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We study the large-scale topological and dynamical properties of real Internet maps at the autonomous
system level, collected in a 3-yr time interval. We find that the connectivity structure of the Internet presents
statistical distributions settled in a well-defined stationary state. The large-scale properties are characterized by
a scale-free topology consistent with previous observations. Correlation functions and clustering coefficients
exhibit a remarkable structure due to the underlying hierarchical organization of the Internet. The study of the
Internet time evolution shows a growth dynamics with aging features typical of recently proposed growing
network models. We compare the properties of growing network models with the present real Internet data
analysis.
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I. INTRODUCTION

The Internet is a capital example of growing compl
network @1,2# interconnecting large numbers of compute
around the world. Growing networks exhibit a high degree
wiring entanglement that takes place during their dynam
evolution. This feature, at the heart of the proposed and
teresting topological properties recently observed in grow
network systems@3,4#, has triggered the attention of the r
search community to the study of the large-scale proper
of router-level maps of the Internet@5–7#. The statistical
analysis performed so far has focused on several quan
exhibiting nontrivial properties: wiring redundancy and clu
tering, @8–11#, the distribution of shortest path length
@5,10#, and the eigenvalue spectra of the connectivity ma
@10#. Noteworthy, the presence of a power-law connectiv
distribution @8,10–13# makes the Internet an example of th
recently identified class of scale-free networks@14,15#. This
evidence implies the absence of any characteri
connectivity—large connectivity fluctuations—and a hi
heterogeneity of the network structure.

As widely pointed out in the literature@13,16,17#, a
deeper empirical understanding of the topological proper
of the Internet is fundamental in the developing of realis
Internet map generators, that on their turn are used to tes
optimize Internet protocols. In fact, the Internet topology h
a great influence on the dynamics that data traffic carries
on top of it. Hence, a better understanding of the Inter
structure is of primary importance in the design of routi
@16,17# and searching algorithms@18,19#, and to protect from
virus spreading@20# and node failures@21–23#. In this per-
spective, the direct measurement and statistical characte
tion of real Internet maps are of crucial importance in t
identification of the basic mechanisms that rule the Inter
structure and dynamics.

In this work, we shall consider the evolution of real Inte
net maps from 1997 to 2000, collected by the National La
ratory for Applied Network Research~NLANR! @5#, in order
to study the underlying dynamical processes leading to
1063-651X/2002/65~6!/066130~12!/$20.00 65 0661
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Internet structure and topology. We provide a statisti
analysis of several average properties. In particular, we c
sider the average connectivity, clustering coefficient, p
length, and betweenness. These quantities will provide a
liminary test of the stationarity of the network. The scale-fr
nature of the Internet has been pointed out by inspecting
connectivity probability distribution, and it implies that th
fluctuations around the average connectivity are
bounded. In order to provide a full characterization of t
scale-free properties of the Internet, we analyze the conn
tivity and betweenness probability distributions for differe
time snapshot of the Internet maps. We observe that th
distributions exhibit an algebraic behavior and are charac
ized by scaling exponents that are stationary in time. T
shortest path length between pairs of nodes, on the o
hand, appears to be sharply peaked around its average v
providing a striking evidence for the presence of we
defined small-world properties@24#. A more detailed picture
of the Internet can be achieved by studying higher or
correlation functions of the network. In this sense, we sh
that the Internet hierarchical structure is reflected in n
trivial scale-free betweenness and connectivity correlat
functions. Finally, we study several quantities related to
growth dynamics of the network. The analysis points out
presence of two distinct wiring processes: the first conce
newly added nodes, while the second is related to alre
existing nodes increasing their interconnections. We confi
that newly added nodes establish new links with the lin
preferential attachment rule often used in modeling grow
networks@14#. In addition, a study of the connectivity evo
lution of a single node shows a rich dynamical behavior w
aging properties. The present study could provide some h
for a more realistic modeling of the Internet evolution, a
with this purpose in mind we provide a discussion of some
the existing growing network models in the light of our fin
ings. A short account of these results appeared in Ref.@25#.

The paper is organized as follows. In Sec. II we descr
the Internet maps used in our study. Section III is devoted
the study of average quantities as a function of time. In S
©2002 The American Physical Society30-1
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IV we provide the analysis of the statistical distributio
characterizing the Internet topology. We obtain evidence
the scale-free nature of this network as well as for the
tionarity in time of this property. In Sec. V we characteri
the hierarchical structure of the Internet by the statisti
analysis of the betweenness and connectivity correla
functions. Section VI reports the study of dynamical prop
ties such as the preferential attachment and the evolutio
the average connectivity of newly added nodes. These p
erties, which show aging features, are the basis for the
veloping of Internet dynamical models. Section VII is d
voted to a detailed discussion of some Internet models
compared with the presented real data analysis. Finally
Sec. VIII we draw our conclusions and perspectives.

II. MAPPING THE INTERNET

Several Internet mapping projects are currently devote
obtain high-quality router-level maps of the Internet. In mo
cases, the map is constructed by using a hop-limited pr
~such as theUNIX traceroutetool! from a single location in
the network. In this case the result is a ‘‘directed,’’ map
seen from a specific location on the Internet@7#. This ap-
proach does not correspond to a complete map of the Inte
because cross-links and other technical problems~such as
multiple Internet provider aliases! are not fully considered
Heuristic methods to take into account these problems h
been proposed~see, for instance, Ref.@26#!.

