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Weakly coupled oscillators can exhibit seemingly incongruous synchronization patterns

comprised of coherent and incoherent spatial domains known as chimera states.

However, the weak coupling approximation is invalid when the characteristic phase

response curve of an oscillator does not scale linearly with the coupling strength and

instead changes its shape. In chemical experiments with photo-coupled relaxation

oscillators, we find that beyond weak coupling chimera patterns consist of different

coexisting cluster states. Numerical modeling reveals that the observed cluster states

result from a phase-dependent excitability that is also commonly observed in neural

tissue and cardiac pacemaker cells.
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1. INTRODUCTION

In populations of coupled nonlinear oscillators synchronization [1] and macroscopic non-
equilibrium pattern formation [2] are intrinsically linked. In 2002, studying synchronization
in a system of nonlocally coupled phase oscillators, Kuramoto and co-workers discovered a
symmetry-broken solution comprised of in-phase synchronized and desynchronized oscillatory
domains [3, 4]. This state, which was later named chimera state due to its incongruous composition,
triggered an increasing number of studies on partial synchronization in populations of coupled
nonlinear oscillators [5, 6]. The existence of chimera states on ring topologies has been verified
in experiments with chemical and electrochemical oscillators [7, 8], electronic units [9, 10],
laser systems [11, 12] and hydrodynamically coupled colloids [13]. They are thought to play an

important role in neurological disorders [14] and new metamaterials [15].
Intuitively, chimera states exist due to the nonlocal coupling term, which does not depend

on the state of a single local element, but takes into account the spatially extended pattern. Both
dynamically distinct domains modulate the coupling term to maintain themselves, respectively. A
spatial domain with high coherence results in a large feedback signal that supports high coherence.
Conversely a domain with a low coherence leads to a small feedback signal that obstructs high
coherence. Together this reinforces the respective coexisting, but incongruous spatiotemporal
dynamics [4].

Many studies on coupled oscillators utilize the paradigmatic Kuramoto phase oscillator model
due to its simplicity and analytical tractability [16, 17]. Our goal in this paper is to go beyond the
weak coupling oscillators and describe chimera patterns on a ring of strongly coupled oscillators,
which are based on chemical laboratory experiments. The commonly employed weak-coupling
limit in oscillator networks is defined as the lowest order of a systematic perturbation expansion
in a smallness parameter ǫ, reducing dynamics of coupled limit-cycle oscillators to pure phase
dynamics. This reduction is possible, if the decay of amplitude disturbances, quantified by the
transversal Lyapunov exponent, is much faster than the decay of phase disturbances.
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A clear definition of a strong coupling limit is not so obvious
and the focus of current research on coupled oscillators [18,
19]. A coupling scheme that implies substantial changes in
the oscillator frequencies, cannot be viewed as weak. One
possibility to differentiate between weak and strong coupling is
to measure the phase response curve (PRC) of an oscillator [20].
It quantifies how much the phase φ, that parametrizes the
oscillation cycle, is advanced or delayed in response to an
external perturbation. Small perturbations representative of weak
coupling lead to a continuous phase response curve Q(φ). Strong
coupling perturbations evoke a non-smooth, discontinuous PRC
exhibiting a finite jump, for example. Moreover, the PRC under
weak-coupling scales linearly with the perturbation amplitude A,
while under strong coupling the amplitude scaling turns out to
be nonlinear: Q(φ; λA) 6= λ × Q(φ;A) with λ ∈ R.

2. MODELS

The dynamics on an arbitrary finite network of N interacting
Kuramoto phase oscillators are described by

dφi

dt
= ωi +

N
∑

j=1

Wij sin(φj − φi − α) . (1)

The state of the i-th oscillator is given by a scalar time-dependent
phase variable φi(t), that repeatedly cycles through values from 0
to 2π . The interaction with other nodes in the network effectively
modulates the natural angular frequency ωi. The modulation
strength is encoded in the weighted adjacency matrix Wij and a
2π-periodic interaction function of the phase difference φj − φi.

