
Applied Mathematical Modelling 113 (2023) 528–544 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

Saturated and asymmetric saturated impulsive control 

synchronization of coupled delayed inertial neural networks 

with time-varying delays 

K. Udhayakumar a , S. Shanmugasundaram 

b , Ardak Kashkynbayev 

c , K. Janani b , 
R. Rakkiyappan 

b , ∗

a Department of Mathematical Sciences, College of Science, UAE University, Al-Ain, United Arab Emirates 
b Department of Mathematics, Bharathiar University, Coimbatore 641 046, Tamilnadu, India 
c Department of Mathematics, Nazarbayev University, Nur-Sultan city, Kazakhstan 

a r t i c l e i n f o 

Article history: 

Received 18 March 2022 

Revised 5 September 2022 

Accepted 12 September 2022 

Available online 16 September 2022 

Keywords: 

Inertial neural networks 

Synchronization 

Saturation 

Impulsive control 

Time-varying delay 

Coupling delay 

a b s t r a c t 

This paper considers control systems with impulses that are saturated and asymmetri- 

cally saturated which are used to examine the synchronization of inertial neural networks 

(INNs) with time-varying delay and coupling delays. Under the theoretical discussions, 

mixed delays, such as transmission delay and coupling delay are presented for inertial 

neural networks. The addressed INNs are transformed into first order differential equa- 

tions utilizing variable transformation on INNs and then certain adequate conditions are 

derived for the exponential synchronization of the addressed model by substituting satu- 

ration nonlinearity with a dead-zone function. In addition, an asymmetric saturated im- 

pulsive control approach is given to realize the exponential synchronization of addressed 

INNs in the leader-following synchronization pattern. Finally, simulation results are used 

to validate the theoretical research findings. 

© 2022 Elsevier Inc. All rights reserved. 

 

 

 

1. Introduction 

Neural Networks (NNs) have gained popularity in previous centuries owing to their wide application in various fields, 

such as frequency image analysis, information processing, financial management sector, data interpretation, optimization 

problems and classification techniques. These applications are known to significantly rely on dynamical behaviors of NNs 

[1–9] , which is a fundamental property in NN development. The inertial neural network is a neural circuit model that ex-

hibited the inertial nature of a network which has been defined using second-order differential equations. In contrast to 

the cases discussed in first-order systems, the differential equations defined by second-order INNs can accurately reflect 

the genetic NN attributes and based on the second derivative have much more complicated dynamical behaviour leading to 

more practical applications [2,3] . One of the major hot spots in scientific research in recent years has been neural network

research. It is vital to research the dynamic behavior of coupled neural networks in order to have some theoretical direc-

tion in many engineering applications of neural networks. With a rich research history spanning electronic communication, 

automatic control, and social science, synchronization of coupled neural networks has significant theoretical and real-world 
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implications for the study of nature. For example, in [4] the authors devoted to investigating the synchronization problem 

of coupled memristive neural networks under event-triggered control for the first time. Finite-time and fixed-time synchro- 

nization of a class of coupled discontinuous neural networks is addressed under the framework of Filippov solution in [5] .

And by using the theory of differential inclusions and a discontinuous control law finite-time and fixed-time synchronization 

problem is investigated. By directly constructing the discontinuous complex-valued controllers, fixed-time synchronization 

of coupled memristive complex-valued neural networks is investigated in [6] . Finite time passivity and finite-time synchro- 

nization issues are addressed in [7] for coupled complex-valued memristive neural networks. In particular, impulsive control 

is characterized by lower control cost, higher confidentiality, and stronger robustness. In order to achieve the desired control 

performance, we can design the impulsive strength artificially. Since actuator saturation is a common occurrence in almost 

all control systems, it is actually very challenging from the perspective of applications to accomplish the design aim for each

control input. Saturation-related negative behaviors may be seen if such constraints are not treated correctly or even taken 

into account by the appropriate controllers. Naturally, the influence of saturated impulses must be taken into account when 

researching the impulsive regulation of coupled neural networks. Compared with the previous results, in this paper, a novel 

saturated and asymmetric saturated impulsive controllers are designed such that the estimating domain of attraction can be 

derived, which is one of the main novelty considered in this article. 

The fundamentals of NNs include stability, stabilization, state estimation, periodic attractors, robust stability, and so on. 

Among these, synchronization has experienced significant rise in analysis attention in recent years. It is also a form of col-

lective behaviour to describe a number of environmental occurrences [10–13] . Synchronization is a hot topic in nonlinear 

dynamical systems research. The major applications of the system in encrypted transmission, biological systems, cognitive 

processes, etc., has resulted in extensive synchronizing control and numerous positive outcomes [14–16] . Several types of 

synchronization includes chaotic synchronization, outer synchronization, and cluster synchronization has been investigated 

from several perspectives [8,17–20] . Synchronization can be accomplished through the use of traditional control mechanisms 

such as feedback control, backstepping control, intermittent control, impulsive control, sampled-data control, event-triggered 

control, adaptive control and so on [21–25] . For instance, the authors of [26] achieved exponential synchronization for mem- 

ristor based neural networks with various delays. Time delay, which is an inherent property of signal transmission between 

neurons, is one of the primary causes of neural network instability and poor performance. In order to display chaotic events

that can be used to secure communication, time delays are included in NNs [27–32] . In [31] , the authors considered INNs

with time varying delays and achieved multiple finite time synchronization through a unified control scheme. The authors of 

[2] considered an INN with time varying delay and coupling delay and achieved global asymptotic stability through adaptive 

control scheme. 

