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In this paper, pinning synchronization of complex networks with sign inner-
coupling configurations is investigated from a moment-based analysis
approach. First, two representative non-linear systems with varying dynamics
parameters are presented to illustrate the bifurcation of the synchronized regions.
The influence of sign inner-coupling configurations on network synchronizability
is then studied in detail. It is found that adding negative parameters in the inner-
coupling matrix can significantly enhance the network synchronizability.
Furthermore, the eigenvalue distribution of the coupling and control matrix in
the pinned network is estimated using the spectral moment analysis. Finally,
numerical simulations are given for illustration.
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1 Introduction

Synchronization is a typical collective behavior in complex networks [1–5]. In the past
two decades, the issues of synchronization, control, and optimization in complex network
systems have become focal subjects in network science and engineering [6–31], and
numerous works have been reported on such topics as complete synchronization [6],
near-synchronization [32], phase synchronization [33], bounded synchronization [34],
fixed-time synchronization [35, 36], heterogeneous node dynamics [37], multiplex
networks [38], time-delay systems [39–41], and time-varying networks [42, 43].

It has been demonstrated that the local stability of a complex dynamical network under
the pinning control can be converted into two independent sub-problems: identifying the
synchronized regions of the pinned network and analyzing the scaled eigenvalues of the
coupling and control matrix [44]. On one hand, the bifurcation behavior of the synchronized
regions has been observed in complex networks with varying node parameters [39, 40, 45].
Various rich bifurcation patterns of the synchronized regions have been found in the pioneer
work [45]. On the other hand, the moment-based analysis approach [46–48] has been
introduced to successfully estimate the eigenvalue distribution of the coupling and control
matrix [49]. Therein, without performing explicit eigenvalue decomposition, the eigenvalue
distribution can be estimated only from the network structural parameters and the control
mechanism.

It is worth noting that most of the above-reviewed works on network synchronization
assume that the inner-coupling matrix consists of zeros and positive parameters. However,
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less attention has been paid to the case that the elements in the
inner-coupling matrix are negative [50]. Interestingly, negative
interactions among the nodes will lead to the enhancement of
the synchronization in complex networks [51]. Moreover, a
recent work on network controllability has revealed that adding
negatively-weighted edges in a signed network can significantly
change its average controllability [52]. Indeed, in real-world
scenarios, it is more reasonable and accurate to model a complex
system using a network with both negative and positive weights on
edges. For instance, in social networks, positive edge weights can
denote the relations of like and friendships, while negative edge
weights on can represent the relations of dislike and foe [53].
Inspired by these observations, a sign inner-coupling matrix with
positive and negative parameters is introduced to denote the
cooperation and competition relationships, respectively, between
the node variables.

The main contributions of this paper are two-fold. First, the
influence of sign inner-coupling configurations on network
synchronizability is studied. The interesting bifurcation behavior of the
synchronized regions is observed in the pinned network with a varying
node dynamics parameter. It is shown that the network synchronizability
can be improved by adding negative parameters in the inner-coupling
matrix, while blindly adding inner-coupling elements with positive
parameters may weaken it. This finding provides a good alternative to
optimize the network synchronizability. Second, the eigenvalue
distribution of the pinned network is analyzed from the moment-
based approach. The analytical expressions of the spectral moments
for a globally coupled network and a nearest-neighbor coupled network
are derived, respectively. It is found that the expected moments depend
not only on the structural parameters of the network but also on the
control mechanism. The derived expected moments are then used to
estimate the eigenvalue distribution. Numerical examples demonstrate
the efficiency of the proposed spectral estimation method.

The rest of the paper is organized as follows. Notation and
preliminaries are given in Section 2. The influence of sign inner-
coupling configurations on network synchronizability is investigated
in Section 3. In Section 4, the estimation of the eigenvalues of the
coupling and control matrix for two representative regular networks
is provided. Section 5 shows the numerical results. Finally, Section 6
concludes the paper.

