75,948 research outputs found

    Internet data packet transport: from global topology to local queueing dynamics

    Get PDF
    We study structural feature and evolution of the Internet at the autonomous systems level. Extracting relevant parameters for the growth dynamics of the Internet topology, we construct a toy model for the Internet evolution, which includes the ingredients of multiplicative stochastic evolution of nodes and edges and adaptive rewiring of edges. The model reproduces successfully structural features of the Internet at a fundamental level. We also introduce a quantity called the load as the capacity of node needed for handling the communication traffic and study its time-dependent behavior at the hubs across years. The load at hub increases with network size NN as N1.8\sim N^{1.8}. Finally, we study data packet traffic in the microscopic scale. The average delay time of data packets in a queueing system is calculated, in particular, when the number of arrival channels is scale-free. We show that when the number of arriving data packets follows a power law distribution, nλ\sim n^{-\lambda}, the queue length distribution decays as n1λn^{1-\lambda} and the average delay time at the hub diverges as N(3λ)/(γ1)\sim N^{(3-\lambda)/(\gamma-1)} in the NN \to \infty limit when 2<λ<32 < \lambda < 3, γ\gamma being the network degree exponent.Comment: 5 pages, 4 figures, submitted to International Journal of Bifurcation and Chao

    Structural efficiency of percolation landscapes in flow networks

    Get PDF
    Complex networks characterized by global transport processes rely on the presence of directed paths from input to output nodes and edges, which organize in characteristic linked components. The analysis of such network-spanning structures in the framework of percolation theory, and in particular the key role of edge interfaces bridging the communication between core and periphery, allow us to shed light on the structural properties of real and theoretical flow networks, and to define criteria and quantities to characterize their efficiency at the interplay between structure and functionality. In particular, it is possible to assess that an optimal flow network should look like a "hairy ball", so to minimize bottleneck effects and the sensitivity to failures. Moreover, the thorough analysis of two real networks, the Internet customer-provider set of relationships at the autonomous system level and the nervous system of the worm Caenorhabditis elegans --that have been shaped by very different dynamics and in very different time-scales--, reveals that whereas biological evolution has selected a structure close to the optimal layout, market competition does not necessarily tend toward the most customer efficient architecture.Comment: 8 pages, 5 figure

    Large-scale topological and dynamical properties of Internet

    Get PDF
    We study the large-scale topological and dynamical properties of real Internet maps at the autonomous system level, collected in a three years time interval. We find that the connectivity structure of the Internet presents average quantities and statistical distributions settled in a well-defined stationary state. The large-scale properties are characterized by a scale-free topology consistent with previous observations. Correlation functions and clustering coefficients exhibit a remarkable structure due to the underlying hierarchical organization of the Internet. The study of the Internet time evolution shows a growth dynamics with aging features typical of recently proposed growing network models. We compare the properties of growing network models with the present real Internet data analysis.Comment: 13 pages, 15 eps figure

    Mobile Online Gaming via Resource Sharing

    Full text link
    Mobile gaming presents a number of main issues which remain open. These are concerned mainly with connectivity, computational capacities, memory and battery constraints. In this paper, we discuss the design of a fully distributed approach for the support of mobile Multiplayer Online Games (MOGs). In mobile environments, several features might be exploited to enable resource sharing among multiple devices / game consoles owned by different mobile users. We show the advantages of trading computing / networking facilities among mobile players. This operation mode opens a wide number of interesting sharing scenarios, thus promoting the deployment of novel mobile online games. In particular, once mobile nodes make their resource available for the community, it becomes possible to distribute the software modules that compose the game engine. This allows to distribute the workload for the game advancement management. We claim that resource sharing is in unison with the idea of ludic activity that is behind MOGs. Hence, such schemes can be profitably employed in these contexts.Comment: Proceedings of 3nd ICST/CREATE-NET Workshop on DIstributed SImulation and Online gaming (DISIO 2012). In conjunction with SIMUTools 2012. Desenzano, Italy, March 2012. ISBN: 978-1-936968-47-

    Effects of variations of load distribution on network performance

    Full text link
    This paper is concerned with the characterization of the relationship between topology and traffic dynamics. We use a model of network generation that allows the transition from random to scale free networks. Specifically, we consider three different topological types of network: random, scale-free with \gamma = 3, scale-free with \gamma = 2. By using a novel LRD traffic generator, we observe best performance, in terms of transmission rates and delivered packets, in the case of random networks. We show that, even if scale-free networks are characterized by shorter characteristic-path- length (the lower the exponent, the lower the path-length), they show worst performances in terms of communication. We conjecture this could be explained in terms of changes in the load distribution, defined here as the number of shortest paths going through a given vertex. In fact, that distribu- tion is characterized by (i) a decreasing mean (ii) an increas- ing standard deviation, as the networks becomes scale-free (especially scale-free networks with low exponents). The use of a degree-independent server also discriminates against a scale-free structure. As a result, since the model is un- controlled, most packets will go through the same vertices, favoring the onset of congestion.Comment: 4 pages, 4 figures, included in conference proceedings ISCAS 2005, Kobe Japa

    Sustaining the Internet with Hyperbolic Mapping

    Full text link
    The Internet infrastructure is severely stressed. Rapidly growing overheads associated with the primary function of the Internet---routing information packets between any two computers in the world---cause concerns among Internet experts that the existing Internet routing architecture may not sustain even another decade. Here we present a method to map the Internet to a hyperbolic space. Guided with the constructed map, which we release with this paper, Internet routing exhibits scaling properties close to theoretically best possible, thus resolving serious scaling limitations that the Internet faces today. Besides this immediate practical viability, our network mapping method can provide a different perspective on the community structure in complex networks

    Where is My Next Hop ? The Case of Indian Ocean Islands

    Full text link
    Internet has become a foundation of our modern society. However, all regions or countries do not have the same Internet access regarding quality especially in the Indian Ocean Area (IOA). To improve this quality it is important to have a deep knowledge of the Internet physical and logical topology and associated performance. However, these knowledges are not shared by Internet service providers. In this paper, we describe a large scale measurement study in which we deploy probes in different IOA countries, we generate network traces, develop a tool to extract useful information and analyze these information. We show that most of the IOA traffic exits through one point even if there exists multiple exit points

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon
    corecore