A different representation of the Internet is obtained
mapping the autonomous systems~AS! topology. The Inter-
net can be considered as a collection of subnetworks tha
connected together. Within each subnetwork the informa
is routed using an internal algorithm that may differ from o
subnetwork to another. Thus, each subnet is an indepen
unit of the Internet and it is often referred as an AS. The
AS communicate between them using a specific routing
gorithm, the border gateway protocol. Each AS number
proximately maps to an Internet service provider~ISP! and
their links are inter-ISP connections. In this case it is poss
to collect data from several probing stations to obtain int
connectivity maps~see Refs.@5,6# for a technical description
of these projects!. In particular, the NLANR project is col-
lecting data since November 1997, and it provides topolo
cal as well as dynamical information on a consistent sub
of the Internet. The first November 1997 map contains 31
AS, and it has grown in time until the December 1999 m
surement, consisting of 6374 AS. In the following we w
consider the graph whose nodes represent the AS and w
links represent the adjacencies~interconnections! between
AS. In particular we will focus on three different snapsho
corresponding to 8 November 1997, 1998, and 1999,
will be referenced as AS97, AS98, and AS99, respective

The NLANR connectivity maps are collected with a res
lution of one day and are changing from day to day. Th
changes are due to the addition~birth! and deletion~death! of
nodes and links, but also to the flickering of connections,
that a node may appear to be isolated~not mapped! from
time to time. A simple test, however, shows that flickering
appreciable just in nodes with low connectivity. We compu
06613
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the ratio r between the number of days in which a node
observed in the NLANR maps and the total number of da
after the first appearance of the node, averaged over all n
in the maps. The analysis reveals thatr .1 andr .0.65 for
nodes with connectivityk>10, and k,10, respectively.
Hence, nodes withk,10 have fluctuations that must b
taken into account. In order to shed light on this point,
inspect the incidence of deletion events with respect to
creation of new nodes. We consider a deletion event only
node is not observed in the map during a 1-yr time interv
In Table I we show the total number of deletion events in
year, for 1997, 1998, and 1999, in comparison with the to
number of new nodes created. It can be seen that the A
birth rate appears to be larger by a factor of 2 than the d
tion rate. More interestingly, if we restrict the analysis
nodes with connectivityk.10, the deletion rate is reduced t
a few percent of the birth rate. This clearly indicates th
only poorly connected nodes have an appreciable probab
to disappear. This fact is easily understandable in terms
the market competition among ISP’s, where small newco
ers are the ones which more likely go out of business.

III. AVERAGE PROPERTIES AND STATIONARITY

The growth rate of AS maps reveals that the Internet i
rapidly evolving network. Thus, it is extremely important
know whether or not it has reached a stationary state wh
average properties are time independent. This will im
that, despite the continuous increase of nodes and con
tions in the system, the network’s topological properties
not appreciably changing in time. As a first step, we ha
analyzed the behavior in time of several average magnitu
the average connectivitŷk&, the clustering coefficient̂c&,
the average path lengtĥl &, and the average betweenne
^b&.

The connectivityki of a nodei is defined as the number o
connections of this node with other nodes in the netwo
and ^k& is the average ofki over all nodes in the network
Since each connection contributes to the connectivity of t
nodes, we have that^k&52E/N, whereE is the total number
of connections andN is the number of nodes. BothE andN
are increasing with time but their ratio remains almost co
stant. The average connectivity for the years 1997, 1998,
1999~averaged over all the AS maps available for that ye!
is shown in Table II. In average each node has three to f
connections, which is a small number compared with tha
a fully connected network of the same size (^k&5N21
;103). The average connectivity gives information about t
number of connections of any node but not about the ove

TABLE I. Total number of new (Nnew) and deleted (Ndel) nodes
in the years 1997, 1998, and 1999. We also report the numbe
deleted nodes with connectivityk.10.

Year 1997 1998 1999

Nnew 309 1990 3410
Ndel 129 887 1713
Ndel(k.10) 0 14 68
0-2
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LARGE-SCALE TOPOLOGICAL AND DYNAMICAL . . . PHYSICAL REVIEW E 65 066130
structure of these connections. More information can be
tained using the clustering coefficient introduced in R
@24#. The number of neighbors of a nodei is given by its
connectivityki . On their turn, these neighbors can be co
nected among them forming a triangle with nodei. The clus-
tering coefficientci is then defined as the ratio between t
number of connections among theki neighbors of a given
node i and its maximum possible value,ki(ki21)/2. The
average clustering coefficient^c& is the average ofci over all
nodes in the network. The clustering coefficient thus p
vides a measure of how well locally interconnected are
neighbors of any node. The maximum value of^c& is 1,
corresponding to a fully connected network. For rand
graphs@27#, which are constructed by connecting nodes
random with a fixed probabilityp, the clustering coefficien
decreases with the network sizeN as^c& rand5^k&/N. On the
contrary, it remains constant for regular lattices. The aver
clustering coefficient obtained for the years 1997, 1998,
1999 is shown in Table II. As it can be seen, the cluster
coefficient of the AS maps increases slowly with increas
N and takes valueŝc&.0.2, two orders of magnitudes large
than ^c& rand.1023, corresponding to a random graph wi
the same number of nodes and average connectivity. Th
fore, the AS maps are far from being a random graph
feature that can be naively understood using the follow
argument: In AS maps the connections among nodes
equivalent, but they are actually characterized by a real sp
length corresponding to the actual length of the physical c
nection between AS’s. The larger this length is, the hig
the costs of installation and maintenance of the line, favor
therefore the connections between nearby nodes. It is
likely that nodes within the same geographical region w
have a large number of connection among them, increa
in this way the local clustering coefficient.

