN and PNN is in the range of 93.98%~95.89%, 88.10%~90.00% and 

91.79%~93.01%, the specificity in the range of 99.53%~99.70%, 98.65%~98.72% and 

97.81%~98.01%, and overall accuracy Q in the range of 99.24%~99.45%, 98.10%~98.27% 

and 97.53%~97.69% respectively. The inhibitor accuracies of our SVM are comparable to 

or better than the reported accuracies of 58.3%~67.3% for protein kinase C inhibitors by 

SVM-RBF and CKD methods [192], 83% for Lck inhibitors by SVM method [289], and 

74%~87% for inhibitors of any of the 8 kinases (3 Ser/Thr and 5 Tyr kinases) by SVM, 

ANN, GA/kNN, and RP methods [290]. The non-inhibitor accuracies are comparable to the 
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value of 99.9% for Lck inhibitors [289] and substantially better than the typical values of 

77%~96% of other studies [192, 290]. These are consistent with the result of a study of the 

comparison of SVM with 16 classification methods and 9 regression methods, which has 

shown that SVMs showed mostly good performances both on classification and regression 

tasks but other methods proved to be very competitive [346]. Caution needs to be raised 

about straightforward comparison of these results, which might be misleading because the 

outcome of VS strongly depends on the datasets and molecular descriptors used. Based on 

these rough comparisons, SVM appears to show good prediction capability in identifying 

VEGFR-2 inhibitors at low false-hit rates. Similar prediction accuracies are also found 

from two additional 5-fold cross validation studies conducted by using training-testing sets 

separately generated from different random number seed parameters. 
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Table 6-1 Performance of SVM for identifying VEGFR-2 inhibitors and non-inhibitors evaluated by 5-fold 
cross validation study 
Cross 

-Validation 

VEGFR-2 inhibitors VEGFR-2 non-inhibitors   

Q  

 

 C 

No of 

training/ 

testing 

inhibitors 

TP FN SEN No of 

training/ 

testing 

non-inhibitors 

TN FP SP   

1 2922/731 692 39 94.66% 53585/13397 13335 62 99.54% 99.29% 0.928 

2 2922/731 687 44 93.98% 53585/13397 13334 63 99.53% 99.24% 0.924 

3 2922/731 694 37 94.94% 53586/13396 13356 40 99.70% 99.45% 0.945 

4 2923/730 689 41 94.38% 53586/13396 13349 47 99.65% 99.38% 0.937 

5 2923/730 700 30 95.89% 53586/13396 13343 53 99.60% 99.41% 0.941 

Average    94.77%    99.60% 99.35% 0.935 

Std Dev    0.0072    0.0007 0.0009 0.009 

Std Err    0.0032    0.0003 0.0004 0.004 
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Table 6-2 Performance of kNN for identifying VEGFR-2 inhibitors and non-inhibitors evaluated by 5-fold 
cross validation study. 

Cross 

-Validation 

VEGFR-2 inhibitors VEGFR-2 non-inhibitors 
 

Q  

 

C 

No of 

training/ 

testing 

inhibitors 

TP FN SEN 

No of 

training/ 

testing 

non-inhibitors 

TN FP SP   

1 2922/731 644 87 88.10% 53585/13397 13216 181 98.65% 98.10% 0.819 

2 2922/731 644 87 88.10% 53585/13397 13216 181 98.65% 98.10% 0.819 

3 2922/731 646 85 88.37% 53586/13396 13218 178 98.67% 98.14% 0.823 

4 2923/730 657 73 90.00% 53586/13396 13224 172 98.72% 98.27% 0.836 

5 2923/730 646 84 88.49% 53586/13396 13217 179 98.66% 98.14% 0.823 

Average    88.61%    98.67% 98.15% 0.824 

Std Dev    0.0079    0.0003 0.0007 0.007 

Std Err    0.0036    0.0001 0.0003 0.003 
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Table 6-3 Performance of PNN for identifying VEGFR-2 inhibitors and non-inhibitors evaluated by 5-fold 
cross validation study. 