2 Notation and preliminaries

2.1 Notation

Throughout the paper, let R denote the set of real numbers, Rn

the vector space of n-dimensional real vectors, and Rm×n the set of
m × n real matrices. Let Im be anm ×m identity matrix and diag{a1,
a2, . . ., an} an n × n diagonal matrix. Let ⊗ indicate the Kronecker
product and tr(A) the trace of matrix A.

2.2 Graph theory

Let G � (V, E) be an undirected graph with a node set V �
{1, 2, . . . , N} and an edge set E ⊆ V × V. A path between two nodes,
say i and j, is given by the node sequence v1, v2, . . ., vk, where v1 = i,

vk = j, and (vl, vl+1) ∈ E. An undirected graph G is connected if, for
any two nodes, there exists a path connecting them. Let A �
(Aij) ∈ RN×N denote the adjacency matrix of the undirected
graph G. If there is an edge between nodes i and j, then Aij =
Aji = 1, and Aij = 0 (j ≠ i) otherwise. The degree of node i is the
number of edges directly connected to it and can be denoted by
di � ∑N

j�1Aij. The degree sequence of G is the list of node degrees,
denoted by {d1, d2, . . ., dN}. The degree matrix is, thus, defined asD =
diag{d1, d2, . . ., dN}. The corresponding Laplacian matrix is given by
L = D − A.

2.3 Problem statement

We consider a complex dynamical network of N nodes
described by

_xi t( ) � F xi t( )( ) − σ∑N
j�1

LijHxj t( ), i � 1, 2, . . . , N, (1)

where xi(t) � [xi1(t), xi2(t), . . . , xim(t)]T ∈ Rm is the state vector
of node i. The non-linear function F(·) is continuously
differentiable denoting the self-dynamics of the nodes. σ > 0 is
the global coupling strength. The matrix H ∈ Rm×m describes the
inner-coupling of the state variables of nodes, while the Laplacian
matrix L � (Lij) ∈ RN×N describes the outer-coupling among the
nodes. We assume that the network is undirected and connected.
If there is a connection between node i and node j, then Lij =
Lji = −1; otherwise, Lij = Lji = 0 (j ≠ i). In addition, the diagonal
elements of L are given by

Lii � − ∑N
j�1,j≠i

Lij, i � 1, 2, . . . , N, (2)

which satisfy the diffusion condition ∑N
j�1Lij � 0. It can be verified

that L is a symmetric and diagonalizable matrix.
Suppose that all the nodes have a common equilibrium �x,

satisfying F(�x) � 0. In order to synchronize network (1) at the
state �x, pinning control is applied. The pinned network is, thus,
described as follows:

_xi t( ) � F xi t( )( ) − σ∑N
j�1

LijHxj t( ) − δiσbiH xi t( ) − �x( ),
i � 1, 2, . . . , N,

(3)

where the variable δi denotes whether node i is under control. If
control is directly applied to node i, then δi = 1 with bi = b > 0,
otherwise δi = bi = 0. Here, b denotes the feedback gain to be
designed. Let l (1 ≤ l <N) be the number of pinned nodes. Therefore,∑iδi = l.
Let ei(t) � xi(t) − �x and E(t) � [eT1 (t), eT2 (t), . . . , eTN(t)]T ∈ RmN.

Linearizing system (3) at �x leads to the following error system:

_E t( ) � IN ⊗ JF �x( ) − σC ⊗ H( )E t( ), (4)
where JF(�x) is the Jacobian matrix of F(·) evaluated at �x, C = L + B is
the coupling and control matrix, and B = diag{b1, b2, . . ., bN} is the
feedback gain matrix.

