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Abstract

The hippocampus is widely studied with neuroimaging techniques given its importance in learning 

and memory and its potential as a biomarker for Alzheimer’s disease (AD). Its complex folding 

anatomy often presents analytical challenges. In particular, the critical subfield information is 

typically not addressed by the existing hippocampal shape studies. To bridge this gap, we present 

a computational framework for surface-based morphometric analysis of hippocampal subfields. 

The major strengths of this framework are as follows: (a) it performs detailed hippocampal shape 

analysis, (b) it embraces, rather than ignores, the important hippocampal subfield information, and 
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HHS Public Access
Author manuscript
Conf Proc (Midwest Symp Circuits Syst). Author manuscript; available in PMC 2016 August 
01.

Published in final edited form as:
Conf Proc (Midwest Symp Circuits Syst). 2015 August ; 2015: .

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IUPUIScholarWorks

https://core.ac.uk/display/84831363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


(c) it analyzes regular magnetic resonance imaging scans and is applicable to large scale studies. 

We demonstrate its effectiveness by applying it to the identification of regional hippocampal 

subfield atrophy patterns associated with mild cognitive impairment and AD.

I. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive 

impairment of memory and other cognitive functions. The hippocampus is known to play 

important roles in consolidating information from short-term memory to long-term memory 

and is one of the first regions of the brain to suffer damage in the progression of AD. 

Hippocampal measures extracted from magnetic resonance imaging (MRI) scans have been 

widely studied to detect the status of AD or mild cognitive impairment (MCI, a prodromal 

stage of AD) [1]–[4] or infer cognitive status [5]. These hippocampal measures include: (a) 

total volumes [2], [3], (b) subfield volumes [1], [4], (c) surface deformations [5] using 

surface-based morphometry (SBM), and (d) gray matter (GM) measures using voxel-based 

morphometry (VBM) [3].

The first two types of measures are highly summarized size measures and may not be able to 

capture detailed regional changes. The second two types are detailed measures of 

hippocampal morphometry and have the potential to localize the structural changes in 

hippocampus. The hippocampus is composed of multiple subfields [6], and the neuron loss 

is not uniformly distributed on the whole hippocampus [7]. Many hippocampal studies have 

indicated that subfields play an important role in brain functions, e.g., cornu ammonis 1 

(CA1) related to autobiographical memory retrieval [8], CA3 and dentate gyrus (DG) 

involved in memory encoding and early retrieval [6], and subiculum and CA1 

predominantly affected for AD patients [9]. However, this critical subfield information is 

typically not addressed by the existing SBM and VBM studies [3], [5]. To bridge this gap, 

we propose a SBM framework that maps hippocampal regional changes onto it subfields and 

demonstrate its effectiveness by applying it to identifying regional subfield changes in MCI 

and AD.

The complex folding anatomy of hippocampus presents analytical challenges, and the 

hippocampal subfield information is often difficult to extract. Most existing subfield studies 

employed manual segmentation [10]–[12] or semi-automated segmentation [1], [13], 

coupled with high-field MR technologies (e.g., 4–9.4T) and/or postmortem samples. They 

often require long scan time and thus is not applicable to large-scale studies. Among very 

few tools available for hippocampal subfield studies, FreeSurfer (http://freesurfer.net/) 

recently released a promising routine (http://freesurfer.net/fswiki/

HippocampalSubfieldSegmentation) for subfield segmentation [14]. But FreeSurfer tends to 

yield noisy boundary of the entire hippocampus, which is not suitable for detailed shape 

analysis [2], [15]. FIRST (http://www.fmrib.ox.ac.uk/fsl/fsl/list.html) [16], an integrated 

surface registration and segmentation tool developed as part of the FMRIB Software Library 

(FSL), has produced satisfactory segmentation results of the entire hippocampus for detailed 

shape studies (e.g., [17], [18]); but it does not offer capability for segmenting subfields. 

Cong et al. [15] integrated the subfield segmentation results from FreeSurfer, the 

hippocampal segmentation results from FIRST, and a powerful spherical harmonics 
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(SPHARM) shape modeling method [19], [20], and developed an approach to build a 

surface atlas of hippocampal subfields from MRI scans.

In this paper, we propose a novel SBM framework for identifying hippocampal subfield 

changes related to a certain condition of interest (e.g., age, gender, or diagnosis). We employ 

the method by Cong et al. [15] to create a surface atlas of hippocampal subfields, use the 

SPHARM technique to register each individual hippocampus to this atlas, and perform 

statistical shape analysis on the surface manifold using random field theory [21], [22]. The 

major strengths of this framework are as follows: (a) it performs detailed hippocampal shape 

analysis, (b) it embraces, rather than ignores, the important hippocampal subfield 

information, and (c) it analyzes regular MRI scans and is applicable to large scale studies. 

