64 research outputs found

    The impact of ageing reveals distinct roles for human dentate gyrus and CA3 in pattern separation and object recognition memory

    Get PDF
    © 2017 The Author(s). Both recognition of familiar objects and pattern separation, a process that orthogonalises overlapping events, are critical for effective memory. Evidence is emerging that human pattern separation requires dentate gyrus. Dentate gyrus is intimately connected to CA3 where, in animals, an autoassociative network enables recall of complete memories to underpin object/event recognition. Despite huge motivation to treat age-related human memory disorders, interaction between human CA3 and dentate subfields is difficult to investigate due to small size and proximity. We tested the hypothesis that human dentate gyrus is critical for pattern separation, whereas, CA3 underpins identical object recognition. Using 3 T MR hippocampal subfield volumetry combined with a behavioural pattern separation task, we demonstrate that dentate gyrus volume predicts accuracy and response time during behavioural pattern separation whereas CA3 predicts performance in object recognition memory. Critically, human dentate gyrus volume decreases with age whereas CA3 volume is age-independent. Further, decreased dentate gyrus volume, and no other subfield volume, mediates adverse effects of aging on memory. Thus, we demonstrate distinct roles for CA3 and dentate gyrus in human memory and uncover the variegated effects of human ageing across hippocampal regions. Accurate pinpointing of focal memory-related deficits will allow future targeted treatment for memory loss

    Surface-Based Morphometric Analysis of Hippocampal Subfields in Mild Cognitive Impairment and Alzheimer's Disease

    Get PDF
    The hippocampus is widely studied with neuroimaging techniques given its importance in learning and memory and its potential as a biomarker for Alzheimer's disease (AD). Its complex folding anatomy often presents analytical challenges. In particular, the critical subfield information is typically not addressed by the existing hippocampal shape studies. To bridge this gap, we present a computational framework for surface-based morphometric analysis of hippocampal subfields. The major strengths of this framework are as follows: (a) it performs detailed hippocampal shape analysis, (b) it embraces, rather than ignores, the important hippocampal subfield information, and (c) it analyzes regular magnetic resonance imaging scans and is applicable to large scale studies. We demonstrate its effectiveness by applying it to the identification of regional hippocampal subfield atrophy patterns associated with mild cognitive impairment and AD

    Manual Hippocampal Subfield Segmentation Using High-Field MRI: Impact of Different Subfields in Hippocampal Volume Loss of Temporal Lobe Epilepsy Patients

    Get PDF
    In patients with temporal lobe epilepsy (TLE), presurgical magnetic resonance imaging (MRI) often reveals hippocampal atrophy, while neuropathological assessment indicates the different types of hippocampal sclerosis (HS). Different HS types are not discriminated in MRI so far. We aimed to define the volume of each hippocampal subfield on MRI manually and to compare automatic and manual segmentations for the discrimination of HS types. The T2-weighted images from 14 formalin-fixed age-matched control hippocampi were obtained with 4.7T MRI to evaluate the volume of each subfield at the anatomical level of the hippocampal head, body, and tail. Formalin-fixed coronal sections at the level of the body of 14 control cases, as well as tissue samples from 24 TLE patients, were imaged with a similar high-resolution sequence at 3T. Presurgical three-dimensional (3D) T1-weighted images from TLE went through a FreeSurfer 6.0 hippocampal subfield automatic assessment. The manual delineation with the 4.7T MRI was identified using Luxol Fast Blue stained 10-μm-thin microscopy slides, collected at every millimeter. An additional section at the level of the body from controls and TLE cases was submitted to NeuN immunohistochemistry for neuronal density estimation. All TLE cases were classified according to the International League Against Epilepsy's (ILAE's) HS classification. Manual volumetry in controls revealed that the dentate gyrus (DG)+CA4 region, CA1, and subiculum accounted for almost 90% of the hippocampal volume. The manual 3T volumetry showed that all TLE patients with type 1 HS (TLE-HS1) had lower volumes for DG+CA4, CA2, and CA1, whereas those TLE patients with HS type 2 (TLE-HS2) had lower volumes only in CA1 (p ≤ 0.038). Neuronal cell densities always decreased in CA4, CA3, CA2, and CA1 of TLE-HS1 but only in CA1 of TLE-HS2 (p ≤ 0.003). In addition, TLE-HS2 had a higher volume (p = 0.016) and higher neuronal density (p < 0.001) than the TLE-HS1 in DG + CA4. Automatic segmentation failed to match the manual or histological findings and was unable to differentiate TLE-HS1 from TLE-HS2. Total hippocampal volume correlated with DG+CA4 and CA1 volumes and neuronal density. For the first time, we also identified subfield-specific pathology patterns in the manual evaluation of volumetric MRI scans, showing the importance of manual segmentation to assess subfield-specific pathology patterns