Cross 

-Validation 

VEGFR-2 inhibitors VEGFR-2 non-inhibitors 
 

Q  

 

C 

No of 

training/ 

testing 

inhibitors 

TP FN SEN 

No of 

training/ 

testing 

non-inhibitors 

TN FP SP   

1 2922/731 671 60 91.79% 53585/13397 13131 266 98.01% 97.69% 0.799 

2 2922/731 676 55 92.48% 53585/13397 13110 287 97.86% 97.58% 0.794 

3 2922/731 675 56 92.34% 53586/13396 13117 279 97.92% 97.63% 0.797 

4 2923/730 675 55 92.47% 53586/13396 13102 294 97.81% 97.53% 0.791 

5 2923/730 679 51 93.01% 53586/13396 13110 286 97.87% 97.61% 0.797 

Average    92.42%    97.89% 97.61% 0.796 

Std Dev    0.0044    0.0008 0.0006 0.003 

Std Err    0.0019    0.0004 0.0003 0.002 
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Figure 6-2 Performance for identifying VEGFR-2 inhibitors evaluated by 5-fold cross validation study 
across methods. This figure is illustrating the 5-fold cross validation studies of VEGFR-2 inhibitors 
across methods with the averaged sensitivity together with their respective error bars. 

 

 

6.3.2 Virtual screening performance of SVM in searching 

VEGFR-2 inhibitors from large compound libraries  

A SVM in searching VEGFR-2 inhibitors from large libraries was developed by using 

VEGFR-2 inhibitors reported before 2012. The VS performance of this SVM in 

identifying VEGFR-2 inhibitors reported since 2012 and in searching MDDR and 

PubChem databases is summarised in Table 6-4. The yield in searching VEGFR-2 

inhibitors reported since 2012 is 85.87%, which is comparable to the reported 
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50%~94% yields of various VS tools [291]. Strictly speaking, direct comparison of 

the reported performances of these VS tools is inappropriate because of the 

differences in the type, composition and diversity of compounds screened, and in the 

molecular descriptors, VS tools and their parameters used. The comparison cannot go 

beyond the statistics of accuracies as the reports are not detailed enough to address 

questions of whether all methods detect the same hit.  

 

Table 6-4 Virtual screening performance of support vector machines for identifying VEGFR-2 
inhibitors from large compound libraries 

Inhibitors in Training 

Dataset 

No of Inhibitors 3653 

No of Chemical Families Covered by Inhibitors 845 

Inhibitors in Testing 

Dataset 

No of Inhibitors 92 

No of Chemical Families Covered by Inhibitors 35 

Percent of Inhibitors in Chemical Families Covered by 

Inhibitors in Training Set 

56.52% 

Virtual Screening 

Performance 

Yield 85.87% 

No and Percent of Identified True Inhibitors Outside 

Training Chemical Families 

31 (39.24%) 

No and Percent of 13.56M PubChemCompounds Identified 

as Inhibitors 

31,624 

(0.23%) 
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No and Percent of the 168K MDDR Compounds Identified 

as Inhibitors 

2,717 (1.62%) 

No and Percent of the 13,872 MDDR Compounds Similar 

to the Known Inhibitors Identified as Inhibitors 

1,714 

(12.36%) 

Virtual-hit rates and false-hit rates of SVM in screening compounds that resemble the 

structural and physicochemical properties of the VEGFR-2 inhibitors were evaluated 

by using 13,872 MDDR compounds similar to a VEGFR-2 inhibitor in the training 

dataset. Similarity was defined by Tanimoto similarity coefficient ≥0.9 between a 

