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ABSTRACT

Small Cycle Cover, Group Coloring With Related Problems

Xiangwen Li

Bondy conjectured that if G is a simple 2-connected graph with n ≥ 3

vertices, then the edges of G can be covered by at most 2n−3
3

cycles. In

Chapter 2, a result on small cycle cover is obtained and we also show that

the result is as best as possible.

Thomassen conjectured that every 4-connected line graph is hamiltonian.

In Chapters 3 and 4, we apply Catlin’s reduction method to study cycles

in line graphs. Results about hamiltonian connectivity of line graphs and

3-edge-connected graphs are obtained. Several former results are extended.

Jaeger, Linial, Payan and Tarsi introduced group coloring in 1992 and

proved that the group chromatic number for every planar graph is at most 6.

It is shown that the bound 6 can be decreased to 5. Jaeger, Linial, Payan and

Tarsi also proved that the group chromatic number for every planar graph

with girth at least 4 is at most 4. Chapters 5 and 6 are devoted to the study

of group coloring of graphs.

The concept of list coloring, choosability and choice number was intro-

duced by Erdos, Rubin and Taylor in 1979 and Vizing in 1976. Alon and

Tarsi proved that every bipartite planar graph is 3-choosable. Thomassen

showed that every planar graph is 5-choosable and that every planar graph

with girth at least 5 is 3-choosable. In Chapter 7, results on list coloring are

obtained, extending a former result of Thomassen.
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Chapter 1

Introduction

1.1 Definitions and Notations

All graphs in this dissertation are finite and undirected without loops. A

graph G is an ordered pair (V (G), E(G)) consisting of a nonempty set V (G)

of vertices , a set E(G), disjoint from V (G), of edges. Two vertices u, v are

adjacent if uv ∈ E(G). A graph is simple if it has no loops and no two of

its edges join the same pair of vertices. A connected graph with at least two

vertices is called a nontrivial graph.

For a set S, |S| denotes the cardinality of S. For a graph G, |V (G)| is

often denoted by n and we shall assume that n ≥ 1.

For a vertex u ∈ V (G), we denote the neghborhood of u of G by N(u) =

{v : uv ∈ E(G)}. The degree dG(v) of a vertex v in G is the number of edges

of G incident with v, each loop counting as two edges. We define

∆(G) = max
v∈V (G)

d(v), δ(G) = min
v∈V (G)

d(v).
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Let G be a graph. If G is connected and the degree of every vertex is even,

then G is an Eulerian graph. An Eulerian subgraph of G is called a circuit.

A trail of G is defined as a vertex-edge alternating sequence

v0, e1, v1, e2, · · · , ek, vk (1.1)

such that all the ei’s are distinct and such that for each i = 1, 2, · · · , k, ei is

incident with both vi−1 and vi.

If x is a real number, then the ceiling of x, denoted dxe, is the smallest

integer which is not less than x. If U is a subset of V (G), then G[U ] denote

the subgraph of G induced by U . If E1 is a subset of E(G), then G[E1]

denote the subgraph of G induced by E1.

A k-path (k-cycle) denotes a path (cycle) with k edges. The distance of

4-cycle v1v2v3v4v1 and 5-cycle u1u2u3u4u5u1 is min{dG(vi, uj)|1 ≤ i ≤ 4, 1 ≤
j ≤ 5}, where dG(u, v) denotes the length of a shortest (u, v)-path in G. The

girth of graph G is the length of a shortest cycle of G. For a plane graph

the unique unbounded face is called the outer face. If C is a cycle in a plane

graph, then int(C) is the set of vertices and edges inside C. If int(C)=∅,
then C is facial. If the outer face is bounded by a cycle, we call it the outer

cycle. A separating cycle is a cycle C in a plane graph such that the graph

has at least one vertex outside C and at least one vertex inside C. Let G be

a graph. A set of subgraphs of G is said to be independent if no two of them

have common vertex.

A cycle cover of a graph G is a collection C of cycles of G, such that every

edge of G lies in at least one member of C. A cycle double cover of G is a

cycle cover C of G such that each edge of G lies in exactly two members of

C.
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Let G and H be two graphs. G is contractible to H if H can be obtained

from G by contracting some edges of G and deleting the resulting loops. If

G contains a subgraph which is contractible to H, then H is a minor of G.

The edge-connectivity of a graph G is denoted by κ′(G). We use H ⊆ G

(H ⊂ G) to denote the fact that H is a subgraph of G (proper subgraph of

G ). If H ⊂ G, then for an edge subset X ⊆ E(G)−E(H), we write H + X

for G[E(H) ∪X]. When X = {e}, we also use H + e for H + {e}.
Let X ⊆ E(G). The contraction G/X is obtained from G by contracting

each edge of X and deleting the resulting loops. If H ⊆ G, we write G/H

for G/E(H).

A subgraph Γ of G is called an R-subgraph if both O(Γ) = R and G−E(Γ)

is connected. A graph G is collapsible if for any even subset R of V (G), G

has an R-subgraph. The reduction of G is obtained from G by contracting

all maximal collapsible subgraph. A graph G is reduced if G has no nontrivial

collapsible subgraphs.

If H is a connected subgraph of G, and if vH denotes the vertex in G/H

to which H is contracted, then H is called the preimage of vH . A vertex v

in a contraction of G is nontrivial if v has a nontrivial preimage.

Let O(G) denote the set of odd degree vertices of G. A graph G is

Eulerian if O(G) = ∅ and G is connected. A graph G is supereulerian if G

has a spanning Eulerian subgraph. In particular, K1 is both Eulerian and

supereulerian.

A subgraph H of a graph G is dominating if G − V (H) is edgeless. A

dominating eulerian subgraph is also called a DES. For an integer i ≥ 1,
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define

Di(G) = {v ∈ V (G) : d(v) = i}.

The line graph of a graph G, denoted by L(G), has E(G) as its vertex

set, where two vertices in L(G) are adjacent if and only if the corresponding

edges in G are adjacent.

Let A denote an Abelian group and F (G, A) denote the set of all func-

tions from E(G) to A. For f ∈ F (G, A), an (A, f)-coloring of G under the

orientation D is a function c : V (G) 7→ A such that for every directed edge

e = uv oriented from u to v, it always has c(u) − c(v) 6= f(uv). G is A-

colorable under the orientation D if for any function f ∈ F (G,A), G has an

(A, f)-coloring. It is known ([34]) that A-colorablity is independent of the

choice of the orientation. The group chromatic number of a graph G is de-

fined to be the smallest positive integer m for which G is A-colorable for any

Abelian group A of order ≥ m under a given orientation D, and is denoted

by χg(G).

Let G be a directed graph. For u, v ∈ V (G), (u, v) denotes a directed

edge oriented from u to v. For a vertex v ∈ V (G), let

E−
G(v) = {(u, v) ∈ E(G) : u ∈ V (G)} and E+

G(v) = {(v, u) ∈ E(G) : u ∈
V (G)}.

Let E(v) = E+(v) ∪ E−(v) and let f : E 7→ Z, where Z is the set of

integer and let

f+(v) =
∑

e∈E+(v)

f(e) and f−(v) =
∑

e∈E−(v)

f(e).

A flow of G is a function f such that f+(v) = f−(v) for every vertex v ∈
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V (G). If there exists such a function such that 0 < |f(e)| < k for every edge

e ∈ E(G), we call G admits a nowhere-zero k-flow.

Let A be a nontrivial additive Abelian group, let 0 denote the identity

element of A and let A∗ = A− {0}. Define

F (G,A) = {f : E(G) 7→ A} and F ∗(G,A) = {f : E(G) 7→ A∗}

For each f ∈ F (G,A), the boundary of f is a function ∂f : V (G) 7→ A

defined by

∂f(v) =
∑

e∈E+(v)

f(e)−
∑

e∈E−(v)

f(e),

where “
∑

” refers to the addition in A.

Let G be an undirected graph and A be an Abelian group. Denote

Z(G,A) = {b : V (G) 7→ A such that
∑

v∈V (G)

b(v) = 0}.

A graph G is A-connected if G has an orientation G′ such that for every

function b ∈ Z(G,A) there is a function f ∈ F ∗(G′, A) such that b = ∂f .

For an Abelian group A, let < A > denote the family of graphs that are A-

connected. It is well-known that G ∈< A > is independent of the orientation

of G.

Let k be a positive integer and let Gk denote the kth power of G: i.e.,

the graph with V (Gk) = V (G), where uv ∈ E(Gk) if and only if u and v lie

at distance at most k in G.

Let G be a graph and let L(v) be a set of allowed colors for each vertex

v. An L-list coloring of a graph G is a proper vertex coloring in which every

vertex v gets a color from L(v). G is k-choosable if G has a list coloring for

each list assignment with k colors in each list.
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1.2 Results

In this dissertation, we study three problems: cycle cover, hamiltionian line

graph, and coloring.

The cycle double cover conjecture ([46], [45]) states that every bridgeless

graph has a cycle double cover. It is known that if the cycle double cover con-

jecture is false, then a minimal counterexample would be a 2-edge-connected

simple cubic graph. Bondy [7] conjectured that every simple 2-connected

cubic graph on n vertices admits a cycle double cover C with |C| ≤ n
2
.

Bondy [7] also conjectured that if G is a simple 2-connected graph with

n ≥ 3 vertices, then the edges of G can be covered by at most 2n−3
3

cycles.

Recently, Fan [23] proved this conjecture. Barnette [4] proved that if G is a

3-connected planar graph of order n, then the edges of G can be covered by

at most n+1
2

cycles. In Chapter 2, the following is proved.

Theorem 1.2.1 Every 2-connected simple cubic graph of order n ≥ 6 admits

a cycle cover C with |C| ≤ dn
4
e.

The result of Theorem 1.2.1 is sharp in the sense that there exists an

infinite family of 2-connected cubic graphs with |V (G)| ≥ 6 such that each

graph G in the family requires at least d |V (G)|
4
e cycles in any cycle cover of

G.

Harary and Nash-Williams gave a close relationship between dominating

eulerian subgraphs in a graph G and Hamilton cycles in L(G).

Theorem 1.2.2 (Harary and Nash-Williams [29]) Let G be a graph with

|E(G)| ≥ 3. Then L(G) is hamiltonian if and only if G has a dominating

6



eulerian subgraph.

Thomassen [47] conjectured that every 4-connected line graph is hamil-

tonian. The best result in this direction is that every 7-connected line graph

is hamiltonian connected ([57].

An edge e ∈ E(G) is called subdivided when it is replaced by a path of

length 2 whose internal vertex, denoted v(e), has degree 2 in the resulting

graph. The process of taking an edge e and replacing it by that length 2

path is called subdividing e. For a graph G and edges e′, e′′ ∈ E(G), let G(e′)

denote the graph obtained from G by subdividing e′, and let G(e′, e′′) denote

the graph obtained from G by subdividing both e′ and e′′.

In Chapter 3, we prove the following.

Theorem 1.2.3 Suppose that G satisfies the following conditions (F1) and

(F2):

(F1) If X is an edge cut of G with |X| ≤ 3, then there exists a vertex

v ∈ D|X|(G) such that X consists of all the edges incident with v in G, and

(F2) for every v ∈ D3(G), v lies in a k-cycle Cv of G, where 2 ≤ k ≤ 3.

If κ′(G) ≥ 3, then for every pair of edges e′, e′′ ∈ E(G) we have

(i) G(e′, e′′) is collapsible and

(ii) G has a spanning (v(e′), v(e′′))-trail.

This theorem has a number of corollaries.

Corollary 1.2.4 Let G be a graph such that the set of neighbors of each

vertex of degree 3 in G is not an independent set. If L(G) is 4-connected,

L(G) is hamiltonian connected.
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Corollary 1.2.5 (Kriesell, [37]) If G is a K1,3-free graph and if L(G) is

4-connected, then L(G) is hamiltonian connected.

Corollary 1.2.6 (Zhan, [57]) If κ′(G) ≥ 4, then L(G) is hamiltonian con-

nected.

Corollary 1.2.7 If L2(G) is 4-connected, then L2(G) is hamiltonian con-

nected.

Let C4 denote a 4-cycle in K5. The graph K5 −E(C4) is called an hour-

glass. A graph G is hourglass free if G does not have an induced subgraph

isomorphic to K5 − E(C4).

Corollary 1.2.8 (Broersma, Kriesell and Ryjacek, [9]) Every 4-connected

hourglass free line graph is hamiltonian connected.

In Chapter 4, we study the existence of a circuit H in a 3-edge-connected

graph G such that H contains a given set of vertices of G. We prove the

following:

Theorem 1.2.9 Let G be a 3-edge-connected graph and let S ⊆ V (G) be a

vertex subset such that |S| ≤ 12. Then either G has a circuit H such that

S ⊆ V (H), or G can be contracted to the Petersen graph in such a way that

the preimage of each vertex of the Petersen graph contains at least one vertex

in S.

If G is a planar graph, we have

8



Theorem 1.2.10 Let G be a 3-edge-connected planar graph, and let S ⊆
V (G) be a vertex subset such that |S| ≤ 23. Then there is a circuit in G

containing S.

When G is a cubic graph, κ(G) = κ′(G) and every circuit H of G is

a cycle of G. Therefore, Theorem 1.2.9 and Theorem 1.2.10 extend the

following results in [5] and [1], respectively.

Theorem 1.2.11 (Bau and Holton [5]). Let G be a 3-connected cubic graph

and let S ⊆ V (G) be a vertex subset such that |S| ≤ 12. Then either G has

a cycle H such that S ⊆ V (H), or G is contractible to the Petersen graph in

such a way that the preimage of each vertex of the Petersen graph contains

at least one vertex in S.

Theorem 1.2.12 (Aldred, Bau, Holton and McKay [1]). If S is a set of at

most 23 vertices in a 3-connected cubic planar graph G, then there is a cycle

in G containing S.

There are infinite examples which show that the requirement of 12 vertices

in Theorem 1.2.9 and Theorem 1.2.11 cannot be replaced by 13 vertices. The

sharpness of Theorem 1.2 and Theorem 1.2.10 is demonstrated in [31] that

there are 3-edge-connected (cubic) planar graphs in which there is a set of

24 vertices that do not lie on a common cycle.

Jaeger et al [34] proved the following result.

Theorem 1.2.13 (Jeager, Linial, Payan, and Tarsi [34]). If G is a simple

planar graph, then χg(G) ≤ 6.

9



This has been improved by Lai and Zhang.

Theorem 1.2.14 ([39]) If G is a simple graph without a K5-minor, then

χg(G) ≤ 5. In particular, if G is a simple planar graph, then χg(G) ≤ 5.

Let H ⊂ G be graphs, and A be a group. Given an f ∈ F (G,A), if

for an (A, f |E(H))-coloring c0 of H, there is an (A, f)-coloring c of G such

that c is an extension of c0, then we say that c0 is extended to c. If any

(A, f |E(H))-colotring c0 of H can be extended to an (A, f)-coloring c, then

we say that (G,H) is (A, f)-extendsible. If for any f ∈ F (G,A), (G,H) is

(A, f)-extensible, then (G,H) is A-extensible.

In Chapter 5, we will prove the following result which extends also Jeager

et al [34] result.

Theorem 1.2.15 Let G be a connected simple graph without a K3,3 minor

and let A be a group with |A| ≥ 5. Suppose that H is a subgraph of G

isomorphic to K2. Then (G,H) is A-extensible.

Let G1 and G2 be subgraphs of G. The union G1 ∪ G2 of G1 and G2 is the

subgraph with vertex set V (G1)∪ V (G2) and edge set E(G1)∪E(G2). If G1

and G2 are disjoint, denote the union by G1 +G2. The join G∨H of disjoint

graphs G and H is the graph obtained from G + H by joining each vertex of

G to each vertex of H. Let G and H be two given graphs. In proper coloring,

it is well known that χ(G ∨H) = χ(G) + χ(H), but it is different for group

coloring. It is easy to see that χ(K2,2) = 2 and K2,2 = K2 ∨ K2. Lai and

Zhang [38] showed that χg(K2,2) = 3. In Chapter 5, we prove the following

result.
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Theorem 1.2.16 (1) Suppose that G and H are disjoint graphs. Then

χg(G + H) = max{χg(G), χg(H)}.

(2) Let H1 and H2 be subgraphs of G such that V (H1) ∩ V (H2) = ∅ and

V (G) = V (H1) ∪ V (H2). Then

χg(G) ≤ min{max{χg(H1), maxv∈V (H2) deg(v, H1)}+ ∆(H2) + 1,

max{χg(H2), maxu∈V (H1) deg(u,H2)}+ ∆(H1) + 1}.

The bound of Theorem 5.4.2 is sharp. From Theorem 5.4.2, we obtain the

following corollary.

Corollary 1.2.17 Suppose that G and H are disjoint graphs. Then

χg(G ∨H) ≤ min{|V (H1)|+ ∆(H2) + 1, |V (H2)|+ ∆(H1) + 1}.

Lai and Zhang [38] proved the group coloring analogue of Brook’s Theo-

rem [10].

Theorem 1.2.18 (Lai and Zhang [38]) For any connected simple graph G,

χg(G) ≤ ∆(G) + 1,

with equality if and if either ∆(G) = 2 and G is a cycle; or ∆(G) ≥ 3 and

G is complete.

In Chapter 5, we obtain the following result which extends Theorem 5.4.1.

Theorem 1.2.19 Let k be an integer. If G is a connected graph, then

χg(G
k) ≤ ∆k + 1, (1.2)

and equality holds if and only if either G = K2 or G is a ∆-regular graph of

girth 2k + 1 and order ∆k + 1.
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Jaeger, Linial, Payan and Tarsi [34] proved that if G is a planar graph,

then χg(G) ≤ 6. It is shown (see [38]) that if G is a graph without a K5-

minor or without a K3,3-minor, then χg(G) ≤ 5. Jaeger, Linial, Payan and

Tarsi [34] also proved that if G is a planar graph with girth at least 4, then

χg(G) ≤ 4. In Chapter 6, we prove the following results.

Theorem 1.2.20 Suppose that G is a planar graph with girth 4 such that all

4-cycles are independent and every 4-cycle is facial. If the minimum distance

between 4-cycles and 5-cycles is at least 1, then χg(G) ≤ 3.

Theorem 1.2.21 If G is a K3,3-minor free graph with girth at least 5, then

χg(G) ≤ 3.

Jaeger, Linial, Payan and Tarsi [34] had the following conjecture.

Conjecture 1.2.22 Every 5-edge connected graph is Z3-connected.

Let G be a connected plane graph, G∗ the geometric dual of G, and A an

Abelian group. Jeager et al [34] showed that G is A-connected if and only if

G∗ is A-colorable. By Theorem 1.2.20, we comfirm this conjecture for planar

graphs.

Corollary 1.2.23 Every 5-edge connected planar graph is Z3-connected.

The concept of L-list coloring, choosability and choice number was introduced

by Erdos, Rubin and Taylor [22] in 1979 and Vizing [53] in 1976.

Alon and Tarsi [2] proved that every bipartite planar graph is 3-choosable.

Thomassen [48] showed that every planar graph is 5-choosable. Voigt [54]

presented an example of a planar graph which is not 4-choosable.
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Theorem 1.2.24 (Thomassen [49]) Every planar graph of girth at least 5

is 3-choosable.

In Chapter 7, we use a similar technique to prove the following extensions of

Theorem 7.1.1.

Theorem 1.2.25 Suppose that G is a planar graph with girth at least 4 such

that all 4-cycles are independent and every 4-cycle is facial. If the minimum

distance between 4-cycles and 5-cycles is at least 1, then G is 3-choosable.

Theorem 1.2.26 If G is a connected K3,3-minor free graph with girth at

least 5, then G is 3-choosable.

The conditions of Theorem 7.1.2 can not be relax in the sense that Gut-

ner’s example [26] with only 164 vertices is not 3-choosable but there exists

a 5-cycle adjacent to a 4-cycle in his graph.
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Chapter 2

Small Cycle Cover of

2-Connected Cubic Graphs

2.1 Introduction

A cycle cover of a graph G is a collection C of cycles of G such that every

edge of G lies in at least one member of C. A cycle double cover of G is

a cycle cover C of G such that each edge of G lies in exactly two members

of C. The cycle double conjecture ([46], [45], and [58]) states that every

bridgeless graph has a cycle double cover. It is known that if the cycle

double cover conjecture is false, then a minimal counterexample would be

a 2-edge-connected simple cubic graph. Bondy [7] conjectured that every

2-connected simple cubic graph on n vertices admits a double cycle cover C
with |C| ≤ n

2
.

Bondy [7] also conjectured that if G is a 2-connected simple graph with

14



n ≥ 3 vertices, then the edges of G can be covered by at most 2n−3
3

cycles.

Earlier, Y. X. Luo and R. S. Chen [41] proved that this conjecture holds for

2-connected simple cubic graphs. Recently Fan [23] settled this conjecture by

showing that it holds for all simple 2-connected graphs. Barnette [4] proved

that if G is a 3-connected simple planar graph of order n, then the edges of

G can be covered by at most n+1
2

cycles. In this chapter, the following is

proved.

Theorem 2.1.1 Every 2-connected simple cubic graph of order n ≥ 6 admits

a cycle cover C with |C| ≤ dn
4
e.

The result of Theorem 2.1.1 is sharp in the sense that there exists an infinite

family of 2-connected cubic graphs such that each graph G in the family

requires at least d |V (G)|
4
e cycles in any cycle cover of G (see Figure 1).

Let L1, L2 be two graphs isomorphic to K4 − e, i.e. K4 minus an edge.

Let G denote the graph in Figure 1. Note that n = |V (G)| = 2µ + 8. Since

a cycle of G contains at most 2 edges in {e1, e2, . . . , eµ}, and since it takes

at least 2 cycles to cover E(L1)∪E(L2), it follows that any cycle cover of G

must have at least dµ
2
e+ 2 = dn

4
e cycles.
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2.2 Lemmas

Let G be a 2-connected simple cubic graph and let T = {u1, u2, u3} be a

3-cut of G. If there is no vertex v ∈ V (G) such that N(v) = T , T is called a

nontrivial 3-cut. Similarly we can define nontrivial 3-edge cut of G. A set of

subgraphs of G is said to be independent if no two of them have a common

vertex.

The removal of an edge e = uv in a cubic graph G with N(u) = {x1, y1, v}
and N(v) = {x2, y2, v} is to remove e and to replace the path x1uy1 and x2vy2

by the edges x1y1 and x2y2 respectively. Denote by (G − e)∗ the resulting

graph. Note that when G is a simple graph, (G − e)∗ may be not a simple

graph.

The following lemma is straightforward.

Lemma 2.2.1 Let G be a simple cubic graph. Then

(i) G is k-edge-connected if and only if G is k-connected, where 1 ≤ k ≤ 3.

(ii) Suppose that G is a 3-edge-connected graph of order n ≥ 6. Then G

does not contain two distinct triangles T and T ′ such that E(T )∩E(T ′) 6= ∅.

Lemma 2.2.2 Let G be a 3-connected simple cubic graph of order n > 4

and let T = x1x2x3x1 be a triangle of G and let yi be the neighbor of xi for

1 ≤ i ≤ 3 such that {y1, y2, y3} ∩ V (T ) = ∅. Suppose that T is contracted

into one vertex x and that G′ is the resulting graph. If G′ has a cycle cover

C ′, then G has a cycle cover C such that |C| = |C ′|.

Proof. By Lemma 2.2.1, all triangles of G must be independent. Since G is

3-connected and cubic, it follows that G′ is a 3-connected cubic graph with

16



|V (G′)| = |V (G)| − 2. Since dG′(x) = 3, C ′ must have at least two cycles

C∗
1 , C

∗
2 of C ′ which pass all the three edges incident with x.

Assume that C1, C2, . . . Cs are all the cycles in C ′ containing the edges

y1x, y2x, that D1, D2, . . . , Dt are all the cycles in C ′ containing the edges

y1x, y3x, and that Z1, . . . , Zl are all the cycles in C ′ containing the edges

y2x, y3x. Without loss of generality, we assume that s ≥ 1 and t ≥ 1.