With this reasoning one might be led to the conclus
that the Internet topology is close to a regular tw
dimensional lattice. The analysis of the shortest path len
between nodes, however, reveals that this is not the c
Two nodesi andj are said to be connected if one can go fro
node i to j following the connections in the network. Th
path fromi to j may not be unique and its length is given b
the number of nodes visited. The average path length^l & is
defined as the shortest path length between two nodesi andj,

TABLE II. Average properties of the Internet for three differe
years.N, number of nodes;E, number of connections;^k&, average
connectivity;^c&, average clustering coefficient;^l &, average path
length; ^b&, average betweenness. Figures in parentheses ind
the statistical uncertainty from averaging the values of the co
sponding months in each year.

Year 1997 1998 1999

N 3112 3834 5287
E 5450 6990 10100
^k& 3.5~1! 3.6~1! 3.8~1!

^c& 0.18~3! 0.21~3! 0.24~3!

^l & 3.8~1! 3.8~1! 3.7~1!

^b&/N 2.4~1! 2.3~1! 2.2~1!
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l i j , averaged over every pair of nodes in the network. F
regular lattices,̂ l &D;N1/D, whereD is the spatial dimen-
sion. As it can be seen from Table II, for the AS maps^l &
.3.7, which is smaller than the expected value for a regu
two-dimensional lattice of the same size. The Internet st
ingly exhibits what is known as the ‘‘small-world’’ effec
@24,28#: in average one can go from one node to any othe
the system passing through a very small number of inter
diate nodes. This necessarily implies that besides the s
local connections that contribute to the large clustering co
ficient, there are some hubs and backbones that connec
ferent regional networks, strongly decreasing the aver
path length. Another measure of this feature is given by
number of minimal paths that pass by each node. To go fr
one node in the network to another following the short
path, a sequence of nodes is visited. If we do this for ev
pair of nodes in the network, there will be a certain numb
of key nodes that will be visited more often than others. Su
nodes will be of great importance for the transmission
information along the network. This fact can be quanti
tively measured by means of the betweennessbi , defined by
the total number of shortest paths between any two node
the network that pass thorough the nodei. The average be-
tweennesŝb& is the average value ofbi over all nodes in the
network. The betweenness has been introduced in the an
sis of social networks in Ref.@29# and more recently it has
been studied in scale-free networks, with the name of lo
@30#. Moreover, an algorithm to compute the betweenn
has been given in Ref.@29#. For a star network the between
ness takes its maximum valueN(N21)/2 at the central node
and its minimum valueN21 at the vertices of the star. Th
average betweenness of the three AS maps analyzed he
shown in Table II. Its value is between 2N and 3N, which is
quite small in comparison with its maximum possible val
N(N21)/2;107.

The present analysis makes clear that the Internet is
dominated by a very few highly connected nodes similarly
star-shaped architectures. As well, simple average meas
ments rule out the possibility of a random graph structure
a regular grid architecture. This evidence hints toward
peculiar topology that will be fully identified by looking a
the detailed probability distributions of several quantities.
nally, it is important to stress that despite the network size
more than doubled in the 3-yr period considered, the aver
quantities suffer variations of a few percent~see Table II!.
This points out that the system seems to have reached a f
well-defined stationary state, as we shall confirm in the f
lowing section by analyzing the detailed statistical propert
of the Internet.

IV. FLUCTUATIONS AND SCALE-FREE PROPERTIES

In order to get a deeper understanding of the netw
topology we look at the probability distributionspk(k) and
pb(b) that any given node in the network has a connectiv
k and a betweennessb, respectively. The study of these pro
ability distributions will allow us to probe the extent of fluc
tuations and heterogeneity present in the network. We s
see that the strong scale-free nature of the Internet, pr

ate
-

0-3
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VÁZQUEZ, PASTOR-SATORRAS, AND VESPIGNANI PHYSICAL REVIEW E65 066130
ously noted in Refs.@10,12#, results in power-law distribu-
tions with diverging fluctuations for these quantities. T
analysis of the maps reveals, in fact, an algebraic decay
the connectivity distribution,

pk~k!;k2g, ~1!

extending over three orders of magnitude. In Fig. 1 we rep
the integrated connectivity distribution

Pk~k!5E
k

`

pk~k8!dk8 ~2!

corresponding to the AS97, AS98, and AS99 maps. The
tegrated distribution, which expresses the probability tha
node has connectivity larger than or equal tok, scales as

Pk~k!;k12g, ~3!

and it has the advantage of being considerably less noisy
the original distribution. In all maps we find a clear powe
law behavior with slope close to21.2 ~see Fig. 1!, yielding
a connectivity exponentg52.260.1. The distribution cutoff
is fixed by the maximum connectivity of the system and
related to the overall size of the Internet map. We see tha
more recent maps the cutoff is slightly increasing, as
pected due to the Internet growth. On the other hand,

FIG. 1. Integrated connectivity distribution for the AS97, AS9
and AS99 maps. The power-law behavior is characterized b
slope21.2, which yields a connectivity exponentg52.260.1.
06613
or

rt

-
a

at

or
-
e

connectivity exponentg seems to be independent of time a
in good agreement with previous measurements@10#.

The betweenness distributionpb(b) ~i.e., the probability
that any given node is passed over byb shortest paths! shows
also scale-free properties, with a power-law distribution

pb~b!;b2d ~4!

extending over three decades. As shown in Fig. 2~a!, the
integrated betweenness distribution measured in the AS m
is evidently stable in the 3-yr period analyzed and follows
power-law decay

Pb~b!5E
b

`

pb~b8!db8;b12d, ~5!

where the betweenness exponent isd52.160.2. The con-
nectivity and betweenness exponents can be simply relat
one assumes that the number of shortest pathsbk passing
over a node of connectivityk follows the scaling form

bk;kb. ~6!