MDDR compound and its closest dual-inhibitor [252]. This stricter similarity metric 

was used for conducting a stricter test of our SVM model. SVM identified 1,714 

virtual-hits from these 13,872 MDDR similarity compounds (virtual-hit rate 12.36%), 

which suggests that SVM has some level of capability in distinguishing VEGFR-2 

inhibitors from similarity non-inhibitors. Significantly lower virtual-hit rates and thus 

false-hit rates were found in screening large libraries of 168K MDDR and 13.56M 

PubChem compounds. The numbers of virtual-hits and virtual-hit rates in screening 

168K MDDR compounds are 2,717 and 1.62% respectively. The numbers of 

virtual-hits and virtual-hit rates in screening 13.56M PubChem compounds are 31,624 

and 0.23% respectively.  
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Many of the 2,717 MDDR virtual-hits belong to the classes of antineoplastic (45.3%), 

tyrosine-specific protein kinase inhibitor (12.7%), signal transduction inhibitor 

(12.7%), antiarthritic (11.0%), and antiangiogenic (9.3%), antihypertensive (5.1%), 

antiallergic/antiasthmatic (4.3%), and antidepressant (3.4%) (Table 6-5, details in 

next section). As some of these virtual-hits may be true VEGFR inhibitors, the 

false-hit rate of our SVM is at most equal to and likely less than the virtual-hit rate. 

Hence the false-hit rate is ≤12.36% in screening 13,872 MDDR similarity 

compounds, ≤1.62% in screening 168K MDDR compounds, and ≤0.23% in screening 

13.56M PubChem compounds, which are comparable and in some cases better than 

the reported false-hit rates of 0.0054%~8.3% of SVM [246, 252], 0.08%~3% of 

structure-based methods, 0.1%~5% by other machine learning methods, 0.16%~8.2% 

by clustering methods, and 1.15%~26% by pharmacophore models [291]. 

 

6.3.3 Experimental test of a SVM identified virtual-hit 

Three virtual hits of the same novel scaffold from in-house libraries not found in the 

known the VEGFR-2 inhibitor were evaluated for inhibitory activity against 

VEGFR-2. VEGFR-2 kinase was incubated with substrates, compounds and ATP in a 

final buffer of 25mM HEPES (pH 7.4), 10mM MgCl2, 0.01% Triton X-100, 

100µg/mL BSA, 2.5mM DTT in 384-well plate with the total volume of 10µl. The 



 

136 
 

assay plate was incubated at 30℃ for 1h and stopped with the addition of equal 

volume of kinase glo plus reagent. The luminescence was read at envision. The signal 

was correlated with the amount of ATP present in the reaction and was inversely 

correlated with the kinase activity. One of three virtual hits shown in Figure 6-3 was 

found to inhibit VEGFR-2 at a moderate rate of 4.54% at 20µM. 

 

 
 

 
Figure 6-3 The structure of a SVM virtual hit tested to show moderate VEGFR-2 inhibitory activity. 

 

6.3.4 Evaluation of SVM identified MDDR virtual-hits 

SVM identified MDDR virtual-hits were evaluated based on the known biological or 

therapeutic target classes specified in MDDR. Table 6-5 gives the MDDR classes that 

contain higher percentage (≥3%) of SVM virtual-hits and the percentage values. We 

found that 1,230 or 45.3% of the 2,717 virtual-hits belong to the antineoplastic class, 

which represent 5.7% of the 21,557 MDDR compounds in the class. In particular, 346 

or 12.7% of the virtual-hits belong to the tyrosine-specific protein kinase inhibitor 
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class, which represent 29.3% of the 1,181 MDDR compounds in the class. Moreover, 

12.7% and 9.4% of the virtual-hits belong to the signal transduction inhibitor and 

antiangiogenic classes, representing 16.9% and 15.7% of the 2,037 and 1,629 

members in the two classes respectively. Therefore, many of the SVM virtual-hits are 

antineoplastic compounds that inhibit tyrosine kinases and possibly other kinases 

involved in signal transduction, angiogenesis and other cancer-related pathways. 

