9,703 research outputs found

    Small cycle cover, group coloring with related problems

    Get PDF
    Bondy conjectured that if G is a simple 2-connected graph with n ≥ 3 vertices, then the edges of G can be covered by at most 2n-33 cycles. In Chapter 2, a result on small cycle cover is obtained and we also show that the result is as best as possible.;Thomassen conjectured that every 4-connected line graph is hamiltonian. In Chapters 3 and 4, we apply Catlin\u27s reduction method to study cycles in line graphs. Results about hamiltonian connectivity of line graphs and 3-edge-connected graphs are obtained. Several former results are extended.;Jaeger, Linial, Payan and Tarsi introduced group coloring in 1992 and proved that the group chromatic number for every planar graph is at most 6. It is shown that the bound 6 can be decreased to 5. Jaeger, Linial, Payan and Tarsi also proved that the group chromatic number for every planar graph with girth at least 4 is at most 4. Chapters 5 and 6 are devoted to the study of group coloring of graphs.;The concept of list coloring, choosability and choice number was introduced by Erdos, Rubin and Taylor in 1979 and Vizing in 1976. Alon and Tarsi proved that every bipartite planar graph is 3-choosable. Thomassen showed that every planar graph is 5-choosable and that every planar graph with girth at least 5 is 3-choosable. In Chapter 7, results on list coloring are obtained, extending a former result of Thomassen

    On Generalizations of Supereulerian Graphs

    Get PDF
    A graph is supereulerian if it has a spanning closed trail. Pulleyblank in 1979 showed that determining whether a graph is supereulerian, even when restricted to planar graphs, is NP-complete. Let κ2˘7(G)\kappa\u27(G) and δ(G)\delta(G) be the edge-connectivity and the minimum degree of a graph GG, respectively. For integers s≥0s \ge 0 and t≥0t \ge 0, a graph GG is (s,t)(s,t)-supereulerian if for any disjoint edge sets X,Y⊆E(G)X, Y \subseteq E(G) with ∣X∣≤s|X|\le s and ∣Y∣≤t|Y|\le t, GG has a spanning closed trail that contains XX and avoids YY. This dissertation is devoted to providing some results on (s,t)(s,t)-supereulerian graphs and supereulerian hypergraphs. In Chapter 2, we determine the value of the smallest integer j(s,t)j(s,t) such that every j(s,t)j(s,t)-edge-connected graph is (s,t)(s,t)-supereulerian as follows: j(s,t) = \left\{ \begin{array}{ll} \max\{4, t + 2\} & \mbox{ if $0 \le s \le 1$, or $(s,t) \in \{(2,0), (2,1), (3,0),(4,0)\}$,} \\ 5 & \mbox{ if $(s,t) \in \{(2,2), (3,1)\}$,} \\ s + t + \frac{1 - (-1)^s}{2} & \mbox{ if $s \ge 2$ and $s+t \ge 5$. } \end{array} \right. As applications, we characterize (s,t)(s,t)-supereulerian graphs when t≥3t \ge 3 in terms of edge-connectivities, and show that when t≥3t \ge 