In recent years, impulsive control techniques are frequently employed to stabilize and synchronize nonlinear unstable 

dynamical and chaotic systems as an efficient control means. The primary principle behind impulsive control is to change 

a system’s state whenever certain objectives are fulfilled. Because of the lower control costs, this is the most used method

in practice. In light of these advantages, the stability of impulsive neural networks has recently been investigated [26,33–

35] . In some kind of broad array of applications, impulse control occurs naturally, as well as for orbit transmission, inter-

ruption control, sustainable growth or network synchronization, robotic arm regulate, so on and so forth [28,36,37] . Often 

researchers concentrated the impulsive controller, because of the possibility of saving the bandwidth of a network, which 

in the event of systems that are capable by the networks could well reduce the cost of control or network [38,39] . The ex-

ponential stability of impulsive control systems with time delay is studied in [40] . The average impulsive interval approach

allows for the establishment of some necessary Lyapunov-based requirements for the stability of impulsive time-delay sys- 

tems. It is interesting to show that some unstable impulsive time-delay systems may be stabilized by increasing the time 

delay in continuous dynamics. The authors of [41] investigated the exponential stability of nonlinear delayed systems with 

destabilizing and stabilizing delayed impulses. If the time delays in impulses can be flexible and even larger than the length

of impulsive interval, then the stability of delayed systems is obtained with destabilizing delayed impulses, and if the time 

delays in impulses are flexible between two consecutive impulsive instants the stability of delayed systems is investigated 

with stabilizing delayed impulses. 

The controller’s output signal is usually provided to the controlled system through actuator in real-world controllers, and 

the controlled item is subsequently driven to accomplish the task. Physiological limits realizes the quantity of input signals 

that the actuator can generate. If the input signal is excessively strong, the output signal from the actuator to the controlled

system will be corrupted first. Actuator saturation causes the closed-loop system’s performance to drop dramatically. If the 

saturation limit is not taken into account when designing the control system, it will degrade the system’s performance, 

resulting in lag, increased overshoot, oscillation, and even instability [18,26,42] . Each physical actuator or sensor in control 

systems is prone to saturation as a result of its upper and lower limits. Saturation nonlinearities are frequently researched 

systematically in engineering applications such as control systems and NN systems. The evaluation and implementation of 

a system that has saturation nonlinearities is a major challenge merely because of how they occur. The first technique for

dealing with the experimental consequences of saturation is to disregard it during the initial stages of the control design 

process [43] . To initiate these anti-windup techniques, ad hoc changes and simulations were utilized [44–46] . The actuator

is able to stay within its limits as a result of these strategies because it receives more feedback. Many of these methods’

stability features, on the other hand, are largely unknown. The second procedure is a little more systematic than the first. It

accounts for saturation nonlinearities as part of the control design. The closed-loop system is analysed and the controller is 

modified in such a way that efficiency is maintained while stability is enhanced, or perhaps the other way around. Charac-
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terizing the null controllable region, identifying the set of all states that could be driven to their beginnings by the saturating

actuators, and designing validation laws that are justifiable on the entire null controllable region or a large portion of it are

all steps in solving actuator saturation with this method. In order to limit the undesirable impacts of the actuator saturation,

the dead-zone nonlinearities values must be constructed. We get a saturation impulsive controller term to add, in which an 

error system will get a value and part of the inequalities will be employed for the reduction. The study and configuration of

the system with asymmetric actuator saturation is a critical issue that must be addressed. Asymmetric saturation has been 

discussed widely in the literature [47–49] . 

The Lyapunov stability theory is a powerful tool for assessing and designing energy control frameworks. When a definite 

positive state function is discovered, the system is said to be steady, allowing the time derived along the system’s trajectory

to be recognized. Motivated by these works, in this article, we intend to achieve exponential synchronization of INNs with 

time varying and coupling delays via the saturated and asymmetric saturated impulsive control. The major contributions of 

this article are as follows: 

1) To the best of authors knowledge, this is the first time to investigate the synchronization of INNs with time-varying 

delay and coupling delays through the saturated and asymmetric saturated impulsive control schemes. 

2) The aforementioned INNs model can be formed into first order differential equations using the variable transformation 

and some suitable conditions for the exponential synchronization of INNs can be constructed in terms of LMIs by sub- 

stituting saturation non linearity with a dead-zone function. Furthermore, an asymmetric saturated impulsive control 

technique was studied to attain the exponential synchronization of addressed INNs in the leader-following synchroniza- 

tion pattern. 