Some of these SVM selected kinase inhibitors might have VEGFR inhibitory 

activities, and others were expectedly selected due to false selection of inhibitors of 

other kinases (at ≤1.62%~12.36% false-hit rates).  

 

Table 6-5 MDDR classes that contain higher percentage (≥3%) of SVM virtual -hits and the percentage 
values. Virtual-hits are identified by SVMs in screening 168K MDDR compounds for VEGFR-2 
inhibitors. The total number of SVM identified virtual hits is 2,717. 

 

MDDR Classes that Contain Higher Percentage 

(>3%) of Virtual Hits  

No and Percentage of 

Virtual Hits in Class  

Percentage of Class 

Members Selected as 

Virtual Hits 

Antineoplastic 1230 (45.3%) 5.7% 

Tyrosine-Specific Protein Kinase Inhibitor 346 (12.7%) 29.3% 

Signal Transduction Inhibitor 345 (12.7%) 16.9% 

Antiarthritic 300 (11.0%) 2.6% 
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Antiangiogenic 256 (9.3%) 15.7% 

Antihypertensive 139 (5.1%) 1.3% 

Antiallergic/Antiasthmatic 118 (4.3%) 1.1% 

Antidepressant 93 (3.4%) 1.5% 

 

Substantial percentages of the SVM virtual-hits belong to the antiarthritic (11.0%), 

antihypertensive (5.1%), and antiallergic/antiasthmatic (4.3%) therapeutic classes. 

Some VEGFR inhibitors have been reported to show respective therapeutic effects. 

VEGF has been related to such autoimmune diseases as systemic lupus 

erythematosus, rheumatoid arthritis, and multiple sclerosis [295]. Both VEGFR-1 and 

VEGFR-2 are expressed in human osteoarthritic cartilage [347]. VEGFR-2 and 

VEGFR-3 are present in most of the sublining blood vessels in arthritic synovium 

[348]. A VEGFR-2 inhibitor, PTK787/ZK222584, has been reported to cause 

significant anti-arthritic effects in models of rheumatoid arthritis via anti-angiogenic 

actions [349]. Hypertension is characterized by the development of a hyperdynamic 

circulation which can be markedly inhibited by EGFR-2 inhibitor (e.g. SU5416) 

blockade of the VEGF signaling pathway, leading to the consideration of modulation 

of angiogenesis for the treatment of hypertension [350]. VEGFR-2 and VEGFR-1 

have been shown to be involved in the pathogenesis of the contact hypersensitivity 

reaction, and both the induction and elicitation phases of contact hypersensitivity can 
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be inhibited by VEGFR inhibitor PTK787/ZK 222584 [351]. Therefore, some of the 

SVM virtual-hits in the antiarthritic, antihypertensive, and antiallergic/antiasthmatic 

classes may be VEGFR inhibitors capable of producing the respective therapeutic 

effects.  

 

Moreover, 93 (3.4%) of the SVM virtual hits are in the antidepressant class. It has 

been reported that depressive episodes in the context of borderline personality 

disorder may be accompanied by increased serum concentrations of VEGF and FGF-2 

[352]. VEGF has been implicated in neuronal survival, neuroprotection, regeneration, 

growth, differentiation, and axonal outgrowth, which is involved in the 

pathophysiology of major depressive disorder and the higher expression levels of 

VEGF in the peripheral leukocytes are associated with the depressive state [353]. 