Extend the cycles of G′ to the cycles of G as follows:

C∗
i = Ci − {xy1, xy2} ∪ {x1y1, x1x3, x2x3, y2x2}, i = 1, 2, · · · , s,

D∗
j = Dj − {xy1, xy3} ∪ {x1y1, x1x2, x2x3, y3x3}, j = 1, 2, · · · , t,

Z∗
k = Zk − {xy2, xy3} ∪ {x2y2, x2x3, y3x3}, k = 1, 2, · · · , l,

C = C ′ − ({Ci : 1 ≤ i ≤ s} ∪ {Dj : 1 ≤ j ≤ t} ∪ {Zk : 1 ≤ k ≤ l})
∪{C∗

i : 1 ≤ i ≤ s} ∪ {D∗
j : 1 ≤ j ≤ t} ∪ {Z∗

k : 1 ≤ k ≤ l}.

Then C is a cycle cover of G with |C| = |C ′|.

A graph G is essentially 4-edge-connected if it is 3-edge-connected and, if

G − S is disconnected for some set S of three edges of G, then G − S has

exactly two components, one of which is a single vertex. It follows that if G

is a 3-connected cubic graph and G does not contain any nontrivial 3-edge

cuts, then G is essentially 4-edge-connected.

Lemma 2.2.3 Let G be a triangle free simple cubic graph. Then

(i) Suppose that G is a 3-edge-connected graph of order n ≥ 8. Then

there is an edge e such that (G− e)∗ is a 2-connected simple cubic graph.

(ii) Suppose that G is an essentially 4-edge-connected graph of order n ≥
12. Then G has two distinct edges e1, e2 such that ((G − e1)

∗ − e2)
∗ is a

2-connected simple cubic graph.

17



Proof. (1) Let e = uv ∈ E(G) and N(u) = {z1, z2, v} and N(v) =

{w1, w2, u}. Since G is triangle free, z1z2 /∈ E(G), w1w2 /∈ E(G) and {z1, z2}∩
{w1, w2} = ∅. Since G is 3-edge-conneced, (G − e)∗ is a connected simple

cubic graph. Assume that e′ is an edge cut of (G − e)∗. Then {e′, e} must

contains an edge cut of G, contrary to the assumption that κ′(G) ≥ 3.

(2) Since n ≥ 12, we can choose two distinct edges e1 = u1v1, e2 = u2v2

with

N(u1) = {x1, y1, v1}, N(v1) = {x2, y2, u1}, N(u2) = {s1, t1, v2}, N(v2) = {s2, t2, u2}

such that

{x1, y1, x2, y2, u1, v1} ∩ {s1, t1, s2, t2, u2, v2} = ∅.

Since G is triangle free, we have

{x1y1, x2y2, s1t1, s2t2} ∩ E(G) = ∅

and

|{x1, x2, y1, y2}| = |{s1, t1, s2, t2}| = 4.

Thus ((G − e1)
∗ − e2)

∗ is a simple cubic graph. Since G is essentially

4-edge-connected, ((G − e1)
∗ − e2)

∗ is connected. Assume that e is an edge

cut of ((G− e1)
∗− e2)

∗. Then ((G− e1)
∗)− e∗2− e has only two components.

Since ((G− e1)
∗ − e2)

∗ is cubic, each component of ((G− e1)
∗ − e2)

∗ has at

least 2 vertices. Therefore {e1, e2, e} must contain an edge cut of G, contrary

to that G is essentially 4-edge-connected. Therefore ((G − e1)
∗ − e2)

∗ is a

2-connected simple cubic graph.
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2.3 Proof of Theorem 2.1.1

We argue by induction on n = |V (G)|. As G is cubic, |V (G)| is even. When

n = 6, G is one of the two graphs in Figure 2. It is easy to verify that each

of G1 and G2 has a cycle cover C with |C| = 2.
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Figure 2.2: G1 and G2

Now we assume that n ≥ 8. Consider these cases.

Case 1 G has a 2-cut {u, v} such that uv ∈ E(G).

. . . . . . . . .
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Figure 2.3: G3 in the Proof for Case 1
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Then G has two vertex disjoint subgraphs G1 and G2 with nonadjacent ver-

tices xi, yi ∈ V (Gi), (1 ≤ i ≤ 2), and a ladder G3 whose ends are x1, y1, x2

and y2, such that E(G) = E(G1) ∪ E(G2) ∪ E(G3), as shown in Figure 3.

Let u1, v1, uµ, vµ ∈ V (G3) with x1u1, y1v1, x2uµ, y2vµ ∈ E(G). We define

the three graphs G∗
1, G

∗
2 and G∗

3 from G as follows: G∗
i = Gi + xiyi, i = 1, 2

and G∗
3 = G − V (G1 ∪ G2). Let |V (G∗

i )| = ni, i = 1, 2, 3. It follows that

n1 + n2 + n3 = n, that both G∗
1 and G∗

2 are two 2-connected simple cubic

graphs and that both n1 and n2 are even. By induction, for each i = 1, 2, if

G∗
i 6∼= K4, then G∗

i has a cycle cover Ci with |Ci| ≤ dni

4
e. We will distinguish

the following subcases.

Subcase 1.1 G∗
i 6∼= K4, i = 1, 2.

Suppose that C1, C2, . . . , Cs are all the cycles in C1 containing the edge

x1y1, and D1, D2, . . . , Dt are all the cycles in C2 containing the edge x2y2.

Note that both n1 and n2 are even.

Assume first that µ = 1. Define

C∗
i = Ci − x1y1 ∪ {x1u1, u1v1, v1y1}, i = 1, 2, . . . , s,

D∗
j = Dj − x2y2 ∪ {x2u1, u1v1, v1y2}, j = 1, 2, . . . , t.

Then

C = (C1 − {Ci : 1 ≤ i ≤ s}) ∪ (C2 − {Dj : 1 ≤ j ≤ t}) ∪ {C∗
i : 1 ≤ i ≤ s}

∪{D∗
j : 1 ≤ j ≤ t}

is a cycle cover of G with |C| = |C1|+ |C2| ≤ dn1

4
e+ dn2

4
e ≤ dn

4
e.
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Suppose µ ≥ 2. For i = 1, 2, . . . , s and for j = 1, 2, . . . , t, define

C∗
i = Ci ∪D1 − {x1y1, x2y2}

∪{uiui+1, vivi+1 : 1 ≤ i ≤ µ− 1} ∪ {x1u1, y1v1, x2uµ, y2vµ},
D∗

j = Dj ∪ C1 − {x1y1, x2y2}
∪{uiui+1, vivi+1 : 1 ≤ i ≤ µ− 1} ∪ {x1u1, y1v1, x2uµ, y2vµ}.

Also, for i = 1, 2, ...k, define Zi = u2i−1u2iv2iv2i−1u2i−1, and when µ = 2k+1,

we further define Zk+1 = u2ku2k+1v2k+1v2ku2k. Define

C =





(C1 − {Ci : 1 ≤ i ≤ s}) ∪ (C2 − {Dj : 1 ≤ j ≤ t}
∪{C∗

1 , C
∗
2 , . . . , C∗

s , D
∗
2, . . . , D∗

t } ∪ {Z1, Z2, . . . , Zk} if µ = 2k

(C1 − {Ci : 1 ≤ i ≤ s}) ∪ (C2 − {Dj : 1 ≤ j ≤ t}
∪{C∗

1 , C
∗
2 , . . . , C∗

s , D
∗
2, . . . , D∗

t } ∪ {Z1, Z2, . . . , Zk+1} if µ = 2k + 1.

Then C is a cycle cover of G. If µ = 2k, then n = n1 + n2 + 4k and

|C| = |C1|+ |C2| − 1 + k ≤ dn1

4
e+ dn2

4
e − 1 + k ≤ dn

4
e.

If µ = 2k + 1, then n = n1 + n2 + 4k + 2 and

|C| = |C1|+ |C2| − 1 + k + 1 ≤ dn1

4
e+ dn2

4
e − 1 + k + 1 ≤ dn

4
e.

Subcase 1.2 Exactly one of G∗
1 and G∗

2 is isomorphic to K4. We may assume

that G∗
1
∼= K4, G

∗
2 6∼= K4.

Since G∗
1
∼= K4, E(G∗

1) has a cycle cover C1 = {C1, C2} such that x1y1 ∈
E(C1) ∩ E(C2). By induction, G∗

2 has a cycle cover C2 with at most dn2

4
e

cycles.

Assume that D1, D2, . . . , Dt are all the cycles of C2 that contain the edge

x2y2.
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If µ = 1, then define

C∗
1 = (C1 − x1y1) ∪ {x1u1, u1v1, v1y1},

C∗
2 = (C2 − x1y1) ∪ (D1 − x2y2) ∪ {x1u1, v1y1, x2u1, y2v1},

D∗
j = (C2 − x1y1) ∪ (Dj − x2y2) ∪ {x1u1, v1y1, x2u1, y2v1}, 1 ≤ j ≤ t.

Thus C = C1∪C2−{C1, C2, D1, D2, . . . , Dt}∪{C∗
1 , C

∗
2 , D

∗
2, . . . , D∗

t } is a cycle

cover of G with |C| = |C1|+ |C2| − 1 ≤ 2 + dn2

4
e − 1 ≤ dn

4
e.

If µ ≥ 2, then define

C∗
1 = (C1 − x1y1) ∪ (D1 − x2y2) ∪ {uiui+1, vivi+1 : 1 ≤ i ≤ µ− 1}

∪{x1u1, y1v1, x2uµ, y2vµ},
D∗

j = (C1 − x1y1) ∪ (Dj − x2y2) ∪ {uiui+1, vivi+1 : 1 ≤ i ≤ µ− 1}
∪{x1u1, y1v1, x2uµ, y2vµ}, 1 ≤ j ≤ t,

C∗
2 = (C2 − x1y1) ∪ {x1u1, u1v1, v1y1}.

For i = 1, 2, . . . , k, define

Zi =





u2i−1u2iv2iv2i−1u2i−1 if µ = 2k,

u2iu2i+1v2i+1v2iu2i if µ = 2k + 1.

Then let

C = C1 ∪ C2 − ({C1, C2, D1, D2, . . . , Dt} ∪ {C∗
1 , C

∗
2 , D

∗
2, . . . , D∗

t }
∪{Z1, Z2, . . . , Zk}).

Note that if µ = 2k, then n = 4k + 4 + n2 and

|C| = |C1|+ |C2| − 1 + k ≤ 2 + dn2

4
e − 1 + k ≤ 1 + k + dn2

4
e ≤ dn

4
e;

and that if µ = 2k + 1, then n = 4k + 2 + 4 + n2 and

|C| = |C1|+ |C2| − 1 + k ≤ 2 + dn2

4
e − 1 + k ≤ 1 + k + dn2

4
e ≤ dn

4
e.
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Subcase 1.3 G∗
i
∼= K4, i = 1, 2.

Since G has a 2-cut {u, v} such that uv ∈ E(G), we have µ ≥ 1 and n ≥
10. Let C1 = {C1, C2} be a cycle cover of G∗

1 such that x1y1 ∈ E(C1)∩E(C2),

and let C2 = {D1, D2} be a cycle cover of G∗
2 such that x2y2 ∈ E(D1)∩E(D2).

Define

C∗
1 = (C1 − x1y1) ∪ (D1 − x2y2) ∪ {uiui+1, vivi+1 : 1 ≤ i ≤ µ− 1}

∪{x1u1, y1v1, x2uµ, y2vµ},
C∗

2 = (C2 − x1y1) ∪ {x1u1, u1v1, v1y1},
D∗

2 = (D2 − x2y2) ∪ {x2uµ, uµvµ, vµy2}.
For k ≥ 2, and 1 ≤ i ≤ k − 1, define Zi = u2iv2iv2i+1u2i+1u2i, and if

µ = 2k + 1, define Zk = u2kv2kv2k+1u2k+1u2k. Then

C =




{C∗

1 , C
∗
2 , D

∗
2} ∪ {Z1, Z2, . . . , Zk−1} if µ = 2k,

{C∗
1 , C

∗
2 , D

∗
2} ∪ {Z1, Z2, . . . , Zk} if µ = 2k + 1.

is a cycle cover of G. Note that if µ = 2k, then n = 4 + 4 + 4k and

|C| = 3 + k − 1 = dn
4
e; and that if µ = 2k + 1, then n = 4 + 4 + 4k + 2 and

|C| = 3 + k = dn
4
e.

Case 2. G has a 2-cut {u, v} but Case 1 does not occur.

Then G has an edge cut X with |X| = 2 such that G−X is the disjoint

union of two subgraphs G1 and G2, (see Figure 4). Since Case 1 deos not

occur, we must have both x1y1 /∈ E(G) and x2y2 /∈ E(G).
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Figure 2.4: The structure of G in Case 2

For i = 1, 2, define G∗
i = Gi + xiyi, and let ni = |V (G∗

i )|. Note that

n = n1 + n2. By induction, if G∗
i 6∼= K4, then G∗

i has a cycle covers Ci with

|Ci| ≤ dni

4
e for i = 1, 2. Since n ≥ 8, we assume first that Gi

∼= K4, i = 1, 2.

Then G is the graph in Figure 5. It is easy to verify that G has a cycle cover

C with |C| = 2.
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We assume then that G∗
1
∼= K4 and G∗

2 6∼= K4. Thus we may assume that

C1 = {C1, C2} such that x1y1 ∈ E(C1) ∩ E(C2). Let D1, D2, . . . , Dt be all

the cycles in C2 containing the edge x2y2. Define

C∗
i = (Ci − x1y1) ∪ (D1 − x2y2) ∪ {x1x2, y1y2}, i = 1, 2

D∗
j = (C1 − x1y1) ∪ (Dj − x2y2) ∪ {x1x2, y1y2}, j = 2, 3, . . . , t.
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Then C = C1∪C2−{C1, C2, D1, D2, . . . , Dt}∪{C∗
1 , C

∗
2 , D

∗
2, . . . , D∗

t } is a cycle

cover of G. Since n = n2 + 4, |C| = |C1|+ |C2| − 1 ≤ 2 + dn2

4
e − 1 = dn

4
e.

Finally we assume that G∗
i 6∼= K4, i = 1, 2. Let C1, C2, . . . , Cs be all the

cycles in C1 containing the edge x1y1 and let D1, D2, . . . , Dt be all the cycles

in C2 containing the edge x2y2. Define

C∗
i = (Ci − x1y1) ∪ (D1 − x2y2) ∪ {x1x2, y1y2}, i = 1, 2, . . . , s,

D∗
j = (Dj − x2y2) ∪ (C1 − x1y1) ∪ {x1x2, y1y2}, j = 1, 2, . . . , t.

Then C = C1∪C2−{C1, C2, . . . , Cs, D1, D2, . . . , Dt}∪{C∗
1 , C

∗
2 , . . . , C∗

s , D
∗
2, . . . , D∗

t }
is a cycle cover of G. Since n = n1+n2, |C| = |C1|+|C2|−1 ≤ dn1

4
e+dn2

4
e−1 =

dn
4
e.

Case 3. κ(G) ≥ 3.

We first prove the following claim.

Claim Let G be a 3-connected simple cubic graph of order 6 < n ≤ 10,

then G has a cycle cover C with |C | ≤ dn
4
e.

Proof. Assume that n = 8. By Lemmas 2.2.1 and 2.2.2, G is triangle free

and hence G is one of the two graphs in Figure 6. It is easy to verify that

each of which has a cycle cover C with |C| = 2.

So we assume that n = 10. By Lemmas 2.2.1 and 2.2.2, we assume

that G is triangle free. By Lemma 2.2.3 (i), there is an edge e = xy with

N(x) = {x1, y1, y} and N(y) = {x2, y2, x} such that (G−e)∗ is a 2 connected

simple cubic graph. By |V ((G−e)∗)| = 8 and by Case 2, (G−e)∗ has a cycle

cover C ′= {D1, D2}. Extend the cycles of G′ to cycles of G as follows.
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For each i ∈ {1, 2}, define

D∗
i =





Di − x1y1 ∪ {x1x, xy1} if x1y1 ∈ E(Di),

Di − x2y2 ∪ {x2y, yy2} if x2y2 ∈ E(Di),

Di if {x1y1, x2y2} ∩ E(Di) = ∅.
Since G is 3-connected, there is a cycle C in G with xy ∈ E(C), and so

{D∗
1, D

∗
2, C} is a cycle cover of G.
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Now we are ready to complete the proof of Theorem 2.1.1. By the claim

and by Lemmas 2.2.1 and 2.2.2, we assume that n ≥ 12 and that G is

triangle free. We will distinguish the following two subcases.

Subcase 3.1 G has a nontrivial 3-cut.

Let T = {e1, e2, e3} be a nontrivial 3 edge cut of G. Since G is a triangle

free simple cubic graph, G−T has only two components and each component

of G−T has at least 5 vertices. Let H1, H2 be the components of G−T and

assume that for i = 1, 2, 3, ei = xiyi with x1, x2, x3 ∈ V (H1) and y1, y2, y3 ∈
V (H2).
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Let u and v be two new vertices not in V (G), let H∗
1 = H1∪{x1u, x2u, x3u}

and H∗
2 = H2 ∪ {y1v, y2v, y3v}, and let ni = |V (H∗

i )|, i = 1, 2. It follows that

for i = 1, 2, Hi is a 2-connected simple cubic graph with ni ≥ 6 and H∗
i 6∼= K4.

By induction, for i = 1, 2, H∗
i has a cycle cover Ci with |Ci| ≤ dni

4
e. Since

dH∗
1
(u) = 3 and since dH∗

2
(v) = 3, we may assume that C1 has a cycle W1 such

that x2u, x3u ∈ E(W1) and C2 has a cycle W2 such that y2v, y3v ∈ E(W2).

Let C1, C2, . . . , Cs be all the cycles in C1 such that x1u, x2u ∈ ∩s
i=1E(Ci),

D1, D2, . . . , Dt be all the cycles in C1 such that x1u, x3u ∈ ∩t
j=1E(Dj), and

Z1, Z2, . . . , Zr be all the cycles in C1 such that x2u, x3u ∈ ∩r
i=1E(Zi). (Note

that W1 ∈ {Z1, Z2, ...Zr}). Since C1 is a cycle cover of G∗
1, s + t ≥ 1.

Since κ(H∗
2 ) ≥ 2, H∗

2 has cycles C, D such that y1v, y2v ∈ E(C) and

y1v, y3v ∈ E(D). (C and D may not be in C2). We modify all the cycles in

C1 containing u into cycles in G by defining the following:

C∗
i = (Ci − {x1u, x2u}) ∪ (C − {y1v, y2v}) ∪ {y1x1, y2x2}, i = 1, 2, . . . , s,

( if s ≥ 1),

D∗
j = (Dj − {x1u, x3u}) ∪ (D − {y1v, y3v}) ∪ {y1x1, y3x3}, j = 1, 2, . . . , t,

( if t ≥ 1),

Z∗
k = (Zk−{x2u, x3u})∪ (W2−{y2v, y3v})∪{y2x2, y3x3}, k = 1, 2, . . . , r.

Similarly we can modify all cycles of C2 containing v to the cycles of G.

Thus we obtain a cycle cover C ′ of G consisting of all cycles of C1 and C2

which contain neither u nor v, and all modified cycles of C1 and C2. It follows

that |C ′| ≤|C1|+ |C2|−1 ≤ dn1

4
e+dn2

4
e−1 ≤ dn

4
e, and so Theorem 1.1 follows

in this subcase.

Subcase 3.2 G has no nontrivial 3-cut.

By Lemma 2.3 (ii), G has two distinct edges e1 = u1v1 and e2 = u2v2
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with

N(u1) = {x1, y1, v1}, N(v1) = {x2, y2, u1}, N(u2) = {s1, t1, v2}, N(v2) = {s2, t2, u2}.

such that G∗ = ((G− e1)
∗ − e2)

∗ is a 2-connected simple cubic graph.

Since |V (G∗)| = n − 4 ≥ 8, by induction, G∗ has a cycle cover C1 such

that |C1| ≤ dn−4
4
e.

Assume that C1, C2, . . . , Cs, D1, D2, . . . , Dt, Z1, Z2, . . . , Zr and W1,W2, . . . ,Wl

are all the cycles in C1 satisfying x1y1 ∈ ∩s
i=1E(Ci), x2y2 ∈ ∩t

j=1E(Dj),

s1t1 ∈ ∩r
k=1E(Zk) and s2t2 ∈ ∩l

λ=1E(Wλ). Define

C∗
i = (Ci − x1y1) ∪ {x1u1, u1y1}, i = 1, 2, . . . , s,

D∗
j = (Dj − x2y2) ∪ {x2v1, v1y2}, j = 1, 2, . . . , t,

Z∗
k = (Zk − s1t1) ∪ {s1u2, u2t1}, k = 1, 2, . . . , r,

W ∗
λ = (Wλ − s2t2) ∪ {s2v2, v2t2}, λ = 1, 2, . . . , l.

As κ(G) ≥ 2, G has a cycle C with u1v1, u2v2 ∈ E(C).

Let

C = C1 − {C1, C2, . . . , Cs, D1, D2, . . . , Dt, Z1, Z2, . . . , Zr,W1,W2, . . . , Wl}
∪ {C∗

1 , C
∗
2 , . . . , C∗

s , D
∗
1, D

∗
2, . . . , D∗

t , Z
∗
1 , Z

∗
2 , . . . , Z∗

r ,W
∗
1 ,W ∗

2 , . . . , W ∗
l , C}.

Then C is a cycle cover of G with |C| = |C1|+ 1 ≤ dn−4
4
e+ 1 ≤ dn

4
e.

This completes the proof of Theorem 2.1.1.
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Chapter 3

Hamiltonian Connected Line

Graphs

3.1 Introduction

The edge-connectivity of a graph G is denoted by κ′(G). For a vertex v ∈
V (G), dG(v) denotes the degree of v in G. We use H ⊆ G (H ⊂ G) to denote

the fact that H is a subgraph of G (proper subgraph of G ). If X ⊆ E(G) is

an edge subset, then G[X] denotes the subgraph of G induced by the edge

subset X. If H ⊂ G, then for an edge subset X ⊆ E(G) − E(H), we write

H + X for G[E(H) ∪X]. When X = {e}, we also use H + e for H + {e}.
Let X ⊆ E(G). The contraction G/X is obtained from G by contracting

each edge of X and deleting the resulting loops. If H ⊆ G, we write G/H

for G/E(H). Note that even if G is a simple graph, contracting some edges

of G may result in a graph with multiple edges. Note that any subset X ⊆
E(G/H) can also be viewed as a subset in E(G). A connected graph with
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at least two vertices is called a nontrivial graph.

Let O(G) denote the set of odd degree vertices of G. A graph G is

eulerian if O(G) = ∅ and G is connected. A graph G is supereulerian if

G has a spanning eulerian subgraph. In particular, K1 is both eulerian

and supereulerian. Pulleyblank indicated that determining if a graph G is

supereulerian, even within the family of planar graphs, is NP-complete (see

[44]). For the literature of supereulerian subgraph, see the survey of Catlin

[11] and its update [16].

A subgraph H of a graph G is dominating if G − V (H) is edgeless. A

dominating eulerian subgraph is also called a DES. For an integer i ≥ 1,

define

Di(G) = {v ∈ V (G) : d(v) = i}.

There is a close relationship between dominating eulerian subgraphs in

graphs and Hamilton cycles in L(G).

Theorem 3.1.1 (Harary and Nash-Williams [29]) Let G be a graph with

|E(G)| ≥ 3. Then L(G) is hamiltonian if and only if G has a DES.

A graph G is hamiltonian connected if for every pair of vertices u, v ∈
V (G), G has a spanning (u, v)-path. We view a trail of G as a vertex-edge

alternating sequence

v0, e1, v1, e2, · · · , ek, vk (3.1)

such that all the ei’s are distinct and such that for each i = 1, 2, · · · , k, ei is

incident with both vi−1 and vi. All the vertices in v1, v2, · · · , vk−1 are internal

vertices of trail in (3.1).
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For edges e′, e′′ ∈ E(G), an (e′, e′′)-trail of G is a trail T of G whose

first edge is e′ and whose last edge is e′′. (Thus the trail T in (3.1) is an

(e1, ek)-trail). A dominating (e′, e′′)-trail of G is an (e′, e′′)-trail T of G such

that every edge of G is incident with an internal vertex of T ; and a spanning

(e′, e′′)-trail of G is a dominating (e′, e′′)-trail T of G such that V (T ) = V (G).

Arguing by a similar argument in the proof of Theorem 3.1.1, one can obtain

the theorem for hamiltonian connected line graphs.