By inserting the latter relation in the integrated betweenn
distribution Eq.~5! we obtain

Pk~k!;kb(12d). ~7!

Since we have thatPk(k);k12g, we obtain the scaling rela
tion

b5
g21

d21
. ~8!

The measuredg and d have approximately the same valu
for the AS maps data and we expect to recoverb'1.0. This
is corroborated in Fig. 2~b!, where we report the direct mea
surement of the average betweenness of a node as a fun
of its connectivityk. It is also worth remarking the study o
the betweenness distribution in scale-free networks mad
Ref. @30#. From a numerical study of both static and dynam
scale-free network models with different values ofg, it was
found in Ref.@30# that the betweenness distribution follows
power-law decay with an estimated exponentd52.260.1.
The authors argued that this fact represents a universal p
erty, independent of the connectivity exponent, for all sca

a

,

-

-

-

.

FIG. 2. ~a! Integrated between-
ness distribution for the AS97
AS98, and AS99 maps. The
power-law behavior is character
ized by a slope 21.1, which
yields a betweenness exponentd
52.160.2. ~b! Betweennessbk as
a function of the node’s connec
tivity k. The full line corresponds
to the expected behaviorbk;k.
Errors bars take into account sta
tistical fluctuations over different
nodes with the same connectivity
0-4
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LARGE-SCALE TOPOLOGICAL AND DYNAMICAL . . . PHYSICAL REVIEW E 65 066130
free networks with 2,g<3. Our results on the AS map
present further support to the universality claim made in R
@30#.

Another quantity of interest is the probability distributio
of the clustering coefficient of the nodes. In our analysis
do not find definitive evidence for a power-law behavior
this distribution. However, still useful information can b
gathered from studying the clustering coefficientck as a
function of the node connectivity. In this case the local clu
tering coefficient of each nodeci is averaged over all node
with the same connectivityk. The plots for the AS97, AS98
and AS99 maps are shown in Fig. 3. Also in this case, m
surements yield a power-law behaviorck;k2v with v
50.7560.03, extending over three orders of magnitude. T
exponent 0.75 has been computed as an average ove
regressions of the individual data sets. This fact implies t
nodes with a small number of connections have larger lo
clustering coefficients than those with a large connectiv
This behavior is consistent with the picture previously d
scribed in Sec. III of highly clustered regional networ
sparsely interconnected by national backbones and inte
tional connections. The regional clusters of AS are proba
formed by a large number of nodes with small connectiv
but large clustering coefficients. Moreover, they also sho
contain nodes with large connectivities that are connec

FIG. 3. Clustering coefficientck as a function of the connectiv
ity k for the AS97, AS98, and AS99 maps. The best fitting pow
law behavior is characterized by a slope20.75. Errors bars take
into account statistical fluctuations over different nodes with
same connectivity.
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with the other regional clusters. These large connectiv
nodes will be on their turn connected to nodes in differe
clusters that are not interconnected and, therefore, will h
a small local clustering coefficient. This picture also sho
the existence of some hierarchy in the network that will b
come more evident in the following section.

A different behavior is followed by the shortest pa
length l between two nodes, which does not show singu
fluctuations from one pair of nodes to another. This can
shown by means of the probability distributionpl (l ) of
shortest path lengthsl between pairs of nodes, reported
Fig. 4~a!. This distribution is characterized by a sharp pe
around its average value and its shape remains essen
unchanged from the AS97 to the AS99 maps. Associate
the shortest path length distribution we have the hop p
introduced in Ref.@10#. The hop plot is defined as the ave
age fraction of nodesM (l )/N within a distance less than o
equal tol from a given node. Atl 50 we find the starting
node and, therefore,M (0)51. At l 51 we find the starting
node plus its neighbors and thusM (1)5^k&11. If the net-
work is made up by a single cluster, forl 5l M , wherel M
is the maximum shortest path length, we haveM (l M)5N.
For regularD-dimensional lattices,M (l );l D, and in this
caseM can be interpreted as the mass. The hop plot is rela
to the distribution of shortest path lengths through the f
lowing relation:

M ~ l !

N
5 (

l 850

l

pl ~ l 8!. ~9!

The hop plots for the AS97, AS98 and AS99 maps are sho
in Fig. 4~b!. In this case the shortest path length barely sp
a decade (l M511). Most importantly,M (l ) practically
reaches its maximum valueN at l 55. Hence, the shortes
path length does not show strong fluctuations, as alre
noticed from the shortest path length distribution. In R
@10# it was argued that the increase ofM (l ) for small l
follows a power-law behavior. This observation is not co
sistent with the present data, that yield a very abrupt incre
taking place in a very narrow range, as shown in Fig. 4~b!.

Finally, it is important to stress again that all the measu
distributions are characterized by scaling exponents or
haviors that are not changing in time. This implies that t
statistical properties characterizing the Internet are time

-

e

.

FIG. 4. ~a! Distribution of
shortest path lengthspl (l ) for
the AS97, AS98, and AS99 maps
~b! Hop plotsM (l ) for the same
maps. See text for definitions.
0-5
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FIG. 5. ~a! Average connectiv-
ity ^knn& of the nearest neighbor
of a node as a function of the con
nectivity k for the AS97, AS98,
and AS99 maps. The full line ha
a slope 20.5. ~b! Average be-
tweenness^bnn& of the nearest
neighbors of a node as a functio
of its betweennessb for the same
maps. The full line has a slope
20.4.
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dependent, providing a further test to the network station
ity; i.e., the Internet is self-organized in a stationary sta
characterized by scale-free fluctuations.