Therefore, there is a possibility that inhibition of VEGFR signalling may have some 

level of antidepressant effect or act as enhancer of other antidepressant agents [354], 

and some of the SVM virtual hits in the antidepressant class may be possible VEGFR 

inhibitors that partly explain their antidepressant activities.  
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6.3.5 Comparison of virtual screening performance of SVM with 

tanimoto-based similarity searching method 

To evaluate whether the performance of SVM is due to the SVM classification 

models or to the molecular descriptors used, SVM results were compared with those 

of three other VS methods based on the same molecular descriptors, training dataset 

of VEGFR-2 inhibitors reported before 2012, and the testing dataset of VEGFR-2 

inhibitors reported since 2012 and 168K MDDR compounds. The three other VS 

methods include two similarity-based methods, Tanimoto-based similarity searching 

and kNN methods, and an alternative machine learning method PNN. As shown in 

Table 6-6, the yield and maximum possible false-hit rate of the Tanimoto-based 

similarity searching, kNN and PNN methods are 73.91% and 8.26%, 54.35% and 

2.48% , and 54.35%  and 3.30% respectively. 

 

Compared to these results, the yield of SVM is significantly improved and the 

false-hit rate of SVM is substantially reduced. This suggests that SVM performance is 

due primarily to the SVM classification models rather than the molecular descriptors 

used, and SVM is capable of achieving comparable yield at substantially reduced 

false-hit rate as compared to both similarity-based approach and alternative machine 

learning method. 
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Table 6-6 Comparison of virtual screening performance of SVM with those of other methods 
 
Method Inhibitors in Training Set Inhibitors in Testing Set Virtual Screening Performance  
 No of 

Inhibitors 
No of 
Chemical 
Families 
Covered by 
Inhibitors 

No of 
Inhibitors  

No of 
Chemical 
Families 
Covered by 
Inhibitors 

Percent of 
Inhibitors in 
Chemical 
Families 
Covered by 
Inhibitors in 
Training Set 

Yield  No and Percent 
of Identified  
True Inhibitors 
Outside Training 
Chemical 
Families 

No and Percent of 
the 168K MDDR 
Compounds 
Identified as 
Inhibitors 

No and Percent of 
the 13,872MDDR 
Compounds Similar 
to the Known 
Inhibitors Identified 
as Virtual Inhibitors 

Support Vector 

Machines 

3653 845 92 35 56.52% 

85.87% 31 (39.24%) 2,717 (1.62%) 1,714 (12.36%) 

Tanimoto 

Similarity 
73.91% 32 (47.06%) 13,872 (8.26%) 13,872 (100%) 

K Nearest 

Neighbour 
54.35% 12 (24.00%) 4164 (2.48%) 2,689 (19.38%) 

Probabilistic 

Neural Network 
54.35% 12 (24.00%) 5552 (3.30%) 2738 (19.74%) 
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6.3.6 Does SVM select VEGFR inhibitors or membership of 

compound families? 

To further evaluate whether SVM identifies VEGFR-2 inhibitors rather than 

membership of certain compound families, Compound family distribution of the 

identified VEGFR-2 inhibitors and non-inhibitors were analyzed. A total of 39.24% 

of the identified VEGFR-2 inhibitors belong to the families that contain no known 

VEGFR-2 inhibitors. For those families that contain at least one known inhibitor, 

>70% of the compounds (>90% in majority cases) in each of these families were 

predicted as non-inhibitor by SVM. These results suggest that SVM identifies 

VEGFR-2 inhibitors rather than membership to certain compound families. Some of 

the identified inhibitors not in the family of known inhibitors may serve as potential 

“novel” VEGFR-2 inhibitors. Therefore, as in the case shown by earlier studies [319], 

SVM has certain capacity for identifying novel active compounds from sparse as well 

as regular-sized active datasets. 