The weighted adjacency matrix Wij can encode any network
connectivity. Additionally each link can have its own individual
weight. In this paper we focus on global coupling given byWij =

K/N (1 − δij), where δij is the Kronecker delta, and rings with
nonlocal coupling given by Wij = K exp (||i− j||/κ). In both
cases K is the coupling strength. For global coupling, the weights
are normalized by the number of nodes N. In the nonlocally
coupled system, the weights between nonlocal neighbors decay
exponentially with a characteristic range of κ according to their
distance on the ring network.

The simplest choice for the interaction function is the first
Fourier mode. Given a vanishing phase frustration parameter
α = 0, if the neighboring node j is ahead in phase, node i
will accelerate and conversely if neighbor j lags behind, then
node i will decelerate. In the case of identical natural frequencies
this interaction eventually leads to exact in-phase alignment.
For α 6= 0, the contribution by the interaction function does
not vanish for in-phase alignment, which effectively impedes
in-phase synchronization.

Remarkably, all dissipative systems with oscillatory dynamics
can be reduced to a Kuramoto phase model with an appropriate
interaction function under the assumption that the coupling
between oscillators is weak [21]. As discussed above the most
important consequence is that the resultant phase change1φ due
to a perturbation scales linearly with the perturbation amplitude.
However, for strongly coupled oscillators this condition can be

violated, when the total effect of multiple perturbations is not
equal to the linear superposition of the individual effects.

We illustrate one possible realization of this case and its real-
world relevance with experimentally well-accessible chemical
relaxation oscillators [22–24], that show qualitatively identical
behavior to biological nerve and heart cells [25–31]. The
oscillators are based on the Belousov-Zhabotinsky reaction
and their dynamics are well-captured in the two-component
non-dimensionalized Zhabotinsky-Buchholtz-Kiyatkin-Epstein
(ZBKE) model [23, 32, 33]:

u̇i =
1

ǫ1

(

Ii − ui(1+ ui)−
ui − µ

ui + µ

(

β + qi
αvi

ǫ3 + 1− vi

)

+ γ ǫ2w
2
ss,i + (1− vi)wss,i

)

,

v̇i = 2Ii + (1− vi)wss,i −
αvi

ǫ3 + 1− vi
,

wss,i(ui, vi) =
1

4γ ǫ2

(

√

16γuiǫ2 + v2i − 2vi + 1+ vi − 1

)

,

Ii(t) = I0 +

N
∑

j=1

Wij

[

vj(t − τ )− vi(t)
]

.

(2)

The oscillation takes place in the dimensionless concentrations of
u (bromous acid, HBrO2) and v (oxidized form of the ruthenium-
tris-dimethylene-bipyridine catalyst, Ru(dmbpy)3+3 ). The latter
can be measured spectrophotometrically via fluorescence light
in an experiment [23]. The parameters ǫ1, ǫ2, ǫ3,α,β , γ ,µ, q
depend on reaction rates and initial reagent concentrations.
The dimensionless steady-state concentration wss (bromous acid
radical HBrO+

2 ) adapts adiabatically. The interaction between
oscillators is mediated by individual light application Ii via a
spatial light modulator that influences the production rates of u
and v. For comparability with the Kuramoto model Equation (1),
here the interaction is chosen to depend linearly on the difference
of the oxidized catalyst concentrations vj − vi. To allow for phase
frustration in limit cycle oscillators, instead of a phase frustration
parameter α Equation (1) we utilize a time delay: vj(t− τ )− vi(t)
[5]. Only for τ = 0 in-phase synchronization is possible, whereas
τ 6= 0 obstructs it. The weighted adjacency matrix Wij in the
coupling term encodes the network connectivity and can be freely
chosen as discussed above. Due to the dissipative nature of both
models, we employ the explicit Euler method with a fixed time
step 1t for numerical simulation [34].