3, (s,t)(s,t)-supereulerianicity is polynomially determinable. In Chapter 3, for a subset Y⊆E(G)Y \subseteq E(G) with ∣Y∣≤κ2˘7(G)−1|Y|\le \kappa\u27(G)-1, a necessary and sufficient condition for G−YG-Y to be a contractible configuration for supereulerianicity is obtained. We also characterize the (s,t)(s,t)-supereulerianicity of GG when s+t≤κ2˘7(G)s+t\le \kappa\u27(G). These results are applied to show that if GG is (s,t)(s,t)-supereulerian with κ2˘7(G)=δ(G)≥3\kappa\u27(G)=\delta(G)\ge 3, then for any permutation α\alpha on the vertex set V(G)V(G), the permutation graph α(G)\alpha(G) is (s,t)(s,t)-supereulerian if and only if s+t≤κ2˘7(G)s+t\le \kappa\u27(G). For a non-negative integer s≤∣V(G)∣−3s\le |V(G)|-3, a graph GG is ss-Hamiltonian if the removal of any k≤sk\le s vertices results in a Hamiltonian graph. Let is,t(G)i_{s,t}(G) and hs(G)h_s(G) denote the smallest integer ii such that the iterated line graph Li(G)L^{i}(G) is (s,t)(s,t)-supereulerian and ss-Hamiltonian, respectively. In Chapter 4, for a simple graph GG, we establish upper bounds for is,t(G)i_{s,t}(G) and hs(G)h_s(G). Specifically, the upper bound for the ss-Hamiltonian index hs(G)h_s(G) sharpens the result obtained by Zhang et al. in [Discrete Math., 308 (2008) 4779-4785]. Harary and Nash-Williams in 1968 proved that the line graph of a graph GG is Hamiltonian if and only if GG has a dominating closed trail, Jaeger in 1979 showed that every 4-edge-connected graph is supereulerian, and Catlin in 1988 proved that every graph with two edge-disjoint spanning trees is a contractible configuration for supereulerianicity. In Chapter 5, utilizing the notion of partition-connectedness of hypergraphs introduced by Frank, Kir\\u27aly and Kriesell in 2003, we generalize the above-mentioned results of Harary and Nash-Williams, of Jaeger and of Catlin to hypergraphs by characterizing hypergraphs whose line graphs are Hamiltonian, and showing that every 2-partition-connected hypergraph is a contractible configuration for supereulerianicity. Applying the adjacency matrix of a hypergraph HH defined by Rodr\\u27iguez in 2002, let λ2(H)\lambda_2(H) be the second largest adjacency eigenvalue of HH. In Chapter 6, we prove that for an integer kk and a rr-uniform hypergraph HH of order nn with r≥4r\ge 4 even, the minimum degree δ≥k≥2\delta\ge k\ge 2 and k≠r+2k\neq r+2, if λ2(H)≤(r−1)δ−r2(k−1)n4(r+1)(n−r−1)\lambda_2(H)\le (r-1)\delta-\frac{r^2(k-1)n}{4(r+1)(n-r-1)}, then HH is kk-edge-connected. %κ2˘7(H)≥k\kappa\u27(H)\ge k. Some discussions are displayed in the last chapter. We extend the well-known Thomassen Conjecture that every 4-connected line graph is Hamiltonian to hypergraphs. The (s,t)(s,t)-supereulerianicity of hypergraphs is another interesting topic to be investigated in the future