Theorem 3.1.2 Let G be a graph with |E(G)| ≥ 3. Then L(G) is hamil-

tonian connected if and only if for any pair of edges e′, e′′ ∈ E(G), G has a

dominating (e′, e′′)-trail.

Thomassen [47] conjectured that every 4-connected line graph is hamil-

tonian. Using Theorem 3.1.2, Zhan proved two results related to this con-

jecture.

Theorem 3.1.3 (Zhan, [56] and [57]) Let G be a graph. Each of the follow-

ing holds.

(i) ([56]) If κ′(G) ≥ 4, then L(G) is hamiltonian connected.

(ii) ([57]) If L(G) is 7-connected, then L(G) is hamiltonian connected.

Utilizing a spanning tree packing theorem by Nash-Williams [43] and

Tutte [50], Catlin, among others, was able to prove a relationship between

the spanning tree packing number and the edge connectivity of a graph.

Theorem 3.1.4 (Catlin[14]) Let G be a graph and let k ≥ 1 be an integer.

The following are equivalent.

(i) κ′(G) ≥ 2k.
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(ii) For any edge subset X ⊂ E(G) with |X| ≤ k, G −X has at least k

edge-disjoing spanning trees.

In particular, every 4-edge-connected graph has 2 edge-disjoint spanning

trees. Seeing this, Catlin and Lai improved Theorem 3.1.3(i).

Theorem 3.1.5 (Catlin et al [5]) Let G be a graph with 2 edge-disjoint

spanning trees. Then L(G) is hamiltonian connected if and only if L(G)

is 3-connected.

Let G be a nontrivial graph (that is, E(G) 6= ∅,) that is not a path.

Define L0(G) = G, and for integer k > 0, define the repeated line graph

Lk(G) = L(Lk−1(G)).

Theorem 3.1.6 (Chen et al, [19]) If L2(G) is 4-connected, then L2(G) is

hamiltonian.

To further improve Theorem 3.1.3(i) and Theorem 3.1.6, we continue the

investigation on 3-edge-connected graph which would have a hamiltonian

connected line graph, and we also ask if every 4-connected L2(G) is hamil-

tonian connected. The purpose of this paper is to seek answers to these

questions.

We say that an edge e ∈ E(G) is subdivided when it is replaced by a path

of length 2 whose internal vertex, denoted v(e), has degree 2 in the resulting

graph. The process of taking an edge e and replacing it by that length 2

path is called subdividing e. For a graph G and edges e′, e′′ ∈ E(G), let G(e′)

denote the graph obtained from G by subdividing e′, and let G(e′, e′′) denote
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the graph obtained from G by subdividing both e′ and e′′. Thus,

V (G(e′, e′′))− V (G) = {v(e′), v(e′′)}.

From the definitions, one immediately has the following observation.

Lemma 3.1.7 For a graph G and edges e′, e′′ ∈ E(G), if G(e′, e′′) has a

spanning (v(e′), v(e′′))-trail, then G has a spanning (e′, e′′)-trial.

Note that that G has a spanning (e′, e′′)-trail does not imply that G has a

spanning (v(e′), v(e′′))-trail. Let F denote the set of connected graphs such

that a graph G ∈ F if and only if each of the following holds:

(F1) If X is an edge cut of G with |X| ≤ 3, then there exists a vertex

v ∈ D|X|(G) such that X consists of all the edges incident with v in G, and

(F2) for every v ∈ D3(G), v lies in a k-cycle Cv of G, where 2 ≤ k ≤ 3,

Theorem 3.1.8 Let G ∈ F . If κ′(G) ≥ 3, then for every pair of edges

e′, e′′ ∈ E(G) we have

(i) G(e′, e′′) is collapsible and

(ii) G has a spanning (v(e′), v(e′′))-trail.

This theorem has a number of corollaries.

Corollary 3.1.9 Let G be a graph such that the set of neighbors of each

vertex of degree 3 in G is not an independent set. If L(G) is 4-connected,

L(G) is hamiltonian connected.

Corollary 3.1.10 (Kriesell, [37]) If G is a K1,3-free graph and if L(G) is

4-connected, then L(G) is hamiltonian connected.
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Corollary 3.1.11 (Zhan, [57]) If κ′(G) ≥ 4, then L(G) is hamiltonian con-

nected.

Corollary 3.1.12 If L2(G) is 4-connected, then L2(G) is hamiltonian con-

nected.

Let C4 denote a 4-cycle in K5. The graph K5 −E(C4) is called an hour-

glass. A graph G is hourglass free if G does not have a induced subgraph

isomorphic to K5 − E(C4).

Corollary 3.1.13 (Broersma, Kriesell and Ryjacek, [9]) Every 4-connected

hourglass free line graph is hamiltonian connected.

In Section 2, we discuss Catlin’s reduction method which will be needed in

the proof of the main result. In Section 3, we prove Theorem 3.1.8. The last

section is devoted to the generalizations of Theorem 3.1.8 and to applications

of the main results.

3.2 Catlin’s Reduction Method

In [12] Catlin defined collapsible graphs. A subgraph Γ of G is called an

R-subgraph if both O(Γ) = R and G − E(Γ) is connected. A graph G is

collapsible if for any even subset R of V (G), G has an R-subgraph. Catlin

showed in [12] that every vertex of G lies in a unique maximal collapsible

subgraph of G. The reduction of G is obtained from G by contracting all

maximal collapsible subgraph. A graph G is reduced if G has no nontrivial

collapsible subgraphs. A nontrivial vertex in the reduction of G is a vertex
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which is the contraction image of a nontrivial connected subgraph of G. Note

that if G has an O(G)-subgraph Γ, then G − E(Γ) is a spanning eulerian

subgraph of G. Therefore, every collapsible graph is supereulerian. We

summerize some results on Catlin’s reduction method and other related facts

as follows.

Theorem 3.2.1 Let G be a graph and let H be a collapsible subgraph of G.

Let vH denote the vertex onto which H is contracted in G/H. Each of the

following holds.

(i) (Catlin, Theorem 3 of [12]) G is collapsible (supereulerian, respec-

tively) if and only if G/H is collapsible (supereulerian, respectively). In par-

ticular, G is supereulerian if and only if the reduction of G is supereulerian;

and G is collapsible if and only if the reduction of G is K1.

(ii) If G is collapsible, then for any pair of vertices u, v ∈ V (G), G has a

spanning (u, v)-trail.

(iii) For vertices u, v ∈ V (G/H) − {vH}, if G/H has a spanning (u, v)-

trail, then G has a spanning (u, v)-trail.

(iv) 2-cycles and 3-cycles are collapsible.

Proof. (ii). Let R = (O(G) ∪ {u, v}) − (O(G) ∩ {u, v}). Then |R| is even.

Let ΓR be an R-subgraph of G. Note that G−E(ΓR) is connected and that u

and v are the only two vertices of odd degrees in G−E(ΓR). Thus G−E(ΓR)

is a spanning (u, v)-trail of G.

(iii). This follows from Theorem 2(i).

(iv). This follows from definition immediately.
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Jaeger in [35] showed that if G has two edge-disjoint spanning trees,

then G is supereulerian. This result is later improved by Catlin (Theorem

7 in [12]). Defining F (G) to be the minimum number of additional edges

that must be added to G so that the resulting graph has two edge-disjoint

spanning tree, Catlin [12] and Catlin et al [15] improve Jaeger’s result. We

put these former results in the following theorem.

Theorem 3.2.2 Let G be a graph. Each of the following holds.

(i) (Jaeger, [35]) If F (G) = 0, then G is supereulerian.

(ii) (Catlin, Theorem 7 in [12]) If F (G) ≤ 1 and if G is connected, then

G is collapsible if and only if G cannot be contractible to a K2.

(iii) (Catlin, Han and Lai, Theorem 1.5 in [15]) If F (G) ≤ 2 and if G is

connected, then G is collapsible if and only if the reduction of G is not a K2

nor a K2,s for some integer s ≥ 1.

In order to apply Theorem 3.2.2 in our proofs, we also need the following

observations.

Lemma 3.2.3 Let G be a graph. Each of the following holds.

(i) For any e ∈ E(G), F (G(e)) ≤ F (G) + 1.

(ii) F (G) ≤ F (G/e) + 1.

Proof. (i). Suppose that X is a set of edges not in G such that G + X

has two disjoint spanning trees T1 and T2. Assume that e = v1v2. Then

at most one of them, say T1, contains e and hence T2 does not contain e.

Therefore, one needs at most one more edge (v1v(e), for example) to X so

that G + (X ∪ {v1v(e)}) has 2 edge-disjoint spanning trees.
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(ii). Let X be a set of additional edges such that G/e + X has 2 edge-

disjoint spanning trees. Let e′ be an edge not in G but parallel to e. Then

(G + X) + e′ will have 2 edge-disjoint spanning trees.

3.3 Proof of Thoerem 3.1.8

We shall prove some lemmas. Let G ∈ F be a 3-edge-connected graph.

For each v ∈ D3(G), fix a cycle Cv such that v ∈ V (Cv) and such that

2 ≤ |V (Cv)| ≤ 3. Let

W (G) =
⋃

v∈D3(G)

Cv. (3.2)

We have the following observations.

Lemma 3.3.1 Let G ∈ F be a 3-edge-connected graph. Then G/W (G) is

4-edge-connected.

Proof. Let X ⊂ E(G/W (G)) be an edge cut. Note that X is also an

edge-cut of G and X ⊆ E(G) − W . If |X| ≤ 3, then since κ′(G) ≥ 3,

one has |X| = 3. By (F1), there exists a verex v ∈ D3(G) such that X

consists of the three edges incident with v in G. By (F2), G has a cycle Cv

containing two edges in X such that E(Cv) ⊆ W (G), contrary to the fact

that X ∩W (G) = ∅. Hence one must have |X| ≥ 4.

Lemma 3.3.2 If G ∈ F and if e ∈ E(G), then G/e ∈ F .

Proof. By the definition of contraction, G/e is connected. If X ⊂ E(G/e)

is an edge cut, then X is also an edge cut of G, and so G/e satisfies (F1).
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Suppose that ve is the contraction image of e. If ve ∈ D3(G/e), then since

G ∈ F , the three edges incident with ve in G/e are incident with a vertex

v ∈ D3(G), which leaves no room for e. Hence G/e also satisfies (F2).

Lemma 3.3.3 Let G be a graph. If κ′(G) ≥ 4, then for any e′, e′′ ∈ E(G),

(i) G(e′, e′′) has 2 edge-disjoint spanning trees, and

(ii) G(e′, e′′) has a spanning (v(e′), v(e′′))-trail.

Proof. By Theorem 3.1.5, G − {e′, e′′} has two edge-disjoint spanning

trees, and so G(e′, e′′) also has 2 edge-disjoint spanning trees. This proves

Lemma 3.3.3(i).

If G(e′, e′′) has 2 edge-disjoint spanning trees, then by Theorem 3.2.2(ii)

or (iii), G(e′, e′′) is collapsible, and so Lemma 3.3.3(ii) follows from Theo-

rem 2(ii).

Lemma 3.3.4 Let G ∈ F such that κ′(G) ≥ 3 and such that |D3(G)| ≤ 2.

Then F (G) = 0.

Proof. Let v ∈ D3(G) and let v1, v2, v3 be the three vertices in G that

are adjacent to v, and let Cv = vv1v2v be a 3-cycle in G containing v. Let

G′ = G/(W (G)− E(Cv)).

By Lemma 3.3.1, G/W (G) is 4-edge-connected. By Theorem 3.1.5, G/W (G)−
e3 has 2 edge-disjoint spanning trees T1 and T2, where e3 = vv3. Both T1 and

T2 can be viewed as edge induced forests in G′. Note that for each i = 1, 2, Ti

contains at least |V (G′)| − 2 vertices in V (G′− v), and has two components,

T ′
i and T ′′

i , with v1 ∈ V (T ′
i ) and v2 ∈ V (T ′′

i ).(It is possible that T ′
i or T ′′

i is a

trivial tree).
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By symmetry, we may assume either v3 ∈ V (T ′′
1 )∩V (T ′′

2 ), or v3 ∈ V (T ′′
1 )∩

V (T ′
2). In either case, T1 + {vv3, vv1} and T2 + {v1v2, vv2} are 2 edge-disjoint

spanning trees of G.

If |D3(G)| = 2, one can do the same for the other vertex in D3(G).

Theorem 3.1.5 allows us to remove at least 2 edges e3, e
′
3 from G/W (G)

while keeping F (G/W (G)− {e3, e
′
3)) = 0.

Proof of Theorem 3.1.8.

(i) Let e′, e′′ be a pair of edges in G. We argue by induction on |V (G)| to
prove Theorem 3.1.8, which is trivial when |V (G)| ≤ 4. If G has a collapsible

subgraph H such that each of e′ and e′′ has at most one end in V (H), then one

can argue by Theorem 2(i) and apply induction on G(e′, e′′)/H to obtain that

G(e′, e′′) is collapsible. Hence we assume that for any collapsible subgraph

H of G,

at least one of e′ and e′′ has both ends in V (H) (3.3)

If e′, e′′ 6∈ W (G), then by Lemma 3.3.3(i) and by Lemma 3.3.1, G(e′, e′′)/W (G)

has 2-edge-disjoint spanning trees. By Theorem 3.2.2(ii), G(e′, e′′)/W (G) is

collapsible. By Theorem 2(i) and (iv) G(e′, e′′) is collapsible. Hence we as-

sume that {e′, e′′} ∩W (G) 6= ∅. By (3.3) and by Theorem 2(iv), and by the

definition of F , we must have |D3(G)| ≤ 2.

By Lemma 3.3.4, F (G) = 0, and so by Lemma 3.2.3(i), F (G(e′, e′′)) ≤ 2.

It follows by Theorem 3.2.2(iii) that the reduction of G(e′, e′′) is either a K1,

or a K2, or a K2,t for some t ≥ 1.

If the reduction of G(e′, e′′) is K1, then G(e′, e′′) is collapsible. Thus we

assume that the reduction of G(e′, e′′) is not K1 to derive a contradiction.
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By Lemma 3.3.1, G/W (G) is 4-edge-connected. Thus G(e′, e′′) cannot

have a cut edge and the reduction of G(e′, e′′) must be a K2,t for some t ≤ 2.

It follows that the reduction of G(e′, e′′) must be a K2,2, and so we denote

the reduction of G(e′, e′′) by C4. Since G/W (G) is 4-edge-connected, two

nonadjacent vertices of this C4 must be {v(e′), v(e′′)}. It follows that {e′, e′′}
is an edge cut of G, contrary to the assumption that κ′(G) ≥ 3.

(ii) It follows from (i) and Theorem 2(ii).

3.4 Generalizations and Applications

For the purpose of applications to hamiltonian line graph, the requirement

that κ′(G) ≥ 3 in Theorem 3.1.8 can be relaxed, in view of Lemma 3.1.2.

Let G be a graph. For each v ∈ D2(G), fix exactly one edge ev that

is incident with v in G, and let W ′(G) = ∪{ev : v ∈ D2(G)}. Define

G̃ = G/W ′(G). Also, define W ′′(G) = E(G)−E(G−D1(G)) denote the set

of edges that are incident with a vertex in D1(G).

Lemma 3.4.1 Let G be a graph such that G−D1(G) is 2-edge-connected and

such that D2(G) is an independent set. Then any spanning trail of G̃−D1(G̃)

is a dominating trail of G.

Proof. Let L denote a spanning trail of G̃ − D1(G̃). Note that D1(G̃) =

D1(G). Therefore, any vertex v ∈ V (G)−V (L) must be a vertex in D1(G)∪
D2(G). If v ∈ D1(G), then since G − D1(G) is 2-edge-connected, v must

be incident to a vertex in V (G̃ − D1(G̃)) = V (L); if v ∈ D2(G), then since

D2(G) is an independent set in G and since G−D1(G) is 2-edge-connected,
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v must be incident with a vertex in V (L) as well. It follows that G − V (L)

is edgeless and so L is a dominating trail of G.

Theorem 3.4.2 Let G ∈ F be a graph such that κ′(G̃−D1(G̃)) ≥ 3. Then

for any e′, e′′ ∈ E(G), G has a dominating (e′, e′′)-trail.

Proof. If e′, e′′ are two edges incident with a vertex v of degree 2 of G, let e′ =

xv, e′′ = vy. We assume that xv ∈ W ′(G). Then e = vy ∈ E(G̃ − D1(G̃)).

We can think that e′, e′′ are obtained by subdividing e. By Theorem 1.8 (i)

(G̃−D1(G̃))(e′, e′′) is collapsible. Thus (G̃−D1(G̃))(e′, e′′) is supereulerian

and hence G has a dominating (e′, e′′)-trial. So suppose e′, e′′ are not inci-

dent with the same vertex of degee 2 in G. By the definition of W ′(G), we

can choose W ′(G) such that {e′, e′′} ∩ W ′(G) = ∅. Thus we assume that

e′, e′′ ∈ E(G̃ − D1(G̃). Then by Theorem 3.1.8, (G̃ − D1(G̃))(e′, e′′) has a

spanning v(e′), v(e′′)-trail, and so by Lemma 3.4.1 and by Lemma 3.1.7, G

has a dominating (e′, e′′)-trail. Thus we may assume that e′ ∈ W ′′(G). Let

v′ denote the vertex in D1(G) incident with e′. Note that either e′′ ∈ W ′′(G)

or e′′ ∈ E(G−D1(G)).

Suppose first that e′′ ∈ W ′′(G) and let v′′ be the vertex in D1(G) incident

with e′′. By Lemma 3.3.1, (G̃ − D1(G̃))/W (G) is 4-edge-connected; and so

by Theorem 3.2.2, (G̃ −D1(G̃))/W (G) is collapsible. By Theorem 2(i) and

(v), G̃−D1(G̃) is also collapsible, and so by Theorem 2(ii), G̃−D1(G̃) has

a spanning (v′, v′′)-trail. It follows by Lemma 3.4.1 that G has a dominating

(e′, e′′)-trail.

Hence e′′ ∈ E(G − D1(G)). Let u = v(e′′). By Lemma 3.3.1, (G̃ −
D1(G̃))/W (G) is 4-edge-connected; and so by Lemma 3.2.3 and by Theo-

rem 3.2.2(ii), (G̃−D1(G̃))(e′′)/W (G) is collapsible. By Theorem 2(i) and (v),
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(G̃−D1(G̃))(e′′) is also collapsible, and so by Theorem 2(ii), (G̃−D1(G̃))(e′′)

has a spanning (v′, v′′)-trail. It follows by Lemma 3.4.1 that G has a domi-

nating (e′, e′′)-trail.

Lemma 3.4.3 Let G be a graph such that L(G) is 4-connected, then each of

the following holds.

(i) G satisfies (F1).

(ii) κ′(G̃−D1(G̃)) ≥ 3.

Proof. Let X ⊂ E(G) be an edge cut of G. If G − X has two nontrivial

components, then X corresponds to a vertex cut of L(G), and so |X| ≥ 4,

by the assumption that κ(L(G)) ≥ 4. Hence G satisfies (F1).

Since every edge cut in G̃−D1(G̃) is an edge cut in G that either separate

a vertex in D3(G) with other vertices in G, or corresponds to a vertex cut in

L(G), it follows again by κ(L(G)) ≥ 4 that κ′(G̃−D1(G̃)) ≥ 3.

Proof of Corollary 3.1.9. Since the set of the neighbors of each vertex of

degree 3 is not independent set, G satisfies (F2). By Lemma 3.4.3, G ∈ F and

κ′(G̃−D1(G̃)) ≥ 3. By Theorem 3.4.2 and Lemma 3.1.2, L(G) is hamiltonian

connected.

Proof of Corollary 3.1.10. Since G is K1,3 -free, the set of the neighbors of

each vertex of degree 3 is not independent set. Thus Corollary 3.1.10 follows

from Corollary 3.1.9.

Proof of Corollary 3.1.11. Since κ′(G) ≥ 4, dG(v) ≥ 4 for every v ∈ V (G).

Thus Corollaty 3.1.11 follows from Corollary 3.1.9.

42



Proof of Corollary 3.1.12. It is well known that a line graph does not

have a K1,3 as an induced subgraph. Thus Corollary 3.1.12 follows from

Corollary 3.1.10.

Proof of Corollary 3.1.13. We may assume that L(G) is not a complete

graph. By Lemma 3.4.3, G satisfies (F1) and κ′(G̃ −D1(G̃)) ≥ 3. We shall

show that G aslo satisfies (F2).

By contradiction, there exists a v ∈ D3(G) with v1, v2, v3 ∈ V (G) being

three distinct vertices adjacent to v in G, such that v1, v2, v3 are mutually

nonadjacent, and such that v1 6∈ D1(G). By κ(L(G)) ≥ 4, dG(v1) ≥ 3. Let

v1u, v1u
′ be two edges of G such that v /∈ {u, u′}. It follows that the edges

{vv1, vv2, vv3, v1u, v1u
′} induces an hourglass in L(G), a contradiction.

Thus G satisfies (F2), and so G ∈ F . Therefore, Corollary 3.1.13 follows

from Theorem 3.4.2 and Lemma 3.1.2.
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Chapter 4

Circuits containing 12 vertices

in 3-edge-connected graphs and

Hamiltonian line graphs

4.1 Introduction

As in [8], κ(G), κ′(G) and dG(v) denote the connectivity of G, the edge-

connectivity of G and the degree of a vertex v in G, respectively. Let G be a

graph. Let O(G) denote the set of odd degree vertices of G. If O(G) = ∅ and

if G is connected, then G is an Eulerian graph. Note that K1 is Eulerian.

An Eulerian subgraph of G will be called a circuit. Hence a subgraph H of

G is a circuit if and only if H is a connected and every vertex of H has even

degree in H. A circuit H is a dominating circuit of G if G−V (H) is edgeless.

Let G be a graph and let X ⊆ E(G). The contraction G/X is the
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graph obtained from G by identifying the two ends of each edge in X and

then deleting the resulting loops. A graph is trivial if it is edgeless. If

G0 = G/X and if every vertex of G0 is a nontrivial vertex, then G0 is a

nontrivial contraction of G. If H is a subgraph of G, then we write G/H for

G/E(H). If H is a connected subgraph of G, and if vH denotes the vertex

in G/H to which H is contracted, then H is called the preimage of vH . A

vertex v in a contraction of G is nontrivial if v has a nontrivial preimage.

For a graph G, the line graph L(G) has E(G) as its vertex set, where two

vertices in L(G) are adjacent in L(G) if and only if the corresponding edges

are adjacent in G. The following relates dominating Eulerian subgraphs and

Hamiltonian line graphs.

Theorem 4.1.1 (Harary and Nash-Williams [29]). Let G be a graph with at

least three edges. Then L(G) is Hamiltonian if and only if G has a dominating

circuit.

In this chapter, we first study the existence of a circuit H in a 3-edge-

connected graph G such that H contains a given set of vertices of G. We

prove the following:

Theorem 4.1.2 Let G be a 3-edge-connected graph and let S ⊆ V (G) be a

vertex subset such that |S| ≤ 12. Then either G has a circuit H such that

S ⊆ V (H), or G can be contracted to the Petersen graph in such a way that

the preimage of each vertex of the Petersen graph contains at least one vertex

in S.

If G is a planar graph, we have
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Theorem 4.1.3 Let G be a 3-edge-connected planar graph, and let S ⊆
V (G) be a vertex subset such that |S| ≤ 23. Then there is a circuit in G

containing S.

When G is a cubic graph, κ(G) = κ′(G) and every circuit H of G is a

cycle of G. Therefore, Theorem 4.1.2 and Theorem 4.1.3 extend the following

results in [5] and [1], respectively.

Theorem 4.1.4 (Bau and Holton [5]). Let G be a 3-connected cubic graph

and let S ⊆ V (G) be a vertex subset such that |S| ≤ 12. Then either G has

a cycle H such that S ⊆ V (H), or G is contractible to the Petersen graph in

such a way that the preimage of each vertex of the Petersen graph contains

at least one vertex in S.

Theorem 4.1.5 (Aldred, Bau, Holton and McKay [1]). If S is a set of at

most 23 vertices in a 3-connected cubic planar graph G, then there is a cycle

in G containing S.