V. HIERARCHY AND CORRELATIONS

Due to installation costs, the Internet has been desig
with a hierarchical structure. The primary known structu
difference between Internet nodes is the distinction betw
stuband transit domains. Nodes in stub domains have lin
that go only through the domain itself. Stub domains, on
other hand, are connected via a gateway node to transit
mains that, on the contrary, are fairly well interconnected
many paths. This hierarchy can be schematically divided
international connections, national backbones, regional
works, and local area networks. Nodes providing acces
international connections or national backbones are of co
on top level of this hierarchy, since they make possible
communication between regional and local area netwo
Moreover, in this way, a small average path length can
achieved with a small average connectivity.

Very likely the hierarchical structure will introduce som
correlations in the network topology. We can explore t
hierarchical structure of the Internet by means of the con
tional probability pc(k8uk) that a link belonging to a node
with connectivityk points to a node with connectivityk8. If
this conditional probability is independent ofk, we are in
presence of a topology without any correlation among
nodes’ connectivity. In this case,pc(k8uk)5pc(k8)
;k8pk(k8), in view of the fact that any link points to node
with a probability proportional to their connectivity. On th
contrary, the explicit dependence onk is a signature of non-
trivial correlations among the nodes’ connectivity, and t
presence of a hierarchical structure in the network topolo
A direct measurement of thepc(k8uk) function is a rather
complex task due to large statistical fluctuations. More cl
indications can be extracted by studying the quantity

^knn&5(
k8

k8pc~k8uk!, ~10!

i.e., the nearest-neighbors average connectivity of nodes
connectivityk. In Fig. 5~a! we show the results obtained fo
the AS97, AS98, and AS99 maps, that again exhibit a c
power-law dependence on the connectivity degree,
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^knn&;k2nk, ~11!

with an exponentnk50.560.1. This observation clearly im
plies that the connectivity correlation function has a mark
dependence uponk, suggesting nontrivial correlation prope
ties for the Internet. In practice, this result indicates th
highly connected nodes are more likely pointing to less c
nected nodes, emphasizing the presence of a hierarch
which smaller providers connect to larger ones and so
climbing different levels of connectivity.

Similarly, it is expected that nodes with high betweenne
~that is, carrying a heavy load of traffic!, and consequently a
large connectivity, will be connected to nodes with smal
betweenness, less load and, therefore, small connectivit
simple way to measure this effect is to compute the aver
betweennesŝbnn& of the neighbors of the nodes with a give
betweennessb. The plot of ^bnn& for the AS97, AS98, and
AS99 maps, represented in Fig. 5~b!, shows that the averag
neighbor betweenness exhibits a clear power-law dep
dence on the node betweennessb,

^bnn&;b2nb, ~12!

with an exponentnb50.460.1, evidencing that the mor
loaded nodes~backbones! are more frequently connecte
with less loaded nodes~local networks!.

These hierarchical properties of the Internet are lik
driven by several additional factors such as the space lo
ity, economical resources, and the market demand. An
tempt to relate and study some of these aspects can be f
in Ref. @13#, where the geographical distribution of popul
tion and Internet access are studied. In Sec. VII we s
compare a few of the existing models for the generation
scale-free networks with our data analysis, in an attemp
identify some relevant features in the Internet modeling.

VI. DYNAMICS AND GROWTH

In order to inspect the Internet dynamics, we focus o
attention on the addition of new nodes and links into t
maps. In the 3-yr range considered, we keep track of
number of linksLnew appearing between a newly introduce
node and an already existing node. We also monitor the
of appearance of linksLold between already existing node
In Table III we can observe that the creation of new links
0-6
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LARGE-SCALE TOPOLOGICAL AND DYNAMICAL . . . PHYSICAL REVIEW E 65 066130
governed by these two processes at the same time. Sp
cally, the largest contribution to the growth is given by t
appearance of links between already existing nodes. T
clearly points out that the Internet growth is strongly driv
by the need of redundancy in the wiring and an increa
need of available bandwidth for data transmission.

A customarily measured quantity in the case of grow
networks is the average connectivity^ki(t)& of new nodes as
a function of their aget. In Refs.@15,31,32# it is shown that
^ki(t)& is a scaling function of botht and the absolute time o
birth of the nodet0. We thus consider the total number
nodes born within a small observation windowDt0, such that
t0.const with respect to the absolute time scale that is
Internet lifetime. For these nodes, we measure the ave
connectivity as a function of the timet elapsed since thei
birth. The data for two different time windows are report
in Fig. 6, where it is possible to distinguish two differe
dynamical regimes: At early times, the connectivity is nea
constant with a very slow increase. Later on, connectiv
grows rapidly approaching what appears to be a power-
or faster growth regime. While reliable fits or exponent es
mates are affected by noise and limited time window effe
the crossover between two distinct dynamical regimes
compatible with the general aging form obtained in the c
text of growing networks in Refs.@31,32#.

A very important issue in the modeling of growing ne
works concerns the understanding of the growth mechani
at the origin of the developing of new links. As we shall s
more in detail in the following section, the basic ingredien
in the modeling of scale-free growing networks is the pr
erential attachment hypothesis@14#. In general, all growing

TABLE III. Monthly rate of new links connecting existing
nodes to new (Lnew) and old (Lold) nodes.

Year 1997 1998 1999

Lnew 183~9! 170~8! 231~11!

Lold 546~35! 350~9! 450~29!