    On Eulerian subgraphs and hamiltonian line graphs

    Get PDF
    A graph {\color{black}GG} is Hamilton-connected if for any pair of distinct vertices {\color{black}u,v∈V(G)u, v \in V(G)}, {\color{black}GG} has a spanning (u,v)(u,v)-path; {\color{black}GG} is 1-hamiltonian if for any vertex subset S⊆V(G)S \subseteq {\color{black}V(G)} with ∣S∣≤1|S| \le 1, G−SG - S has a spanning cycle. Let δ(G)\delta(G), α2˘7(G)\alpha\u27(G) and L(G)L(G) denote the minimum degree, the matching number and the line graph of a graph GG, respectively. The following result is obtained. {\color{black} Let GG be a simple graph} with ∣E(G)∣≥3|E(G)| \ge 3. If δ(G)≥α2˘7(G)\delta(G) \geq \alpha\u27(G), then each of the following holds. \\ (i) L(G)L(G) is Hamilton-connected if and only if κ(L(G))≥3\kappa(L(G))\ge 3. \\ (ii) L(G)L(G) is 1-hamiltonian if and only if κ(L(G))≥3\kappa(L(G))\ge 3. %==========sp For a graph GG, an integer s≥0s \ge 0 and distinct vertices u,v∈V(G)u, v \in V(G), an (s;u,v)(s; u, v)-path-system of GG is a subgraph HH consisting of ss internally disjoint (u,v)(u,v)-paths. The spanning connectivity κ∗(G)\kappa^*(G) is the largest integer ss such that for any kk with 0≤k≤s0 \le k \le s and for any u,v∈V(G)u, v \in V(G) with u≠vu \neq v, GG has a spanning (k;u,v)(k; u,v)-path-system. It is known that κ∗(G)≤κ(G)\kappa^*(G) \le \kappa(G), and determining if κ∗(G)3˘e0\kappa^*(G) \u3e 0 is an NP-complete problem. A graph GG is maximally spanning connected if κ∗(G)=κ(G)\kappa^*(G) = \kappa(G). Let msc(G)msc(G) and sk(G)s_k(G) be the smallest integers mm and m2˘7m\u27 such that Lm(G)L^m(G) is maximally spanning connected and κ∗(Lm2˘7(G))≥k\kappa^*(L^{m\u27}(G)) \ge k, respectively. We show that every locally-connected line graph with connectivity at least 3 is maximally spanning connected, and that the spanning connectivity of a locally-connected line graph can be polynomially determined. As applications, we also determined best possible upper bounds for msc(G)msc(G) and sk(G)s_k(G), and characterized the extremal graphs reaching the upper bounds. %==============st For integers s≥0s \ge 0 and t≥0t \ge 0, a graph GG is (s,t)(s,t)-supereulerian if for any disjoint edge sets X,Y⊆E(G)X, Y \subseteq E(G) with ∣X∣≤s|X|\le s and ∣Y∣≤t|Y|\le t, GG has a spanning closed trail that contains XX and avoids YY. Pulleyblank in [J. Graph Theory, 3 (1979) 309-310] showed that determining whether a graph is (0,0)(0,0)-supereulerian, even when restricted to planar graphs, is NP-complete. Settling an open problem of Bauer, Catlin in [J. Graph Theory, 12 (1988) 29-45] showed that every simple graph GG on nn vertices with δ(G)≥n5−1\delta(G) \ge \frac{n}{5} -1, when nn is sufficiently large, is (0,0)(0,0)-supereulerian or is contractible to K2,3K_{2,3}. We prove the following for any nonnegative integers ss and tt. \\ (i) For any real numbers aa and bb with 03˘ca3˘c10 \u3c a \u3c 1, there exists a family of finitely many graphs \F(a,b;s,t) such that if GG is a simple graph on nn vertices with κ2˘7(G)≥t+2\kappa\u27(G) \ge t+2 and δ(G)≥an+b\delta(G) \ge an + b, then either GG is (s,t)(s,t)-supereulerian, or GG is contractible to a member in \F(a,b;s,t). \\ (ii) Let ℓK2\ell K_2 denote the connected loopless graph with two vertices and ℓ\ell parallel edges. If GG is a simple graph on nn vertices with κ2˘7(G)≥t+2\kappa\u27(G) \ge t+2 and δ(G)≥n2−1\delta(G) \ge \frac{n}{2}-1, then when nn is sufficiently large, either GG is (s,t)(s,t)-supereulerian, or for some integer jj with t+2≤j≤s+tt+2 \le j \le s+t, GG is contractible to a jK2j K_2. %==================index For a hamiltonian property \cp, Clark and Wormold introduced the problem of investigating the value \cp(a,b) = \max\{\min\{n: L^n(G) has property \cp\}: κ2˘7(G)≥a\kappa\u27(G) \ge a and δ(G)≥b}\delta(G) \ge b\}, and proposed a few problems to determine \cp(a,b) with b≥a≥4b \ge a \ge 4 when \cp is being hamiltonian, edge-hamiltonian and hamiltonian-connected. Zhan in 1986 proved that the line graph of a 4-edge-connected graph is Hamilton-connected, which implies a solution to the unsettled cases of above-mentioned problem. We consider an extended version of the problem. Let ess2˘7(G)ess\u27(G) denote the essential edge-connectivity of a graph GG, and define \cp\u27(a,b) = \max\{\min\{n: L^n(G) has property \cp\}: ess2˘7(G)≥aess\u27(G) \ge a and δ(G)≥b}\delta(G) \ge b\}. We investigate the values of \cp\u27(a,b) when \cp is one of these hamiltonian properties. In particular, we show that for any values of b≥1b \ge 1, \cp\u27(4,b) \le 2 and \cp\u27(4,b) = 1 if and only if Thomassen\u27s conjecture that every 4-connected line graph is hamiltonian is valid