The following is a summary of the paper’s structure: Section 2 contains the preliminary information as well as a model

description of the model under consideration. In Section 3 , we examine some results on saturated impulsive control of INNs

with delays. Numerical validation to establish the significance of the procured results is detailed out in Section 4 . The final

section summarizes the entire manuscript to provide a valid conclusion. 

2. Preliminaries and model description 

Consider the following inertial neural networks (INNs), with both time-varying delay and coupling delay consisting of 

coupled nodes with each node being a n -dimensional neural network. The dynamics of the i th node is described as: 

d 2 ω i (t) 

dt 2 
= − ˆ A 

dω i (t) 

dt 
− ˆ B ω i (t) + 

ˆ C f (ω i (t)) + 

ˆ D f (ω i (t − ϕ(t))) + I(t) + 

N ∑ 

j=1 

H i j W ω j (t) 

+ 

N ∑ 

j=1 

H i j W̄ ω j (t − σ (t)) + v i (t) , (1) 

where i = 1 , . . . , N, the second derivative is called as the inertial term of the INN (1) , ω i (t) = (ω i 1 (t ) , . . . , ω in (t )) T ∈ R 

n ,

is the vector state of the i th node, ˆ A = diag { a 1 , . . . , a n } , ˆ B = diag { b 1 , . . . , b n } , ˆ C = 

(
c pq 

)
∈ R 

n ×n and 

ˆ D = 

(
d pq 

)
∈ R 

n ×n de-

notes the connection weight and delayed connection weight matrices respectively. The nonlinear function f (ω i (t)) = 

( f 1 (ω i 1 (t)) , . . . , f n (ω in (t))) T and f (ω i (t − ϕ(t))) = ( f 1 (ω i 1 (t − ϕ(t))) , . . . , f n (ω in (t − ϕ(t)))) T is the activation function for

the INN (1) , ϕ(t) ∈ [0 , ϕ] is the time-varying delay, I(t) = ( I 1 (t ) , . . . , I n (t ) ) 
T 

is the external input, W = diag { W 1 , . . . , W n } > 0 ,

W̄ = diag 
{
W̄ 1 , . . . , W̄ n 

}
> 0 represents the current state and time-varying delay inner coupling matrices respectively. H = (

H i j 

)
N×N 

, H i j ≤ 0 (i � = j) and H ii = −
N ∑ 

j =1 , j � = i 
H i j is the diagonal element, between the nodes i (i � = j) , the coupling delay is

denoted as σ (t) ∈ [0 , σ ] and v i (t) represents the impulsive controller which will be designed in the forthcoming steps. The

initial condition of the INN (1) is represented as follows: 

ω i (s ) = ξi (s ) , 
dω i (s ) 

ds 
= ξ̄i (s ) , −ϕ ≤ s ≤ 0 , 

where ξi (s ) , ξ̄i (s ) are the real valued functions continuous on [ −ϕ, 0] . Introducing the appropriate variable transformation:

ω r (t) = 

dω i (t) 

dt 
+ ω i (t) . The INNs system (1) with the above variable transformation can be reduced into first order ODE as: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

dω i (t) 
dt 

= −ω i (t) + ω r (t) + v 1 i (t) , 

dω r (t) 
dt 

= A ω i (t) − B ω r (t) + 

ˆ C f (ω i (t)) + 

ˆ D f (ω i (t − ϕ(t))) + I(t) + 

N ∑ 

j=1 

H i j W ω j (t) 

+ 

N ∑ 

j=1 

H i j W̄ ω j (t − σ (t)) + v 2 i (t) , 

(2) 

where A = 

ˆ A − ˆ B − I, B = 

ˆ A − I, ω (t) = (ω (t ) , . . . , ω (t )) T ∈ R 

n , ω r (t ) = (ω (t ) , . . . , ω rn (t )) T ∈ R 

n . 
i i 1 in r1 
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Define the target desired node in the system INN (1) is described by 

d 2 h (t) 

dt 2 
= − ˆ A 

dh (t) 

dt 
− ˆ B h (t) + 

ˆ C f (h (t)) + 

ˆ D f (h (t − ϕ(t))) + I(t) , (3) 

and with the help of variable transformation 

dh (t) 
dt 

= −h (t) + y (t) . The compact form of system (3) becomes {
dh (t) 

dt 
= −h (t) + y (t) , 

dy (t) 
dt 

= A h (t) − B y (t) + 

ˆ C f (h (t)) + 

ˆ D f (h (t − ϕ(t))) + I(t) , 
(4) 

where A = 

ˆ A − ˆ B − I, B = 

ˆ A − I, h (t) = (h 1 (t ) , . . . , h n (t )) T ∈ R 

n , y (t ) = (y 1 (t ) , . . . , y n (t )) T ∈ R 

n . 