It is worth noting that the matrix C is a real symmetric matrix,
which can be written as Λ = Φ−1CΦ, where Λ = diag{λ1, λ2, . . ., λN}
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with λi, i = 1, 2, . . .,N being the eigenvalues of C, and the columns of
Φ are the set of the corresponding eigenvectors. It can be verified
that the eigenvalues of the matrix IN ⊗ JF(�x) − σC ⊗ H and those of
JF(�x) − σλiH, i � 1, 2, . . . , N are identical. For convenience, let αi =
σλi, i = 1, 2, . . ., N. It has been demonstrated in the literature that the
local stability of the pinned network (3) is determined by the
following generic system [49]:

_η t( ) � JF �x( ) − αH( )η t( ), (5)
where η(t) is a new auxiliary variable.

λm(α) denotes the maximal real part of the eigenvalues of
JF(�x) − αH. The synchronized region S is defined as the range
of α with λm(α) < 0. The synchronization will be achieved if all the
eigenvalues of σC are located inside S.

In summary, pinning synchronization in network (3) is
separated into two sub-problems: 1) identifying the synchronized
regions and 2) analyzing the eigenvalue distribution of σC. Previous
works on the types and bifurcation behavior of synchronized regions
assume that the elements in the inner-coupling matrix are either
zeros or positive parameters. Here, a zero indicates the absence of a
relation between some state variables of nodes, while a positive
parameter characterizes the cooperative relationship between two
corresponding state variables. However, less attention has been paid
to the case of negative or competitive interactions between node
variables. In this paper, a more general inner-coupling matrix
including negative parameters is considered.

Definition 1. If the elements of matrix H consist of the symbols +,
−, and 0, H is then called the sign pattern matrix [50].

For example,

H �
− + 0
0 + 0
0 0 −

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (6)

is called a sign pattern matrix, in which 0, +, and − represent zero,
positive, and negative parameters, respectively.

If the state variables of nodes are coupled through a sign pattern
matrix, the networked system is said to have a sign inner-coupling
configuration. Without loss of generality, in what follows, the
elements of H are denoted by 1, −1, and 0, where “1” indicates
cooperative relationship, “−1” indicates competitive relationship,
and “0” indicates that there is no relation between some state
variables of nodes.

3 Bifurcation of the synchronized
regions

In this section, the influence of sign inner-coupling
configurations on network synchronizability is studied in detail.
In particular, two representative non-linear systems with varying
parameters are given to illustrate the bifurcation of the synchronized
regions.

3.1 Lü system

A single Lü system [54] is described as

_x1

_x2

_x3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � a x2 − x1( )
−x1x3 + γx2

x1x2 − βx3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
where β = 3 and γ = 20. Obviously, �x � [0, 0, 0]T is an equilibrium
point of the aforementioned Lü system, and the Jacobian matrix of
the system is as follows:

JF �x( ) �
−a a 0
0 20 0
0 0 −3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
In what follows, three different types of inner-coupling matrices

are considered.
(i) When the inner-coupling matrix is chosen as

Hl1 �
−1 0 0
1 1 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
the corresponding characteristic equation is obtained as follows:

f λ, α, a( ) � λ + 3( ) λ2 + a − 20( )λ − α2 + 2a + 20( )α − 20a[ ] � 0.

One has λ1 = −3 < 0. If a − 20 > 0 and −α2 + (2a + 20)α − 20a > 0,
then λ2,3 < 0; that is, the pinned network can synchronize at
�x � [0, 0, 0]T. Here, the boundary curves of the synchronized
region are represented by α1 � − �������

a2 + 100
√ + a + 10,

α2 �
�������
a2 + 100

√ + a + 10, and a > 20. In this situation, the
synchronized region of the Lü system with varying dynamics
parameter a and its boundary curves are given as shown in
Figure 1A. The cyan-shaded area denotes the synchronized
region in which λm(α) < 0. The magenta line denotes the
corresponding boundary curve. These notations will be used for
Figures 1B, C and Figure 2.

(ii) When the inner-coupling matrix is chosen as

Hl2 �
−1 1 0
1 1 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
the corresponding characteristic equation is obtained as follows:

f λ, α, a( ) � λ + 3( ) λ2 + a − 20( )λ − 2α2 + 2a + 20( )α − 20a[ ] � 0.