 

6.4 Concluding remarks 

By using training dataset of more diverse spectrum of inactive compounds as well as 

substantial number of literature-reported VEGFR-2 inhibitors, SVM shows substantial 

capability in identifying VEGFR-2 inhibitors at comparable yield and in many cases 
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substantially lower false-hit rate than those of typical VS tools reported in the 

literatures. It is capable of searching large compound libraries at sizes comparable to 

the 13.56M PubChem and 168K MDDR compounds at low false-hit rates. The 

performance of SVM is significantly better than that of Tanimoto-based similarity 

search method based on the same datasets and molecular descriptors, suggesting that 

the VS performance of SVM is primarily due to SVM classification models rather 

than the molecular descriptors used. Because of their high computing speed and 

generalization capability for covering highly diverse spectrum compounds, SVM can 

be potentially explored to develop useful VS tools to complement other VS methods 

or to be used as part of integrated VS tools in facilitating the discovery of VEGFR 

inhibitors and other active compounds [305-307].  
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Chapter 7 Concluding remarks  

7.1 Major findings and merits 

7.1.1 Merits of the development of MicrobPad MD: microbial 

pathogen diagnostic methods database 

In this work, we developed the microbial pathogen diagnostic methods database 

MicrobPad to provide comprehensive information about the molecular diagnostic 

techniques, targets, primers/probes, detection procedures and conditions, and tested 

diagnostic accuracies and limit of diagnosis for 314 bacterial, fungal and viral species 

from 61 genera. While available, additional information such as pathogen strains and 

hosts, tissue distribution or habitats, cultivation methods, biochemical characteristics, 

virulence factors, morphology, diseases, symptoms, treatment and prevention methods 

are provided. Our Database covers 242 gene targets, 700 primers/ probes, 340 

virulence factors, and 261 diseases. Cross-links to the NCBI genome and 

SwissProt/UniProt databases are provided. This work can facilitate accurate, sensitive 

and low-cost diagnosis of medical pathogens and also boost the development of 

diagnosis devices of comprehensive coverage of medical pathogens. 
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7.1.2 Merits of the updates of TTD in facilitating multi-target drug 

discovery 

TTD providing pharmaceutical information on therapeutic target is a reliable 

knowledge hub for established therapeutic target since it is developed. However, the 

profile of drugs under clinical developing keeps changing in the past decade, and 

many new drugs have been approved for acting on some new targets. Moreover, many 

drugs in previous TTD did not indicate their primary target, and there is no 

information of drugs in clinical trial provided. TTD 2010 update takes these 

challenges and tries to offer a most comprehensive map of drug targets for the modern 

pharmaceutical era. In this updated version, TTD significantly expanding target data 

to 348 successful, 292 clinical trial, and 1,254 research targets, and 560 diseases, and 

added drug data for 1,514 approved, 1,212 clinical trial and 2,302 experimental drugs 

linked to their primary targets (3382 small molecule and 649 antisense drugs with 

available structure and sequence). Other features which add additional credits to TTD 

2010 include: (1) collection of information of antisense, aptamer and siRNA based 

drugs; (2) allowance of customized target search by disease indications, target 

biochemical classes, drug mode of actions, drug therapeutic classes, and so on; (3) 

allowance of target search by BLAST; (4) allowance of drug search by tanimoto 

similarity; and (5) user friendly interface and full data download. Comprehensive data 
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integrated, primary targets identified, detail clinical trial stage for both drugs and 

targets labeled, and functional features added guarantee this version of TTD a reliable, 

informative, useful, multifunctional and convenient source of drug target information. 

7.1.3 Merits of virtual screening model for Src inhibitors 

We evaluated support vector machines (SVM) as virtual screening tools for searching 

Src inhibitors from large compound libraries. SVM trained and tested by 1,703 

inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% 

inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. 

SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative 

non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, 

and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 

168K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known 

inhibitors. We also compared SVM models with other machine learning methods 

including kNN, PNN and Tanimoto similarity searching method with the same 

dataset. SVM showed comparable yield and reduced false hit rates in searching large 

compound libraries compared to the similarity-based and other machine-learning VS 

methods developed from the same set of training compounds and molecular 

descriptors. We tested three virtual hits of the same novel scaffold from in-house 

chemical libraries not reported as Src inhibitor, one of which showed moderate 
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activity. SVM may be potentially explored for searching Src inhibitors from large 

compound libraries at low false-hit rates. 