    Hippocampal subfields and limbic white matter jointly predict learning rate in older adults

    No full text
    First published online: 04 December 2019Age-related memory impairments have been linked to differences in structural brain parameters, including cerebral white matter (WM) microstructure and hippocampal (HC) volume, but their combined influences are rarely investigated. In a population-based sample of 337 older participants aged 61-82 years (Mage = 69.66, SDage = 3.92 years), we modeled the independent and joint effects of limbic WM microstructure and HC subfield volumes on verbal learning. Participants completed a verbal learning task of recall over five repeated trials and underwent magnetic resonance imaging (MRI), including structural and diffusion scans. We segmented three HC subregions on high-resolution MRI data and sampled mean fractional anisotropy (FA) from bilateral limbic WM tracts identified via deterministic fiber tractography. Using structural equation modeling, we evaluated the associations between learning rate and latent factors representing FA sampled from limbic WM tracts, and HC subfield volumes, and their latent interaction. Results showed limbic WM and the interaction of HC and WM-but not HC volume alone-predicted verbal learning rates. Model decomposition revealed HC volume is only positively associated with learning rate in individuals with higher WM anisotropy. We conclude that the structural characteristics of limbic WM regions and HC volume jointly contribute to verbal learning in older adults

    Trajectories of the Hippocampal Subfields Atrophy in the Alzheimer’s Disease: A Structural Imaging Study

    Get PDF
    BackgroundThe hippocampus and hippocampal subfields have been found to be diversely affected in Alzheimer’s Disease (AD) and early stages of Alzheimer’s disease by neuroimaging studies. However, our knowledge is still lacking about the trajectories of the hippocampus and hippocampal subfields atrophy with the progression of Alzheimer’s disease.ObjectiveTo identify which subfields of the hippocampus differ in the trajectories of Alzheimer’s disease by magnetic resonance imaging (MRI) and to determine whether individual differences on memory could be explained by structural volumes of hippocampal subfields.MethodsFour groups of participants including 41 AD patients, 43 amnestic mild cognitive impairment (aMCI) patients, 35 subjective cognitive decline (SCD) patients and 42 normal controls (NC) received their structural MRI brain scans. Structural MR images were processed by the FreeSurfer 6.0 image analysis suite to extract the hippocampus and its subfields. Furthermore, we investigated relationships between hippocampal subfield volumes and memory test variables (AVLT-immediate recall, AVLT-delayed recall, AVLT-recognition) and the regression model analyses were controlled for age, gender, education and eTIV.ResultsCA1, subiculum, presubiculum, molecular layer and fimbria showed the trend toward significant volume reduction among four groups with the progression of Alzheimer’s disease. Volume of left subiculum was most strongly and actively correlated with performance across AVLT measures.ConclusionThe trend changes in the hippocampus subfields and further illustrates that SCD is the preclinical stage of AD earlier than aMCI. Future studies should aim to associate the atrophy of the hippocampal subfields in SCD with possible conversion to aMCI or AD with longitudinal design

    Global Hippocampal Volume Reductions and Local CA1 Shape Deformations in Amyotrophic Lateral Sclerosis

    Get PDF
    There is increasing evidence for hippocampal involvement in Amyotrophic Lateral Sclerosis (ALS). Recent neuroimaging studies have been focused on disease-related hippocampal volume alterations while changes in hippocampal shape have been investigated less frequently. Here, we aimed to characterize the patterns of hippocampal degeneration using both an automatic and manual volumetric and surface-based approach in a group of 31 patients with ALS and 29 healthy controls. Irrespective of the segmentation type, left, and right hippocampal volumes were significantly reduced in ALS compared to controls. Local shape alterations were identified in the hippocampal head region of patients with ALS that corresponds to the cornu ammonis field 1 (CA1), a region known to be involved in novelty detection, memory processing, and integration of hippocampal input and output information. The results suggest a global hippocampal volume loss in ALS that is complemented by local shape deformations in a highly interconnected region within the hippocampus