Then the synchronization error between (2) and (4) is described by ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

de 1 i (t) 
dt 

= −e 1 i (t) + e 2 i (t) + v 1 i (t) , 
de 2 i (t) 

dt 
= A e 1 i (t) − B e 2 i (t) + 

ˆ C f (e 1 i (t)) + 

ˆ D f (e 1 i (t − ϕ(t))) 

+ I(t) + 

N ∑ 

j=1 

H i j W e 1 i (t) + 

N ∑ 

j=1 

H i j W̄ e 1 i (t − σ (t)) + v 2 i (t) , 

(5) 

Here, e 1 i (t) = ω i (t) − h (t ) , e 2 i (t ) = ω r (t) − y (t) . It is important to note that the impulsive controllers v 1 i (t) , v 2 i (t) only

knows how to manage the condition of the INNs system (1) associated with a particular point t k , and for a more effec-

tive solution to the problem, the impusive controller is designed as follows: 

v 1 i (t) = 

∞ ∑ 

k =1 

ϑ 1 i (t) δ(t − t k ) , v 2 i (t) = 

∞ ∑ 

k =1 

ϑ 2 i (t) δ(t − t k ) , t ∈ [ t k , t k +1 ) , 

where k ∈ Z + , ϑ 1 i (t) = K 1 e 1 i (t) , ϑ 2 i (t) = K 1 e 2 i (t) , K 1 , K 2 ∈ R 

n ×n is the impulsive control gain and δ(. ) is the delta function

with sequence { t k , k ∈ Z + } satisfying 0 = t 0 < t 1 < . . . < t k . . . < . . . , lim 

k →∞ 

t k = ∞ . Moreover, in procedure, the magnitude of

the signal that a control system can produce is generally defined as physical or protection constraints, making reach desired 

effectiveness unrealistic. To effectively address this problem, the impulsive controller with actuator saturation is presented 

as: 

v 1 i (t) = 

∞ ∑ 

k =1 

sat(ϑ 1 i (t)) δ(t − t k ) , v 2 i (t) = 

∞ ∑ 

k =1 

sat(ϑ 2 i (t)) δ(t − t k ) , t ∈ [ t k , t k +1 ) , (6) 

where sat(ϑ 1 i (t)) = ( sat(ϑ 1 i 1 (t)) , . . . , sat(ϑ 1 in (t)) ) 
T 
, sat(ϑ 2 i (t)) = ( sat(ϑ 2 i 1 (t)) , . . . , sat(ϑ 2 in (t)) ) 

T 
denotes the saturation 

function. By the above equation, the saturated impulsive controller (6) defined with the synchronization error system is 

undertaken as: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

de 1 i (t) 
dt 

= −e 1 i (t) + e 2 i (t) , 
de 2 i (t) 

dt 
= A e 1 i (t) − B e 2 i (t) + 

ˆ C f (e 1 i (t)) + 

ˆ D f (e 1 i (t − ϕ(t))) 

+ I(t) + 

N ∑ 

j=1 

H i j W e 1 i (t) + 

N ∑ 

j=1 

H i j W̄ e 1 i (t − σ (t)) , 

� e 1 i (t k ) = sat(K 1 e 1 i (t −
k 
)) , � e 2 i (t k ) = sat(K 2 e 2 i (t −

k 
)) , k ∈ Z + , 

e 1 i (s ) = χ1 i (s ) , e 2 i (s ) = χ2 i (s ) , s ∈ [ t 0 − h, t 0 ] . 

(7) 

Let us construct the dead-zone non linearity dz(K 1 e 1 i (t)) and dz(K 2 e 2 i (t)) defined as 

dz(K 1 e 1 i (t)) = K 1 e 1 i (t) − sat(K 1 e 1 i (t)) and dz(K 2 e 2 i (t)) = K 2 e 2 i (t) − sat(K e 2 i (t)) to reduce the undesirable effects in-

duced by actuator saturation. Then the error system (7) can be rewritten as follows: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

de 1 i (t) 
dt 

= −e 1 i (t) + e 2 i (t) , 
de 2 i (t) 

dt 
= A e 1 i (t) − B e 2 i (t) + 

ˆ C f (e 1 i (t)) + 

ˆ D f (e 1 i (t − ϕ(t))) 

+ I(t) + 

N ∑ 

j=1 

H i j W e 1 i (t) + 

N ∑ 

j=1 

H i j W̄ e 1 i (t − σ (t)) , 

e 1 i (t k ) = (I n + K 1 ) e 1 i (t −
k 
) − dz(K 1 e 1 i (t −

k 
)) , 

e 2 i (t k ) = (I n + K 2 ) e 2 i (t −
k 
) − dz(K 2 e 2 i (t −

k 
)) , k ∈ Z + , 

e 1 i (s ) = ξ1 i (s ) , e 2 i (s ) = ξ2 i (s ) , s ∈ [ t 0 − h, t 0 ] . 

(8) 

Remark 2.1. When the continuous delayed neural network is exponentially stable but the impulses are input disturbances, 

sufficient conditions for exponential stability concerning the magnitude and frequency of the impulses are derived in order 

to maintain the original neural networks exponential stability. When the continuous neural network is unstable, sufficient 

stability conditions that utilize impulsive effects to stabilize the unstable neural network are given. 