We demonstrate its effectiveness via an application to the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) data set [23].

II. MATERIALS AND METHODS

We follow the three-step pipeline described in [15]: (a) automatic segmentation of the 

hippocampus (by FIRST) and subfields (by FreeSurfer), (b) modeling hippocampal surfaces 

using SPHARM, and (c) creating surface atlas of hippocampal subfields. We apply this 

pipeline and create a surface atlas of hippocampal subfields using all healthy control (HC) 

participants in the analyzed ADNI data. After that, we register all the individual 

hippocampal surface to this atlas, and extract surface signals. Finally, we perform statistical 

shape analysis of these surface signals using random field theory to identify hippocampal 

subfield regions related to conditions of interest including age, gender, and diagnosis.

A. Test Data

The data used in this study were downloaded from the ADNI database [23]. One goal of 

ADNI has been to test whether serial MRI, positron emission tomography, other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of MCI and early AD. For up-to-date information, see www.adni-info.org. We 

downloaded baseline 3T MRI scans of 172 HC, 267 early MCI (EMCI), 140 late MCI 

(LMCI), and 108 AD participants aging between 55 and 90, along with demographic and 

diagnostic information. All the raw data are 3D T1-weighted scans with 1.2 × 1.0 × 1.0 mm3 

voxel resolution, and dimension of 196 × 256 × 256.

B. Hippocampal Surface Modeling

Automatic hippocampal segmentation is conducted by FIRST. Topology fix is performed on 

the binary segmentation results to make sure that each hippocampal surface has spherical 

topology. The SPHARM method is used to model each surface as follows: (a) Spherical 

parametrization is first performed to establish a bijective mapping between each surface 

location v = (x; y; z)T and a pair of spherical coordinates (θ; ϕ) while minimizing area 

distortion. This mapping can be represented as: v(θ; ϕ) = (x(θ; ϕ); y(θ; ϕ); z(θ; ϕ))T. (b) Each 

parameterized surface is then expanded using spherical harmonics (i.e., Fourier basis 

functions on the sphere):
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where  is the spherical harmonic of degree l and m, and coefficients 

can be calculated up to a user-desired degree, and estimated by solving a set of linear 

equations in a least squares fashion [24]. (c) After that, the hippocampal surface can be 

reconstructed with these estimated coefficients. Using more coefficients leads to a more 

detailed reconstruction. (d) These SPHARM surfaces can be registered together by aligning 

their first order ellipsoids (FOEs) (see [15] for details).

C. Hippocampal Subfield Mapping and Atlas Construction

FreeSurfer is used to segment out 8 hippocampal subfields: hippocampal tail, CA1, CA2-3, 

CA4-DG, fimbria, hippocampal fissure, presubiculum, and subiculum. Since the subfield 

segmentation process is based on a Bayesian model, each subfield segmentation result is 

represented as a probability map. We employ the SPHARM basis functions to expand these 

probability maps, using the same spherical parameterization described above. As a result, for 

each subfield and each surface location, there is an associated probability value. By 

comparing the reconstructed probability values from each subfield, each surface location can 

be labeled by the subfield with the largest probability value.

To facilitate comparison among hippocampal surfaces, we use all the HC data and create a 

surface atlas to represent an average normal hippocampus. Our method is as follows: (1) let 

the atlas be the first surface; (2) register each surface to the atlas by aligning their FOEs; (3) 

let the atlas be the mean of all the data; (4) repeat (2) and (3) until the atlas converges. Each 

atlas surface location is labeled by the most popular subfield carried by the HC participants. 

As a result, no atlas surface location is labeled by fimbria and hippocampal fissure. 

Following a general delineation in [25], we also combine presubiculum and subiculum into 

one joint subfield denoted as SUB. Consequently, we have five hippocampal subfields 

shown on the atlas surface in this study (see Figure 1), which is in accordance with prior 

studies [4], [10], [11], [26].

D. Statistical Shape Analysis on the Surface

We use xt to denote the atlas, and x to denote an individual surface registered to the atlas. 