To get intuition for the dynamics of the ZBKE model
(Equation 2), we present the u-v phase plane of a single
oscillator in Figure 1A. It features an unstable fixed point
inside a stable limit cycle that resulted from a Hopf bifurcation
with a consecutive canard explosion [35]. The phase space
structure with the cubic shape of the u-nullcline (continuous)
and its single intersection with the v-nullcline (dashed) resembles
the FitzHugh-Nagumo model for neuronal oscillations [36].
However, the ZBKE phase plane is plotted in logarithmic scale
and thus there are only single fast and slow domains on the right
and left branch of the limit cycle, respectively. This is further
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FIGURE 1 | Relaxation oscillator dynamics of the ZBKE model (A) Logarithmically-scaled phase plane consisting of unstable fixed point (empty dot) at the intersection

of u- and v-nullclines (continuous, dashed black lines) surrounded by stable limit cycle (gray). Two example trajectories (blue) lasting 3 dimensionless time units

illustrate fast and slow dynamics along the limit cycle. (B) Time series of u, v variables (blue, red) exhibit time scale separation that is characteristic for a relaxation

oscillation. (C) Phase response curves for different perturbation amplitudes (red to yellow: Ip = {1, 1/2, 1/4, 1/8} × 10−3, blue: Ip = 10−5). Insets show perturbation

(red dashed) and perturbed phase plane trajectories (blue) in phase space underlying the measured phase change 1φ. Parameters: ǫ1 = 0.11, ǫ2 = 1.7× 10−5,

ǫ3 = 1.6× 10−3, α = 0.1, β = 1.7× 10−5, γ = 1.2, µ = 2.4× 10−4, q = 0.7, I0 = 5.25× 10−4, natural frequency ω0 = 0.177, time step 1t = 2× 10−4 .

reflected in the consecutive switches between fast rise and slow
decay of the v variable (Figure 1B).

To gain insight into the synchronization properties of a set of
such oscillators, we measure the corresponding phase response
curve Q(φ). In Figure 1C we choose an additive perturbation,
(u, v) 7→ (u+ǫ−1

1 Ip, v+2Ip), where Ip is the perturbation strength.
This perturbation imitates a short application of light intensity in
the experiment.

In contrast to commonly employed smooth phase response
curves [20] our PRC exhibits two distinguishing features
(Figure 1): First, there is a jump-discontinuity between an initial
flat interval, during which the oscillator is insensitive to a
perturbation, 1φ = 0, and a second interval, which is well
approximated by 1φ = 2π − φ. Secondly, the perturbation
strength does not linearly scale the amplitude of the PRC, but
instead changes the position of the jump point φ∗ and thus
the shape, Q(φ; λA) 6= λ × Q(φ;A). Overall the PRC is well
captured by:

Q(φ; Ip) =

{

0 ,φ < φ∗(Ip)

2π − φ ,φ ≥ φ∗(Ip)
. (3)

These features are incompatible with the commonly employed
weak coupling approximation. The reason is that the

perturbation amplitudes are large and our system exhibits
phase-sensitive excitability [37]: During the refractory window at
early phases, a perturbation of fixed amplitude fails to push the
state across the u-nullcline, but it succeeds during the vulnerable
window at later phases and induces a new oscillation cycle
immediately (insets Figure 1C). Consequently the position of the
jump point φ∗(Ip) in the PRC for a certain perturbation strength
Ip can be predicted by the distance between the left branch of the
limit cycle and the unstable branch of the u-nullcline. Note that
for weak perturbations the PRC qualitatively changes its shape
and scales linearly with the perturbation amplitude, as expected.

In Figure 2 we highlight the contrasting synchronization
behavior of strongly coupled oscillators (Equation 2) by direct
comparison with Kuramoto phase oscillators (Equation 1), which
are weakly coupled by definition. It is well known that in
an all-to-all coupled network heterogeneous Kuramoto phase
oscillators synchronize beyond a critical coupling strength [16].
The Kuramoto order parameter,

R =
1

N

∣

∣

∣

∣

∣

∣

N
∑

j=1

eiφj

∣

∣

∣

∣

∣

∣

, (4)
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FIGURE 2 | Comparison of chimera states in weakly and strongly coupled oscillators on a ring. Left column: Kuramoto phase oscillators (Equation 1), Right column:

ZBKE relaxation oscillators (Equation 2). (A,B) Collective dynamics in a globally coupled network quantified by Kuramoto order parameters as a function of

synchronization frustration (α, τ ) exhibiting in-phase synchronization, incoherence and d-clusters with d ∈ {2, 3}. Parameters for phase (ZBKE) oscillators: K = 50,

1t = 5× 10−3 (K = 4× 10−5, 1t = 2× 10−4). (C,D) Collective dynamics on a nonlocally coupled ring network consisting of dynamic modes found in a globally

coupled network. Snapshots show phases (black) and frequencies (yellow). Parameters for phase (ZBKE) oscillators: K = 0.1, κ = 35, α = 1.457 (K = 7.93× 10−4,

κ = 2, τ = 8.67, q ∈ [0.69, 0.71]). (E,F) Smoothed distributions of in-phase (red), 3-cluster (purple) and incoherent (gray) oscillator populations on the phase circle.

Parameters: N = 100. Others as in Figure 1 .

quantifies the level of phase synchronization. It ranges from
0 for evenly balanced phase distributions, that include
incoherent and cluster states, to 1 for coherent states where
all phases narrowly align together. Inclusion of an additive
phase frustration parameter in the interaction function
of the Kuramoto model, sin(φj − φi − α), allows for
tuning the interactions between oscillators from attractive
to repulsive, leading, respectively to phase alignment for
α ∈ [0,π/2[∪]3π/2, 2π[ or conversely to frequency detuning
for α ∈ [π/2, 3π/2] (Figure 2A).

On a ring topology with nonlocal interactions, it is possible
for these two distinct collective states to exist simultaneously

in neighboring spatial domains realizing a chimera state
(Figure 2C). Oscillators 21-79 are not frequency-locked and their
phases are spread out. In contrast, oscillators 1–20 and 80–
100 are frequency-locked and their phases align together. They
exhibit an average frequency that is smaller than their mean
natural frequency, because the phase frustration α for 1φ = 0
does not get compensated.

This phase pattern is furthermore illustrated with a smoothed
polar histogram of the oscillator population (Figure 2E). To
differentiate between the populations we employ a localized
version of the Kuramoto order parameter that measures the
phase coherence in a spatially-bounded interval [i − ℓ, i + ℓ]
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around oscillator i:

ri =
1

2ℓ + 1

∣

∣

∣

∣

∣

∣

i+ℓ
∑

j=i−ℓ

eiφj

∣

∣

∣

∣

∣

∣

. (5)

While oscillators in the coherent population, identified by ri ≥
0.7, coalesce to the same phase, incoherent oscillators with
ri < 0.7 are more evenly spread out over the phase circle. The
distribution of the incoherent population also exhibits a minor
peak that is slightly ahead in phase of the coherent population
due to intermittent phase-locking.

In comparison, the strongly coupled oscillators feature
coherent and apparently incoherent states in an all-to-all network
(Figure 2B). On closer inspection the incoherent state is revealed
to be a d-cluster with d ∈ {2, 3} as quantified by Rd − R1 with the
d-cluster Kuramoto order parameter [38]

Rd =
1

N

∣

∣

∣

∣

∣

∣

N
∑

j=1

eidφj

∣

∣

∣

∣

∣

∣

. (6)

For d = 3 it maps phases of 0, 2π/3, 4π/3 and 2π onto the same
value due to the 2π/d-periodicity of the complex exponential.
Note that Rd also approaches unity for 1-cluster states, which
are also known as coherent in-phase synchronization states. To
distinguish d-cluster states from 1-cluster states, we use the
difference Rd − R1.

On the nonlocally coupled ring network we again observe
coexistence of the collective states from the all-to-all network.
However, for the strongly coupled ZBKE oscillators these are
1-cluster and 3-cluster states (Figure 2D). Apart from the state
shown, we also observed coexisting 1 and 2-cluster states as
well as 2 and 3-cluster states for other coupling parameters.
The polar phase histogram (Figure 2F) clearly highlights the
distinct populations as identified by rd,i, which is a localized
version of d-cluster Kuramoto order parameter (Equation 6)
similar to Equation (5). The coherent oscillators (r1,i ≥ 0.7)
coalesce around the same phase, while the members of the
3-cluster population (r3,i − r1,i > 0.5) are found at three
distinct locations on the phase circle. Oscillators at the spatial
border between both clusters fail to join either of them due to
competing perturbations.