    Simultaneous Embeddings with Few Bends and Crossings

    Full text link
    A simultaneous embedding with fixed edges (SEFE) of two planar graphs RR and BB is a pair of plane drawings of RR and BB that coincide when restricted to the common vertices and edges of RR and BB. We show that whenever RR and BB admit a SEFE, they also admit a SEFE in which every edge is a polygonal curve with few bends and every pair of edges has few crossings. Specifically: (1) if RR and BB are trees then one bend per edge and four crossings per edge pair suffice (and one bend per edge is sometimes necessary), (2) if RR is a planar graph and BB is a tree then six bends per edge and eight crossings per edge pair suffice, and (3) if RR and BB are planar graphs then six bends per edge and sixteen crossings per edge pair suffice. Our results improve on a paper by Grilli et al. (GD'14), which proves that nine bends per edge suffice, and on a paper by Chan et al. (GD'14), which proves that twenty-four crossings per edge pair suffice.Comment: Full version of the paper "Simultaneous Embeddings with Few Bends and Crossings" accepted at GD '1

    Cuts in matchings of 3-connected cubic graphs

    Full text link
    We discuss conjectures on Hamiltonicity in cubic graphs (Tait, Barnette, Tutte), on the dichromatic number of planar oriented graphs (Neumann-Lara), and on even graphs in digraphs whose contraction is strongly connected (Hochst\"attler). We show that all of them fit into the same framework related to cuts in matchings. This allows us to find a counterexample to the conjecture of Hochst\"attler and show that the conjecture of Neumann-Lara holds for all planar graphs on at most 26 vertices. Finally, we state a new conjecture on bipartite cubic oriented graphs, that naturally arises in this setting.Comment: 12 pages, 5 figures, 1 table. Improved expositio

    Beyond Outerplanarity

    Full text link
    We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer kk-planar graphs, where each edge is crossed by at most kk other edges; and, outer kk-quasi-planar graphs where no kk edges can mutually cross. We show that the outer kk-planar graphs are (⌊4k+1⌋+1)(\lfloor\sqrt{4k+1}\rfloor+1)-degenerate, and consequently that every outer kk-planar graph can be (⌊4k+1⌋+2)(\lfloor\sqrt{4k+1}\rfloor+2)-colored, and this bound is tight. We further show that every outer kk-planar graph has a balanced separator of size O(k)O(k). This implies that every outer kk-planar graph has treewidth O(k)O(k). For fixed kk, these small balanced separators allow us to obtain a simple quasi-polynomial time algorithm to test whether a given graph is outer kk-planar, i.e., none of these recognition problems are NP-complete unless ETH fails. For the outer kk-quasi-planar graphs we prove that, unlike other beyond-planar graph classes, every edge-maximal nn-vertex outer kk-quasi planar graph has the same number of edges, namely 2(k−1)n−(2k−12)2(k-1)n - \binom{2k-1}{2}. We also construct planar 3-trees that are not outer 33-quasi-planar. Finally, we restrict outer kk-planar and outer kk-quasi-planar drawings to \emph{closed} drawings, where the vertex sequence on the boundary is a cycle in the graph. For each kk, we express closed outer kk-planarity and \emph{closed outer kk-quasi-planarity} in extended monadic second-order logic. Thus, closed outer kk-planarity is linear-time testable by Courcelle's Theorem.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    On the tractability of some natural packing, covering and partitioning problems

    Get PDF
    In this paper we fix 7 types of undirected graphs: paths, paths with prescribed endvertices, circuits, forests, spanning trees, (not necessarily spanning) trees and cuts. Given an undirected graph G=(V,E)G=(V,E) and two "object types" A\mathrm{A} and B\mathrm{B} chosen from the alternatives above, we consider the following questions. \textbf{Packing problem:} can we find an object of type A\mathrm{A} and one of type B\mathrm{B} in the edge set EE of GG, so that they are edge-disjoint? \textbf{Partitioning problem:} can we partition EE into an object of type A\mathrm{A} and one of type B\mathrm{B}? \textbf{Covering problem:} can we cover EE with an object of type A\mathrm{A}, and an object of type B\mathrm{B}? This framework includes 44 natural graph theoretic questions. Some of these problems were well-known before, for example covering the edge-set of a graph with two spanning trees, or finding an ss-tt path PP and an s′s'-t′t' path P′P' that are edge-disjoint. However, many others were not, for example can we find an ss-tt path P⊆EP\subseteq E and a spanning tree T⊆ET\subseteq E that are edge-disjoint? Most of these previously unknown problems turned out to be NP-complete, many of them even in planar graphs. This paper determines the status of these 44 problems. For the NP-complete problems we also investigate the planar version, for the polynomial problems we consider the matroidal generalization (wherever this makes sense)

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs
    • …
    corecore