Let G be the graph shown in Figure 1 below, where each H is a single ver-

tex ( See [32], page 243). If S is the set of those 13 vertices marked by H, then

there is no cycle through the 13 vertices. This shows that the requirement

on 12 vertices in Theorem 4.1.2 and Theorem 4.1.4 can not be replaced by

13 vertices. The sharpness of Theorem 4.1.5 and Theorem 4.1.3 are demon-

strated in [31] that there are 3-edge-connected (cubic) planar graphs in which

there is a set of 24 vertices that do not lie on a common cycle.
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Next, we apply Theorem 4.1.2 to Hamiltonian line graphs. For an integer

i ≥ 0,

Di(G) = {v ∈ V (G) : dG(v) = i}.

An edge e ∈ E(G) is a pendant edge if e is incident with a vertex in D1(G).

The following was conjectured by Benhocine et al in 1986 [6], and proved by

Veldman in 1994 [52].

Theorem 4.1.6 (Veldman [52]). Let G be a simple graph on n vertices such

that κ′(G−D1(G)) ≥ 2. If for every edge uv ∈ E(G),

dG(u) + dG(v) >
2n

5
− 2, (4.1)

then for n large, L(G) is Hamiltonian.

When the edge-connectivity is higher, the lower bound in (4.1) becomes

lower as shown in [18]. The following was proved.

Theorem 4.1.7 (Chen and Lai [18]). Let G be a simple graph on n vertices

such that κ′(G) ≥ 3. If for every edge uv ∈ E(G),

dG(u) + dG(v) ≥ n

6
− 2, (4.2)
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then for n large, either L(G) is Hamiltonian, or the Petersen graph is a

nontrivial contraction of G.

Theorem 4.1.7 is an improvement of a previous result in [17] and [52].

The authors in [18] conjectured that the lower bound in Theorem 4.1.7 can

be reduced to n/9− 1, with the conclusion that either L(G) is Hamiltonian

or G is contractible to the Petersen graph. This conjecture, if proved, will

be best possible, due to a construction using the Blanuša snarks [18].

Noting that (4.1) implies that

max{dG(u), dG(v)} ≥ n

5
− 1, for every edge uv ∈ E(G) (4.3)

Lai considered (4.3) as a relaxation of (4.1), and made an improvement of

Theorem 4.1.6.

Theorem 4.1.8 (Lai [40]). Let G be a simple graph on n vertices such

that κ′(G − D1(G)) ≥ 2. If (4.3) holds, then for n large, either L(G) is

Hamiltonian, or (4.1) is violated and G can be contracted to one of seven

specified graphs.

Theorem 4.1.9 below extends Theorem 4.1.7.

Theorem 4.1.9 Let G be a simple graph on n vertices such that κ′(G −
(D1(G) ∪D2(G))) ≥ 3. If,

max{dG(u), dG(v)} ≥ n

12
− ε, for every edge uv ∈ E(G) (4.4)

where ε ≥ 1 is a constant, then for n large, either L(G) is Hamiltonian, or

G has the Petersen graph as a nontrivial contraction.
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Remark. n/12 can not be replaced by n/13 in Theorem 4.1.9. Let r be an

integer, and n = 13r + 5. Let G be the graph in Figure 1, where each H is

a complete graph Kr. Then G is a graph of order n = 13r + 5. Obviously,

one can see that for every edge uv ∈ E(G), max{dG(u), dG(v)} ≥ r − 1 =
n− 5

13
−1 >

n

13
−2. Although G can be contracted to the Petersen graph, at

least one vertex of the Petersen graph is a trivial contraction. Also L(G) is

not Hamiltonian. The statement of Theorem 4.1.9 is not true for this case.

This shows that
n

12
in (4.4) is the best possible.

In Section 2, we present Catlin’s reduction method, which is the needed

mechanism in the proofs. In Section 3, we assume the truth of Theorem 4.1.2

to prove Theorem 4.1.9. The last section will be devoted to the proofs of

Theorem 4.1.2 and Theorem 4.1.3.

4.2 Catlin’s Reduction Method

Let G be a graph and let F ⊆ V (G) be a vertex subset. A circuit H of

G is called an F -circuit if F ⊆ V (H). A graph G is supereulerian if it has

a V (G)-circuit. (See [11] for supereulerian graphs). Catlin [12] invented a

reduction method to find a V (G)-circuit for given G.

A graph G is collapsible if for every subset R ⊆ V (G) with |R| even, G has

a spanning connected subgraph HR such that O(HR) = R. In [12], Catlin

showed that every graph G has a unique collection of maximal collapsible

subgraphs H1, H2, · · · , Hc. The reduction of G is G′ = G/(∪c
i=1Hi), the graph

obtained from G by contracting all nontrivial maximal collapsible subgraphs

of G. A graph G is reduced if the reduction of G is G. Note that any subgraph
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of a reduced graph is reduced.

Theorem 4.2.1 (Catlin [12]). If G is a reduced graph, then G is simple and

K3-free, with δ(G) ≤ 3, and for any subgraph H of G, either H ∈ {K1, K2}
or |E(H)| ≤ 2|V (H)| − 4.

Lemma 4.2.2 (Catlin [12]). Let G be a graph. Let L be a collapsible sub-

graph of G, and let vL be the vertex in G/L to which L is contracted, and

M ⊆ V (G)− V (L). Then G has a circuit H such that M ∪ V (L) ⊆ V (H) if

and only if G/L has a circuit H ′ such that M ∪ {vL} ⊆ V (H ′).

Let G be a graph. Let v ∈ D2(G) be a vertex which is incident with

edges e1, e2. We say that the contraction G/e1 is the resulting graph by

eliminating a degree 2 vertex v. Define G̃ to be the graph obtained from

G − D1(G) by eliminating all vertices in D2(G). Since deleting vertices in

D1(G) is equivalent to contracting all the pendant edge in G, one can always

view G̃ as a contraction of G.

Lemma 4.2.3 (Proposition 3.2 of [40]). Let G be a graph and let F ⊆
V (G)− (D1(G) ∪D2(G)). The following are equivalent.

(i) G has an F -circuit.

(ii) G̃ has an F -circuit.

Let H be a collapsible subgraph of G, and let G′ = G/H. Let vH denote

the vertex in G′ onto which the subgraph H is contracted. Let F ⊆ V (G)

be a vertex subset. Define F ′ ⊆ V (G′) such that

F ′ =





F if F ∩ V (H) = ∅,
(F − V (H)) ∪ {vH} if F ∩ V (H) 6= ∅.
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Lemma 4.2.4 Let G be a graph and let F ⊆ V (G)− (D1(G)∪D2(G)). Let

H be a collapsible subgraph of G, and let H ′ denote the graph obtained from

H by eliminating all vertices in D2(G) ∩D2(H). (Thus H ′ is a subgraph of

G̃.) Let G′′ denote G̃/H ′. The following are equivalent.

(i) G has an F -circuit which is either disjoint from H, or contains every

vertex of H.

(ii) G′′ has an F ′-circuit.

Proof. Since F ⊆ V (G) − (D1(G) ∪D2(G)), one can view F ⊆ V (G̃), and

so F ′ ⊆ V (G′′).

If L is an F -circuit satisfying (i), and if X is the edge subset such that

G′′ = G/X, then L/(X ∩ E(L)) is an F ′-circuit in G′′.

Suppose that G′′ has an F ′-circuit L′. By Lemma 4.2.3 and by Lemma 4.2.2,

if vH ∈ V (L′), then G has an F -circuit L that contains every vertex of H; if

vH /∈ V (L′), then G has an F -circuit that does not intersect H, and so (i)

must hold.

4.3 Proof of Theorem 4.1.9

Throughout this section, we assume that Theorem 4.1.2 holds. Let G be

a simple graph with n vertices. Following closely the method of [40], we

consider the condition

max{dG(u), dG(v)} ≥ n

p
− ε, for every edge uv ∈ E(G), (4.5)

where ε is a constant. Let p ≥ 2 be an integer, and define

Jp(G) = {v ∈ V (G) : d(v) ≥ n

p
− ε}.
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Lemma 4.3.1 Suppose that (4.5) holds for a simple graph G with n vertices.

Let G̃′ denote the reduction of G̃, and let W ′ denote the set of all nontrivial

vertices of G̃′. Then there exists a number n(p) such that when n ≥ n(p),

each of the following holds.

(i) |W ′| ≤ p.

(ii) Every vertex in Jp lies in the preimage of a vertex in W ′.

(iii) If G̃′ has a W ′-circuit, then G has a dominating circuit.

Proof. Let G′′ = G̃′. Note that G′′ is reduced by definition. Let n′ =

|V (G′′)|. Let

c = 3p + 7 (4.6)

and let W = {v ∈ V (G′′) : dG′′(v) ≤ c} and W ′ = {v ∈ W : v is nontrivial}.

Claim 1. For any v ∈ W ′, if Hv denotes the preimage of v in G, then

|V (Hv)| ≥ n

p
− ε + 1− dG′′(v).

Proof. Let Out(Hv) = {x ∈ V (Hv) : NG(x) 6= NHv(x)} and In(Hv) =

V (Hv) − Out(Hv). If there is an edge xy ∈ E(Hv) such that d(x) ≥ d(y)

and x ∈ In(Hv), then by (4.5), |V (Hv)| ≥ d(x) + 1 ≥ n/p − ε + 1, and so

the Claim holds. Therefore,we assume that for any edge xy ∈ E(Hv) with

d(x) ≥ d(y), we always have x ∈ Out(Hv). Thus |Out(Hv)| ≥ 1, and so by

(4.5)

|V (Hv)| = |In(Hv)|+ |Out(Hv)| ≥ 1 + dG(x)− dG′′(v) ≥ n

p
− ε + 1− dG′′(v).

Claim 1 is proved.
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Claim 2. |W ′| ≤ p.

Proof. Since dG′′(v) ≤ c for v ∈ W , and W ′ ⊂ W , by Claim 1, we have

n ≥ |W ′|(n/p− ε + 1− c). Thus, |W ′| ≤ np/(n− p(ε + c− 1)). Since ε and c

are constants, when n is large (say n > (p + 1)p(ε + c− 1)), |W ′| ≤ p. This

proves Claim 2.

Claim 3. V (G′′) = W .

Proof. By contradiction, we assume that V (G′′) − W 6= ∅. Note that

every vertex in V (G′′)−W has degree at least c+1 in G′′. Since G′′ is simple

and K3-free by Theorem G, this means that

n′ = |V (G′′)| ≥ c + 2. (4.7)

Count the incidences to get c|V (G′′)−W | ≤ 2|E(G′′)| ≤ 4n′−8, which means

|V (G′′)−W | ≤ (4n′ − 8)/c. It follows that

|W | = n′ − |V (G′′)−W | ≥ (1− 4/c)n′ +
8

c
. (4.8)

Note that every vertex in W −W ′ has degree at least 3 in G′′, and when n

is large, W −W ′ is independent in G′′. By Theorem 4.2.1, by Claim 2, and

by (4.8)

2n′ − 4 ≥ |E(G′′)| ≥ 3|W −W ′| ≥ (3− 12/c)n′ +
24

c
− 3p.

It follows that

3p− 4 ≥ (1− 12

c
)n′ +

24

c
. (4.9)

By (4.7), n′ ≥ c + 2. Thus, (4.9) implies that

3p− 4 ≥
(

1− 12

c

)
(c + 2) +

24

c
= c− 10,
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and so by (4.6) 3p + 6 ≥ c = 3p + 7, a contradiction. This shows that

V (G′′) = W .

Claim 3 implies that W ′ is the set of all nontrivial vertices of G̃′. This

shows that Lemma 4.3.1 (i) holds.

Claim 4. Every vertex in Jp(G) is contained in the preimage of some vertex

in W ′.

Proof. Since ε and p are constants, when n is large enough, the degree of

vertices in Jp(G) will exceed c, and so the Claim follows from Claim 3. This

shows that Lemma 4.3.1(ii) holds.

It remains to prove Lemma 4.3.1(iii). By Lemma 4.2.4 and by Lemma 4.3.1(ii),

G has a circuit L such that Jp ⊆ V (L). Since (4.5) holds for G, G − V (L)

must be edgeless, and so L is dominating. The proof is complete.

Lemma 4.3.2 Suppose that D2(G) is an independent set of G. If κ′(G −
(D1(G) ∪D2(G))) ≥ 3, then κ′(G̃) ≥ 3.

Proof. Let G1,2 = G− (D1(G) ∪D2(G)) and let D2 = {z1, z2, · · · , zs}. For

each zi, let ui and vi be the two neighbors of zi, where 1 ≤ i ≤ s. Note that

G̃ is obtained from G1,2 by adding edges {uivi : 1 ≤ i ≤ s} and deleting all

possibly resulting loops (which may occur when ui = vi, for some i). Since

κ′(G1,2) ≥ 3, it follows that κ′(G̃) ≥ 3.

Lemma 4.3.3 If κ′(G) ≥ 3 and if G′ is the reduction of G, then κ′(G̃′) ≥ 3.
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Proof Let X ⊆ E(G̃′) be an edge cut of G̃′. Note that by the definition of

G̃, X can be viewed as a subset of G. Therefore, X is also an edge cut of

G. Since X ⊆ E(G̃′), X does not contain any pendant edges of G, and so X

cannot consist of the two edges incident with a vertex in D2(G). Therefore,

X is an edge cut of G̃. Since it is assumed that κ′(G) ≥ 3, one must have

|X| ≥ 3 and so κ′(G̃′) ≥ 3.

We shall prove a slightly stronger version of Theorem 4.1.9 By Lemma 4.3.2.

Theorem 4.3.4 below implies Theorem 4.1.9.

Theorem 4.3.4 Let G be a simple graph with n vertices such that κ′(G̃) ≥ 3.

If (4.5) holds, then for n large, either L(G) is Hamiltonian, or G has the

Petersen graph as a nontrivial contraction.

Proof. Let G′ denote the reduction of G, and let G̃′ denote the reduction of

G̃. Let W ′ denote the set of nontrivial vertices of G. By Lemma 4.3.1(i) with

p = 12, |W ′| ≤ 12. Since κ′(G̃) ≥ 3, one has W ′ ∩ (D1(G
′) ∪ D2(G

′)) = ∅.
Therefore, W ′ ⊆ V (G̃′).

Since |W ′| ≤ 12 and since κ′(G̃′) ≥ 3, it follows by Theorem 4.1.2 that

either G̃′ has Petersen graph as a nontrivial contraction, or G̃′ has a W ′-

circuit H ′.

Since G̃′ is a contraction of G′, and G′ is a contraction of G, if the Petersen

graph is a nontrivial contraction of G̃′, then the Petersen graph is also a

nontrivial contraction of G, and we are done. Therefore, we assume that G̃′

has a W ′-circuit H ′. By Lemma 4.3.1, we conclude that G has a circuit H

that contains all vertices of J12, and G has a dominating circuit. Therefore

by Theorem 4.1.1, L(G) is Hamiltonian.
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4.4 Proofs for Theorems 4.1.2 and 4.1.3

We shall argue by contradiction. Some more notations and lemmas are

needed.

Let G be a graph and let v ∈ V (G). Then NG(v) denote the set of vertices

in V (G) that are adjacent to v in G; EG(v) denote the set of edges incident

with v in G and for each i ≥ 1,

D∗
i (G) =

⋃
j≥i

Dj(G).

For v ∈ D∗
4(G), let NG(v) = {v1, v2, · · · , vd}, where d = dG(v) ≥ 4. For

a 4-cycle C4, let V (C4) = {x, y, z, w} and let E(C4) = {xy, yz, zw, wx}. Let

Gv be a graph obtained from G− v and C4 by joining x to v1, y to v2, z to

v3, and w to vi for all i ≥ 4 as shown below.
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Figure 4.2

Lemma 4.4.1 Let G be a 3-edge-connected graph and let v ∈ D∗
4(G). If v

is not a cut-vertex, then Gv is 3-edge-connected.

Proof. By way of contradiction, suppose that Gv has an edge cut E0 ⊆ E(G)

with |E0| ≤ 2. Let G1 and G2 be the two components of Gv −E0. Note that

if all the vertices of NG(v) = {v1, v2, · · · , vd} are in the same component

(say G1), then E0 is an edge cut of G with |E0| ≤ 2, contrary to that G is
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3-edge-connected. Therefore, E0 ⊆ E(C4) = {xy, yz, zw, wx} and |E0| = 2.

However, this implies that v is a cut-vertex, a contradiction. Hence, Gv is

3-edge-connected.

Let S ⊆ V (G) be a vertex set, and let v ∈ D∗
4(G) and v′ ∈ V (C4). Define

S ′ =





S if v /∈ S,

(S − v) ∪ v′ otherwise.

Then |S ′| = |S| and S ′ ⊆ V (Gv).

Lemma 4.4.2 Let G be a graph, and let v ∈ D∗
4(G). Let S be a vertex subset

of V (G), and S ′ be the set defined above. Then each of the following holds:

a. If Gv has a circuit H1 such that S ′ ⊆ V (H1), then G has a circuit H

such that S ⊆ V (H).

b. If Gv can be contracted to the Petersen graph such that the contraction

preimage of each vertex in the Petersen graph contains at least one

vertex in S ′ then G can be contracted to the Petersen graph such that

the contraction preimage of each vertex in the Petersen graph contains

at least one vertex in S.

Proof. Obvious.

Proof of Theorem 4.1.2. We argue by induction on

f(G) =
∑

v∈D∗4(G)

dG(v).
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If f(G) = 0, then G is a cubic 3-connected graph, and so the theorem

follows from Theorem B. Assume that f(G) > 0. Then |D∗
4(G)| ≥ 1. Pick

v ∈ D∗
4(G). If v is not a cut-vertex, then we define Gv as shown in Figure 2.

By Lemma 4.4.1 Gv is also 3-edge-connected. By the definition of f(G) and

Gv, we have f(Gv) = f(G)− 1. Let v′ ∈ V (C4) = {x, y, z, w}. Define

S ′ =





S if v /∈ S,

(S − v) ∪ v′ otherwise.

Then |S ′| = |S| ≤ 12 and S ′ ⊆ V (Gv). By induction, either Gv has an

S ′-circuit H ′, or Gv can be contracted to the Petersen graph such that the

contraction preimage of each vertex in the Petersen graph contains at least

one vertex in S ′. Therefore, Theorem 4.1.2 follows from Lemma 4.4.2.

Next we only need to consider the case that v is a cut-vertex.

Let H1 and H2 be the two components of G− v. Let G1 = G[V (H1)∪ v]

and G2 = G[V (H2)∪ v]. Note that since G is 3-edge-connected, Gi (i = 1, 2)

is also 3-edge-connected. Obviously,

f(Gi) < f(G) (i = 1, 2). (4.10)

Let Si = S ∩ V (Gi) (i = 1, 2). We may assume that |S2| ≤ |S1|. If S2 = ∅,
then S ⊆ V (G1). By (4.10) and then by induction, the theorem statement

holds for G1, and so the theorem holds in this case. Without loss of generality,

we assume that 1 ≤ |S2| ≤ |S1| ≤ 11. For i = 1, 2, define

S ′i =





Si if v ∈ S,

Si ∪ v otherwise.

Then 2 ≤ |S ′2| ≤ |S ′1| ≤ 12. By (4.10) and then by induction, we know that

either Gi has a circuit Hi such that S ′i ⊆ V (Hi) or Gi can be contracted to
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the Petersen graph such that the contraction preimage of each vertex in the

Petersen graph contains at least one vertex of S ′i. There are two cases to be

considered here.

Case 1. G1 is contractible to the Petersen graph such that the con-

traction preimage of each vertex in the Petersen graph contains at least one

vertex of S ′1. Since v ∈ S ′1, v is in one of the preimage of a vertex in

the Petersen graph. Note that G1 = G/G2. Then G can be contracted to

the Petersen graph in such a way that by contracting G2 to v, and then by

successively contracting the preimage of each vertex of the Petersen graph

in G1. Obviously, The contraction preimage of each vertex in the Petersen

graph contains at least one vertex of S. The theorem is proved in this case.

Case 2. G1 has a circuit H1 such that S ′1 ⊆ V (H1). Since |S ′2| ≤
|S ′1| ≤ 12, |S ′2| ≤ 6. By (4.10) and by induction, G2 has a circuit H2 such

that S ′2 ⊆ V (H2). Since v ∈ S ′i ⊆ V (Hi), H = H1 ∪H2 is a circuit in G with

S ⊆ V (H) = V (H1) ∪ V (H2). The proof is completed.

Remark. Theorem 4.1.3 can be proved by using Theorem 4.1.5 and the

same techniques used in the proof of Theorem 4.1.2.
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Chapter 5

Group chromatic number of

some graphs

5.1 Introduction

In this chapter, the degree of v in the graph G is denoted by deg(v, G). Denote

N(v, G) = {u ∈ V (G), uv ∈ E(G)}. We let χ(G) denote the chromatic

number of a graph G and ∆(G) denotes the maximum degree of graph G.

We use H ⊆ G to denote the fact that H is a subgraph of G.

Let A denote an Abelian group and F (G,A) denote the set of all functions

from E(G) to A. For f ∈ F (G,A), an (A, f) -coloring of G under the

orientation D is a function c : V (G) 7→ A such that for every directed edge

e = uv, c(u) − c(v) 6= f(uv). G is A-colorable under the orientation D if

for any function f ∈ F (G,A), G has an (A, f)-coloring. It is known [34]

that A-colorable is independent of the choice of the orientation. The group
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chromatic number of a graph G is defined to be the minimum m for which G

is A-colorable for any Abelian group A of order ≥ m under a given orientation

D, and is denoted by χg(G).

Let H ⊂ G be graphs, and A be a group. Given an f ∈ F (G,A), if

for an (A, f |E(H))-coloring c0 of H, there is an (A, f) -coloring c of G such

that c is an extension of c0, then we say that c0 is extended to c. If any

(A, f |E(H))-colotring c0 of H can be extendedtoan (A, f) -coloring c, then

we say that (G, H) is (A, f)-extendsible. If for any f ∈ F (G,A), (G,H) is

(A, f)-extensible, then (G,H) is A-extensible.

5.2 The group chromatic number of K3,3-minor

free graphs

Jaeger et al [34] proved the following result.

Theorem 5.2.1 (Jeager, Linial, Payan, and Tarsi [34]). If G is a simple

planar graph, then χg(G) ≤ 6.

This has been improved by Lai and Zhang.

Theorem 5.2.2 ([39]) If G is a simple graph without a K5-minor, then

χg(G) ≤ 5. In particular, if G is a simple planar graph, then χg(G) ≤ 5.

Wagner’s Theorem is used in our proof of Theorem 5.2.4.

Theorem 5.2.3 (Wagner [55])Suppose that G is not planar with |V (G)| ≥
6. If G is 3-connected,then G contains a K3,3 minor.
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We will prove the following result which extends also Jeager et al [34]

result.

Theorem 5.2.4 Let G be a connected simple graph without a K3,3 minor

and let A be a group with |A| ≥ 5. Suppose that H is a subgraph of G

isomorphic to K2. Then (G,H) is A-extensible.

Proof. Let G be a connected simple graph without a K3,3 minor and let A

be a group with |A| ≥ 5. Suppose that H is a subgraph of G isomorphic to

K2. Then (G,H) is A-extensible.

Proof. Let f ∈ F (G, A) and c0 be an given (A, f |E(H))-coloring. We shall

prove by induction on |V (G)| that c0 can be extended to an (A, f)-coloring

of G. By Theorem 2, we may assume that G is not planar.

Assume first that |V (G)| = 5. Since G is not planar, G ∼= K5. Let

V (K5) = {v1, v2, v3, v4, v5} and assume that the edge vivj is oriented from vi

to vj if i < j. Without loss of generality, we assume that V (H) = {v1, v2}
and assume that c0 : vk 7→ ak for k = 1, 2. Define c : V (G) 7→ A by




c(vk) = c0(ek) = ak, if k = 1, 2

c(v3) = a3 ∈ A− {c(v1)− f(v1v3), c(v2)− f(v2v3)}
c(v4) = a4 ∈ A− {c(v1)− f(v1v4), c(v2)− f(v2v4), c(v3)− f(v3v4)}
c(v5) = a5 ∈ A− {c(v1)− f(v1v5), c(v2)− f(v2v5), c(v3)− f(v3v5), c(v4)− f(v4v5)}

Thus the resulting coloring is an (A, f)-coloring and extension for c0.