We stress that themechanism for cluster formation in strongly
coupled limit cycle oscillators with delay is qualitatively different
from Kuramoto phase oscillators with higher harmonics in the
interaction function. The number of clusters for strongly coupled
oscillators is not determined by the number of harmonics in the
interaction function [21], but instead by the size of the refractory
window in relation to the time delay τ in the coupling. The role
of time delay is illustrated for a 2-cluster state in Figure 3.

In a globally coupled network starting from uniformly
random phases, oscillators will join either of two clusters,
depending on whether they are initially in their refractory
window or not. Once the two clusters establish themselves, they
stabilize each other via delayed perturbations (Figure 3A) that
are sharply localized in time due to the peaked waveform of
the v variable (Figure 1B). Even though the network is globally

FIGURE 3 | Cluster state mechanism. (A) The smoothed polar histogram

shows two antiphasic subpopulations in a globally coupled network. They

perturb each other a time δ after they have been perturbed themselves,

respectively. Parameters: N = 100, K = 1.4× 10−4, τ = 8.67. Other

parameters as in Figure 2. (B) The 2-cluster state emerges if the perturbation

from the other cluster arrives in the vulnerable window (green) given by the

jump point t* in the PRC.

coupled, this perturbation does not affect the population that
emits it, because its oscillators are still in their refractory window
(Figure 3B). Only the subsequent perturbation from the second
cluster induces a new firing event in the first cluster, because it
arrives in the vulnerable window. Consequently the period of an
oscillator is T2 = 2δ, where δ = τ + 1tpeak that accounts for
the transmission delay and the time required for a peak in v(t)
to rise (1tpeak ≈ 1). Utilizing the PRC, we find that a necessary
condition for the appearance of a 2-cluster is that the period T2

exceeds the refractory window given by the jump discontinuity
point t∗ = φ∗/ω0. Note that this can be generalized to d-clusters
with d ≥ 1, whose periods follow Td = δ×d/1d, where 1d < d
is the number of omitted clusters during one spike transmission.
It turns out that for weaker coupling strength K, and hence larger
refractory windows, cluster states with larger d are possible. This
opens the possibility of chimera states, which are comprised of
spatial domains exhibiting various d-cluster states [33, 39].

3. EXPERIMENTS

To demonstrate the real-world viability of the chimera state
in strongly coupled relaxation oscillators, we utilize a large
reservoir of more than 2,000 chemical micro-oscillators that are
coupled via light illumination [23, 33, 39]. From this reservoir
we select N = 100 oscillators with a narrow natural frequency
distribution (ω0 = 0.07 ± 0.01Hz). Starting from random
initial conditions we observe the development of a two-headed
chimera state consisting of two in-phase synchronized domains
separated by noisy cluster states (Figures 4A,B). Similar multi-
headed chimera states were previously only observed in laser
systems [11, 12]. Due to the inherent heterogeneity in periods and
phase response behavior [40], the oscillators in the clusters show
a larger phase spread than in simulations with homogeneous
oscillators. Stronger heterogeneity can furthermore lead to phase
switchers [41], which prevent the formation of stationary clusters,
resulting in an apparently incoherent domain.
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FIGURE 4 | Two-headed chimera state. (A) Experimental space-time plot of the fluorescence intensities of N = 100 nonlocally photo-coupled chemical oscillators

exhibiting a two-headed chimera state. (B) Snapshot of instantaneous phases and time-averaged frequencies at time t = 586 s revealing two in-phase synchronized

and two noisy cluster domains. Parameters: K = 0.1, κ = 3.3, τ = 32 s, T0 = 86± 12 s, [H2SO4]0 = 0.77M, [NaBrO3]0 = 0.51M, [malonic acid]0 = 0.16M, catalyst

load: 2.5× 10−5 mol Rudmbipy33 + /g resin. (C) Numerical space-time plot of the oxidized catalyst v. (D) Snapshot of instantaneous phases and time-averaged

frequencies at time t = 1, 362 revealing two in-phase synchronized and two noisy cluster domains. Parameters: K = 2.98× 10−4, κ = 4, τ = 8.67. Other parameters

as in Figure 1.

