11 research outputs found

    Every 33-connected, essentially 1111-connected line graph is hamiltonian

    Get PDF
    Thomassen conjectured that every 44-connected line graph is hamiltonian. A vertex cut XX of GG is essential if GXG-X has at least two nontrivial components. We prove that every 33-connected, essentially 1111-connected line graph is hamiltonian. Using Ryjáček's line graph closure, it follows that every 33-connected, essentially 1111-connected claw-free graph is hamiltonian

    Every 3-connected, essentially 11-connected line graph is hamiltonian

    Get PDF
    Thomassen conjectured that every 4-connected line graph is hamiltonian. A vertex cut X of G is essential if G − X has at least two nontrivial components. We prove that every 3-connected, essentially 11-connected line graph is hamiltonian. Using Ryjácek’s line graph closure, it follows that every 3-connected, essentially 11-connected claw-free graph is hamiltonian

    Cycles in graph theory and matroids

    Get PDF
    A circuit is a connected 2-regular graph. A cycle is a graph such that the degree of each vertex is even. A graph G is Hamiltonian if it has a spanning circuit, and Hamiltonian-connected if for every pair of distinct vertices u, v ∈ V( G), G has a spanning (u, v)-path. A graph G is s-Hamiltonian if for any S ⊆ V (G) of order at most s, G -- S has a Hamiltonian-circuit, and s-Hamiltonian connected if for any S ⊆ V( G) of order at most s, G -- S is Hamiltonian-connected. In this dissertation, we investigated sufficient conditions for Hamiltonian and Hamiltonian related properties in a graph or in a line graph. In particular, we obtained sufficient conditions in terms of connectivity only for a line graph to be Hamiltonian, and sufficient conditions in terms of degree for a graph to be s-Hamiltonian and s-Hamiltonian connected.;A cycle C of G is a spanning eulerian subgraph of G if C is connected and spanning. A graph G is supereulerian if G contains a spanning eulerian subgraph. If G has vertices v1, v2, &cdots; ,vn, the sequence (d( v1),d(v2), &cdots; ,d(vn)) is called a degree sequence of G. A sequence d = ( d1,d2, &cdots; ,dn) is graphic if there is a simple graph G with degree sequence d. Furthermore, G is called a realization of d. A sequence d ∈ G is line-hamiltonian if d has a realization G such that L(G) is hamiltonian. In this dissertation, we obtained sufficient conditions for a graphic degree sequence to have a supereulerian realization or to be line hamiltonian.;In 1960, Erdos and Posa characterized the graphs G which do not have two edge-disjoint circuits. In this dissertation, we successfully extended the results to regular matroids and characterized the regular matroids which do not have two disjoint circuits

    Hamilton cycles in 5-connected line graphs

    Get PDF
    A conjecture of Carsten Thomassen states that every 4-connected line graph is hamiltonian. It is known that the conjecture is true for 7-connected line graphs. We improve this by showing that any 5-connected line graph of minimum degree at least 6 is hamiltonian. The result extends to claw-free graphs and to Hamilton-connectedness

    Supereulerian Properties in Graphs and Hamiltonian Properties in Line Graphs

    Get PDF
    Following the trend initiated by Chvatal and Erdos, using the relation of independence number and connectivity as sufficient conditions for hamiltonicity of graphs, we characterize supereulerian graphs with small matching number, which implies a characterization of hamiltonian claw-free graph with small independence number.;We also investigate strongly spanning trailable graphs and their applications to hamiltonian connected line graphs characterizations for small strongly spanning trailable graphs and strongly spanning trailable graphs with short longest cycles are obtained. In particular, we have found a graph family F of reduced nonsupereulerian graphs such that for any graph G with kappa\u27(G) ≥ 2 and alpha\u27( G) ≤ 3, G is supereulerian if and only if the reduction of G is not in F..;We proved that any connected graph G with at most 12 vertices, at most one vertex of degree 2 and without vertices of degree 1 is either supereulerian or its reduction is one of six exceptional cases. This is applied to show that if a 3-edge-connected graph has the property that every pair of edges is joined by a longest path of length at most 8, then G is strongly spanning trailable if and only if G is not the wagner graph.;Using charge and discharge method, we prove that every 3-connected, essentially 10-connected line graph is hamiltonian connected. We also provide a unified treatment with short proofs for several former results by Fujisawa and Ota in [20], by Kaiser et al in [24], and by Pfender in [40]. New sufficient conditions for hamiltonian claw-free graphs are also obtained