One has λ1 = −3 < 0. If a − 20 > 0 and −2α2 + (2a + 20)α − 20a >
0, then λ2,3 < 0; that is, the pinned network can synchronize at
�x � [0, 0, 0]T. Here, the boundary curves of the synchronized region
are represented by α1 � − ������������

a2/4 − 5a + 25
√ + a/2 + 5, α2 �������������

a2/4 − 5a + 25
√ + a/2 + 5 and a > 20. In this situation, the
synchronized region of the Lü system with varying dynamics
parameter a and its boundary curves are given as shown in
Figure 1B.

(iii) When the inner-coupling matrix is chosen as

Hl3 �
−1 −1 0
1 1 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
the corresponding characteristic equation is obtained as follows:

f λ, α, a( ) � λ + 3( ) λ2 + a − 20( )λ + 2a + 20( )α − 20a[ ] � 0.

One has λ1 = −3 < 0. If a − 20 > 0 and (2a + 20)α − 20a > 0, then
λ2,3 < 0; that is, the pinned network can synchronize at �x � [0, 0, 0]T.
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Here, the boundary curves of the synchronized region are
represented by α0 � 20a

2a+20 and a > 20. In this situation, the
synchronized region of the Lü system with varying dynamics
parameter a and its boundary curves are given as shown in
Figure 1C.

Figure 1 shows the synchronized regions of Lü system for
three different sign inter-coupling matrices. Table 1
further summarizes the synchronized regions for three
specific values of a. It can be observed from Figures 1A, B
that the synchronized region switches from “empty set” to
“bounded region” with the increase in the
dynamics parameter a, while in Figure 1C, the
synchronized region switches from “empty set” to
“unbounded region.”

3.2 Unified chaotic system

A single unified chaotic system [55] is described as

_x1

_x2

_x3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ �
25a + 10( ) x2 − x1( )

28 − 35a( )x1 − x1x3 + 29a − 1( )x2

x1x2 − a + 8
3

x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where a ∈ [0, 1]. Obviously, �x � [0, 0, 0]T is an equilibrium point of
the aforementioned unified chaotic system, and the Jacobian matrix
of the system is as follows:

JF �x( ) �
− 25a + 10( ) 25a + 10( ) 0

28 − 35a 29a − 1 0

0 0 −a + 8
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Then, we consider the following three types of different inner-
coupling matrices:

(i) We set the inner-coupling matrix as

Hu1 �
1 1 0
0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.

FIGURE 1
Synchronized regions of the Lü system with varying dynamics parameter a and its boundary curves.

FIGURE 2
Synchronized regions of the unified chaotic system with varying dynamics parameter a and its boundary curves.
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The corresponding characteristic equation is obtained as
follows:

f λ, α, a( ) � λ + a + 8
3

( ) λ2 + 11 − 4a + α( )λ[
+ 29 − 64a( )α − 25a + 10( ) 27 − 6a( )] � 0.

One obtains λ1 � −a+8
3 < 0. If 11 − 4a + α > 0 and (29 − 64a)α −

(25a + 10)(27 − 6a) > 0, then λ2,3 < 0; that is, the pinned network can
synchronize at �x � [0, 0, 0]T. Here, the boundary curve of the
synchronized region is represented by α0 = (25a + 10)(27 − 6a)/
29 − 64a. When the inner-coupling matrix is set as Hu1, the
synchronized region of unified chaotic system with varying
dynamics parameter a and its boundary curve are illustrated in
Figure 2A.

(ii) We set the inner-coupling matrix as

Hu2 �
1 1 0
1 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
The corresponding characteristic equation is obtained as

follows:

f λ, α, a( ) � λ + a + 8
3

( ) λ2 + 11 − 4a + α( )λ − α2[
− 39a − 39( )α − 25a + 10( ) 27 − 6a( )] � 0.

