15,018 research outputs found

    BayesNAS: A Bayesian Approach for Neural Architecture Search

    Get PDF
    One-Shot Neural Architecture Search (NAS) is a promising method to significantly reduce search time without any separate training. It can be treated as a Network Compression problem on the architecture parameters from an over-parameterized network. However, there are two issues associated with most one-shot NAS methods. First, dependencies between a node and its predecessors and successors are often disregarded which result in improper treatment over zero operations. Second, architecture parameters pruning based on their magnitude is questionable. In this paper, we employ the classic Bayesian learning approach to alleviate these two issues by modeling architecture parameters using hierarchical automatic relevance determination (HARD) priors. Unlike other NAS methods, we train the over-parameterized network for only one epoch then update the architecture. Impressively, this enabled us to find the architecture on CIFAR-10 within only 0.2 GPU days using a single GPU. Competitive performance can be also achieved by transferring to ImageNet. As a byproduct, our approach can be applied directly to compress convolutional neural networks by enforcing structural sparsity which achieves extremely sparse networks without accuracy deterioration.Comment: International Conference on Machine Learning 201

    Uncertainty in phylogenetic tree estimates

    Full text link
    Estimating phylogenetic trees is an important problem in evolutionary biology, environmental policy and medicine. Although trees are estimated, their uncertainties are discarded by mathematicians working in tree space. Here we explicitly model the multivariate uncertainty of tree estimates. We consider both the cases where uncertainty information arises extrinsically (through covariate information) and intrinsically (through the tree estimates themselves). The importance of accounting for tree uncertainty in tree space is demonstrated in two case studies. In the first instance, differences between gene trees are small relative to their uncertainties, while in the second, the differences are relatively large. Our main goal is visualization of tree uncertainty, and we demonstrate advantages of our method with respect to reproducibility, speed and preservation of topological differences compared to visualization based on multidimensional scaling. The proposal highlights that phylogenetic trees are estimated in an extremely high-dimensional space, resulting in uncertainty information that cannot be discarded. Most importantly, it is a method that allows biologists to diagnose whether differences between gene trees are biologically meaningful, or due to uncertainty in estimation.Comment: Final version accepted to Journal of Computational and Graphical Statistic

    Review of Face Detection Systems Based Artificial Neural Networks Algorithms

    Get PDF
    Face detection is one of the most relevant applications of image processing and biometric systems. Artificial neural networks (ANN) have been used in the field of image processing and pattern recognition. There is lack of literature surveys which give overview about the studies and researches related to the using of ANN in face detection. Therefore, this research includes a general review of face detection studies and systems which based on different ANN approaches and algorithms. The strengths and limitations of these literature studies and systems were included also.Comment: 16 pages, 12 figures, 1 table, IJMA Journa

    A radio-polarisation and rotation measure study of the Gum Nebula and its environment

    Get PDF
    The Gum Nebula is 36 degree wide shell-like emission nebula at a distance of only 450 pc. It has been hypothesised to be an old supernova remnant, fossil HII region, wind-blown bubble, or combination of multiple objects. Here we investigate the magneto-ionic properties of the nebula using data from recent surveys: radio-continuum data from the NRAO VLA and S-band Parkes All Sky Surveys, and H-alpha data from the Southern H-Alpha Sky Survey Atlas. We model the upper part of the nebula as a spherical shell of ionised gas expanding into the ambient medium. We perform a maximum-likelihood Markov chain Monte-Carlo fit to the NVSS rotation measure data, using the H-halpha data to constrain average electron density in the shell nen_e. Assuming a latitudinal background gradient in RM we find ne=1.3βˆ’0.4+0.4cmβˆ’3n_e=1.3^{+0.4}_{-0.4} {\rm cm}^{-3}, angular radius Ο•outer=22.7βˆ’0.1+0.1deg\phi_{\rm outer}=22.7^{+0.1}_{-0.1} {\rm deg}, shell thickness dr=18.5βˆ’1.4+1.5pcdr=18.5^{+1.5}_{-1.4} {\rm pc}, ambient magnetic field strength B0=3.9βˆ’2.2+4.9ΞΌGB_0=3.9^{+4.9}_{-2.2} \mu{\rm G} and warm gas filling factor f=0.3βˆ’0.1+0.3f=0.3^{+0.3}_{-0.1}. We constrain the local, small-scale (~260 pc) pitch-angle of the ordered Galactic magnetic field to +7βˆ˜β‰²β„˜β‰²+44∘+7^{\circ}\lesssim\wp\lesssim+44^{\circ}, which represents a significant deviation from the median field orientation on kiloparsec scales (~-7.2∘^{\circ}). The moderate compression factor X=6.0\,^{+5.1}_{-2.5} at the edge of the H-alpha shell implies that the 'old supernova remnant' origin is unlikely. Our results support a model of the nebula as a HII region around a wind-blown bubble. Analysis of depolarisation in 2.3 GHz S-PASS data is consistent with this hypothesis and our best-fitting values agree well with previous studies of interstellar bubbles.Comment: 33 pages, 16 figures. Accepted by The Astrophysical Journa

    Compressing networks with super nodes

    Full text link
    Community detection is a commonly used technique for identifying groups in a network based on similarities in connectivity patterns. To facilitate community detection in large networks, we recast the network to be partitioned into a smaller network of 'super nodes', each super node comprising one or more nodes in the original network. To define the seeds of our super nodes, we apply the 'CoreHD' ranking from dismantling and decycling. We test our approach through the analysis of two common methods for community detection: modularity maximization with the Louvain algorithm and maximum likelihood optimization for fitting a stochastic block model. Our results highlight that applying community detection to the compressed network of super nodes is significantly faster while successfully producing partitions that are more aligned with the local network connectivity, more stable across multiple (stochastic) runs within and between community detection algorithms, and overlap well with the results obtained using the full network

    Compression and Conditional Emulation of Climate Model Output

    Full text link
    Numerical climate model simulations run at high spatial and temporal resolutions generate massive quantities of data. As our computing capabilities continue to increase, storing all of the data is not sustainable, and thus it is important to develop methods for representing the full datasets by smaller compressed versions. We propose a statistical compression and decompression algorithm based on storing a set of summary statistics as well as a statistical model describing the conditional distribution of the full dataset given the summary statistics. The statistical model can be used to generate realizations representing the full dataset, along with characterizations of the uncertainties in the generated data. Thus, the methods are capable of both compression and conditional emulation of the climate models. Considerable attention is paid to accurately modeling the original dataset--one year of daily mean temperature data--particularly with regard to the inherent spatial nonstationarity in global fields, and to determining the statistics to be stored, so that the variation in the original data can be closely captured, while allowing for fast decompression and conditional emulation on modest computers

    Considerate Approaches to Achieving Sufficiency for ABC model selection

    Full text link
    For nearly any challenging scientific problem evaluation of the likelihood is problematic if not impossible. Approximate Bayesian computation (ABC) allows us to employ the whole Bayesian formalism to problems where we can use simulations from a model, but cannot evaluate the likelihood directly. When summary statistics of real and simulated data are compared --- rather than the data directly --- information is lost, unless the summary statistics are sufficient. Here we employ an information-theoretical framework that can be used to construct (approximately) sufficient statistics by combining different statistics until the loss of information is minimized. Such sufficient sets of statistics are constructed for both parameter estimation and model selection problems. We apply our approach to a range of illustrative and real-world model selection problems
    • …
    corecore