Assumption 2.2. If the activation functions f p (·) : R → R satisfy the Lipschitz condition, then there exists a positive constant

F p such that | f p (x ) − f p (y ) | ≤ F p | x − y | for all x, y ∈ R , 1 ≤ p ≤ n . 
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Lemma 2.3. [43] Consider a matrix K ∈ R n ×n such that e = [ e T 1 , e 
T 
2 , . . . , e 

T 
N ] 

T represents the diagonal element, if e ∈ L (H) , then

the positive definite matrix F ∈ R n ×n , the subsequent inequality holds 	(Ke i ) 
T F (	(Ke i ) − N e i ) ≤ 0 , i ∈ N. 

Lemma 2.4. [43] (Matrix Cauchy Inequality) Suppose that Q > 0 represents a symmetric positive definite matrix and C and D are

real matrices with suitable aspects, the following inequality holds: 

C T D + D 

T C ≤ C T QC + D 

T Q 

−1 D. 

Lemma 2.5. [43] Let 0 ≤ ϕ(t) ≤ ϕ, 0 ≤ σ (t) ≤ σ , and h = ϕ ∨ σ. If there exist positive constants α1 , α2 , α3 and γ > 0 such that

{
D 

+ a (t) ≤ α1 a (t) + α2 a (t − ϕ(t)) + α3 a (t − σ (t)) , t � = t k , t ≥ t 0 , 
a (t k ) ≤ γ a (t −

k 
) , k ∈ Z + , {

D 

+ b (t) > α1 b (t) + α2 b (t − ϕ(t)) + α3 b (t − σ (t)) , t � = t k , t ≥ t 0 , 
b (t k ) = γ b (t −

k 
) , k ∈ Z + , 

then a (t) ≤ b (t) for t ∈ [ t 0 − h, t 0 ] implies that a (t) ≤ b (t) , ∀ t ≥ t 0 , where functions a (t ) , b (t ) ∈ P C([ t 0 − h, + ∞ ) , R + ) . 

Definition 2.6. [43] The average impulsive interval of the impulsive sequences { t k } , k ∈ Z + is less than T a , if there exist a

positive number T a and a positive integer ℵ 0 such that 

ℵ (T , s ) ≥ T − s 

T a 
− ℵ 0 , ∀ T ≥ s ≥ t 0 , 

where ℵ (T , s ) denotes the number of impulsive times of the impulsive sequences at t k occurring on the interval (T , s ) and

T a > 0 represent the average impulsive interval. 

Lemma 2.7. [50] Let v ∈ R n , ω ∈ R n , θ ∈ R n + and diagonal matrix S > 0 , S ∈ R n ×n . Suppose −θi ≤ v i − ω i ≤ θi , i = 1 , 2 , · · · , n , then

the inequality ϕ(v ) T S(ϕ(v ) + ω) ≤ 0 is satisfied by the non linearity function ϕ(v ) = sat (v ) − v . 

Remark 2.8. There have been no relevant exponential synchronization results for coupled delayed INNs using both saturated 

and asymmetric saturated impulsive control till now. To bridge that gap, we will present many new results in this article that

guarantee exponential synchronization of coupled delayed INNs. A saturated and asymmetric saturated impulsive control 

strategy is proposed to handle this problem. The NNs in this article have an inertial term which is an extension of the

earlier papers [43,46,51,52] that did not have an inertial term. 

3. Main results 

A class of controllers with impulses that incorporate structures with saturation and are described in terms of LMIs are 

investigated here. 

Theorem 3.1. Suppose that there exist constants α1 > 0 , α2 > 0 , α3 > 0 , α4 > 0 , α5 = max { α1 , α2 } and some n × n diagonal

matrices P 1 > 0 , P 2 > 0 , M > 0 , Z 1 > 0 , Z 2 > 0 , Z 3 > 0 , n × n matrices F 1 > 0 , F 2 > 0 , 0 < ψ 1 , ψ 2 < 1 and ℵ ∈ max { ψ 1 , ψ 2 } such

that I N �
(
M 

T Z 2 M − α3 P 1 − α3 P 2 
)

≤ 0 , I N � ( Z 3 − α4 P 1 − α4 P 2 ) ≤ 0 and 

I N �
(
2 P 1 − P 1 M + M 

T Z 1 M + P 2 A δ−1 + (H � P 2 W ) ς 

−1 − α1 P 1 
)

≤ 0 , (9) 

I N �
(
P 1 M 

−1 + P 2 A δ − 2 P 2 B + P 2 ̂  C Z −1 
1 

ˆ C T P 2 + P 2 ̂  D Z −1 
2 

ˆ D 

T P 2 + (H � P 2 W ) ς 

+ 

(
H H 

T 
� P 2 W̄ Z −1 

3 W̄ P 2 
)

− α1 P 2 
)

≤ 0 , (10) 

�1 = 

[
( I n + K ) 

T P 1 ( I n + K ) − ψ 1 P 1 ( I n + K ) 
T P 1 − 	T F 1 

� P 1 − 2 F 1 

]
≤ 0 , (11) 

�2 = 

[
( I n + K ) 

T P 2 ( I n + K ) − ψ 2 P 2 ( I n + K ) 
T P 2 − 	T F 1 

� P 2 − 2 F 2 

]
≤ 0 , (12) 

then the error system’s (6) trajectory converges to zero exponentially. 