One has λ1 � −a+8
3 < 0. If 11 − 4a + α > 0 and −α2 − (39a − 39)α −

(25a + 10)(27 − 6a) > 0, then λ2,3 < 0; that is, the pinned network can
synchronize at �x � [0, 0, 0]T. Here, the boundary curves of
the synchronized region are represented by

α1 �
�����������������������������
4(25a + 10)(6a − 27) + (39a − 39)2

√
/2 − (39a − 39)/2, α2 �

−
�����������������������������
4(25a + 10)(6a − 27) + (39a − 39)2

√
/2 − (39a − 39)/2. When

the inner-coupling matrix is set as Hu2, the synchronized region
of the unified chaotic systemwith varying dynamics parameter a and
its boundary curves are shown in Figure 2B.

(iii) We set the inner-coupling matrix as

Hu3 �
1 1 0
−1 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
The corresponding characteristic equation is obtained as

f λ, α, a( ) � λ + a + 8
3

( ) λ2 + 11 − 4a + α( )λ + α2[
+ 19 − 89a( )α − 25a + 10( ) 27 − 6a( )] � 0.

One has λ1 � −a+8
3 < 0. If 11 − 4a + α > 0 and α2 + (19 − 89a)α −

(25a + 10)(27 − 6a) > 0, then λ2,3 < 0; that is, the pinned network can
synchronize at �x � [0, 0, 0]T. Here, the boundary curves of the

synchronized region are represented by α1 ������������������������������
4(25a + 10)(6a − 27) + (19 − 89a)2

√
/2 − (19 − 89a)/2 and α2 � −�����������������������������

4(25a + 10)(6a − 27) + (19 − 89a)2
√

/2 − (19 − 89a)/2. When the
inner-coupling matrix is set as Hu3, the synchronized region of the
unified chaotic system with varying dynamics parameter a and its
boundary curves are shown in Figure 2C.

Figure 2 shows the synchronized regions of the unified chaotic
system for three different sign inter-coupling matrices. Table 2
further summarizes the synchronized regions for three specific
values of a. It can be observed from Figures 2A, C that the
synchronized region switches from “unbounded region” to
“empty set” with the increase in the dynamics parameter a, while
in Figure 2B, the synchronized region switches from “bounded
region” to “empty set.”

In summary, there exist bifurcation phenomena in the
synchronized regions of complex networks for some specific
inner-coupling matrices. The synchronized region can evolve
with the varying node dynamics parameter and switch from one
type to another type.

Given the node dynamics, the larger the range of the
synchronized region corresponding to the sign inner-coupling
matrix, the easier it is for the network to achieve
synchronization. From the aforementioned simulations, the
following conclusions can be drawn:

(i) From Figure 1, it can be seen that when the inner-coupling
matrix is chosen as Hl2, the synchronized region is smaller than
that of Hl1. In Figure 2, when the inner-coupling matrix is
chosen as Hu2, the synchronized region is smaller than that of
Hu1. It can be seen that Hl2 and Hu2 add a cooperative inner-
coupling element to Hl1 and Hu1, respectively. This means that
blindly adding positive parameters in the inner-coupling matrix
may weaken the synchronizability of the network.

(ii) From Figure 1, it can be seen that when the inner-
coupling matrix is chosen as Hl3, a larger synchronized
region is obtained compared to Hl1. From Figure 2, it can be
seen that when the inner-coupling matrix is chosen as Hu3, a
larger synchronized region is obtained compared to Hu1. It can
be observed that Hl3 and Hu3 add a competitive inner-coupling
element to Hl1 and Hu1, respectively. This implies that the
network synchronizability can be significantly enhanced by
adding a small number of negative parameters in the inner-
coupling matrix.

Remark 1. It should be pointed out that although numerical
simulations are performed with the aforementioned two chaotic
systems, the extension to other general systems is
straightforward.