Although the deformation field δ(x) = x−xt can be used to describe the individual shape, 

there are three related elements (corresponding to x, y, z coordinates) in δ(x) that are needed 

to capture local shape changes. For simplicity, we look at only the deformation signal along 

the surface normal direction to reduce the number of variables considered for each surface 

location. We apply heat kernel smoothing, which generalizes Gaussian kernel smoothing to 

arbitrary Riemannian manifolds [27], to smooth the surface signals and increase the signal-

to-noise ratio. We use a kernel size of 5mm full-width-half-max (FWHM) in the smoothing.

We perform statistical surface analysis to detect: (a) age or gender effect on surface 

deformation, and (b) group difference (HC vs EMCI, HC vs LMCI, and HC vs AD) on 
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surface deformation after removing the age and gender effects. We consider the following 

general linear model (GLM):

(1)

where the dependent variable y is our surface signal; X = (x1,⋯,xp) are the variables of 

interest such as Group; Z = (z1,⋯,zk) are the variables whose effects we want to exclude, 

such as Age and Gender; and Ψ = (ψ1,⋯,ψk)T, Φ = (ϕ1,⋯,ϕp)T and ∊ are the coefficients. 

The goal is to test if X is significant (i.e., = Ψ ≠ 0) for some y ∈ ∂Ω, where ∂Ω indicates the 

atlas surface manifold. We use SurfStat [22] to test our GLMs. SurfStat is a Matlab toolbox 

for the statistical analysis of univariate and multivariate surface and volumetric data using 

linear mixed effects models and random field theory (RFT, for multiple comparison 

correction) [28].

III. EXPERIMENTAL RESULTS

Shown in Figure 1 is the resulting surface atlas color-mapped with five hippocampal 

subfields. Shown in Figure 2 are example T-maps (maps of t statistics) and P-maps (maps of 

p values, only significant p-values shown, corrected by RFT at both vertex and cluster 

levels) of selected analyses. Shown in Table I are the numbers of significant surface vertices 

in each of five analyses.

Below we briefly review the results of three diagnostic effects (covaried for age and gender) 

on surface signals. (1) HC vs EMCI: There was no significant shape change on the entire 

surface. (2) HC vs LMCI: LMCI demonstrated significant atrophy patterns in 25% of tail, 

38% of CA1, 30% of CA2-3, 32% of CA4-DG, and 55% of SUB. (3) HC vs AD: AD 

demonstrated significant atrophy patterns in 49% of tail, 87% of CA1, 50% of CA2-3, 94% 

of CA4-DG, and 84% of SUB. While SUB was among the top atrophy regions at both 

LMCI and AD stages, CA1 and CA4-DG showed modest atrophy at the LMCI stage but 

severe atrophy at the AD stage.

Regarding the age, it affected 83% of SUB, 50–56% of Tail, CA1 and CA2-3, and 39% of 

CA4-DG. The overall pattern was similar to diagnostic effects of LMCI and AD. As to the 

gender, it affected 47–62% of Tail and CA1, 14–16% of CA2-3 and SUB, and 5% of CA4-

DG.

IV. CONCLUSIONS AND DISCUSSIONS

A computational framework has been presented for surface-based morphometric analysis of 

hippocampal subfields. The major strengths of this framework are as follows: (a) it performs 

detailed hippocampal shape analysis, (b) it embraces, rather than ignores, the important 

hippocampal subfield information, and (c) it analyzes regular MRI scans and is applicable to 

large scale studies. We have demonstrated its effectiveness by applying it to the ADNI data. 

After controlling the effects of age and gender, we have identified that pre-subiculum and 

subiculum were among top atrophy regions at both LMCI and AD stages, and CA1 and 

CA4-DG showed modest atrophy at the LMCI stage but severe atrophy at the AD stage. In 

this initial effort, we have embraced and mapped the sub-field information in hippocampal 
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morphometric analyses. One future direction is to use this important subfield information to 

guide hippocampal surface registration and facilitate more accurate and robust modeling and 

analysis of the hippocampal 3D structure.
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Fig. 1. 
Hippocampal surface atlas: five subfields color mapped on to the mean hippocampal surface 

of all HC participants in the studied cohort.
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Fig. 2. 
(a–b) The t-map and p-map of the diagnostic effect (HC-LMCI) on surface signals after 

removing the effects of age and gender. (c–d) The t-map and p-map of the diagnostic effect 

(HC-AD) on surface signals after removing the effects of age and gender. (e) The p-map of 

age effect on surface signals. (f) The p-map of gender effect on surface signals. In t maps 

(a,c), red/blue colors respectively indicate expansion/contraction in HC compared with 

LMCI or AD.
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