Assume then that |V (G)| ≥ 6 and that the theorem holds for graphs with

smaller values of |V (G)|. Let T be a minimum vertex cut of G. By Theorem

10, 1 ≤ |T | ≤ 2. Let G1 and G2 be two proper subgraphs of G such that

G1∪G2 = G, V (G1)∩V (G2) = T . Without loss of generality, we assume that
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H ⊂ G1. If |T | = 1, let G′
i = Gi for i = 1, 2. If |T | = 2, Let T = {u, v}. If

uv ∈ E, let G′
i = Gi for i = 1, 2. If uv /∈ E, Let G′

i = Gi + uv for i = 1, 2. It

follows that G′
1 and G′

2 are K3,3 free. Since |V (G′
1)| < |V (G)| and |V (G′

2)| <
|V (G)|. By induction there is an (A, f ′|E(G′1))-coloring c1 : V (G′

1) 7→ A which

extends c0 and an (A, f ′|E(G′2))-coloring c2 : V (G′
2) 7→ A which extends C1|T .

It follows that an (A, f)-coloring c : V (G) 7→ A extends c0.

From Theorem 5.2.4, we easy have the following corollary. As K5 does

not have a K3,3-minor, this result is best possible.

Corollary 5.2.5 Let G be a simple graph without K3,3 minors. Then χg(G) ≤
5.

5.3 The group chromatic number for join of

two graphs

Let G1 and G2 be subgraphs of G. The union G1 ∪ G2 of G1 and G2 is the

subgraph with vertex set V (G1)∪ V (G2) and edge set E(G1)∪E(G2). If G1

and G2 are disjoint, denote the union by G1 +G2. The join G∨H of disjoint

graphs G and H is the graph obtained from G + H by joining each vertex

of G to each vertex of H. Let G and H be two given graphs. In proper

coloring, it is well known that χ(G ∨H) = χ(G) + χ(H), but it is defferent

in the group coloring. It is easy to see that χ(K2,2) = 2 and K2,2 = K2 ∨K2.

Lai and Zhang [38] showed that χg(K2,2) = 3. We have the following result.

Theorem 5.3.1 (1) Suppose that G and H are two given graphs. Then

χg(G + H) = max{χg(G), χg(H)}.
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(2) Let H1 and H2 be two subgraphs of G such that V (H1) ∩ V (H2) = ∅ and

V (G) = V (H1) ∪ V (H2). Then

χg(G) ≤ min{max{χg(H1), maxv∈V (H2) deg(v, H1)}+ ∆(H2) + 1,

max{χg(H2), maxu∈V (H1) deg(u, H2)}+ ∆(H1) + 1}.

Proof. (1) Obvously.

(2) Let k = max{χg(H1), maxv∈V (H2) deg(v,H1)}+∆(H2)+1. By symetry

we only show that χg(G) ≤ k.

We argue by contradiction and assume that G is a counterexample with

|V (H2)| minimized. It is easy to see that the theorem holds if |V (H2)| = 0

and so we assume that |V (H2)| > 0. Let A be an Abelian group with |A| ≥ k

and let w ∈ V (H2) such that deg(w, G) = δ(H2). We have

max{χg(H1), max
v∈V (H2)−w

deg(v, H1)}+ ∆(H2 − w) + 1 ≤ k.

By the choice of H2, G−w =< V (H1)∪V (H2−w) > is A-colorable if |A| ≥ k.

Therefore for any f : E(G − w) 7→ A, there is c : V (H1) ∪ V (H2 − w) 7→ A

such that c(x) − c(y) 6= f(xy) for any directed edge xy. Without loss of

generality we assume that G is oriented such that all the edges incident with

w is oriented from w. It follows that

deg(w, G) = deg(w,H1) + deg(w,H2)

≤ max
v∈V (H2)

deg(v, H1) + ∆(H2)

≤ k − 1.

We may assume that N(w, G) = {w1, w2, . . . , wt}, t ≤ k− 1. Since |A| ≥
k, there is an a ∈ A − ∪t

i=1{c(wi) + f(wwi)}. Therefore we extend c to
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c1 : V (G) 7→ A by

c1(u) =





c(u) if u ∈ V (G)− w

a if u = w.

c1(u) = c(u) if u ∈ V (G)− w; c1(u) = a if w = u.

Thereforwe G is A-colorable if |A| ≥ k. Thus we get a contradiction and

the proof completes.

The bound of Theorem 5.4.2 is sharp. There are infinite examples. Let

G = K2 ∨K2. Then χ(G) = χ(K2) + χ(K2) and χg(G) = min{max{χg(K2),

maxv∈V (K2) deg(v, K2)}+ ∆(K2) + 1, max{χg(K2), maxu∈V (K2) deg(u, K2)}
+∆(K2)+1} = min{max{1, 2}+1, max{1, 2}+1} = 3. In fact when m ≥ n ≥
2, G = Kn∨Km is another such example. χg(G) = min{max{χg(Kn), |V (Kn)|}+
∆(Km)+1, max{χg(Km), |V (Km)|}+∆(Kn)+1} = min{max{n+(m−1)+

1,m + (n− 1) + 1} = m + n.

From Theorem 5.4.2, we obtain the following corollary.

Corollary 5.3.2 Suppose that G and H are two graphs. Then

χg(G ∨H) ≤ min{|V (H1)|+ ∆(H2) + 1, |V (H2)|+ ∆(H1) + 1}.

5.4 The group chromatic number for the kth

power of a graph

Lai and Zhang [38] proved the analogue of Brook’s Theorem [10]
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Theorem 5.4.1 (Lai and Zhang [38]) For any connected simple graph G,

χg(G) ≤ ∆(G) + 1

with equality if and if either ∆(G) = 2 and G is a cycle; or ∆(G) ≥ 3 and

G is complete.

Let k be any integer and let Gk denote the kth power of G: i.e., the graph

with V (Gk) = V (G), where uv ∈ E(Gk) if and only if u and v lie at distance

at most k in G.

We obtain the following result which extends Theorem 5.4.1.

Theorem 5.4.2 Let k be an integer. If G is a connected graph, then

χg(G
k) ≤ ∆k + 1, (5.1)

and equality holds if and only if either G = K2 or G is a ∆-regular graph of

girth 2k + 1 and order ∆k + 1.

Remark When k = 2, Hoffman and Singleton [30] have show that the only

∆-regular graph of girth 5 and order ∆2 + 1 are the five cycle, the Petersen

graph, the Hoffman-Singleton graph(∆ = 7), and possible such a graph with

∆ = 57.

Proof of Theorem 5.4.2. Let G be connected. For any v ∈ V (G), we have

deg(v,Gk) ≤ ∆(G)k (5.2)

with equality if and only if v does not lie in any l-cycle for 3 ≤ l ≤ 2k and v

and all vertices at distance at most k − 1 from v have degree ∆. Hence

∆(Gk) ≤ ∆(G)k. (5.3)
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By Theorem 8, we have

χg(G
k) ≤ ∆(G)k + 1 (5.4)

with equality if and only if Gk is complete with ∆(Gk) + 1 vertices. By (3)

and (4), (1) holds. All that remains is to consider the case where equality

holds in (1).

suppose that (1) holds with equality. Then equality holds in (3) and

(4). Gk is complete with ∆(Gk) + 1 vertices, and for any vertex v such that

deg(v,G) = ∆, the equality in (3) implies eqality in (2). Therefore, any

vertex v of degree ∆ does not lie in any l-cycle 3 ≤ l ≤ 2k, and all vertices

at distance at most k from v have degree ∆ also. Hence G is regular and

V (G− v) consists only of ∆ neighbors of v and exactly ∆(G2)−∆ vertices

at distance 2 from v, exactly ∆(G3) − (∆(G2) − ∆) vertices at distance 3

from v, . . . exactly ∆(Gl) −∆(G(l − 1)) + . . . , (−1)l∆ vertices at distance

l, 3 ≤ l ≤ 2k from v, for if some vertex w ∈ V (G) were at distance 2k + 1

from, then vw /∈ E(Gk), contrary to the completeness of Gk. It follows that

G has order ∆k + 1, andG has no l-cycle for 3 ≤ l ≤ 2k. Therefore, either

G = K2 or G has girth 2k + 1, and G is a ∆-regular graph of order ∆k + 1.

Set f = 0 for and f ∈ F (G,A) and we have following corollary.

Corollary 5.4.3 Let k be an integer. If G is a connected graph, then

χ(Gk) ≤ ∆k + 1, (5.5)

and equality holds if and only if either G = K2 or G is a ∆-regular graph of

girth 2k + 1 and order ∆k + 1.
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Chapter 6

Group chromatic number of

planar graphs with girth at

least 4

6.1 Introduction

Let A denote an Abelian group and F (G, A) denote the set of all functions

from E(G) to A. For f ∈ F (G,A), an (A, f) -coloring of G under the

orientation D is a function c : V (G) 7→ A such that for every directed edge

e = uv, c(u) − c(v) 6= f(uv). G is A-colorable under the orientation D if

for any function f ∈ F (G,A), G has an (A, f)-coloring. It is known ([34])

that A-colorablity is independent of the choice of the orientation. The group

chromatic number of a graph G is defined to be the smallest positive integer

m for which G is A-colorable for any Abelian group A of order ≥ m under a

given orientation D, and is denoted by χg(G). Let G and H be two graphs.
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G is contractible to H if H can be obtained from G by contracting some

edges of G and deleting the resulting loops. If G contains a subgraph which

is contratible to Γ, then Γ is a minor of G. A set of subgraphs of G is said

to be independent if no two of them have common vertex.

Our terminology is standard as in [8] except otherwise defined. A k-

path (k-cycle) denotes a path (cycle) of length k. The distance of 4-cycle

v1v2v3v4v1 and 5-cycle u1u2u3u4u5u1 is min{dG(vi, uj)|1 ≤ i ≤ 4, 1 ≤ j ≤ 5},
where dG(u, v) denote the length of a shortest (u, v)-path in G. The girth

of graph G is the length of a shortest cycle of G. For a plane graph the

unique unbounded face is called the outer face. If C is a cycle in a plane

graph, then int(C) is the set of vertices and edges inside C. If int(C)=∅,
then C is facial. If the outer face is bounded by a cycle, we call it the outer

cycle. A separating cycle is a cycle C such that the graph has at least one

vertex outside C and at least one vertex inside C. Thoughout this chapter,

Z3 denote the 3 element field as well as the 3 element group.

Jaeger, Linial, Payan and Tarsi [34] proved that if G is a planar graph,

then χg(G) ≤ 6. It is shown (see [38]) that if G is a graph without a K5-minor

or without a K3,3-minor, then χg(G) ≤ 5. Jaeger, Linial, Payan and Tarsi

[34] also proved that if G is a planar graph with girth ≥ 4, then χg(G) ≤ 4.

In this chapter we prove the following results.

Theorem 6.1.1 Suppose that G is a planar graph with girth 4 such that all

4-cycles are independent and every 4-cycle is facial. If the minimum distance

between 4-cycles and 5-cycles is at least 1, then χg(G) ≤ 3.

Theorem 6.1.2 If G is a K3,3-minor free graph with girth at least 5, then

χg(G) ≤ 3.
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The proofs of these results are in Section 6.2 and Section 6.3, respectively.

For a vertex v ∈ V (G), let

E−(v) = {(u, v) ∈ E(G) : u ∈ V (G)}, E+(v) = {(v, u) ∈ E(G) : u ∈
V (G)} and E(v) = E+(v) ∪ E−(v).

Throughout this paper A denotes a nontrivial Abelian group and let A∗ =

A− {0}. Define

F ∗(G,A) = {f : E(G) 7→ A∗}

For each f ∈ F (G,A), the boundary of f is a function ∂f : V (G) 7→ A

defined by

∂f(v) =
∑

e∈E+(v)

f(e)−
∑

e∈E−(v)

f(e),

where ”
∑

” refers to the addition in A. Denote

Z(G,A) = {b : V (G) 7→ A such that
∑

v∈V (G)

b(v) = 0}.

A graph G is A-connected if G has an orientation D such that for every

function b ∈ Z(G,A) there is a function f ∈ F ∗(G,A) such that b = ∂f .

Jaeger, Linial, Payan and Tarsi [34] had the following conjecture.

Conjecture 6.1.3 Every 5-edge connected graph is Z3-connected.

Let G be a connected plane graph, G∗ the geometric dual of G, and A an

Abelian group. Jeager et al [34] showed that G is A-connected if and only if

G∗ is A-colorable. By Theorem 6.1.1, we comfirm this conjecture for planar

graphs.

Corollary 6.1.4 Every 5-edge connected planar graph is Z3-connected.
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6.2 Z3-Coloring Theorem

Let F denote the set of connected graphs such that a graph G ∈ F if and

only if each of the following holds:

(A1) G is a planar with girth at least 4 and every 4-cycle is facial;

(A2) all 4-cycles are independent;

(A3) the minimum distance between 4-cycles and 5-cycles is at least 1.

In the discussions below, when we assume that G ∈ F , we also assume

that G is embedded in the plane with an orientation.

Theorem 6.2.1 Suppose G ∈ F and let f ∈ F (G,Z3). Let W be a set of

vertices on the outer cycle in G such that

(W1) either G[W ] is edgeless or

(W2) G[W ] has exactly one edge e = xy and G has no 2-path from x to

another vertex in W .

Assume that each vertex w ∈ W is associated with a bw ∈ Z3, that u, v /∈
W are two adjacent vertices on the out cycle of G ( assume that uv is oriented

from u to v), that G[{u, v, x, y}] does not contain a 4-cycle if xy is an edge

of G[W ], and that au, av ∈ Z3 with au − av 6= f(uv). Define c1 : {u, v} 7→ Z3

by c1(u) = au, c1(v) = av. Then c1 can be extended to c : V (G) 7→ Z3 such

that c |{u,v}= c1 and

(i) c(w) 6= bw for every vertex w ∈ W ,

(ii) c(x′)− c(y′) 6= f(x′y′) for any edge x′y′ ∈ E oriented from x′ to y′.

Remark. The condition that G[{u, v, x, y}] does not contain a 4-cycle if xy

is an edge of G[W ] can not be relaxed.
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Let C = x1x2x3x4x1 be a 4-cycle. Assume that W = {x3, x4} and bx3 =

1, bx4 = 1, and C is oriented from xi to xi+1, 1 ≤ i ≤ 3 and from x4 to x1.

Define f ∈ F (C,Z3) as follows: f(e) = 0 if e ∈ E(C) − {x4x1} and

f(x4x1) = −1. Define c1 : {x1, x2} 7→ Z3 by c1(x1) = 1, c1(x2) = 0. Then c1

can not be extended to c : V (C) 7→ Z3 such that c |{x1,x2}= c1.

We need some preparations before presenting the proof of Theorem 6.2.1.

Lemma 6.2.2 Let G ∈ F and let C : x1x2 . . . x5x1 be a 5-cycle. Assume

that f ∈ F (G,Z3) and xixi+1 is oriented from xi to xi+1, 1 ≤ i ≤ 5 (indices

mod 5). For each map c1 : V (C) 7→ Z3, there is some i ∈ {1, 2, . . . 5} (indices

mod 5) such that

c1(xi)− f(xixi+1) 6= c1(xi+2) + f(xi+1xi+2).

Proof.. By contradiction, suppose that

c1(xi)− f(xixi+1) = c1(xi+2) + f(xi+1xi+2) (6.1)

for every 1 ≤ i ≤ 5(indices mod 5). Since Z3 is a field, by (1) we have

f(x1x2) + f(x2x3) + . . . + f(xkx1) = 0. (6.2)

Thus we have

c1(x1) = f(x1x2) + c1(x3) + f(x2x3)

= f(x3x4) + c1(x5) + f(x4x5) + f(x2x3) + f(x1x2)

= −f(x5x1) + c1(x5).

It follows that c1(x5)− c1(x1) = f(x5x1), a contradiction.
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Theorem 6.2.1 implies the following Corollary 6.2.3. We shall argue by

induction on |V (G)| to prove Theorem 6.2.1. Our induction hypothesis will

assume the truth of both Theorem 6.2.1 and Corollary 6.2.3 for smaller values

of |V (G)| to prove Theorem 6.2.1 for the current value of |V (G)|.

Corollary 6.2.3 Let G ∈ F with outer cycle C : x1x2 . . . x5x1 and let f ∈
F (Z3, G). If c1 : V (C) 7→ Z3 is a (Z3, f)-coloring, then c1 can be extended to

c, a (Z3, f)-coloring of G, such that c |V (C)= c1.

Proof. Assume that C is oriented from xi to xi+1, 1 ≤ i ≤ 5 (indices mod

5).

By Lemma 6.2.2, we assume that c1(x5)+f(x4x5) 6= c1(x3)−f(x3x4). Let

W = {x3, x5}. Since c1 is a (Z3, f)-coloring, c1(x2) − c1(x3) 6= f(x2x3) and

c1(x5)−c1(x1) 6= f(x5x1). We pick bx3 ∈ Z3−{c1(x2)−f(x2x3), c1(x3)}, bx5 ∈
Z3−{c1(x1)+ f(x1x5), c1(x5)}. By Theorem 6.2.1, c1 : {x1, x2} 7→ Z3 can be

extended to c : V (G) 7→ Z3 such that c |{x1,x2}= c1 and c(w) 6= bw for every

w ∈ W .

By the choice of bx3 and bx5 , c(x3) ∈ {c1(x2) − f(x2x3), c1(x3)}, c(x5) ∈
{c1(x1) + f(x1x5), c1(x5)}. Hence c(x3) = c1(x3), c(x5) = c1(x5).

Since c(x4)−c(x5) 6= f(x4x5) and c(x3)−c(x4) 6= f(x3x4), we have c(x4) ∈
Z3 − {c(x5) + f(x4x5), c(x3) − f(x3x4)} = Z3 − {c1(x5) + f(x4x5), c1(x3) −
f(x3x4)}. Since c1 : V (C) 7→ Z3 is a (Z3, f) coloring, c1(x4) ∈ Z3−{c1(x5)+

f(x4x5), c1(x3)− f(x3x4)}. Thus c1(x4) = c(x4).

In order to prove Theorem 6.2.1, we first prove some lemmas. The follow-

ing lemmas have the same hypotheses of Theorem 6.2.1 with an additional

assumption that
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G is a counterexample to Theorem 6.2.1 and |V (G)| is minimized. (3)

Since c1 can be easily extended to a (Z3, f)-coloring for every forest and

a 4-cycle which satisfy the condition of Theorem 6.2.1, we may assume that

|V (G)| ≥ 5.

Lemma 6.2.4 κ(G) ≥ 2. If z ∈ V (G)−W and z /∈ {u, v}, then dG(z) ≥ 3.

Proof. If G is not 2-connected, then G has a block B containing the edge

uv. By the minimality of G, c1 can be extended to a (Z3, f)-coloring of B.

Let B1 be the block which has a common vertex w1 with B and pick its

adjacent vertex w2 in the outer cycle of B1. Assume that the edge w1w2 is

oriented from w1 to w2 and put c1(w2) ∈ Z3 such that c1(w1) − c1(w2) 6=
f(w1w2). Then c1 can be extended to a (Z3, f)-coloring of B1, and so on.

This contradicts to (3).

By contradiction, suppose that there is a z0 ∈ V (G) − W such that

z0 /∈ {u, v} and dG(z0) = 2. Let G1 = G − z0. Denote N(z0) = {z1, z2}
and assume that the edge z0z1 is oriented from z0 to z1 and the edge z0z2

is oriented from z0 to z1. By the minimality of G, c1 can be extended to a

(Z3, f)-coloring c2 of G1. Define c : V (G) 7→ Z3 by

c(z) =





c2(z), if z ∈ V (G)− {z0}
a ∈ Z3 − {c(z1) + f(z0z1), c(z2) + f(z0z2)}, if z = z0

Then c is a required (Z3, f)-coloring of G, violating to (3).

We assume that C : x1x2 . . . xmx1 is the outer cycle of G oriented from

xi to xi+1, 1 ≤ i ≤ m (indices mod m) and for every z ∈ N(xj)− V (C), the

edge xjz is oriented from xj to z. Let u = x1 and v = x2. If G[W ] has an

edge xy, we can assume that y = xi, x = xi+1, where 3 ≤ i ≤ m− 1.
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Lemma 6.2.5 C has no chord u′v′ for which G[{u′, v′, x, y}] is not a 4-cycle.

Proof. Let C1 be the cycle in C ∪ {u′v′} containing u′v′ and uv. Let C2 be

the cycle in C∪{u′v′} containing u′v′ but not uv. Then both C1∪int(C1) ∈ F
and C2∪ int(C2) ∈ F . By the minimality of G we can extend c1 to a (Z3, f)-

coloring of C1 ∪ int(C1). Then the coloring of u′ and v′ can be extended to

a (Z3, f)-coloring of C2 ∪ int(C2), violating to (3).

Throughout the proof of Theorem 6.2.1, we need to redefine W ′ to replace

W in order to apply induction hypothesis. In each occassion we induce a set

W ′, we only indicate how to assign the new value bz for some z ∈ W ′ including

all z ∈ W ′ −W , while leaving bz unchanged for those z ∈ W ∩W ′ where bz

is not redefined.

Lemma 6.2.6 For v′ ∈ V (G) − V (C), u′ ∈ V (C) and w ∈ W , G has no

path u′v′w which satisfies one of the following

(1) w 6∈ {x, y} or

(2) if w ∈ {x, y}, G[{u′, v′, x, y}] is not a 4-cycle.

Proof. If u′v′w exists, then we define C1 and C2 as follows: Let C1 be the

cycle in C ∪{u′v′, v′w} containing u′v′, v′w and uv and let C2 be the cycle in

C ∪ {u′v′, v′w} containing u′v′, v′w but not uv. By the minimality of G, c1

can be extended to a (Z3, f)-coloring c2 of C1 ∪ int(C1). We recall that the

edge u′v′ is oriented from u′ to v′ and that the edge v′w is oriented from w

to v′.

Since c2 is a (Z3, f)-coloring of C1 ∪ int(C1) and c2(w) 6= bw, we redefine

bw ∈ Z3 − {c2(w), c2(v
′) + f(v′w)}. By the minimality of G, c2 |{u′,v′} can be

75



extended to a (Z3, f)-coloring c3 of C1 ∪ int(C2) such that c3 |{u′,v′}= c2. It

follows that c3(w) = c2(w). Thus we obtain a required (Z3, f)-coloring of G,

contrary to (3).

Lemma 6.2.7 G does not have 3-path w1u
′v′w2 with w1, w2 ∈ W and u′, v′ ∈

V (G)−W unless {w1, w2} = {x, y} and G[{w1, w2, u
′, v′}] is a 4-cycle.

Proof. By Lemma 6.2.6, assume that u′, v′ ∈ V (G)− V (C) and that G has

such a 3-path w1u
′v′w2 with w1, w2 ∈ W . Assume that the path w1u

′v′w2 is

oriented by from w1 to u′, from u′ to v′ and from w2 to v′. Define C1 and C2 as

follows: Let C1 be the cycle in C∪{w1u
′, u′v′, v′w2} containing w1u

′, u′v′, v′w2

and uv and let C2 be the cycle in C ∪ {w1u
′, u′v′, v′w2} containing w1u

′, u′v′

and v′w2 but not uv. By the minimality of G, c1 : {u, v} 7→ Z3 can be

extended to a (Z3, f)-coloring c2 of C1 ∪ int(C1) such that c2 |{u,v}= c1.

Since c2 is a (Z3, f)-coloring and since c2(W1) 6= bw1 , c2(w2) 6= bw2 , we

redefine bw1 ∈ Z3 − {c2(w1), c2(u
′) + f(w1u

′)}, bw2 ∈ Z3 − {c2(w2), c2(v
′) +

f(w2v
′)}.

By the minimality of G again, c2 |{u′,v′} can be extended to a (Z3, f)-

coloring c3 of C2∪ int(C2) such that c3 |{u′,v′}= c2 and c3(w1) 6= bw1 , c3(w2) 6=
bw2 . It follows that c3(w1) = c2(w1) and c3(w2) = c2(w2) and c3(x

′)−c3(y
′) 6=

f(x′y′) for every directed edge x′y′ ∈ E(G2). Combining c2 and c3, we

obtained a required (Z3, f)-coloring of G extending c1, contrary to (3).