Proof: A Lyapunov functional candidate is constructed as follows 

V (t) = V 1 (t) + V 2 (t) , (13) 

where V 1 (t) = 

N ∑ 

i =1 

e T 
1 i 
(t) P 1 e 1 i (t ) , V 2 (t ) = 

N ∑ 

i =1 

e T 
2 i 
(t) P 2 e 2 i (t) . 
532 
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The derivative of V (t) is taken along the trajectories of (6) 

D 

+ V 1 (t) = 2 

N ∑ 

i =1 

e T 1 i (t) P 1 ̇ e 1 i (t) , 

= − 2 

N ∑ 

i =1 

e T 1 i (t) P 1 e 1 i (t) + 2 

N ∑ 

i =1 

e T 1 i (t) P 1 e 2 i (t) , 

≤ − 2 

N ∑ 

i =1 

P 1 e 
T 
1 i (t) e 1 i (t) + 

N ∑ 

i =1 

P 1 e 
T 
1 i (t) Me 1 i (t) + 

N ∑ 

i =1 

P 1 e 
T 
2 i (t) M 

−1 e 2 i (t) , 

D 

+ V 2 (t) = 2 

N ∑ 

i =1 

e T 2 i (t) P 2 ̇ e 2 i (t) , 

= 2 

N ∑ 

i =1 

e T 2 i (t) P 2 

( 

A e 1 i (t) − B e 2 i (t) + 

ˆ C f (e 1 i (t)) + 

ˆ D f (e 1 i (t − ϕ(t))) + I(t) + 

N ∑ 

j=1 

H i j W e 1 i (t) 

+ 

N ∑ 

j=1 

H i j W̄ e 1 i (t − σ (t)) 

) 

, 

= 2 

N ∑ 

i =1 

e T 2 i (t) P 2 A e 1 i (t) − 2 

N ∑ 

i =1 

e T 2 i (t) P 2 B e 2 i (t) + 2 

N ∑ 

i =1 

e T 2 i (t) P 2 ̂  C f (e 1 i (t)) + 2 

N ∑ 

i =1 

e T 2 i (t) P 2 ̂  D f (e 1 i (t − ϕ(t))) 

+ 2 

N ∑ 

i =1 

e T 2 i (t) P 2 

N ∑ 

j=1 

H i j W e 1 i (t) + 2 e T 2 i (t) P 2 

N ∑ 

j=1 

H i j W̄ e 1 i (t − σ (t)) . 

By matrix cauchy inequality, 

2 e T 2 i (t) P 2 ̂  C f (e 1 i (t)) ≤ e T 2 i (t) P 2 ̂  C Z −1 
1 

ˆ C T P 2 e 2 i (t) + f T (e 1 i (t)) Z 1 f (e 1 i (t)) , 

≤ e T 2 i (t) P 2 ̂  C Z −1 
1 

ˆ C T P 2 e 2 i (t) + e T 1 i (t) M 

T Z 1 Me 1 i (t) , 

2 e T 2 i (t) P 2 ̂  D f (e 1 i (t − ϕ(t))) ≤ e T 2 i (t) P 2 ̂  D Z −1 
2 

ˆ D 

T P 2 e 2 i (t) + f T (e 1 i (t − ϕ(t))) Z 2 f (e 1 i (t − ϕ(t))) , 

≤ e T 2 i (t) P 2 ̂  D Z −1 
2 

ˆ D 

T P 2 e 2 i (t) + e T 1 i (t − ϕ(t)) M 

T Z 2 Me 1 i (t − ϕ(t)) . 

The coupled terms becomes 

2 

N ∑ 

i =1 

e T 2 i (t) P 2 

N ∑ 

j=1 

H i j W e 1 i (t) = 2 e T 2 (t) P 2 ( H � P 2 W ) e 1 (t) , 

2 

N ∑ 

i =1 

e T 2 i (t) P 2 

N ∑ 

j=1 

H i j W̄ e 1 i (t − σ (t)) = 2 e T 2 (t) P 2 
(
H � P 2 W̄ 

)
e 1 (t − σ (t)) , 

= e T 2 (t) 
(
H H 

T 
� P 2 W̄ Z −1 

3 W̄ P 2 
)
e 2 ( t) + e T 1 (t − σ (t))(I N � Z 3 ) e 1 (t − σ (t)) . 

D 

+ V (t) = D 

+ V 1 (t) + D 

+ V 2 (t) 

= 2 

N ∑ 

i =1 

P 1 e 
T 
1 i (t) e 1 i (t) −

N ∑ 

i =1 

P 1 Me T 1 i (t) e 1 i (t) + 

N ∑ 

i =1 

P 1 M 

−1 e T 2 i (t) e 2 i (t) + 

N ∑ 

i =1 

P 2 A δe T 2 i (t) e 2 i (t) , 

+ 

N ∑ 

i =1 

P 2 A δ−1 e T 1 i (t) e 1 i (t) − 2 

N ∑ 

i =1 

P 2 B e T 2 i (t) e 2 i (t) + 

N ∑ 

i =1 

e T 2 i (t) P 2 ̂  C Z −1 
1 

ˆ C T P 2 e 2 i (t) + 

N ∑ 

i =1 

e T 1 i (t) M 

T Z 1 Me 1 i (t) 