TABLE 2 Synchronized regions of the unified chaotic system under different
sign inter-coupling matrices.

a Hu1 Hu2 Hu3

0.05 (11.64, ∞) (11.99, 25.07) (11.64, ∞)

0.15 (18.5, ∞) ∅ (16.325, ∞)

0.25 (31.88, ∞) ∅ (21.97, ∞)

TABLE 1 Synchronized regions of the Lü system under different sign inter-
coupling matrices.

a Hl1 Hl2 Hl3

36 (8.64, 83.36) (10, 36) (7.83, ∞)

46 (8.93, 103.07) (10, 46) (8.21, ∞)

56 (9.11, 122.89) (10, 56) (8.48, ∞)
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Remark 2. Recall that the bifurcation behavior of the synchronized
regions in a network with a varying node dynamics parameter is
analyzed in this section. The assumption that all the nodes have a
common equilibrium can ensure that the boundary curves of the
synchronized region can be analytically derived. It is found that the
boundary curves of the synchronized region are related to the
varying node dynamics parameter.

4 Spectral analysis of pinned networks

In this section, the spectral moment method [46] is applied to
estimate the eigenvalues of C [49].

4.1 Spectral moments of the matrix C

The nth-order spectral moment of C is defined as

Qn C( ) � 1
N

∑N
i�1

λni �
1
N

tr Cn( ) � 1
N

tr L + B( )n. (7)

The first three spectral moments of C can be obtained as follows:

Q1 C( ) � 1
N

∑N
i�1

di + bi( ),

Q2 C( ) � 1
N

∑N
i�1

d2
i + di + 2dibi + b2i( ),

Q3 C( ) � 1
N

∑N
i�1

d3
i + 3d2

i + 3d2
i bi + 3dibi + 3dib

2
i + b3i − 2ti( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)

where bi is the feedback gain, di is the degree of node i, and ti is the
number of triangles touching node i.

4.2 Globally coupled network

We consider a globally coupled network composed of N nodes,
in which any two nodes are directly connected by an edge. The
degree distribution of nodes of the globally coupled network is

δN−1 � δ di − N − 1( )( ) � 0, for di ≠ N − 1,∫∞

−∞
δN−1 di( ) dx � 1, for di � N − 1. (9)

The first three expected moments of node degree are obtained by

E di[ ] � N − 1( ),
E d2

i[ ] � N − 1( )2,
E d3

i[ ] � N − 1( )3.

⎧⎪⎪⎨⎪⎪⎩ (10)

The number of connected triples centered on any node in the
globally coupled network is

N − 1
2

( ) � 1
2

N − 1( ) N − 2( ). (11)

When the pinned nodes are consecutively distributed in the
network, the first three expected moments of C can, thus, be
derived as

E Q1 C( )[ ] � N − 1 + b
l

N
,

E Q2 C( )[ ] � N − 1( )2 +N − 1 + 2 N − 1( )b l

N
+ b2

l

N
,

E Q3 C( )[ ] � N − 1( )3 + 3 N − 1( )2 − N − 1( ) N − 2( )
+3 N − 1( )2 +N − 1[ ]b l

N
+ 3 N − 1( )b2 l

N
+ b3

l

N
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

Example 1. We consider a globally coupled network of N = 17
nodes. Here, only l = 4 consecutively distributed nodes are pinned
with b = 10.4. Table 3 compares the numerical values of the
moments of C with the analytical predictions in (13). It shows
that the analytical expectations of the moments are exactly the same
as the numerical realizations.

4.3 Nearest-neighbor coupled network

Consider a nearest-neighbor coupled network of N nodes, in
which each node is only connected to its 2k nearest-neighbor nodes.
The degree distribution of nodes of the nearest-neighbor coupled
network is

δ2k � δ di − 2k( ) � 0, for di ≠ 2k,∫∞

−∞
δ2k di( ) dx � 1 for di � 2k. (13)

Then, one obtains the first three expected moments of node
degree as follows:

E di[ ] � 2k,
E d2

i[ ] � 4k2,

E d3
i[ ] � 8k3.