    On Generalizations of Supereulerian Graphs

    Get PDF
    A graph is supereulerian if it has a spanning closed trail. Pulleyblank in 1979 showed that determining whether a graph is supereulerian, even when restricted to planar graphs, is NP-complete. Let κ2˘7(G)\kappa\u27(G) and δ(G)\delta(G) be the edge-connectivity and the minimum degree of a graph GG, respectively. For integers s0s \ge 0 and t0t \ge 0, a graph GG is (s,t)(s,t)-supereulerian if for any disjoint edge sets X,YE(G)X, Y \subseteq E(G) with Xs|X|\le s and Yt|Y|\le t, GG has a spanning closed trail that contains XX and avoids YY. This dissertation is devoted to providing some results on (s,t)(s,t)-supereulerian graphs and supereulerian hypergraphs. In Chapter 2, we determine the value of the smallest integer j(s,t)j(s,t) such that every j(s,t)j(s,t)-edge-connected graph is (s,t)(s,t)-supereulerian as follows: j(s,t) = \left\{ \begin{array}{ll} \max\{4, t + 2\} & \mbox{ if $0 \le s \le 1$, or $(s,t) \in \{(2,0), (2,1), (3,0),(4,0)\}$,} \\ 5 & \mbox{ if $(s,t) \in \{(2,2), (3,1)\}$,} \\ s + t + \frac{1 - (-1)^s}{2} & \mbox{ if $s \ge 2$ and $s+t \ge 5$. } \end{array} \right. As applications, we characterize (s,t)(s,t)-supereulerian graphs when t3t \ge 3 in terms of edge-connectivities, and show that when t3t \ge 3, (s,t)(s,t)-supereulerianicity is polynomially determinable. In Chapter 3, for a subset YE(G)Y \subseteq E(G) with Yκ2˘7(G)1|Y|\le \kappa\u27(G)-1, a necessary and sufficient condition for GYG-Y to be a contractible configuration for supereulerianicity is obtained. We also characterize the (s,t)(s,t)-supereulerianicity of GG when s+tκ2˘7(G)s+t\le \kappa\u27(G). These results are applied to show that if GG is (s,t)(s,t)-supereulerian with κ2˘7(G)=δ(G)3\kappa\u27(G)=\delta(G)\ge 3, then for any permutation α\alpha on the vertex set V(G)V(G), the permutation graph α(G)\alpha(G) is (s,t)(s,t)-supereulerian if and only if s+tκ2˘7(G)s+t\le \kappa\u27(G). For a non-negative integer sV(G)3s\le |V(G)|-3, a graph GG is ss-Hamiltonian if the removal of any ksk\le s vertices results in a Hamiltonian graph. Let is,t(G)i_{s,t}(G) and hs(G)h_s(G) denote the smallest integer ii such that the iterated line graph Li(G)L^{i}(G) is (s,t)(s,t)-supereulerian and ss-Hamiltonian, respectively. In Chapter 4, for a simple graph GG, we establish upper bounds for is,t(G)i_{s,t}(G) and hs(G)h_s(G). Specifically, the upper bound for the ss-Hamiltonian index hs(G)h_s(G) sharpens the result obtained by Zhang et al. in [Discrete Math., 308 (2008) 4779-4785]. Harary and Nash-Williams in 1968 proved that the line graph of a graph GG is Hamiltonian if and only if GG has a dominating closed trail, Jaeger in 1979 showed that every 4-edge-connected graph is supereulerian, and Catlin in 1988 proved that every graph with two edge-disjoint spanning trees is a contractible configuration for supereulerianicity. In Chapter 5, utilizing the notion of partition-connectedness of hypergraphs introduced by Frank, Kir\\u27aly and Kriesell in 2003, we generalize the above-mentioned results of Harary and Nash-Williams, of Jaeger and of Catlin to hypergraphs by characterizing hypergraphs whose line graphs are Hamiltonian, and showing that every 2-partition-connected hypergraph is a contractible configuration for supereulerianicity. Applying the adjacency matrix of a hypergraph HH defined by Rodr\\u27iguez in 2002, let λ2(H)\lambda_2(H) be the second largest adjacency eigenvalue of HH. In Chapter 6, we prove that for an integer kk and a rr-uniform hypergraph HH of order nn with r4r\ge 4 even, the minimum degree δk2\delta\ge k\ge 2 and kr+2k\neq r+2, if λ2(H)(r1)δr2(k1)n4(r+1)(nr1)\lambda_2(H)\le (r-1)\delta-\frac{r^2(k-1)n}{4(r+1)(n-r-1)}, then HH is kk-edge-connected. %κ2˘7(H)k\kappa\u27(H)\ge k. Some discussions are displayed in the last chapter. We extend the well-known Thomassen Conjecture that every 4-connected line graph is Hamiltonian to hypergraphs. The (s,t)(s,t)-supereulerianicity of hypergraphs is another interesting topic to be investigated in the future

    Hamiltonicity of 3-connected line graphs

    Get PDF
    Thomassen conjectured that every 4-connected line graph is Hamiltonian. Lai et al. conjectured [H. Lai, Y. Shao, H. Wu, J. Zhou, Every 3-connected, essentially 11-connected line graph is Hamiltonian, J. Combin. Theory Ser. B 96 (2006) 571-576] that every 3-connected, essentially 4-connected line graph is Hamiltonian. In this note, we first show that the conjecture posed by Lai et al. is not true and there is an infinite family of counterexamples; we show that 3-connected, essentially 4-connected line graph of a graph with at most 9 vertices of degree 3 is Hamiltonian; examples show that all conditions are sharp. (C) 2012 Elsevier Ltd. All rights reserved.NSFC [11171279, 11071016]; Beijing Natural Science Foundation [1102015
    corecore