Lnew/Lold 0.34~2! 0.48~2! 0.53~3!

FIG. 6. Average connectivity of nodes borne within a small tim
window Dt0, after a timet elapsed since their appearance. Timet is
measured in days.
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network algorithms define models in which the rateP(k)
with which a node withk connections receives new links
proportional toka ~see Ref.@14# and Sec. VII!. The inspec-
tion of the exact value ofa in real networks is an importan
issue since the connectivity properties strongly depend
this exponent@31–33#. Here we use a simple recipe th
allows to extract the value ofa by studying the appearanc
of new links. We focus on links emanating from newly a
peared nodes in different time windows ranging from one
three years. We consider the frequencym(k) of links that
connect to nodes with connectivityk. By using the preferen-
tial attachment hypothesis, this effective probability ism(k)
;kapk(k). Since we know thatpk(k);k2g, we expect to
find a power-law behaviorm(k);ka2g for the frequency. In
Fig. 7 we report the obtained results which show for t
integrated frequencymcum(k)5*k

`m(k8)dk8 a behavior com-
patible with an algebraic dependencem(k);k21.2. By using
the independently obtained valueg52.2 we find a preferen-
tial attachment exponenta.1.0, in good agreement with th
result obtained with a different analysis in Ref.@33#. We
performed a similar analysis also for links emanated by
isting nodes, recovering the same form of preferential atta
ment~see Fig. 7!. The present analysis confirms the validi
of the preferential attachment hypothesis, but leaves open
question of the interplay with several other factors, such
the nodes’ hierarchy, space locality, and resource constra

VII. MODELING THE INTERNET

In the preceding section we have presented a thoro
analysis of the AS maps topology. Apart from providing us
ful empirical data to understand the behavior of the Intern
our analysis is of great relevance in order to test the valid
of models of the Internet topology. The Internet topology h
a great influence on the information traffic carried on top
it, including routing algorithms@16,17#, searching algorithms
@18,19#, virus spreading@20#, and resilience to node failure
@21–23#. Thus, designing network models that accurately
produce the Internet topology is of capital importance
carry out simulations on top of these networks.

FIG. 7. Frequency of links emanating from new and existi
nodes that attach to nodes with connectivityk. The full line corre-
sponds to a slope21.2, which yields an exponenta.1.0. The flat
tails are originated from the poor statistics at very highk values.
0-7
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Early works considered the Erdo¨s-Rényi @34# model or
hierarchical networks as models of the Internet@35#. How-
ever, they yield connectivity distributions with a fast~expo-
nential! decay for large connectivities, in disagreement w
the power-law decay observed in real data. Only recently
Internet modeling benefited of the major advance provide
the field of growing networks by the introduction of th
Barabási-Albert ~BA! model @14,15,36#, which is related to
1955 Simon’s model@37–39#. The main ingredients of this
model are the growing nature of the network and a prefer
tial attachment rule, in which the probability of establishi
new links toward a given node grows linearly with its co
nectivity. The BA model is constructed using the followin
algorithm@14#: We start from a small numberm0 of discon-
nected nodes; every time step a new node is added, wim
links that are connected to an old nodei with probability

PBA~ki !5
ki

(
j

kj

, ~13!

whereki is the connectivity of thei th node. After iterating
this procedureN times, we obtain a network with a conne
tivity distribution pk(k);k23 and average connectivitŷk&
52m. In this model, heavily connected nodes will increa
their connectivity at a larger rate than less connected no
a phenomenon that is known as the ‘‘rich-get-richer’’ effe
@14#. It is worth remarking, however, that more general stu
ies @4,31,32# have revealed that nonlinear attachment rate
the formP(k);ka with aÞ1 have as an outcome conne
tivity distributions that depart form the power-law behavio
The BA model has been successively modified with the
troduction of several ingredients in order to account for c
nectivity distribution with 2,g,3 @31,32,40#, local geo-
graphical factors@41#, wiring among existing nodes@42#, and
age effects@43#.

In the preceding section we have analyzed different m
sures that characterize the structure of AS maps. Since
eral models are able to reproduce the right power law beh
ior for the connectivity distribution, the analysis obtained
the previous sections can provide the effective tools to s
tinize the different models at a deeper level. In particular,
perform a data comparison for three different models t
generate networks with power-law connectivity distribution
First we have considered a random graph with a power-
connectivity distribution, constructed using the Molloy a
Reed ~MR! algorithm @44,45#. Secondly, we have studie
two variations of the BA model, that yield connectivity e
ponents compatible with the one measured in the Inter
the generalized Baraba´si-Albert ~GBA! model @40#, which
includes the possibility of connection rewiring, and the fi
ness model@46#, that implements a weighting of the nodes
the preferential attachment probability. The models are
fined as follows:

MR model. In the construction of this model@4,44,45,47#
we start assigning to each nodei in a set ofN nodes a ran-
dom connectivityki drawn from the probability distribution
pk(k);k2g, with m<ki,N, imposing the constraint tha
the sum( iki must be even. The graph is completed by ra
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domly connecting the nodes with( iki /2 links, respecting the
assigned connectivities. The results presented here are
tained usingm51 and a connectivity exponentg52.2,
equal to that found in the AS maps. Clearly this construct
algorithm does not take into account any correlations or
namical features of the Internet and it can be considered
first order approximation that focuses only on the connec
ity properties.

GBA model. It is defined by starting withm0 nodes con-
nected in a ring@40#: At each time step one of the following
operations is performed:

~i! With probability q we rewire m links. For each of
them, we randomly select a nodei and a linkl i j connected to
it. This link is removed and replaced by a new linkl i 8 j con-
necting the nodej to a new nodei 8 selected with probability
P(ki 8) where

PGBA~ki !5
ki11

(
j

~kj11!