⎧⎪⎪⎨⎪⎪⎩ (14)

The number of connected triples centered on any node in the
network is

2k
2

( ) � k 2k − 1( ). (15)

When the pinning nodes are uniformly distributed in the
network, the first three expected moments of C are then obtained by

E Q1 C( )[ ] � 2k + b
l

N
,

E Q2 C( )[ ] � 4k2 + 2k + 2kb
l

N
+ b2

l

N
,

E Q3 C( )[ ] � 8k3 + 8k2 + 2k + 12k2b
l

N

+ 6kb
l

N
+ 6kb2

l

N
+ b3

l

N
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

Example 2. We consider a nearest-neighbor coupled network
with N = 200 and k = 6. It is assumed that l = ∑iδi = 20 uniformly

TABLE 3 Moments for a globally coupled network.

Moment order 1st 2nd 3rd

Numerical realization 18.52 379.5 8259.71

Analytical expectations 18.52 379.5 8259.71

Relative error 0 0 0
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distributed nodes are pinned with i = 1, 11, . . ., 191. We set b = 11.7.
Table 4 compares the numerical values of the moments with the
analytical predictions in (17). It shows clearly that the analytical
expectations of the moments are suited to capture the spectral
property of the matrix C.

Remark 3. In this paper, the spectral moment method is
extended to the aforementioned two kinds of regular
networks. The relationship between the lower-order expected
moments and the local structural properties, control scheme
including feedback gain and the number of pinned nodes,
together with their distributions (i.e., the positions of pinned
nodes in the whole network), is established. Note that other
network models, such as ER random networks, Chung-Lu
random networks, and NW small-world networks, have been
given to verify the efficiency of the moment-based estimation
method [49].

4.4 Triangular reconstruction of matrix C

In this section, the triangular reconstruction method [56] is
generalized to estimate the bounds of the eigenvalues.

We define a triangular distribution T(λ) based on a set of
abscissas p1 ≤ p2 ≤ p3 as

T λ( ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h

p2 − p1
λ − p1( ), for λ ∈ p1, p2[ ),

h

p2 − p3
λ − p3( ), for λ ∈ p2p3[ ],

0, otherwise,

with h = K/(p3 − p1) and K > 0. The expected moments of C are
obtained as follows:

E Q1 C( )[ ] � 1
3

p1 + p2 + p3( ),
E Q2 C( )[ ] � 1

6
p2
1 + p2

2 + p2
3 + p1p2 + p1p3 + p2p3( ),

E Q3 C( )[ ] � 1
10

p3
1 + p2

1p2 + p2
1p3 + p3

2 + p2
2p1(

+p2
2p3 + p3

3 + p2
3p1 + p2

3p2 + p1p2p3).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

For simplicity, we use �Q to represent E[Q(C)]. The aim is to
find a set of abscissas {p1, p2, p3} so as to fit a given set of
expected moments { �Q1, �Q2, �Q3}. Using the symmetries of the
polynomials, the values of {p1, p2, p3} can be determined as roots
of the polynomial

p3 − s1p
2 + s2p − s3 � 0, (18)

with

s1 � 3 �Q1,
s2 � 9 �Q2

1 − 6 �Q2,

s3 � 27 �Q3
1 − 36 �Q1

�Q2 + 10 �Q3.

⎧⎪⎨⎪⎩ (19)

Example 3. We consider again a 17-node globally coupled
network (as shown in Example 1) and a 200-node nearest-
neighbor coupled network (as shown in Example 2),
respectively. For the globally coupled network, the abscissas
for the triangular function are p1 = 1.4359, p2 = 26.1860, and
p3 = 27.9311 with h = 20/(p3 − p1). For the nearest-neighbor
coupled network, the abscissas for the triangular function are p1 =
0.5547, p2 = 14.3239, and p3 = 24.6314 with h = 3/(p3 − p1).
Figures 3, 4 show the eigenvalue histograms of C and triangular

TABLE 4 Moments for a nearest-neighbor coupled network.