+ 

N ∑ 

i =1 

e T 2 i (t) P 2 ̂  D Z −1 
2 

ˆ D 

T P 2 e 2 i (t) + 

N ∑ 

i =1 

e T 1 i (t − ϕ(t)) M 

T Z 2 Me 1 i (t − ϕ(t)) + e T 2 (H � P 2 W ) ς (t) e 2 (t) 

+ e T 1 (t)(H � P 2 W ) ς 

−1 e 1 (t) + e T 2 (t) 
(
H H 

T 
� P 2 W̄ Z −1 

3 W̄ P 2 
)
e 2 ( t) + e T 1 ( t − σ ( t))( I N � Z 3 ) e 1 (t − σ (t)) , 

= e T 1 (t) 
[
I N �

(
2 P 1 − P 1 M + M 

T Z 1 M + P 2 A δ−1 + (H � P 2 W ) ς 

−1 − α1 P 1 − α1 P 2 
)]

e 1 (t ) 

+ e T 2 (t) 
[
I N �

(
P 1 M 

−1 + P 2 A δ − 2 P 2 B + P 2 ̂  C Z −1 
1 

ˆ C T P 2 + P 2 ̂  D Z −1 
2 

ˆ D 

T P 2 + (H � P 2 W ) ς 

+ 

(
H H 

T 
� P 2 W̄ Z −1 

3 W̄ P 2 
)

− α2 P 1 − α2 P 2 
)]

e 2 (t) 
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+ e T 1 (t − ϕ(t)) 
[
I N �

(
M 

T Z 2 M − α3 P 1 − α3 P 2 
)]

e 1 ( t − ϕ( t)) 

+ e T 1 (t − σ (t)) [ I N � ( Z 3 − α4 P 1 − α4 P 2 ) ] e 1 ( t − σ ( t)) + e T 1 ( t) α1 P 1 e 1 ( t) + e T 2 ( t) α1 P 2 e 2 ( t) 

+ e T 1 (t) α2 P 1 e 1 (t) + e T 2 (t) α2 P 2 e 2 (t) + e T 1 (t − ϕ(t)) α3 P 1 e 1 (t − ϕ(t)) + e T 2 (t − ϕ(t)) α3 P 2 e 2 (t − ϕ(t)) 

+ e T 1 (t − σ (t)) α4 P 1 e 1 (t − σ (t)) + e T 2 (t − σ (t)) α4 P 2 e 2 (t − σ (t)) , 

≤α1 V (t) + α2 V (t) + α3 V (t − ϕ(t)) + α4 V (t − σ (t)) . (14) 

When t = t k , 

V (t k ) = V 1 (t k ) + V 2 (t k ) , 

= 

N ∑ 

i =1 

e T 1 i (t k ) P 1 e 1 i (t k ) + 

N ∑ 

i =1 

e T 2 i (t k ) P 2 e 2 i (t k ) , 

≤
N ∑ 

i =1 

e T 1 i (t −
k 
)(I n + K ) T P 1 (I n + K ) e 1 i (t −

k 
) −

N ∑ 

i =1 

dz T (K e 1 i (t −
k 
)) P 1 e 1 i (t −

k 
) 

+ 

N ∑ 

i =1 

e T 1 i (t −
k 
)(I n + K ) T P 1 (−dz(K e 1 i (t −

k 
))) + 

N ∑ 

i =1 

dz T (K e 1 i (t −
k 
)) P 1 dz(K e 1 i (t −

k 
)) 

+ 

N ∑ 

i =1 

e T 2 i (t −
k 
)(I n + K ) T P 2 (I n + K ) e 2 i (t −

k 
) −

N ∑ 

i =1 

dz T (K e 2 i (t −
k 
)) P 2 e 2 i (t −

k 
) 

+ 

N ∑ 

i =1 

e T 2 i (t −
k 
)(I n + K ) T P 2 (−dz(K e 2 i (t −

k 
))) + 

N ∑ 

i =1 

dz T (K e 2 i (t −
k 
)) P 2 dz(K e 2 i (t −

k 
)) 

−2 

N ∑ 

i =1 

d z T 
(
K e 1 i 
(
t −

k 

))
F 1 
[
d z 
(
K e 1 i 
(
t −

k 

))
− 	e 1 i 

(
t −

k 

)]

−2 

N ∑ 

i =1 

d z T 
(
K e 2 i 
(
t −

k 

))
F 2 
[
d z 
(
K e 2 i 
(
t −

k 

))
− 	e 2 i 

(
t −

k 

)]
, 

≤
N ∑ 

i =1 

βT 
1 i 

(
t −

k 

)
�1 β1 i 

(
t −

k 

)
+ 

N ∑ 

i =1 

βT 
1 i 

(
t −

k 

)
�1 β1 i 

(
t −

k 

)
− 2 

N ∑ 

i =1 

dz T 
(
K e 1 i 
(
t −

k 

))
F 1 
[
dz 
(
K e 1 i 
(
t −

k 

))
− 	e 1 i 

(
t −

k 

)]