. ~14!

~ii ! With probability p we addm new links. For each of
them, one end of the link is selected at random, while
other is selected with probability as in Eq.~14!.

~iii ! With probability 12q2p we add a new node withm
links that are connected to nodes already present with p
ability as in Eq.~14!.

The preferential attachment probability Eq.~14! leads to a
power-law distributed connectivity, whose exponent depe
on the parametersq and p. In the particular casep50, the
connectivity exponent is given by@40#

g511
~12q!~2m11!

m
. ~15!

Hence, changing the value ofm and q we can obtain the
desired connectivity exponentg. In the present simulations
we use the valuesm52 andq513/25, that yield the expo-
nent g52.2. The GBA model embeds both the rich-ge
richer paradigm and the growing nature of the Internet; ho
ever, it does not take into account any possible difference
hierarchies in newly appearing nodes.

Fitness model. This network model introduces an extern
competence among nodes to gain links, that is controlled
a random~fixed! fitness parameterh i that is assigned to eac
nodei from a probability distributionr(h). In this case, we
also start withm0 nodes connected in a ring and at each tim
step we add a new nodei 8 with m links that are connected to
nodes already present on the network with probability

Pfitness~ki !5
h iki

(
j

h j kj

. ~16!

The newly added node is assigned a fitnessh i 8 . The results
presented here are obtained usingm52 and a probability
r(h) uniformly distributed in the interval@0,1#, which yields
a connectivity distributionpk(k);k2g/ ln k with g'2.26
@46#. The fitness model adds to the growing dynamics w
0-8
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LARGE-SCALE TOPOLOGICAL AND DYNAMICAL . . . PHYSICAL REVIEW E 65 066130
preferential attachment a stochastic parameter, the fitn
that embeds all the properties, other than the connecti
that may influence the probability of gaining new links.

We have performed simulations of these three mod
with the parameters mentioned above and using sizes oN
.4000 nodes, in analogy with the size of the AS maps a
lyzed. In each case we perform averages over 1000 diffe
realizations of the networks. It is worth remarking that wh
the fitness model generates a connected network, both
GBA and the MR model yield disconnected networks. This
due to the rewiring process in the GBA model, while t
disconnect nature of the graph in the MR model is an inh
ent consequence of the connectivity exponent being la
that 2 @47#. In these two cases we therefore work with grap
whose giant component~that is, the largest cluster of con
nected nodes in the network@27#! has a size of the orderN.
It is important to remind the reader that we are working w
networks of a relatively small size, chosen so as to fit the s
of the Internet maps analyzed in the previous sections. In
perspective, all the numerical analysis that we shall perfo
in the following serve only to check the validity of the mo
els as representations of the Internet as we know it, and
not refer to the intrinsic properties of the models in the th
modynamic limitN→`.

As a first check of the connectivity properties of the mo
els, in Fig. 8 we have plotted the respective integrated c
nectivity distributions. For the MR model we recover th
expected exponentgMR.2.20, since it was imposed in th
very definition of the model. For the GBA model we obta
numericallygGBA.2.19 for the giant component, in exce
lent agreement with the value predicted by Eq.~15! for the
asymptotic network. For the fitness model, on the other ha
a numerical regression of the integrated connectivity dis
bution yields an effective exponentgfitness.2.4. This value is
larger than the theoretical prediction 2.26 obtained for
model@46#. The discrepancy is mainly due to the logarithm
corrections present in the connectivity distribution of th
model. These corrections are more evident in the relativ
small-sized networks used in this work and become prog
sively smaller for larger network sizes.

In Table IV we report the average values of the conn

FIG. 8. Integrated connectivity distribution for the MR, GBA
and fitness models, compared with the result from the AS98 m
The full line has slope21.2.
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tivity, clustering coefficient, path length, and betweenness
the three models, compared with the respective values c
puted for the Internet during 1998. From the examination
this table, one could surprisingly conclude that the M
model, which neglects by construction any correlati
among nodes, yields the average values in better agree
with the Internet data. As we can observe, the fitness mo
provides too small a value for the average clustering coe
cient, while the GBA model clearly fails for the average pa
length and the betweenness. A more crucial test about
models is however provided by the analysis of the full d
tribution of the various quantities, that should reproduce
scale-free features of the real Internet.

The betweenness distributionpb(b) of the three models
give qualitatively similar results. The integrated betweenn
distribution Pb(b) obtained is plotted in Fig. 9~a!. Both the
MR and the fitness models follow a power-law dec
pb(b);b2d with an exponentd.2, in agreement with the
value obtained from the AS maps. The GBA model shows
appreciable bending that, nevertheless, is compatible w
the experimental Internet behavior. These results are
agreement with the numerical prediction in Ref.@30# and
support the conjecture that the exponentd.2.2 is a universal
quantity in all scale-free networks with 2,g,3. In order to
further inspect the betweenness properties, we plot in
9~b! the average betweennessbk as a function of the connec
tivity. In this case, the MR and GBA models yield an exp
nent b.1, compatible with the AS maps, while the fitne
model exhibits a somewhat larger exponent, close to
Also in this case, we have that the finite size logarithm
corrections present in the fitness model could play a de
minant role in this discrepancy.