Moment order 1st 2nd 3rd

Numerical realization 13.17 197.77 3270.53

Analytical expectations 13.17 197.77 3228.53

Relative error 0 0 1.3%

FIGURE 3
Eigenvalue histograms of C and its triangular approximations for
a globally coupled network.

FIGURE 4
Eigenvalue histograms of C and its triangular approximations for
a nearest-neighbor coupled network.
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approximations for the globally coupled network and the nearest-
neighbor coupled network, respectively. The ordinate μ(λ)
denotes the percentage of the eigenvalue with a certain value
in all eigenvalues. It can be seen from Figures 3, 4 that the
triangular function can well fit the eigenvalue distribution of the
matrix C.

5 Numerical results

We consider the globally coupled network in Example 1 and set
the Lü system as the node dynamics. When the node dynamics
parameter a = 36 and the inner-coupling matrix is chosen as Hl3, it
can be obtained from Table 1 that the corresponding synchronized
region of the Lü system is (7.83, ∞). According to Example 3, �λ1 �
1.4359 and �λN � 27.9311 are good estimations of the lower and
upper bounds of the eigenvalues, respectively. The 17-node globally
coupled network of Lü systems can achieve synchronization if
σ ∈ (7.83/�λ1,∞) � (5.45,∞). Figures 5A, B show the evolution
of the node states with σ = 5∉(5.45, ∞) and σ = 6 ∈ (5.45, ∞),

respectively. The numerical results are in good agreement with the
theoretical results.

We consider the nearest-neighbor coupled network in Example
2 and set the unified chaotic system as the node dynamics. When the
parameter a = 0.05 and the inner-couplingmatrix is set asHu3, it can be
obtained from Table 2 that the corresponding synchronized region of
the unified chaotic system is (11.64,∞). From Example 3, �λ1 � 0.5547
and �λN � 24.6314 are the bound estimations of the eigenvalues. The
nearest-neighbor coupled network of unified chaotic systems can
achieve synchronization if σ ∈ (11.64/�λ1,∞) � (20.98,∞). Figures
6A, B show the evolution of the node states with σ = 15∉(20.98,∞) and
σ= 22 ∈ (20.98,∞), respectively. The numerical simulations are in good
agreement with the theoretical results.

6 Conclusion

In this paper, pinning synchronization of complex networks with
sign inner-coupling configurations has been investigated. The
bifurcation behavior of the synchronized regions has been observed,

FIGURE 5
Evolution of the node states in a 17-node globally coupled
network of Lü systems with (A) σ = 5; (B) σ = 6.

FIGURE 6
Evolution of the node states in a 200-node nearest-neighbor
coupled network of unified chaotic systems with (A) σ = 15; (B) σ = 22.
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and the effect of sign inner-coupling configurations on network
synchronizability has been studied in detail. It is shown that the
synchronized region can evolve with the varying node dynamics
parameter and switch from one type to another type. It is also
found that the network synchronizability can be significantly
improved by adding negative parameters in the inner-coupling
matrix, while blindly adding inner-coupling elements with positive
parameters may weaken it. The expected moments of C for the globally
coupled network and nearest-neighbor coupled network have been
derived. The shape of the eigenvalue distribution of C for each of the
aforementioned regular networks can, thus, be estimated to predict
pinning synchronization of the network.

It is worth noting that the obtained results in this paper can be
generalized to handle control problems with directed topologies or
switching topologies. However, directed topology implies that the
network is not symmetric, and switching topology means that the
network is time-varying. From a technical perspective, this
introduces more challenges than its undirected and time-
invariant counterpart. In the future, it will be interesting to study
the higher-order moments of the matrix C and their corresponding
fitting functions. Moreover, pinning synchronization of multiplex
networks with time delays [57, 58], noise [59], and disturbances [60,
61] is more challenging but worthy of deep investigation.
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