Lemma 6.2.8 (i) There is no 3-path xi+2u
′v′xj for j ∈ {i + 4, . . . , m} and

there is no 3-path xi−1u
′v′xj for j ∈ {3, . . . i−2} where u′, v′ ∈ V (G)−V (C)

and xj ∈ W .
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(ii) There is no 2-path xi+2u
′xj for j ∈ {i + 4, . . . ,m} and there is no

2-path xi−1u
′xj for j ∈ {3, . . . i− 2} where u′ ∈ V (G)− V (C) and xj /∈ W .

Proof. Note that xi+2 /∈ W . Assume that P = xi+2u
′v′xj is a 3-path

satisfying the hypothesis of Lemma 6.2.8. Let C1 be the cycle in C ∪ P

containing u′v′ and xy and let C2 be the cycle in C ∪ P containing u′v′ and

but not xy. Let Gi = Ci ∪ int(Ci), i = 1, 2. By the minimality of G, we can

extended c1 to a (Z3, f)-coloring c2 of G1. Assume that P is oriented from

xi+2 to u′, from u′ to v′ and from xj to v′.

Let W ′′ = (W ∩ V (G2)) ∪ {xi+2}. Then G2 satisfies the condition of

Theorem 6.2.1. Define

b′′z =





bz if z ∈ W ′′ − {xi+2, xj}
bxi+2

∈ Z3 − {c2(xi+2), c2(u
′) + f(xi+2u

′)} if z = xi+2

bxj
∈ Z3 − {c2(xj), c(v

′) + f(xjv
′)} if z = xj.

By the minimality of G, c2 |{u′,v′} can be extended to a (Z3, f)-coloring c3

of G2 such that c3(w
′′) 6= bw′′ for every w′′ ∈ W ′′. It follows that c3(xi+2) =

c2(xi+2) and c3(xj) = c2(xj). Combining c2 and c3, we get a required (Z3, f)-

coloring of G extending c1 such that c(z) 6= bz for each vertex z ∈ W , contrary

to (3).

The proofs for the case that there is no 3-path xi−1u
′v′xj for j ∈ {3, . . . , i−

2} where u′, v′ ∈ V (G)− V (C) and xj ∈ W is similar.

Suppose that Q = xi+2u
′xj is a 2-path satisfying the hypotheses of

Lemma 6.2.8. If xj = xi+4, by (A1) the cycle xi+4xi+3xi+4u
′xi+2 is facial.

Thus dG(xi+3) = 2, contrary to Lemma 6.2.4.

Thus we assume that j ∈ {i + 5, . . . , m}. Let C3 be the cycle in C ∪ Q

containing u′ and xy and let C4 be the cycle in C ∪ Qcontaining u′ but not
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xy. Let Gi = Ci ∪ int(Ci), i = 3, 4. By the minimality of G, we can extend

c1 to a (Z3, f)-coloring c3 of G3. Recall that Q is oriented from xi+2to u′ and

from xj to u′.

Let W ′′′ = (W ∩ V (G4)) ∪ {xi+2}. By (W2) x3 /∈ W . Thus G4[W
′′′] is

edgeless. Let bxi+2
∈ Z3 − {c2(xi+2), c2(u

′) + f(xi+2u
′)}. Therefore both G4

and W ′′ satisfy the hypotheses of Theorem 6.2.1. By the minimality of G

again, c2 |{u′,xj} can be extended to a (Z3, f)-coloring of G4. Using c3 and c4,

we can get a required (Z3, f)-coloring of G, contrary to (3).

The proofs for the case that there is no 2-path xi−1u
′xj for j ∈ {3, . . . , i−

2} where u′, v′ ∈ V (G)− V (C) and xj /∈ W is similar.

Lemma 6.2.9 G has no separating 5-cycle.

Proof. If G has a separating 5-cycle C ′, then we apply the minimality

of G to extend c1 to an group coloring of G − int(C ′). We then apply

Corollary 6.2.3 to extend the coloring of C ′ to a group coloring of C ′∪int(C ′).

This contradiction proves Lemma 6.2.9.

If u or v (say u) is in W , we replace W by W −u. So we can assume that

{u, v} ⊂ V (C)−W .

Lemma 6.2.10 If G[W ] has the edge xy, then i ≥ 4.

Proof. Suppose that i = 3. Take ay ∈ Z3 − {by, c1(v) − f(vy)}, ax ∈
Z3 − {bx, ay − f(yx)}. Let bz = ax − f(xz) for every z ∈ N(x)− {x, y} and

let bz = ay − f(yz) for every z ∈ N(y) − {x, v}. Let G′ = G − {y, x} and

W ′ = W ∪N(x) ∪N(y)− {x, y, v}.
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If G[N(x) ∪ N(y)] does not contain a 4-cycle, by (W2), x6 /∈ W . By

Lemma 6.2.6 G[W ′] is edgeless and so both G′ and W ′ satisfy the condi-

tion of Theorem 6.2.1. So assume that G[N(x) ∪ N(y)] contains a 4-cycle

xq1q2yx, where q1 ∈ N(x) and q2 ∈ N(y) (possibly q2 = v or q1 = xi+2). By

Lemma 6.2.6 and (A2), G′[W ′] contains at most one edge q1q2. If G′[W ′] has

that edge q1q2, then q2 6= v. If there is a 2-path q2q3q4 where q4 ∈ W ′, then

q3 6= q1 (q1 = x5 possibly). By (A2) and (A3), q4 /∈ N(x3) ∪ N(x4). Thus

q4 ∈ W , contrary to Lemma 6.2.7. By (A2) G[{u, v, q1, q2}] is not a 4-cycle.

Therefore both G′ and W ′ satisfy the condition of Theorem 6.2.1 with q2

playing the role of x of G.

By the minimality of G, c1 can be extended to a (Z3, f)-coloring c2 of G′

such that c2 |{u,v}= c1 and c2(w
′) 6= bw′ for each vertex w′ ∈ W ′.

Define c : V (G) 7→ Z3 by

c(z) =





c2(z) if z ∈ V (G)− {x, y},
ax if z = x,

ay if z = y.

Then c is a required (Z3, f)-coloring of G such that c(w) 6= bw for each vertex

w ∈ W and c |{u,v}= c1, contrary to (3).

Lemma 6.2.11 If xi−1xixi+1xi+2xi−1 is a facial 4-cycle of G, then there is

no 3-path xi−1q4q3xi+4, where i ∈ {4, 5, . . . ,m− 4}.

Proof. Assume that P = xi−1q4q3xi+4 exists. Let C1 be the cycle in C ∪
{xi−1q4, q4q3, q3xi+4} containing xi−1q4, q4q3, q3xi+4 and uv and let C2 be the

cycle in C ∪{xi−1q4, q4q3, q3xi+4, xi−1xi+2} containing xi−1q4, q4q3, q3xi+4 and

xi−1xi+2 but not uv nor yx. Let Gi = Ci ∪ int(Ci), i = 1, 2.
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By the minimality of G, c1 can be extended to a (Z3, f)-coloring c2 of

G1. We claim that there is not a 2-path from xi+4 to xi−1 in G2. By contra-

diction, assume that xi+4zxi−1 is a 2-path in G2. Then we have two 5-cycles

xi−1q4q3xi+4zxi−1 and xi−1xi+2xi+3xi+4zxi−1. By Lemma 6.2.9, dG(z) = 2,

contrary to Lemma 6.2.4.

Define ay ∈ Z3−{by, c2(xi−1)−f(xi−1y)}, ax ∈ Z3−{bx, ay−f(xixi+1)}, axi+2
∈

Z3−{c2(xi−1)−f(xi−1xi−2), ax−f(xi+1xi+2)}. Let W ′′ = {xi+4, xi−1, xi+2}, bxi+4
∈

Z3−{c2(xi+4), c2(q3)+f(q3xi+4)}, bxi−1
∈ Z3−{c2(xi−1), c2(q4)+f(xi−1q4), bxi+2

∈
Z3 − {axi+2

, c2(xi−1) − f(xi−1xi+2)}. By (A2) G[{q3, q4, xi−1, xi+2}] is not a

4-cycle. Therefore G2 and W ′′ satisfy the hypotheses of Theorem 6.2.1 with

xi−1 playing the role of x of G. By the minimality of G, c2 |{q3,q4} can

be extended to a (Z3, f)-coloring c3 of G2 such that for every w′′ ∈ W ′′,

c3(w
′′) 6= bw′′ .

Define c : V (G) 7→ Z3 by

c(z) =





c2(z) if z ∈ V (G1),

c3(z) if z ∈ V (G2),

ax if z = x,

ay if z = y.

Thus c is a required (Z3, f)-coloring of G, contrary to (3).

Lemma 6.2.12 If G[W ] has an edge, then xi−2 ∈ W and hence i ≥ 5.

Proof. Since G[W ] has only one edge, xi−1 /∈ W . By contradiction, suppose

that xi−2 /∈ W .

Claim 1 G[N(x) ∪N(y)] does not contain a 4-cycle xyxi−1xi+2x.
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Proof. By contradiction, suppose that G[N(x) ∪ N(y)] contains a 4-cycle

xyxi−1xi+2x. We consider two cases.

Case 1. xi−3 ∈ W .

Let G′ = G− {xi−2, xi−1, xi+2, x, y} and W ′ = W ∪N(xi−2) ∪N(xi−1) ∪
N(xi+2) − {x, y, xi−1, xi−2, xi+2}. We assume that the edge xi−1xi+2 is ori-

ented from xi−1 to xi+2. Let axi−2
= bxi−3

−f(xi−3xi−2), axi−1
∈ Z3−{axi−2

−
f(xi−2xi−1)}, ay ∈ Z3−{by, axi−1

− f(xi−1xi)}, ax ∈ Z3−{bx, ay − f(xixi+1)}
and axi+1

∈ Z3 − {ax − f(xi+1xi+2), axi−1
− f(xi−1xi+1)}. Define bz = axj

−
f(xjz) if z ∈ N(xj), j ∈ {i− 1, i− 2, i + 2}. By (A2), bz is well defined. By

(A2), (A3) and Lemma 6.2.6, G′[W ′] contains at most one edge xi+3xi+4. If

G′[W ′] contains that edge, then xi+4 ∈ W . Assume that there is a 2-path

xi+4q3q4. By Lemma 6.2.5, q4 ∈ W ′ − W . By (A3), q4 /∈ N(xi+2). By

Lemma 6.2.11, q4 /∈ N(xi−1). So assume that q4 ∈ N(xi−2).

Let Q = xi−2q4q3xi+4 and C3 be the cycle in C ∪Q containing uv and C4

be the cycle in C ∪ Q not conaining uv. Gi = Ci ∪ int(Ci), i = 3, 4. By the

minimality of G, c1 can be extended to a (Z3, f)-coloring c2 of G3.

Let W2 = W ∩V (G4)∪{xi−2, xi+4}. Assume that Q is oriented from xi−2

to q4, from q4 to q3 and from xi+4 to q3. Since c2 is a (Z3, f)-coloring of G3

and bw 6= c2(w) for w ∈ W∩V (G3), bxi+4
∈ Z3−{c2(xi+4), c2(q3)+f(q3xi+2)}.

Let bxi−2
∈ Z3 − {c2(xi−2), c2(q4) + f(xi−2q4)}.

By Lemma 6.2.5, G[{q3, q4, x, y}] is not a 4-cycle. Therefore both G4

and W2 satisfy the hypotheses of Theorem 6.2.1, c2 : {q3, q4} 7→ Z3 can be

extended to a (Z3, f)-coloring of G4. Thus c1 can be extended to a required

(Z3, f)-coloring of G, contrary to (3).
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Case 2 xi−3 /∈ W .

Let G′ = G−{x, y} and W ′ = W ∪{xi−1, xi+2}. Take ax ∈ Z3−{bx}, ay ∈
Z3−{by, ax + f(yx)}, bxi−1

= ay + f(xi−1y), bxi+2
= ax− f(xxi+2). By (W2),

xi−1xi+2 is the only edge of G′[W ′]. By Lemma 6.2.6, there is no 2-path

from xi−1 to a vertex of W . By (A2), G[{u, v, xi−1, xi+2}] is not a 4-cycle.

Therefore both G′ and W ′ satisfy the hypotheses of Theorem 6.2.1 with xi−1

playing the role of x of G. By the minimality of G, c1 can be extended to

a (Z3, f)-coloring of G′ and hence c1 can be extended to a required (Z3, f)-

coloring of G, contrary to (3).

Now we are ready to complete the proof of Lemma 6.2.12. Define ay ∈
Z3−{by}, ax ∈ Z3−{bx, ay−f(yx)}, G′ = G−{x, y} and W ′ = W ∪N(x)∪
N(y)− {x, y}. By (W2), xi+3 /∈ W ′.

If G[N(x) ∪N(y)] does not contain a 4-cycle, then by Lemma 6.2.6 and

(W2), G[W ′] is edgeless. So assume that G[N(x) ∪N(y)] contains a 4-cycle

xq1q2yx, where q1 ∈ N(x) and q2 ∈ N(y). By Lemma 6.2.6 and (A2), G′[W ′]

contains only one edge q1q2 ( possibly q1 = xi+2 or q2 = xi−1). By Claim 2,

we assume that q2 6= xi−1. Suppose that there is a 2-path q2q3q4, where

q4 ∈ W ′. Since G′[W ′] has only one edge, q3 6= q1. By (A2) and (A3), q4 ∈
W −N(x)∪N(y), contrary to Lemma 6.2.7. By (A2), G′[{q1, q2, u, v}] is not

a 4-cycle. Therefore both G′ and W ′ satisfy the hypotheses of Theorem 6.2.1

with q2 playing the role of x of G.

Let bz = ax−f(xz) if z ∈ N(x)−W and bz = ay−f(yz) if z ∈ N(y)−W .

By the minimality of G, c1 can be extended to a (Z3, f)-coloring c2 of G′ such
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that c2(w) 6= bw, w ∈ W . Define c : V (G) 7→ Z3 by

c(z) =





c2(z) if z ∈ V (G)− {x, y},
ax if z = x,

ay if z = y.

Then c is a required (Z3, f)-coloring satisfying c(w) 6= bw for each vertex

w ∈ W and extending c1, contrary to (3). The proof for the case when

q1 6= xi+2 is similar.

Lemma 6.2.13 G[W ] has no edge.

Proof. Suppose that G[W ] has the edge xy where x = xi+1, y = xi. By

Lemma 6.2.12 and by (W2), xi−1 /∈ W and xi−2 ∈ W .

Case 1 G[N(x) ∪N(y)] contains no a 4-cycle.

Let G′ = G−{xi−1, xi, xi+1} and W ′ = W ∪N(xi−1)∪N(xi)∪N(xi+1)−
{xi−1, xi, xi+1}. Let ai−1 = bxi−2

−f(xi−2xi−1), ai ∈ Z3−{bxi
, ai−1−f(xixi−1)}

and ai+1 ∈ Z3−{bxi+1
, ai− f(xixi+1)}. Let bz = aj − f(xjz) for every vertex

z ∈ (W ′−W )∩ (N(xi−1)∪N(xi)∪N(xi+1)). Since G[N(x)∪N(y)] does not

contain a 4-cycle, bz is well defined. Suppose that G′[W ′] has an edge q1q2

where q1, q2 ∈ W ′−W ⊂ N(xi−1)∪N(xi)∪N(xi+1). We will distinguish the

following two subcases.

Subcase 1.1 q2 ∈ N(xi−1), q1 ∈ N(xi+1).

Then G has a 5-cycle q1q2xi−1xixi+1q1. Note that q1 = xi+2 is possible. By

Lemmas 6.2.4 and 6.2.9 q2 6= xi−2. By (A2), (A3), (W2) and Lemma 6.2.6,

q1q2 is the only edge in G′[W ′].
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Assume that G′ has a path q1q3q4 where q4 ∈ W ′. As G′[W ′] has only one

edge, q3 6= q2.

We claim that q4 ∈ W . By contradiction, suppose q4 ∈ W ′ −W . If q4 ∈
N(xi−1)−q2, then G has two 5-cycles xi−1xixi+1q1q2xi−1 and xi−1q4q3q1q2xi−1.

By Lemma 6.2.9, dG(q2) = 2, contrary to Lemma 6.2.4. Since G has a 5-cycle

q1q2xi+1xixi−1q1, q4 /∈ N(xi). By (A3), q4 /∈ N(xi+1). Thus q4 ∈ W .

By Lemmas 6.2.5, 6.2.6 and 6.2.7, q1 = xi+2, q3 = xi+3 and q4 = xi+4. It

follows that dG(xi) = dG(xi+1) = 2. Note that q2 6= xi−2.

Since G′ is a subgraph of G, we have G′ ∈ F and f |V (G′)∈ F (G,Z3). We

shall verify that both G′ and W ′ satisfy the other hypotheses of Theorem 6.2.1

with q1 and q2 replacing y and x, respectively.

We now assume that G′ has a path q2q5q6 where q6 ∈ W ′. By (A3),

q6 /∈ W ′ − W and hence q6 ∈ W . If q5 /∈ V (C), then it contradicts to

Lemma 6.2.8(i). If q5 ∈ V (C), then it contradicts to Lemma 6.2.8(ii). Thus

there is no 2-path from q2 to a vertex of W ′ in G′.

By (A2) G′[{u, v, q1, q2}] is not a 4-cycle. Therefore both G′ and W ′

satisfies the hypotheses of Theorem 6.2.1 with q2 playing the role of x of G.

Thus c1 can be extended to a (Z3, f)-coloring c2 : V (G′) 7→ Z3 such that

c2 |{u,v}= c1 and c2(w
′) 6= bw′ for every vertex w′ ∈ W ′.

Define c : V (G) 7→ Z3 by

c(z) =





c2(z) if z ∈ V (G)− {xi−1, xi, xi+1},
aj if z = xj, j ∈ {i− 1, i, i + 1}.

Then c is a required (Z3, f)-coloring satisfying c(w) 6= bw for every vertex

w ∈ W and extending c1, contrary to (3).

Subcase 1.2 q2 ∈ N(xi−1), q1 ∈ N(xi).
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If q2 = xi−2, then d(xi−1) = 2, contrary to Lemma 6.2.4. So q2 ∈ V (G)−
V (C). Since G[N(x) ∪ N(y)] does not contain a 4-cycle, q1 6= xi+1. So we

assume that q2 6= xi−2 and q1 6= xi+1. If there is a 2-path q1q3q4, where

q4 ∈ W ′, by (A3) and by Lemma 6.2.9 q4 /∈ N(xi+1)∪N(xi)∪N(xi−1). Thus

q4 ∈ W , contrary to Lemma 6.2.7. By (A2) G′[{u, v, q1, q2}] is not a 4-cycle.

Therefore both G′ and W ′ satisfy the condition of Theorem 6.2.1 with

q1 playing the role of x of G. Thus c1 can be extended to a (Z3, f)-coloring

c2 : V (G′) 7→ Z3 such that c2 |{u,v}= c1 and c2(w
′) 6= bw′ for every vertex

w′ ∈ W ′.

Define c : V (G) 7→ Z3 by

c(z) =





c2(z) if z ∈ V (G)− {xi−1, xi, xi+1},
aj if z = xj, j ∈ {i− 1, i, i + 1}.

Then c is a required (Z3, f)-coloring of G such that c(w) 6= bw for every

vertex w ∈ W , contrary to (3).

Case 2 G[N(x) ∪N(y)] contains a 4-cycle.

Without loss of generality, we assume that xq1q2yx is a 4-cycle in G[N(x)∪
N(y)], where q1 ∈ N(xi+1), q2 ∈ N(xi). We distinguish the following two

subcases.

Subcase 2.1 q2 6= xi−1.

Let G′ = G−{xi−1, xi, xi+1} and W ′ = W ∪N(xi−1)∪N(xi)∪N(xi+1)−
{xi−1, xi, xi+1}. Let ai−1 = bxi−2

−f(xi−2xi−1), ai ∈ Z3−{bxi
, ai−1−f(xixi−1)}

and ai+1 ∈ Z3−{bxi+1
, ai− f(xixi+1)}. Let bz = aj − f(xjz) for every vertex

z ∈ (W ′ −W ) ∩ (N(xi−1) ∪N(xi) ∪N(xi+1)). By (A2), bz is well defined.

Claim 2 G′[W ′] has only one edge.
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Note that q1q2 ∈ G′[W ′]. Suppose that there is another edge p1p2 of

G′[W ′]. By (W2) xi+3 /∈ W . It follows that xi+2xi+3 /∈ E(G′[W ′]). By

Lemmas 6.2.5 and 6.2.6, we may assume that either p2 ∈ N(xi−1), p1 ∈
N(xi+1), or p2 ∈ N(xi−1), p1 ∈ N(xi), or p2 ∈ N(xi), p1 ∈ N(xi+1). Each

case contradicts (A2) or (A3).

Claim 3 There is no 2-path from q2 to every vertex of W ′.

By contradiction, suppose that G′ has a path q2q3q4 where q4 ∈ W ′. As

G′[W ′] has only one edge , q3 6= q1. By (A2) and (A3), q4 /∈ N(xi−1)∪N(xi)∪
N(xi+1). So q4 ∈ W , contrary to Lemma 6.2.7. So both G′ and W ′ satisfy

the condition of Theorem 6.2.1 with q2 playing the role of x of G. By the

choice of G, c1 can be extended to a (Z3, f) coloring c2 of G′. Define

c(z) =





c2(z) if z ∈ V (G)− {xi−1, xi, xi+1},
aj if j ∈ {i− 1, i, i + 1}.

Then c is a required (Z3, f)-coloring of G, contrary to (3).

Subcase 2.2 q2 = xi−1.

Let G′ = G − {xi−1, y, x, q1} and W ′ = W ∪ N(xi−1) ∪ N(x) ∪ N(q1) −
{xi−1, x, y, q1}.

Note that we have defined that the edge xjz is oriented from xj to z

for every z ∈ N(xj) − V (C) if q1 6= xi+2. Assume that the edge xi−1q1 is

oriented from xi−1 to q1 if q1 = xi+2. Define axi−1
= bxi−2

− f(xi−2xi−1), ay ∈
Z3 − {by, axi−1

− f(xi−1y)}, ax ∈ Z3 − {bx, ay − f(yx)}, aq1 ∈ Z3 − {axi−1
−

f(xi−1q1), ax − f(xq1)}.
Assume that the edge q1z is oriented from q1 to z, where z ∈ N(q1) −

(W ∪ {xi−1). Define bz = aλ − f(aλz) where λ ∈ {xi−1, q1, x}, z ∈ N(xi−1) ∪
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N(q1) ∪N(x)−W . By (A2), bz is well defined.

By (A2), (A3) and Lemma 6.2.9, G′[W ′] has at most one edge xi+3xi+4.

If G′[W ′] contains that edge, then xi+4 ∈ W,xi+2 = q1. If there is a 2-path

xi+4q5q6, where q6 ∈ W ′. By Lemma 6.2.7, q6 ∈ W ′ − W . By (A3), q6 ∈
N(q2), contrary to Lemma 6.2.11. By Lemma 6.2.4 G′[{xi+3, xi+4, u, v}] is not

a 4-cycle. Therefore both G′ and W ′ satisfy the hypotheses of Theorem 6.2.1

with xi+4 playing the role of x of G. By the minimality of G, c1 can be

extended to a (Z3, f)-coloring of G′ amd hence c1 can be extended to a

required (Z3, f)-coloring of G, contrary to (3).

Lemma 6.2.14 x4 ∈ W .

Proof. Suppose that x4 /∈ W . Let G′ = G − x3 and W ′ = W ∪ N(x3) −
{x2, x3}. Define

ax3 =





z ∈ Z3 − {bx3 , c1(x2)− f(x2x3)} if x3 ∈ W,

z ∈ Z3 − {c1(x2)− f(x2x3)} if x3 /∈ W.

Let bz = c1(x3)− f(x3z) if z ∈ N(x3)− x2. Then bz is well defined.

By Lemmas 6.2.5, 6.2.6 and 6.2.13, G′[W ′] has at most one edge, namely

x4x5. If G′[W ′] contains x4x5, then x5 ∈ W . If there is a 2-path x5q5q6,

where q6 ∈ W ′ − W , then q6 ∈ N(x3) − {x4}, q5 6= x4. G has a 5-cycle

x3x4x5q5q6x3. By Lemma 6.2.9, dG(x4) = 2, contrary to Lemma 6.2.4. By

(A1), G[{u, v, x4, x5}] does not contain a 4-cycle.

