For nearly any challenging scientific problem evaluation of the likelihood is
problematic if not impossible. Approximate Bayesian computation (ABC) allows us
to employ the whole Bayesian formalism to problems where we can use simulations
from a model, but cannot evaluate the likelihood directly. When summary
statistics of real and simulated data are compared --- rather than the data
directly --- information is lost, unless the summary statistics are sufficient.
Here we employ an information-theoretical framework that can be used to
construct (approximately) sufficient statistics by combining different
statistics until the loss of information is minimized. Such sufficient sets of
statistics are constructed for both parameter estimation and model selection
problems. We apply our approach to a range of illustrative and real-world model
selection problems