We stress that the chimera state with strongly coupled
oscillators does not require special initial conditions as in the
case with phase oscillators [42]. The space-time plot of the
observed fluorescence intensities emitted by the oscillators shows
the spontaneous formation of the first coherent head (i ∈

[8, 18]) in an environment of incoherent oscillators after only
3 periods. The second head (i ∈ [52, 63]) nucleates at the
opposite side of the ring network after 7 periods. After their
formation the coherent heads grow over 8 periods until they
encompass about 30 oscillators. Upon reaching this extent, their
size fluctuates, but their position is fixed on the ring. A snapshot
of the phases and frequencies at t = 586 s shows the coherent
domains and the clusters with equal phase differences between
their constituent subgroups. Even though both coherent heads
are respectively in-phase synchronized and move at the same
frequency, there is a phase-lag between them. Since in a d-cluster
domain, all oscillators are phase-locked they all exhibit the same
frequency depending on the number of clusters d. Thus, the
frequency distribution of a chimera state consisting of different
d-clusters shows distinct noisy flat plateaus for each cluster. This
is in contrast to chimera states in Kuramoto phase oscillators,

where the frequency distribution exhibits a flat plateau for
synchronized oscillators and a large band of frequencies for
desynchronized oscillators.

Corresponding numerical simulations (Figures 4C,D)
successfully reproduce the two-headed chimera state. In contrast
to the experiments, the space-time plot shows a different route to
a two-head chimera. At the beginning more than two coherent
domains form, but over time they merge together or breakup
into a 3-cluster state until only two coherent heads remain.
The simulations also highlight that the phase distribution, here
consisting of coherent and 3-cluster domains, is not enough
to fully characterize the state. The snapshot in Figure 4D

shows that the 3-cluster domains have a larger frequency than
the coherent domains, whereas the experiments shows the
opposite relationship.

Within established classification schemes put forward
by Kemeth et al. [43] and Gopal et al. [44], our states
can be identified as two-headed static chimera states
based on the spatial correlation measure g0(t) and
strength of incoherence SI(t) with a discontinuity
measure η = 2.
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4. CONCLUSIONS

We analyzed the collective behavior of strongly coupled limit
cycle oscillators through simulations and experiments. Under
strong perturbations the characteristic phase response curve
develops a jump-discontinuity, whose position depends on the
perturbation amplitude. This behavior is directly rooted in the
phase-dependent excitability of the oscillator (Figure 1) and is
found commonly in nature [25–31].

We further numerically elucidated the differences between
chimera states in Kuramoto phase oscillators and ZBKE
relaxation oscillators as exemplary cases for weak and strong
coupling. The coherence-incoherence chimera states emerging
in the case of weakly coupled Kuramoto phase oscillators are
replaced with chimera states consisting of coexisting domains
of coherence and d-clusters for strongly coupled relaxation
oscillators (Figure 2). The cluster states can be identified using
generalized Kuramoto order parameters [38] and their formation
can be understood in an all-to-all network with the help of
the phase response curve (Figure 3). Ultimately we verified our
predictions and their real-world robustness in an experimental
setup with photo-coupled chemical oscillators and observed a
two-headed chimera state that consisted of two coherent domains
and two 3-cluster states (Figure 4). In the future it would be
interesting to apply previously developed control schemes[45–
47] in the experiment to dictate the position, drift speed and
lifetime of the observed multi-headed chimera state as well as
investigate the role of noise [48] and multi-layer interaction [49].

Besides resulting in chimera states of different nature,
the strongly coupled oscillators also highlight the connection
between collective states in global and nonlocal networks. Our

results suggest that beyond incoherence-coherence patterns,
chimera states can be viewed as time-dependent pattern with
distinct spatial domains, whose behavior is inherited from
the various dynamical modes during global coupling of the
underlying dynamical units.
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