 

7.1.4 Merits of virtual screening model for VEGFR-2 inhibitors 

Approach for identification of VEGFR-2 inhibitors from large compound libraries by 

SVM virtual screening model was constructed. SVM trained and tested by 3,653 

inhibitors and 66,982 putative non-inhibitors correctly identified 93.98%~95.89% 

inhibitors and 99.53%~99.70% non-inhibitors in 5-fold cross validation studies. SVM 

trained by 3,653 inhibitors reported before 2012 and 66,982 putative non-inhibitors 

correctly identified 85.87% of the 92 inhibitors reported since 2012, and predicted as 

inhibitors 31,624 (0.23%) of 13.56M PubChem, 2,717 (1.62%) of 168K MDDR, and 

1,714 (12.36%) of 13,872 MDDR compounds similar to the known inhibitors. Based 

on this model, one of three virtual hits was experimental found to inhibit VEGFR-2 at 

a moderate rate of 4.54% at 20µM. In summary, SVM showed substantial capability 

in searching VEGFR-2 inhibitors from large compound libraries at low false-hit rates. 

 

7.2 Limitations and suggestions for future studies 

MicrobPad MD consists of data of medical pathogens of bacterial, fungal, and viral 

species. There are innumerable medical pathogens in the nature and more and more 



 

148 
 

are recognized. The number and the diversity of species need to be expanded. New 

techniques develop quickly, more effective pipeline are needed to process increasing 

data quickly. More functions are also necessary to added such as portal of data 

transfer for further applications and utilization of controlled vocabulary space for 

large scale of data. 

 

Current TTD provides information of targets and drugs on clinical trial phase o which 

is one of most crucial characteristic. However, the clinical trial status keeps changing 

for our modern pharmacology is a dynamically moving process, it is difficult to 

update it manually. A solution to this may be to integrate automatic information 

system which helps TTD to search latest data update from reliable sources. Other 

function such as similarly, docking and QSAR model can be implemented. 

 

The compound descriptors of current SVM approach were calculated using our 

MODEL software. It provides more than 500 diverse types descriptors. However, 

these still do not cover all the important descriptors. As shown in the study of acute 

toxicity, some more important descriptors shall be included and evaluated. 

 

The generation of putative negatives was used for the machine learning methods 

application. This approach requires a classification of the chemical space which has 
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always been a difficult task in chemoinoformatics. The classification of the chemical 

space needs a clustering method, a distance matrix selection and descriptors. K-means 

clustering method was used in this work. It is not the best clustering method but is 

suitable and computable for large chemical spaces. In future studies, more advanced 

clustering algorithm can be developed for improving the accuracy of chemical space 

clustering. Additionally, the selection of correlation coefficients and other chemical 

descriptors such as fingerprint can also help the improvement. Another possible 

drawback associated with the putative negatives generation approach is the possible 

inclusion of some undiscovered active compounds in the “inactive” class. This may 

hinder the identification of novel active compounds by machine learning methods. 

However, such an adverse effect is expected to be relatively small for many biological 

target classes.  

 

There is no conclusive answer to which VS approach is the best. Both ligand based 

and structural based methods have their own advantages and drawbacks. Therefore, 

the choice of one or another depends on the specific case faced by the medicinal 

chemist. In terms of performance, ligand based methods have the advantage of better 

enrichment factors and higher speed serving and they are more efficient in removing 

non active compounds; structure based methods provide a more direct view of the 

interactions between the ligand and molecular target and it has an advantage for the 
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detecting of novel structures. The VS approaches aims to firstly include less costly 

approaches, usually ligand based VS, at the first stage and apply the most demanding 

methods, such as docking, for the last stage when the original large compound library 

has been reduced to a manageable size after the previous stage 
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Appendices 

Appendix A: The journal name list for MicrobPad database construction. 
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Appendix C: Schema of MicrobPad database. 
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