So both G′ and W ′ satisfy the hypotheses of Theorem 6.2.1 with x5 play-

ing the role of x of G. By the minimality of G, G′ has a (Z3, f)-coloring and

hence c1 can be extended to a required (Z3, f)-coloring of G, contrary to (3).

Lemma 6.2.15 |C| ≥ 6.
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Proof. Suppose that |C| = 5. Let G′ = G−{x3, x4} and W ′ = W ∪N(x3)∪
N(x4) − {x2, x3, x4}. Let ax3 ∈ Z3 − {c1(x2) − f(x2x3)} and ax4 ∈ Z3 −
{bx4 , ax3−f(x3x4)}. Put b′z = axi

−f(xiz) where z ∈ N(xi)−{x2, x3, x4}, i =

3, 4. By (A1), bz is well defined. Assume first that G[N(x3) ∪ N(x4)] does

not contain a 4-cycle. It follows that G′[W ′] is edgeless. So assume that

G[N(x3)∪N(x4)] contains a 4-cycle and assume that x3q2q1x4x3 is a 4-cycle,

where q1 ∈ N(x4), q2 ∈ N(x3). By (A2) and Lemma 6.2.6, G′[W ′] has only

one edge q1q2. If q2 = x2, by (A1), dG(x3) = 2, contrary to Lemma 6.2.4.

So assume that q2 6= x2. Assume that q1 = x5. If G′[W ′] has an edge e, by

(A1) e = x5v
′, where v′ ∈ N(x3). Thus G has a 5-cycle x1x2x3v

′x5x1 and

a 4-cycle x3x4x5v
′x3. By Lemma 6.2.9 and (A1), dG(v′) = 2, comtrary to

Lemma 6.2.4.

Now assume that q1 6= x5 and q2 6= x2. By (A2) and (A3), there is no

2-path from q2 to a vertex of W ′. So both G′ and W ′ satisfy the hypotheses

of Theorem 6.2.1 with q2 playing the role of x of G. By the minimality of G,

c1 can be extended to a (Z3, f)-coloring of G′, say c2. Define

c(z) =





c2(z) if z ∈ V (G)− {x, y},
ax3 if z = x3,

ax4 if z = x4.

Then c is a required (Z3, f)-coloring of G, contrary to (3).

Lemma 6.2.16 x6 ∈ W .

Proof. Suppose that x6 /∈ W . We will distinguish the following two cases.

Case 1 G[N(x3) ∪N(x4)] does not contain a 4-cycle.
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Let ax3 ∈ Z3 − {c1(x2) − f(x2x3)}, ax4 ∈ Z3 − {bx4 , c1(x3) − f(x3x4)}.
Put G′ = G − {x3, x4} and W ′ = W ∪ N(x3) ∪ N(x4) − {x2, x3, x4}. Since

G[N(x3) ∪ N(x4)] does not contain a 4-cycle, by Lemma 6.2.6 G′[W ′] is

edgeless. Let bz = c1(xj)− f(xjz) if z ∈ (W ′−W )∩ (N(x3)∪N(x4))−{x5}.
By (A1), bz is well defined.

By the choice of G, c1 can be extended to a (Z3, f)-coloring c2 of G′.

Define

c(z) =





c2(z) if z ∈ V (G)− {x, y},
ax3 if z = x3,

ax4 if z = x4.

Then c is a required (Z3, f)-coloring of G, violating to (3).

Case 2 G[N(x3) ∪N(x4)] contains a 4-cycle.

Let ax4 ∈ Z3 − {bx4}, ax5 ∈ Z3 − {ax4 − f(x4x5)}. Put G′ = G− {x4, x5}
and W ′ = W ∪N(x4) ∪N(x5)− {x4, x5}. By (W2), G[N(x4) ∪N(x5)] does

not contains a 4-cycle.

If x7 /∈ W , by (A2), G′[W ′] is edgeless. Assume that x7 ∈ W . By (A2)

and Lemma 6.2.5, G′[W ′] has only one edge x6x7. If G′ has a 2-path x7q5q6,

where q6 ∈ W ′, then by Lemma 6.2.6, q6 ∈ N(x4)∪N(x5). By (A3) and (A1),

q5 6= x6. If q6 ∈ N(x5), then G has a 5-cycle x5q6q5x7x6x5. By Lemma 6.2.9

dG(x6) = 2, contrary to Lemma 6.2.4. By Lemma 6.2.6, q6 /∈ N(x4). By

Lemma 6.2.5, G′[{u, v, x6, x7}] is not a 4-cycle.

Therefore both G′ and W ′ satisfy the condition of Theorem 6.2.1 with x7

playing the role of x of G.. By the minimality of G, c1 can be extended to a

89



(Z3, f)-coloring c2 of G′. Define

c(z) =





c2(z) if z ∈ V (G)− {x, y},
ax3 if z = x3,

ax4 if z = x4.

Then c is a required (Z3, f)-coloring of G, violating to (3).

Proof of Theorem 6.2.1. Let ax5 = bx6 + f(x5x6), ax4 ∈ Z3 − {bx4 , ax5 +

f(x4x5)}. Put G′ = G− {x4, x5} and W ′ = W ∪N(x4) ∪N(x5)− {x4, x5}.
Let bz = axj

− f(xjz) if z ∈ N(xj), 3 ≤ j ≤ 5. By (A1) bz is well defined.

If G[N(x4) ∪ N(x5)] does not contain a 4-cycle, by Lemma 6.2.6 G′[W ′]

is edgeless. Assume that G[N(x4) ∪ N(x5)] contains a 4-cycle. By (A2)

and Lemma 6.2.5, G′[W ′] contains only edge q1q2, where q2 ∈ N(x4) and

q1 ∈ N(x5). By Lemma 6.2.4, q1 6= x6. Let q2q3q4 be a 2-path where

q4 ∈ W ′. By (A2) and (A3), q4 ∈ W , contrary to Lemma 6.2.7. Therefore

both G′ and W ′ satisfy the condition of Theorem 6.2.1 with q2 playing the

role of x of G.

By the minimality of G, c1 can be extended to a (Z3, f)-coloring of G′,

say c2. Define

c(z) =





c2(z), if z ∈ V (G)− {x, y}
ax3 if z = x3

ax4 if z = x4

Then c is a required (Z3, f)-coloring of G, contrary to (3).

The proof of Theorem 6.2.1 is complete.

Let H,G be graphs and denote H ⊆ G if H is a subgraph of G. Let A be

a group. Given an f ∈ F (G,A), if for an (A, f |E(H))-coloring c0 of H, there
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is an (A, f) -coloring c of G such that c is an extension of c0, then we say

that c0 is extended to c. If any (A, f |E(H))-coloring c0 of H can be extended

to an (A, f) -coloring c, then we say that (G,H) is (A, f)-extensible. If for

any f ∈ F (G, A), (G,H) is (A, f)-extensible, then (G,H) is A-extensible.

Corollary 6.2.17 Let G ∈ F be a simple planar graph and let H = K2.

Then (G, H) is Z3-extensible.

Proof. Let f ∈ F (G,Z3) and V (H) = {v1, v2} and let c0 : V (H) 7→ Z3 is

a (Z3, f) -coloring of H. We may assume that in an plane embedding of G,

the only edge in E(H) is on the exterior cycle of G. By Theorem 6.2.1, c0

can be extended to a (Z3, f)-coloring of G.

6.3 Z3-coloring of K3,3-minor free graphs

Let G1 and G2 be two bridgeless graphs and u1, v1 ∈ V (G1), u2, v2 ∈ V (G2).

We define G as follows: identify u1 with u2 and v1 with v2. We define these

two new vertices u and v. Then G is called 2-sum of G1 and G2. Similarly

let u ∈ V (G1) and v ∈ V (G2). G is obtained from G1 and G2 by identifying

u with v and G is called 1-sum of G1 and G2.

Theorem 6.3.1 (Hall [28]) Let G be a graph without K3,3 minor. One of

the followings must holds.

(1) G is a planar graph;

(2) G ∼= K5 and

(3) for some i ∈ {1, 2}, G is the i-sum of two G1 and G2 such that G1

and G2 are proper minor of G.
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Lemma 6.3.2 Let G be a graph with a set cut S such that G = G1∪G2 and

G1 ∩ G2 = G[S]. If S = {u} and both G1 and G2 are (Z3, f)-coloring, then

G is a (Z3, f)-coloring.

Proof. Let f ∈ F (G,Z3). Then there is c1 : V (G1) 7→ Z3 such that for every

directed edge xy ∈ E(G1), c1(x)−c1(y) 6= f(xy) and there is c2 : V (G2) 7→ Z3

such that for every directed edge zw ∈ E(G2), c2(z) − c2(w) 6= f(zw). It

follows that there is a ∈ Z3 such that c1(u) = c2(u) + a. Define

c(z) =





c1(z), if z ∈ V (G1)

c2(z) + a if z ∈ V (G2).

Then c is a (Z3, f)-coloring of G.

Theorem 6.3.3 Suppose that G is a connected K3,3-minor free graph with

girth ≥ 5. Then there is a subgraph H = K2 of G such that (G,H) is

Z3-extensible.

Proof. By contradiction, suppose that G is an counterexample with |V (G)|
minimized.

By Theorems 6.2.1 and 6.3.1 and Lemma 6.3.2, we may assume that G

is 2-connected and G can be represented as a 2-sum of G1 and G2 such that

G1 and G2 are proper minor of G and assume that G1 is planar with |V (G1)|
minimized. Since G has girth ≥ 5, we may assume that |V (G1)| ≥ 5.

Since G2 is a proper subgraph of G, pick e = u′v′ ∈ E(G2)− E(G1) and

denote H = G[{u′, v′}]. Let c0 : {u, v} 7→ Z3 such that c0 is a (Z3, f)-coloring

of H.

Let V (G1) ∩ V (G2) = {u, v}. If uv ∈ E(G), by the minimality of G, c0

can be extended to a (Z3, f)-coloring c1 of G2. By Corollary 6.2.17, c1 |{u,c}
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can be extended to a (Z3, f)-coloring of G1. So c0 can be extended to a

(Z3, f)-coloring of G, a contradiction.

So we assume that uv /∈ E(G). We claim that G1 + uv is also planar.

By contradiction, we assume that G1 + uv is not planar. If G1 + uv has

a K3,3-minor Γ, then new edge uv ∈ E(Γ) since G1 does not have a K3,3-

minor. Since G is 2-connected and since {u, v} is 2-vertex cut of G, G2

must have a (u, v)-path. It then follows that G has a K3,3-minor, contrary

to the assumption of G. Therefore G1 + uv does not have a K3,3-minor. By

Theorem 6.3.1, G1 + uv ∼= K5. contrary to the assumption that G has girth

at least 5. Thus G1 + uv must be planar. Define G∗ obtained from G by

adding two new vertices v1, v2 and three new edges uv1, v1v2, v2v such that

G∗
i is obtained from Gi by adding these two vertices and these three edges (

1 ≤ i ≤ 2 ). It follows that G∗
1 is planar and G∗, G∗

1 and G∗
2 have girth ≥ 5.

Assume that the path uv2v1v is oriented from u to v1, from v1 to v2, from v2

to v. Define f1 : E(G∗) 7→ Z3 by

f1(e) =





f(e), if e ∈ E(G)

0 if e ∈ {uv1, v1v2, v2v}.

Note that u′v′ ∈ E(G∗
2)− E(G∗

1) and |V (G∗
2)| = |V (G)| − |V (G1)|+ 2 + 2 <

|V (G)|. By the minimality of G, c0 can be extended to a (Z3, f)-coloring c1

of G∗
2.

Now we reimbed G∗
1 in the plane such that the edges uv1, v1v2, v2v are in

the exterior cycle of G∗
1. Let W = {u, v} and define bu ∈ Z3−{c1(u), c1(v1)+

f1(uv1)}, bv ∈ Z3−{c1(v), c1(v2)−f1(v2v)}. By Theorem 6.2.1, c1 |{v1,v2} 7→ Z3

can be extended to a (Z3, f1)-coloring c2 of G∗
1 such that c2 |{u,v}= c1 |{u,v}

and c2(u) 6= bu, c2(v) 6= bv. It follows that c2(u) = c1(u) and c2(v) = c1(v).
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Define

c(z) =





c1(z) if z ∈ V (G1)

c2(z) if z ∈ V (G2).

Then c is a (Z3, f)-coloring of G, a contradiction.
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Chapter 7

3-list coloring of planar graphs

with girth at least 4

7.1 Introduction

Let G be a graph and let L(v) be a set of allowed colors for each vertex v.

An L-list coloring of a graph G is a proper vertex coloring in which every

vertex v gets a color from L(v). G is k-choosable if G has a list coloring for

each list assignment with k colors in each list.

The concept of L-list coloring, choosability and choice number was intro-

duced by Erdos, Rubin and Taylor [22] in 1979 and Vizing [53] in 1976.

Alon and Tarsi [2] proved that every bipartite planar graph is 3-choosable.

Thomassen [48] showed that every planar graph is 5-choosable. Voigt [54]

presented an example of a planar graph which is not 4-choosable.

Thomassen [49] proved the following theorem.
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Theorem 7.1.1 Every planar graph of girth at least 5 is 3-choosable.

In this chapter, we use a similar technique to prove the following result which

extends Thomassen’s result [49].

Theorem 7.1.2 Suppose that G is a planar graph with girth at least 4 such

that all 4-cycles are independent and every 4-cycle is facial. If the minimum

distance between 4-cycles and 5-cycles is at least 1, then G is 3-choosable.

The conditions of Theorem 7.1.2 cannot be relax. The Gutner [26]’s example

with only 164 vertices is not 3-choosable but there exist a 5-cycle adjacent a

4-cycle.

Theorem 7.1.3 If G is a connected K3,3-minor free graph with girth at least

5, then G is 3-choosable.

Let G and H be two graphs. G is contractible to H if H can be obtained

from G by contracting some edges of G and deleting the resulting loops. If

G contains a subgraph which is contractible to H, then H is a minor of G.

A set of graphs is said to be independent if no two of them have common

vertex.

7.2 A list coloring Theorem

Let F denote the set of connected graphs such that a graph G ∈ F if and

only if each of the following holds.

(A1) G is a planar with girth ≥ 4 and every 4-cycle is facial;

(A2) all 4-cycles are independent.

(A3) the minimum distance between 4-cycles and 5-cycles is at least 1.
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Theorem 7.2.1 Let G be a planar graph of girth at least 5. Let A be a set

of vertices in G such that each vertex of A is on the outer face boundary.

Assume that either

(B1) G[A] has no edge or

(B2) G[A] has precisely one edge xy and G has no 2-path from x to a

vertex of A.

Assume that u, v be any adjacent vertices in G both on the outer face

boundary, that G[{u, v, x, y}] is not a 4-cycle if xy is an edge of G[A] and

that L is color assignment such that |L(w)| ≥ 2 for each vertex w ∈ V (G)

and |L(w)| ≥ 3 for each vertex w ∈ V (G) − A. Let c(u), c(v) be distinct

colors in l(u) and L(v) respectively. Then c can be extended to a list coloring

of G.

Corollary 7.2.2 Let G ∈ F with outer cycle C : x1x2x3x4x5x1. Let L be a

color assignment such that |L(v)| ≥ 3 for each vertex v of G and let c be any

list coloring of C. Then c can be extended to a list coloring of G.

In order to prove Theorem 7.2.1, we first prove some lemmas. The follow-

ing lemmas have the same hypotheses of Theorem 7.2.1 with an additional

assumption that

G is a counterexample to Theorem 7.2.1 and |V (G)| is minimized. (1)

Since c can be easily extended to a list-coloring for every forest and a

4-cycle which satisfy the condition of Theorem 7.2.1, we may assume that

|V (G)| ≥ 5.

Lemma 7.2.3 κ(G) ≥ 2. If z ∈ V (G)− A and z /∈ {u, v}, then dG(z) ≥ 3.
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Proof. If G is not 2-connected, then G has a block B containing the edge

uv. By the minimality of G, c can be extended to a list coloring of B. Let

B1 be the block which has a common vertex w1 with B and pick its adjacent

vertex w2 in the outer cycle of B1. Assume that put c(w2) ∈ L(w2) such that

c(w1) 6= c(w2). Then c can be extended to a list coloring of B1, and so on.

This contradicts to (1).

By contradiction, suppose that there is a z0 ∈ V (G) − A such that z0 /∈
{u, v} and dG(z0) = 2. Let G1 = G − z0. Denote N(z0) = {z1, z2}. By the

minimality of G, c can be extended to a list coloring of G1. Pick c(z0) ∈
L(z0)− {c(z1), c(z2)}. Thus we have a list coloring of G, violating to (1).

By Lemma 7.2.3, we assume that G is 2-connected and C : x1x2 . . . xmx1

is the outer cycle of G. Let u = x1 and v = x2. If G[W ] has an edge xy, we

can assume that y = xi, x = xi+1, where 3 ≤ i ≤ m− 1.

Lemma 7.2.4 C has no chord u′v′ for which G[{u′, v′, x, y}] is not a 4-cycle.

Proof. Let C1 be the cycle in C∪{u′v′} containing u′v′ and uv. Let C2 be the

cycle in C ∪ {u′v′} containing u′v′ but not uv. Then both C1 ∪ int(C1) ∈ F
and C2 ∪ int(C2) ∈ F . By the minimality of G we can extend c to a list

coloring of C1 ∪ int(C1). Then the coloring of u′ and v′ can be extended to

a list coloring of C2 ∪ int(C2), violating to (1).

Lemma 7.2.5 For v′ ∈ V (G)−V (C), u′ ∈ V (C) and w ∈ A, G has no path

u′v′w which satisfies one of the following

(1) w 6∈ {x, y} or

(2) if w ∈ {x, y}, G[{u′, v′, x, y}] is not a 4-cycle.
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Proof. If u′v′w exists, then we define C1 and C2 as follows: Let C1 be the

cycle in C ∪ {u′v′, v′w} containing u′v′, v′w and uv and let C2 be the cycle

in C ∪ {u′v′, v′w} containing u′v′, v′w but not uv. By the minimality of G,

c can be extended to a list coloring of C1 ∪ int(C1). We replace L(w) by

{c(v′), c(w)} and then extend the coloring of u′ and v′to a 3-list coloring of

C2 ∪ int(C2). It follows that w gets the color c(w). Therefore we obtain a

list coloring of G, contrary to (1).

Lemma 7.2.6 G does not have 3-path w1u
′v′w2 with w1, w2 ∈ A and u′, v′ ∈

V (G)− A unless {w1, w2} = {x, y} and G[{w1, w2, u
′, v′}] is a 4-cycle.

Proof. By Lemma 7.2.5, assume that u′, v′ ∈ V (G)− V (C) and that G has

such a 3-path w1u
′v′w2 with w1, w2 ∈ A. Assume that the path w1u

′v′w2 is

oriented by from w1 to u′, from u′ to v′ and from w2 to v′. Define C1 and C2 as

follows: Let C1 be the cycle in C∪{w1u
′, u′v′, v′w2} containing w1u

′, u′v′, v′w2

and uv and let C2 be the cycle in C ∪ {w1u
′, u′v′, v′w2} containing w1u

′, u′v′

and v′w2 but not uv.

By the minimality of G, c can be extended to a list coloring of C1∪int(C1).

We replace L(w1) by {c(w1), c(u
′)} and L(w2) by {c(w2), c(v

′)}. By the

minimality of G again, the colors of u′ and v′ can be extended to a list

coloring of C2 ∪ int(C2). It follows that w1 gets the color c(w1) and w2 gets

the color c(w2). Therefore we obtained a list coloring of G, contrary to (1).

Lemma 7.2.7 (i) There is no 3-path xi+2u
′v′xj for j ∈ {i + 4, . . . , m} and

there is no 3-path xi−1u
′v′xj for j ∈ {3, . . . i−2} where u′, v′ ∈ V (G)−V (C)

and xj ∈ A.

99



(ii) There is no 2-path xi+2u
′xj for j ∈ {i + 4, . . . ,m} and there is no

2-path xi−1u
′xj for j ∈ {3, . . . i− 2} where u′ ∈ V (G)− V (C) and xj /∈ A.

Proof. By (B2), xi+2 /∈ A. Assume that P = xi+2u
′v′xj is a 3-path satisfying

the hypothesis of Lemma 7.2.7. Let C1 be the cycle in C ∪P containing u′v′

and xy and let C2 be the cycle in C ∪P containing u′v′ and but not xy. Let

Gi = Ci ∪ int(Ci), i = 1, 2. By the minimality of G, we can extend c to a list

coloring of G1.

Let A′′ = (A∩ V (G2))∪ {xi+2}. Then G2 satisfies the condition of Theo-

rem 7.2.1. We replace L(xi+2) by {c(xi+2), c(u
′)} and L(xj) by {c(xj), c(v

′)}.
By the minimality of G, the colors of u′ and v′ can be extended to a list

coloring of G2. It follows that xi+2 gets the color c(xi+2) and xj gets the

color c(xj). Therefore we get a list coloring of G, contrary to (1).

The proofs for the case that there is no 3-path xi−1u
′v′xj for j ∈ {3, . . . , i−

2} where u′, v′ ∈ V (G)− V (C) and xj ∈ A is similar.

Suppose that Q = xi+2u
′xj is a 2-path satisfying the hypotheses of

Lemma 7.2.7. If xj = xi+4, by (A1) the cycle xi+4xi+3xi+4u
′xi+2 is facial.

Thus dG(xi+3) = 2, contrary to Lemma 7.2.3.

Thus we assume that j ∈ {i + 5, . . . ,m}. Let C3 be the cycle in C ∪ Q

containing u′ and xy and let C4 be the cycle in C ∪Q containing u′ but not

xy. Let Gi = Ci ∪ int(Ci), i = 3, 4. By the minimality of G, we can extend c

to a list coloring of G3.

Let A′′′ = (A ∩ V (G4)) ∪ {xi+2}. By (B2), x3 /∈ W . Thus G4[A
′′′] is

edgeless. Repalce L(xi+2) by {c(xi+2), c(u
′)}. Therefore both G4 and W ′′

satisfy the hypotheses of Theorem 7.2.1. By the minimality of G again, the

colors of u′ and v′ can be extended to a list coloring of G4. Therefore we can
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get a list coloring of G, contrary to (1).

The proofs for the case that there is no 2-path xi−1u
′xj for j ∈ {3, . . . , i−

2} where u′, v′ ∈ V (G)− V (C) and xj /∈ A is similar.

Lemma 7.2.8 G has no separating 5-cycle.

Proof. If G has a separating 5-cycle C ′, then we apply the minimality of G

to extend c1 to a list coloring of G− int(C ′). We then apply Corollary 7.2.2

to extend the coloring of C ′ to a group coloring of C ′ ∪ int(C ′). This contra-

diction proves Lemma 7.2.8.

If u or v (say u) is in A, we replace A by A− u. So we can assume that

{u, v} ⊂ V (C)− A.

Lemma 7.2.9 If G[A] has the edge xy, then i ≥ 4.

Proof. Suppose that i = 3. Pick c(y) ∈ L(y) − {c1(v)}, c(x) ∈ L(x) −
{c(y)}. We replace L(z) by L(z) \ {c(x)} for every z ∈ N(x) − {x, y} and

by L(z) − {c(y)} for every z ∈ N(y) − {x, v}. Let G′ = G − {y, x} and

A′ = A ∪N(x) ∪N(y)− {x, y, v}.
If G[N(x) ∪ N(y)] does not contain a 4-cycle, by (B2), x6 /∈ A. By

Lemma 7.2.5 G[A′] is edgeless and so both G′ and A′ satisfy the condi-

tion of Theorem 7.2.1. So assume that G[N(x) ∪ N(y)] contains a 4-cycle

xq1q2yx, where q1 ∈ N(x) and q2 ∈ N(y) (possibly q2 = v or q1 = xi+2).

By Lemma 7.2.5 and (A2), G′[A′] contains at most one edge q1q2. If G′[A′]

has that edge q1q2, then q2 6= v. If there is a 2-path q2q3q4 where q4 ∈ A′,

then q3 6= q1 (q1 = x5 possibly). By (A2) and (A3), q4 /∈ N(x3) ∪ N(x4).