While properties related to the betweenness do not ap
to pinpoint a major difference among the models, the m
striking test is provided by analyzing the correlation prop
ties of the models. In Figs. 10 and 11, we report the aver
clustering coefficient as a function of the connectivity,ck ,
and the average connectivity of the neighbors,^knn&, respec-
tively. The data from the Internet maps show a nontriviak
structure that, as discussed in previous sections, is du
scale-free correlation properties among nodes. These pro
ties depend on their turn upon the underlying hierarchy
the Internet structure. The only model that renders result
qualitative agreement with the Internet maps is the fitn
model. On the contrary, the MR and GBA models complet

p.

TABLE IV. Average properties of the MR, GBA, and fitnes
models, compared with the values from the Internet in 1998.^k&,
average connectivity;̂c&, average clustering coefficient;^l &, aver-
age path length;̂b&, average betweenness. Figures in parenthe
indicate the statistical uncertainty from the average of 1000 real
tions of the models.

MR GBA Fitness 1998

^k& 4.8~1! 5.4~1! 4.00~1! 3.6~1!

^c& 0.16~1! 0.12~1! 0.02~1! 0.21~3!

^l & 3.1~1! 1.8~1! 4.0~1! 3.8~1!

^b&/N 2.2~1! 1.9~1! 2.1~1! 2.3~1!
0-9
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FIG. 9. ~a! Integrated between-
ness distribution for the MR,
GBA, and fitness models, com
pared with the result from the
AS98 map. The full line has a
slope21.1, corresponding to the
Internet map.~b! Betweennessbk

as a function of the node’s con
nectivity k corresponding to the
previous results. The full line has
a slope 1.0.
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fail, producing quantities that are almost independent onk.
The reason of this striking difference can be traced back
the lack of correlations among nodes, which in the M
model is imposed by construction~the model is a random
network with fixed connectivity distribution!, and in the
GBA model it is due to the destruction of correlations by t
random rewiring mechanism implemented. The general a
lytic study of connectivity correlations in growing network
models has been discussed in Ref.@32#, and the conditional
probability pc(k8uk) has been computed for a determinis
scale-free network model@48#. However, it is worth noticing
that ak structure in correlation functions, as probed by t
quantity^knn&, does not arise in all growing network mode
In this perspective we can use correlation properties as
of the discriminating feature among various models t
show the same scale-free connectivity exponent. Inter
ingly, a stochastic network model@49# has been recently pro
posed, in the spirit of the scenario advanced in Ref.@50#, that
appears to capture the correlation function properties
sented here. This model is defined in terms of three elem
tary rules. At each time step:~i! The number of nodes is
increased by a constant fraction of the nodes present in
previous time step; the newly added nodes are connecte
one or two previously present nodes.~ii ! Each vertex in-
creases its connectivity by a constant factor, the new li
being connected following the preferential attachment ru
Eq. ~13!. ~iii ! Each vertex randomly disconnects existi

FIG. 10. Clustering coefficientck as a function of the connec
tivity k for the MR, GBA, and fitness models, compared with t
result from the AS98 map. The full line has a slope20.75.
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links or connects new links, following in this last case t
preferential attachment rule. With these three elements,
model described in Ref.@49# recovers a connectivity expo
nent and clustering coefficient comparable with the valu
found in the present work, while yielding a function^knn&
decreasing withk as a power-law, in close analogy with th
behavior we have reported for real AS maps.

The fitness model is able to reproduce the nontrivial c
relation properties because of the fitness parameter of e
node that mimics the different hierarchical, economical, a
geographical constraints of Internet growth. Since the mo
is embedding many features in one single parameter,
have to consider it just as a very first step towards a m
realistic modeling of the Internet. In this perspective, mod
in which the attachment rate depends on both the conne
ity and the real space distance between two nodes has
studied in@13,41#. These models seem to give a better d
scription of the Internet topology. In particular, the model
Ref. @13# includes a new element, the inclusion of geograp
cal constraints, that was not considered previously. T
model describes the Internet in terms of an evolving netw
in which the added nodes have a geographical posit
forming a scale-invariant fractal set with a fractal dimensi
compatible with the value found in a real router-level ma
Also, the probability of the addition of new links is regulate

FIG. 11. Average connectivity of the nearest neighbors of a n
as a function of the connectivityk for the MR, GBA, and fitness
models, compared with the result from the AS98 map. The AS
data have been binned for the sake of clarity. The full line ha
slope20.5.
0-10
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LARGE-SCALE TOPOLOGICAL AND DYNAMICAL . . . PHYSICAL REVIEW E 65 066130
by two competing mechanisms, being directly proportio
to the connectivity of the nodes and inversely proportiona
the physical distance between nodes. While the path ope
by this model seems quite promising, a comparison with r
data is more difficult because Internet maps at the AS le
generally lack geographical and economical information.

VIII. SUMMARY AND CONCLUSIONS

In summary, we have shown that the Internet maps exh
a stationary scale-free topology, characterized by nontri
connectivity correlations. An investigation of the Internet d
namics confirms the presence of a preferential attachm
behaving linearly with the nodes’ connectivity and identifi
two different dynamical regimes during the nodes’ evolutio
We have compared several models of scale-free network
the experimental data obtained from the AS maps. While
the models seem to capture the scale-free connectivity di
bution, correlation and clustering properties are captu
ch
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only in models that take into account several other ingre
ents, such as the nodes’ hierarchy, resource constraints
geographical location. Other ingredients that should be
cluded in the Internet modeling concern the possibility
including the wiring among existing nodes and age effe
that our analysis show to be an appreciable feature of
Internet evolution. The results presented in this work sh
that the understanding and modeling of the Internet is
interesting and stimulating problem that needs the coop
tive efforts of data analysis and theoretical modeling.
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