    Human hippocampal CA3 damage disrupts both recent and remote episodic memories

    Get PDF
    Neocortical-hippocampal interactions support new episodic (event) memories, but there is conflicting evidence about the dependence of remote episodic memories on the hippocampus. In line with systems consolidation and computational theories of episodic memory, evidence from model organisms suggests that the cornu ammonis 3 (CA3) hippocampal subfield supports recent, but not remote, episodic retrieval. In this study, we demonstrated that recent and remote memories were susceptible to a loss of episodic detail in human participants with focal bilateral damage to CA3. Graph theoretic analyses of 7.0-Tesla resting-state fMRI data revealed that CA3 damage disrupted functional integration across the medial temporal lobe (MTL) subsystem of the default network. The loss of functional integration in MTL subsystem regions was predictive of autobiographical episodic retrieval performance. We conclude that human CA3 is necessary for the retrieval of episodic memories long after their initial acquisition and functional integration of the default network is important for autobiographical episodic memory performance

    Imaging of cognitive outcomes in patients with autoimmune encephalitis

    Get PDF
    Die Autoimmunenzephalitis ist eine kürzlich beschriebene entzündliche Erkrankung des zentralen Nervensystems, die Gedächtnisdefizite, Psychosen, oder epileptische Anfälle hervorrufen kann. Derzeit ist hingegen noch nicht ausreichend verstanden, welche pathologischen Veränderungen zu den kognitiven Defiziten führen und welche neuropsychologischen und bildgebenden Langzeitoutcomes zu erwarten sind. Anhand von strukturellen und funktionellen Bildgebungsanalysen zeigt diese Dissertation, dass kognitive Defizite auch nach der akuten Phase der Autoimmunenzephalitis fortbestehen können. Bei der LGI1-Enzephalitis gehen Gedächtnisdefizite mit fokalen strukturellen Läsionen im Hippocampus einher. Durch eine funktionelle Störung der Resting-State-Konnektivität des Default-Mode- und Salienznetzwerkes beeinträchtigen diese Hippocampusläsionen auch Hirnregionen außerhalb des limbischen Systems. Bei Patient:innen mit NMDA-Rezeptor-Enzephalitis finden sich in der longitudinalen neuropsychologischen Untersuchung trotz guter allgemeiner Genesung auch noch mehrere Jahre nach der Akutphase persistierende Defizite des Gedächtnisses und exekutiver Funktionen. Zuletzt zeigt eine transdiagnostische Analyse, dass der anteriore Hippocampus eine erhöhte Vulnerabilität gegenüber immunvermittelten pathologischen Prozessen aufweist. Diese Ergebnisse legen nahe, dass kognitive Symptome auch noch nach der Entlassung aus der stationären Behandlung fortbestehen können. Sowohl umschriebene strukturelle Hippocampusläsionen als auch Veränderungen in makroskopischen funktionellen Hirnnetzwerken tragen zur pathophysiologischen Erklärung dieser Symptome bei. Zudem erlauben diese Ergebnisse einen Einblick in neuroplastische Veränderungen des Gehirns und haben weitreichende Implikationen für die Langzeitversorgung und das Design zukünftiger klinischer Studien.Autoimmune encephalitis is a recently described inflammatory disease of the central nervous system that can cause memory deficits, psychosis, or seizures. The trajectory of cognitive dysfunction and the underlying long-term imaging correlates are, however, not yet fully understood. By using advanced structural and functional neuroimaging, this thesis shows that cognitive deficits persist beyond the acute phase. In LGI1 encephalitis, MRI postprocessing revealed that memory deficits are related to focal structural hippocampal lesions. These hippocampal lesions propagate to brain areas outside the limbic system through aberrant resting-state connectivity of the default mode network (DMN) and the salience network. In NMDA receptor encephalitis, a longitudinal analysis of neuropsychological data describes persistent cognitive deficits, especially in the memory and executive domains, despite good physical recovery several years after the acute disease. Lastly, a transdiagnostic analysis reveals that the anterior hippocampus is particularly vulnerable to immune-mediated damage. In conclusion, these results demonstrate that cognitive symptoms in autoimmune encephalitis can persist beyond discharge from neurological care. Both discrete structural hippocampal damage and changes in macroscopic functional networks shed light on the pathophysiological basis of these symptoms. These findings help to explain how the brain responds to pathological damage and have substantial implications for long-term patient care and the design of future clinical studies
    corecore