Thus q4 ∈ A, contrary to Lemma 7.2.6. By (A2) G[{u, v, q1, q2}] is not a
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4-cycle. Therefore both G′ and A′ satisfy the condition of Theorem 7.2.1

with q2 playing the role of x of G.

By the minimality of G, c can be extended to a list coloring of G′. There-

fore we get a 3-list-cloring of G, contrary to (1).

Lemma 7.2.10 If xi−1xixi+1xi+2xi−1 is a facial 4-cycle of G, then there is

no 3-path xi−1q4q3xi+4, where i ∈ {4, 5, . . . , m− 4}.

Proof. Assume that P = xi−1q4q3xi+4 exists. Let C1 be the cycle in C ∪
{xi−1q4, q4q3, q3xi+4} containing xi−1q4, q4q3, q3xi+4 and uv and let C2 be the

cycle in C ∪{xi−1q4, q4q3, q3xi+4, xi−1xi+2} containing xi−1q4, q4q3, q3xi+4 and

xi−1xi+2 but not uv nor yx. Let Gi = Ci ∪ int(Ci), i = 1, 2.

By the minimality of G, c can be extended to a list coloring of G1. We

claim that there is not a 2-path from xi+4 to xi−1 in G2. By contradic-

tion, assume that xi+4zxi−1 is a 2-path in G2. Then we have two 5-cycles

xi−1q4q3xi+4zxi−1 and xi−1xi+2xi+3xi+4zxi−1. By Lemma 7.2.8, dG(z) = 2,

contrary to Lemma 7.2.3.

Pick c(y) ∈ L(y) − {c(xi−1)}, c(x) ∈ L(x) − {c(y)}, c(xi+2) ∈ L(xi+2) −
{c(xi−1), c(x)}. Let A′′ = {xi+4, xi−1, xi+2}. Replace L(xi+4) by {c(xi+4), c(q3)},
L(xi−1) by {c(xi−1), c(q4)} and L(xi+2) by {c(xi+2), c(xi−1)}. By (A2) G[{q3, q4, xi−1, xi+2}]
is not a 4-cycle. Therefore G2 and A′′ satisfy the hypotheses of Theorem 7.2.1

with xi−1 playing the role of x of G. By the minimality of G, c can be ex-

tended to a list coloring of G2. Thus we get a list coloring of G, contrary to

(1).

Lemma 7.2.11 If G[A] has an edge, then xi−2 ∈ A and hence i ≥ 5.
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Proof. Since G[A] has only one edge, xi−1 /∈ A. By contradiction, suppose

that xi−2 /∈ A.

Claim 2 G[N(x) ∪N(y)] does not contain a 4-cycle xyxi−1xi+2x.

Proof. By contradiction, suppose that G[N(x) ∪ N(y)] contains a 4-cycle

xyxi−1xi+2x. We consider two cases.

Case 1. xi−3 ∈ A.

Let G′ = G − {xi−2, xi−1, xi+2, x, y} and A′ = A ∪ N(xi−2) ∪ N(xi−1) ∪
N(xi+2)− {x, y, xi−1, xi−2, xi+2}. Pick c(xi−2) ∈ L(xi−2)− L(xi−3), c(xi−1) ∈
L(xi−1)−{c(xi−2)}, c(y) ∈ L(y)−{c(xi−1)}, c(x) ∈ L(x)−{c(y)} and c(xi+2) ∈
L(xi+2) − {c(x), c(xi−1}. Replace L(z) by L(z) − {c(xj) if z ∈ N(xj), j ∈
{i − 1, i − 2, i + 2}. By (A2), (A3) and Lemma 7.2.5, G′[A′] contains at

most one edge xi+3xi+4. If G′[A′] contains that edge, then xi+4 ∈ A. As-

sume that there is a 2-path xi+4q3q4. By Lemma 7.2.4, q4 ∈ A′−A. By (A3),

q4 /∈ N(xi+2). By Lemma 7.2.10, q4 /∈ N(xi−1). So assume that q4 ∈ N(xi−2).

Let Q = xi−2q4q3xi+4 and C3 be the cycle in C ∪Q containing uv and C4

be the cycle in C ∪ Q not conaining uv. Gi = Ci ∪ int(Ci), i = 3, 4. By the

minimality of G, c can be extended to a list coloring of G3.

Let A2 = A∩V (G4)∪{xi−2, xi+4}. We replace L(xi+4) by {c(xi+4), c(q3)}
and L(xi−2) by Let {c(xi−2), c(q4)}.

By Lemma 7.2.4, G[{q3, q4, x, y}] is not a 4-cycle. Therefore both G4

and A2 satisfy the hypotheses of Theorem 7.2.1, c can be extended to a list

coloring of G4. Thus c can be extended to a list coloring of G, contrary to

(1).

Case 2 xi−3 /∈ A.
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Let G′ = G− {x, y} and A′ = A ∪ {xi−1, xi+2}. Pick c(x) ∈ L(x), c(y) ∈
L(y)−{c(x)}. Replace L(xi−1) by L(xi−1)−{c(y)} and L(xi+2) by L(xi+2)−
{c(x)}. By (B2), xi−1xi+2 is the only edge of G′[A′]. By Lemma 7.2.5, there is

no 2-path from xi−1 to a vertex of A. By (A2), G[{u, v, xi−1, xi+2}] is not a 4-

cycle. Therefore both G′ and A′ satisfy the hypotheses of Theorem 7.2.1 with

xi−1 playing the role of x of G. By the minimality of G, c can be extended

to a list coloring of G′ and hence c can be extended to a list coloring of G,

contrary to (1).

Now we are ready to complete the proof of Lemma 7.2.11. Pick c(y) ∈
L(y), c(x) ∈ L(y)−{c(y)}, G′ = G−{x, y} and A′ = A∪N(x)∪N(y)−{x, y}.
By (B2), xi+3 /∈ A′.

If G[N(x) ∪N(y)] does not contain a 4-cycle, then by Lemma 7.2.5 and

(B2), G[A′] is edgeless. So assume that G[N(x) ∪ N(y)] contains a 4-cycle

xq1q2yx, where q1 ∈ N(x) and q2 ∈ N(y). By Lemma 7.2.5 and (A2), G′[A′]

contains only one edge q1q2 ( possibly q1 = xi+2 or q2 = xi−1). By Claim 2,

we assume that q2 6= xi−1. Suppose that there is a 2-path q2q3q4, where

q4 ∈ A′. Since G′[A′] has only one edge, q3 6= q1. By (A2) and (A3), q4 ∈
A−N(x)∪N(y), contrary to Lemma 7.2.6. By (A2), G′[{q1, q2, u, v}] is not

a 4-cycle. Therefore both G′ and A′ satisfy the hypotheses of Theorem 7.2.1

with q2 playing the role of x of G.

Replace L(z) by L(z) − {c(x)} if z ∈ N(x) − A and by L(z) − {c(y)} if

z ∈ N(y)− A. By the minimality of G, c can be extended to a list coloring

of G′. Then c can be extended to a list coloring of G, contrary to (1). The

proof for the case when q1 6= xi+2 is similar.
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Lemma 7.2.12 G[W ] has no edge.

Proof. Suppose that G[A] has the edge xy where x = xi+1, y = xi. By

Lemma 7.2.11 and by (B2), xi−1 /∈ A and xi−2 ∈ A.

Case 1 G[N(x) ∪N(y)] contains no a 4-cycle.

Let G′ = G− {xi−1, xi, xi+1} and A′ = A ∪N(xi−1) ∪N(xi) ∪N(xi+1)−
{xi−1, xi, xi+1}. Let c(xi−1) ∈ L(xi−1) − {c(xi−2)}, c(xi) ∈ L(xi) − {c(xi−1)}
and c(xi+1) ∈ L(xi+1) − {c(xi)}. Replace L(z) by L(z) − {c(xj)} for every

vertex z ∈ (A′ −A) ∩ (N(xi−1) ∪N(xi) ∪N(xi+1)). Suppose that G′[A′] has

an edge q1q2 where q1, q2 ∈ A′ − A ⊂ N(xi−1) ∪ N(xi) ∪ N(xi+1). We will

distinguish the following two subcases.

Subcase 1.1 q2 ∈ N(xi−1), q1 ∈ N(xi+1).

Then G has a 5-cycle q1q2xi−1xixi+1q1. Note that q1 = xi+2 is possible.

By Lemmas 7.2.3 and 7.2.8 q2 6= xi−2. By (A2), (A3), (B2) and Lemma 7.2.5,

q1q2 is the only edge in G′[A′].

Assume that G′ has a path q1q3q4 where q4 ∈ A′. As G′[A′] has only one

edge, q3 6= q2.

We claim that q4 ∈ A. By contradiction, suppose q4 ∈ A′ − A. If q4 ∈
N(xi−1)−q2, then G has two 5-cycles xi−1xixi+1q1q2xi−1 and xi−1q4q3q1q2xi−1.

By Lemma 7.2.8, dG(q2) = 2, contrary to Lemma 7.2.3. Since G has a 5-cycle

q1q2xi+1xixi−1q1, q4 /∈ N(xi). By (A3), q4 /∈ N(xi+1). Thus q4 ∈ A.

By Lemmas 7.2.4, 7.2.5 and 7.2.6, q1 = xi+2, q3 = xi+3 and q4 = xi+4. It

follows that dG(xi) = dG(xi+1) = 2. Note that q2 6= xi−2.

We shall verify that both G′ and A′ satisfy the other hypotheses of The-

orem 7.2.1 with q1 and q2 replacing y and x, respectively.
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We now assume that G′ has a path q2q5q6 where q6 ∈ W ′. By (A3), q6 /∈
A′−A and hence q6 ∈ A. If q5 /∈ V (C), then it contradicts to Lemma 7.2.7(i).

If q5 ∈ V (C), then it contradicts to Lemma 7.2.7(ii). Thus there is no 2-path

from q2 to a vertex of A′ in G′.

By (A2) G′[{u, v, q1, q2}] is not a 4-cycle. Therefore both G′ and A′ satisfy

the hypotheses of Theorem 7.2.1 with q2 playing the role of x of G. Thus c

can be extended to a list coloring of G′. Therefore c is a list coloring of G,

contrary to (1).

Subcase 1.2 q2 ∈ N(xi−1), q1 ∈ N(xi).

If q2 = xi−2, then dG(xi−1) = 2, contrary to Lemma 7.2.3. So q2 ∈
V (G) − V (C). Since G[N(x) ∪ N(y)] does not contain a 4-cycle, q1 6= xi+1.

So we assume that q2 6= xi−2 and q1 6= xi+1. If there is a 2-path q1q3q4, where

q4 ∈ A′, by (A3) and by Lemma 7.2.8 q4 /∈ N(xi+1)∪N(xi)∪N(xi−1). Thus

q4 ∈ A, contrary to Lemma 7.2.6. By (A2) G′[{u, v, q1, q2}] is not a 4-cycle.

Therefore both G′ and A′ satisfy the condition of Theorem 7.2.1 with q1

playing the role of x of G. Thus c can be extended to a list coloring of G′.

Therefore c can be extended to a list coloring of G, contrary to (1).

Case 2 G[N(x) ∪N(y)] contains a 4-cycle.

Without loss of generality, we assume that xq1q2yx is a 4-cycle in G[N(x)∪
N(y)], where q1 ∈ N(xi+1), q2 ∈ N(xi). We distinguish the following two

subcases.

Subcase 2.1 q2 6= xi−1.

Let G′ = G− {xi−1, xi, xi+1} and A′ = A ∪N(xi−1) ∪N(xi) ∪N(xi+1)−
{xi−1, xi, xi+1}. Let c(xi−1) ∈ L(xi−1) − L(xi−2), c(xi) ∈ L(xi) − {c(xi−1)}
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and c(xi+1) ∈ L(xi+1) − {c(xi)}. Replace L(z) by L(z) − {c(xj) for every

vertex z ∈ (A′ − A) ∩ (N(xi−1) ∪N(xi) ∪N(xi+1)).

Claim 2 G′[A′] has only one edge.

Note that q1q2 ∈ G′[A′]. Suppose that there is another edge p1p2 of G′[A′].

By (B2) xi+3 /∈ A. It follows that xi+2xi+3 /∈ E(G′[A′]). By Lemmas 7.2.4

and 7.2.5, we may assume that either p2 ∈ N(xi−1), p1 ∈ N(xi+1), or p2 ∈
N(xi−1), p1 ∈ N(xi), or p2 ∈ N(xi), p1 ∈ N(xi+1). Each case contradicts

(A2) or (A3).

Claim 3 There is no 2-path from q2 to every vertex of A′.

By contradiction, suppose that G′ has a path q2q3q4 where q4 ∈ A′. As

G′[A′] has only one edge , q3 6= q1. By (A2) and (A3), q4 /∈ N(xi−1)∪N(xi)∪
N(xi+1). So q4 ∈ A, contrary to Lemma 7.2.6. So both G′ and A′ satisfy the

condition of Theorem 7.2.1 with q2 playing the role of x of G. By the choice

of G, c can be extended to a list coloring of G′ and hence c can be extended

to a list coloring of G, contrary to (1).

Subcase 2.2 q2 = xi−1.

Let G′ = G − {xi−1, y, x, q1} and A′ = A ∪ N(xi−1) ∪ N(x) ∪ N(q1) −
{xi−1, x, y, q1}.

Pick c(xi−1) ∈ L(xi−1) − L(xi−2), c(y) ∈ L(y) − {c(xi−1)}, c(x) ∈ L(x) −
{c(y)}, c(q1) ∈ L(q1)− {c(xi−1), c(x)}.

Replace L(z) by L(z)−c(λ) where λ ∈ {xi−1, q1, x}, z ∈ N(xi−1)∪N(q1)∪
N(x)− A.

By (A2), (A3) and Lemma 7.2.8, G′[A′] has at most one edge xi+3xi+4.

If G′[A′] contains that edge, then xi+4 ∈ A, xi+2 = q1. If there is a 2-path
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xi+4q5q6, where q6 ∈ A′. By Lemma 7.2.6, q6 ∈ A′−A. By (A3), q6 ∈ N(q2),

contrary to Lemma 7.2.10. By Lemma 7.2.3 G′[{xi+3, xi+4, u, v}] is not a 4-

cycle. Therefore both G′ and A′ satisfy the hypotheses of Theorem 7.2.1 with

xi+4 playing the role of x of G. By the minimality of G, c can be extended

to a list coloring of G′ amd hence c can be extended to a list coloring of G,

contrary to (1).

Lemma 7.2.13 x4 ∈ A.

Proof. Suppose that x4 /∈ A. Let G′ = G − x3 and A′ = A ∪ N(x3) −
{x2, x3}. Pick c(x3) ∈ L(x3) − {c(x2)}. Replace L(z) by L(z) − {c(x3)} if

z ∈ N(x3)− x2.

By Lemmas 7.2.4, 7.2.5 and 7.2.12, G′[A′] has at most one edge, namely

x4x5. If G′[A′] contains x4x5, then x5 ∈ A. If there is a 2-path x5q5q6,

where q6 ∈ A′ − A, then q6 ∈ N(x3) − {x4}, q5 6= x4. G has a 5-cycle

x3x4x5q5q6x3. By Lemma 7.2.8, dG(x4) = 2, contrary to Lemma 7.2.3. By

(A1), G[{u, v, x4, x5}] does not contain a 4-cycle.

So both G′ and A′ satisfy the hypotheses of Theorem 7.2.1 with x5 playing

the role of x of G. By the minimality of G, c can be extended to a list coloring

of G, contrary to (1).

Lemma 7.2.14 |C| ≥ 6.

Proof. Suppose that |C| = 5. Let G′ = G− {x3, x4} and A′ = A ∪N(x3) ∪
N(x4)−{x2, x3, x4}. Let c(x3) ∈ L(x3)−{c(x2)} and c(x4) ∈ L(x4)−{c(x3)}.
Replace L(z) by L(z)−c(xi) where z ∈ N(xi)−{x2, x3, x4}, i = 3, 4. Assume

first that G[N(x3)∪N(x4)] does not contain a 4-cycle. It follows that G′[A′]
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is edgeless. So assume that G[N(x3)∪N(x4)] contains a 4-cycle and assume

that x3q2q1x4x3 is a 4-cycle, where q1 ∈ N(x4), q2 ∈ N(x3). By (A2) and

Lemma 7.2.5, G′[A′] has only one edge q1q2. If q2 = x2, by (A1), dG(x3) = 2,

contrary to Lemma 7.2.3. So assume that q2 6= x2. Assume that q1 = x5.

If G′[A′] has an edge e, by (A1) e = x5v
′, where v′ ∈ N(x3). Thus G has a

5-cycle x1x2x3v
′x5x1 and a 4-cycle x3x4x5v

′x3. By Lemma 7.2.8 and (A1),

dG(v′) = 2, comtrary to Lemma 7.2.3.

Now assume that q1 6= x5 and q2 6= x2. By (A2) and (A3), there is no

2-path from q2 to a vertex of A′. So both G′ and A′ satisfy the hypotheses

of Theorem 7.2.1 with q2 playing the role of x of G. By the minimality of G,

c can be extended to a list coloring of G′ and hence c can be extended to a

list coloring of G, contrary to (1).

Lemma 7.2.15 x6 ∈ A.

Proof. Suppose that x6 /∈ A. We will distinguish the following two cases.

Case 1 G[N(x3) ∪N(x4)] does not contain a 4-cycle.

Let c(x3) ∈ L(x3) − {c(x2)}, c(x4) ∈ L(x4) − {c(x3)}. Put G′ = G −
{x3, x4} and A′ = A∪N(x3)∪N(x4)−{x2, x3, x4}. Since G[N(x3)∪N(x4)]

does not contain a 4-cycle, by Lemma 7.2.5 G′[A′] is edgeless. Replace L(z)

by L(z)− {c(xj)} if z ∈ (A′ − A) ∩ (N(x3) ∪N(x4))− {x5}.
By the choice of G, c can be extended to a list coloring of G′ hence c can

be extended to a list coloring of G, violating to (1).

Case 2 G[N(x3) ∪N(x4)] contains a 4-cycle.

Let c(x4) ∈ L(x4), c(x5) ∈ L(x5) − {c(x4)}. Put G′ = G − {x4, x5} and
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A′ = A ∪ N(x4) ∪ N(x5) − {x4, x5}. By (B2), G[N(x4) ∪ N(x5)] does not

contains a 4-cycle.

If x7 /∈ A, by (A2), G′[A′] is edgeless. Assume that x7 ∈ A. By (A2)

and Lemma 7.2.4, G′[A′] has only one edge x6x7. If G′ has a 2-path x7q5q6,

where q6 ∈ A′, then by Lemma 7.2.5, q6 ∈ N(x4)∪N(x5). By (A3) and (A1),

q5 6= x6. If q6 ∈ N(x5), then G has a 5-cycle x5q6q5x7x6x5. By Lemma 7.2.8

dG(x6) = 2, contrary to Lemma 7.2.3. By Lemma 7.2.5, q6 /∈ N(x4). By

Lemma 7.2.4, G′[{u, v, x6, x7}] is not a 4-cycle.

Therefore both G′ and A′ satisfy the condition of Theorem 7.2.1 with x7

playing the role of x of G. By the minimality of G, c can be extended to a

list coloring of G′ and hence c is a list coloring of G, violating to (1).

Proof of Theorem 7.2.1. Let c(x5) ∈ L(x5) − L9x6), c(x4) ∈ L(x4) −
{c(x5)}. Put G′ = G − {x4, x5} and A′ = A ∪ N(x4) ∪ N(x5) − {x4, x5}.
Replace L(z) by L(z)− {c(xj)} if z ∈ N(xj), 3 ≤ j ≤ 5.

If G[N(x4) ∪ N(x5)] does not contain a 4-cycle, by Lemma 7.2.5 G′[A′]

is edgeless. Assume that G[N(x4) ∪ N(x5)] contains a 4-cycle. By (A2)

and Lemma 7.2.4, G′[A′] contains only edge q1q2, where q2 ∈ N(x4) and

q1 ∈ N(x5). By Lemma 7.2.3, q1 6= x6. Let q2q3q4 be a 2-path where q4 ∈ A′.

By (A2) and (A3), q4 ∈ A, contrary to Lemma 7.2.6. Therefore both G′ and

A′ satisfy the condition of Theorem 7.2.1 with q2 playing the role of x of G.

By the minimality of G, c can be extended to a list coloring of G′ and

hence c can be extended to a list coloring of G, contrary to (1).

The proof of Theorem 7.2.1 is complete.
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7.3 3-list coloring of K3,3-minor free graphs

Let G1 and G2 be two bridgeless graphs and u1, v1 ∈ V (G1), u2, v2 ∈ V (G2).

We define G as follows: identify u1 with u2 and v1 with v2. We define these

two new vertices u and v. Then G is called 2-sum of G1 and G2. Similarly

let u ∈ V (G1) and v ∈ V (G2). G is obtained from G1 and G2 by identifying

u with v and G is called 1-sum of G1 and G2.

Theorem 7.3.1 (Hall [28]) Let G be a graph without K3,3 minor. One of

the followings must holds.

(1) G is a planar graph;

(2) G ∼= K5 and

(3) for some i ∈ {1, 2}, G is the i-sum of two G1 and G2 such that G1

and G2 are proper minor of G.

Corollary 7.3.2 Suppose that G be a simple planar graph and H = K2 =

G[{u, v}]. Let c(u) and c(w) be distinct colors in L(u) and L(w) respectively.

Then c can be extended to a list coloring of G.

Proof. We assume that uv is on the exterior cycle of G in an planar em-

bedding of G. By Theorem 7.3.1, c can be extended to a list coloring of

G.

Theorem 7.3.3 Suppose that G is a connected K3,3-minor free graph with

girth ≥ 5 and that |L(v)| ≥ 3 for each vertex of G. Then there is a subgraph

H = K2 = G[{u, v}] of G such that two different colors of c(u) ∈ L(u) and

c(v) ∈ L(v) can be extended to a list coloring of G.
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Proof. The proof is by contradiction. Assume that G is a counterexample

with |V (G)| minimum. We claim that G is 2-connected. By contradiction,

suppose that G is not 2-connected, then there is a block B such that G−V (B)

is connected. We color B at first, then coloring each block having a vertex in

common with B and so on. We finally get a list coloring of G, a contradiction.

By Theorem 7.3.1, G is a 2-sum of G1 and G2 which are proper minor of

G and assume that G1 is planar with |V (G1)| minimized. Since G has girth

≥ 5, we may assume that |V (G)| ≥ 5.

Let V (G1) ∩ V (G2) = {u, v}. If uv ∈ E(G), let c(u) and c(v) be distinct

colors in L(u) and L(v) respectively. By the minimality of G, c can be

extended to a list coloring of G2. By Corollary 7.3.2 , c can be extended

to a list coloring of G1. So c can be extended to a list coloring of G, a

contradiction.

So we assume that uv /∈ E(G). We claim that G1 + uv is also planar. By

contradiction, we assume that G1 + uv is not planar. If G1 + uv has a K3,3-

minor Γ, then new edge uv ∈ E(Γ) since G1 does not have a K3,3-minor. Since

G is 2-connected and since {u, v} is 2-vertex cut of G, G2 must have a (u, v)-

path. It then follows that G has a K3,3-minor, contrary to the assumption

of G. Therefore G1 + uv does not have a K3,3-minor. By Theorem 7.3.1,

G1 + uv ∼= K5. contrary to the assumption that G has girth at least 5. Thus

G1 + uv must be planar. Define G∗ obtained from G by adding two new

vertices v1, v2 and three new edges uv1, v1v2, v2v such that G∗
i is obtained

from Gi by adding these two vertices and these three edges ( 1 ≤ i ≤ 2 ). It

follows that G∗
1 is planar and G∗, G∗

1 and G∗
2 have girth ≥ 5. Define L(v2) =

L(u), L(v1) = L(v). Then for every vertex z ∈ V (G∗), |L(z)| ≥ 3. Let c(v1)
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and c(v2) be distinct in L(v1) and L(v2) respectively. By the minimality of

G, c can be extended to a list coloring of G∗
2.

Now we re imbed G∗
1 in the plane such that the edges uv1, v1v2, v2v are

in the exterior cycle of G∗
1. Let A = {u, v} and replace L(u) by {c(u), c(v1)}

and L(v) by {c(v), c(v2)}. By Theorem 7.2.1, the colors of v1 and v2 can be

extended to a list coloring c of G∗
1. Thus G is 3-choosable.
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