594 research outputs found

    Weighted Sum Synchronization of Memristive Coupled Neural Networks

    Get PDF
    Funding Information: This work is supported by the National Natural Science Foundation of China (No. 61971185) and the Open Fund Project of Key Laboratory in Hunan Universities (No. 18K010). Publisher Copyright: © 2020 Elsevier B.V.It is well known that weighted sum of node states plays an essential role in function implementation of neural networks. Therefore, this paper proposes a new weighted sum synchronization model for memristive neural networks. Unlike the existing synchronization models of memristive neural networks which control each network node to reach synchronization, the proposed model treats the networks as dynamic entireties by weighted sum of node states and makes the entireties instead of each node reach expected synchronization. In this paper, weighted sum complete synchronization and quasi-synchronization are both investigated by designing feedback controller and aperiodically intermittent controller, respectively. Meanwhile, a flexible control scheme is designed for the proposed model by utilizing some switching parameters and can improve anti-interference ability of control system. By applying Lyapunov method and some differential inequalities, some effective criteria are derived to ensure the synchronizations of memristive neural networks. Moreover, the error level of the quasi-synchronization is given. Finally, numerical simulation examples are used to certify the effectiveness of the derived results.Peer reviewe

    Moment-based analysis of pinning synchronization in complex networks with sign inner-coupling configurations

    Get PDF
    In this paper, pinning synchronization of complex networks with sign inner-coupling configurations is investigated from a moment-based analysis approach. First, two representative non-linear systems with varying dynamics parameters are presented to illustrate the bifurcation of the synchronized regions. The influence of sign inner-coupling configurations on network synchronizability is then studied in detail. It is found that adding negative parameters in the inner-coupling matrix can significantly enhance the network synchronizability. Furthermore, the eigenvalue distribution of the coupling and control matrix in the pinned network is estimated using the spectral moment analysis. Finally, numerical simulations are given for illustration

    Robust Control

    Get PDF
    The need to be tolerant to changes in the control systems or in the operational environment of systems subject to unknown disturbances has generated new control methods that are able to deal with the non-parametrized disturbances of systems, without adapting itself to the system uncertainty but rather providing stability in the presence of errors bound in a model. With this approach in mind and with the intention to exemplify robust control applications, this book includes selected chapters that describe models of H-infinity loop, robust stability and uncertainty, among others. Each robust control method and model discussed in this book is illustrated by a relevant example that serves as an overview of the theoretical and practical method in robust control

    SATURATED AND ASYMMETRIC SATURATED IMPULSIVE CONTROL SYNCHRONIZATION OF COUPLED DELAYED INERTIAL NEURAL NETWORKS WITH TIME-VARYING DELAYS

    Get PDF
    This paper considers control systems with impulses that are saturated and asymmetrically saturated which are used to examine the synchronization of inertial neural networks (INNs) with time-varying delay and coupling delays. Under the theoretical discussions, mixed delays, such as transmission delay and coupling delay are presented for inertial neural networks. The addressed INNs are transformed into first order differential equations utilizing variable transformation on INNs and then certain adequate conditions are derived for the exponential synchronization of the addressed model by substituting saturation nonlinearity with a dead-zone function. In addition, an asymmetric saturated impulsive control approach is given to realize the exponential synchronization of addressed INNs in the leader-following synchronization pattern. Finally, simulation results are used to validate the theoretical research findings

    Statistical physics approaches to the complex Earth system

    Get PDF
    Global climate change, extreme climate events, earthquakes and their accompanying natural disasters pose significant risks to humanity. Yet due to the nonlinear feedbacks, strategic interactions and complex structure of the Earth system, the understanding and in particular the predicting of such disruptive events represent formidable challenges for both scientific and policy communities. During the past years, the emergence and evolution of Earth system science has attracted much attention and produced new concepts and frameworks. Especially, novel statistical physics and complex networks-based techniques have been developed and implemented to substantially advance our knowledge for a better understanding of the Earth system, including climate extreme events, earthquakes and Earth geometric relief features, leading to substantially improved predictive performances. We present here a comprehensive review on the recent scientific progress in the development and application of how combined statistical physics and complex systems science approaches such as, critical phenomena, network theory, percolation, tipping points analysis, as well as entropy can be applied to complex Earth systems (climate, earthquakes, etc.). Notably, these integrating tools and approaches provide new insights and perspectives for understanding the dynamics of the Earth systems. The overall aim of this review is to offer readers the knowledge on how statistical physics approaches can be useful in the field of Earth system science

    Chimera States on a Ring of Strongly Coupled Relaxation Oscillators

    Get PDF
    Weakly coupled oscillators can exhibit seemingly incongruous synchronization patterns comprised of coherent and incoherent spatial domains known as chimera states. However, the weak coupling approximation is invalid when the characteristic phase response curve of an oscillator does not scale linearly with the coupling strength and instead changes its shape. In chemical experiments with photo-coupled relaxation oscillators, we find that beyond weak coupling chimera patterns consist of different coexisting cluster states. Numerical modeling reveals that the observed cluster states result from a phase-dependent excitability that is also commonly observed in neural tissue and cardiac pacemaker cells.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität BerlinDFG, GRK 1558, Kollektive Dynamik im Nichtgleichgewicht: in kondensierter Materie und biologischen SystemenDFG, SFB 910, Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept
    corecore