−2 

N ∑ 

i =1 

d z T 
(
K e 2 i 
(
t −

k 

))
F 2 
[
d z 
(
K e 2 i 
(
t −

k 

))
− 	e 2 i 

(
t −

k 

)]
, 

= 

N ∑ 

i =1 

βT 
1 i 

(
t −

k 

)
�1 β1 i 

(
t −

k 

)
+ ψ 1 V 1 

(
t −

k 

)
+ 

N ∑ 

i =1 

βT 
2 i 

(
t −

k 

)
�2 β2 i 

(
t −

k 

)
+ ψ 2 V 2 

(
t −

k 

)
, 

≤ ℵ V (t −
k 
) , (15) 

where 

β1 i 

(
t −

k 

)
= 

[
e T 1 i 
(
t −

k 

)
− dz T 

(
K e 1 i 
(
t −

k 

))]T 
β2 i 

(
t −

k 

)
= 

[
e T 2 i 
(
t −

k 

)
− dz T 

(
K e 2 i 
(
t −

k 

))]T 
, ℵ = max { ψ 1 , ψ 2 } 

�1 = 

[
( I n + K ) 

T P 1 ( I n + K ) ( I n + K ) 
T P 1 

� P 1 

]
, �2 = 

[
( I n + K ) 

T P 2 ( I n + K ) ( I n + K ) 
T P 2 

� P 2 

]
Consider the following system with the comparison of (10) and (13) { 

D 

+ v (t) = α5 v 1 (t) + α3 v 1 (t − ϕ(t)) + α4 v 1 (t − σ (t)) + ρ, t � = t k , 
v (t k ) = ℵ v (t −

k 
) , t = t k , 

v (s ) = V (s ) , t 0 ≤ s ≤ t 0 . 

When s ∈ [ t 0 − h, t 0 ] , v (s ) ≥ V (s ) ≥ 0 , ρ > 0 is a constant. By the formula for the variation of parameter, one obtains from

the above equation that 

v ε1 (t) = ζ (t, t 0 ) v ε1 (t 0 ) + 

∫ t 

t 0 

ζ (t, s ) ( α3 v ε1 (s − ϕ(s )) + α4 v ε1 (s − σ (s )) + ρ) ds, 

where ζ (t, s )(t, s > 0) is the Cauchy matrix for the linear system considered below is given as. 

˙ w (t) = α5 w (t) , t � = t k , 

w (t k ) = ℵ w (t −
k 
) , t = t k , k ∈ Z + . 
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Now we can formulate the following estimate through the Cauchy matrix representation and by the Definition 2.5, we get 

ζ (t, s ) = ℵ 

ℵ (t,s ) e α5 (t−s ) , 

≤ℵ 

t−s 
T a 

−ℵ 0 e α5 (t−s ) , 

= ℵ 

−ℵ 0 e ᾱ(t−s ) . 

where ᾱ = α5 + (ln ℵ /T a ) < 0 . Let v̄ ε1 = sup 

t 0 −h ≤s ≤t 0 

V (s ) and κ = ℵ 

−ℵ 0 v̄ ε1 which leads to 

v ε1 (t) = κe ᾱ(t−t 0 ) + 

∫ t 

t 0 

ℵ 

−ℵ 0 e ᾱ(t−s ) ( α3 v ε1 (s − ϕ(s )) + α4 v ε1 (s − σ (s )) + ρ) ds. 

Define Z(θ ) = θ + ℵ 

−ℵ 0 (α3 e 
ϕθ + α4 e 

σθ
)

+ ᾱ. If θ = 0 , then z(0) = ℵ 

−ℵ 0 ( α3 + α4 ) + ᾱ < 0 , Z(+ ∞ ) = + ∞ and 

˙ Z (θ ) =
1 + ℵ 

−ℵ 0 (ϕα3 e 
ϕθ + σα4 e 

σθ
)

> 0 . As a result, a unique positive constant θ exists satisfying the condition θ + 

ℵ 

−ℵ 0 (α3 e 
ϕθ + α4 e 

σθ
)

+ ᾱ = 0 . In the following, we show that for all t 0 ≥ t 0 − h, 

v ε1 = κe −θ (t−t 0 ) − ρ

ᾱℵ 

ℵ 0 + α3 + α4 

. (16) 

For t ∈ [ t 0 − h, t 0 ] , in view of ℵ 

ℵ 0 > 1 , we have 

v ε1 (t) = V (t) ≤ v̄ ε1 < ℵ 

−ℵ 0 v̄ ε1 = κ, 

< κe −θ (t−t 0 ) − ρ

ᾱℵ 

ℵ 0 + α3 + α4 

. (17) 

For t ∈ (t 0 , + ∞ ) , we need to prove the following inequality, for t > 0 . 

So we define t̄ = inf 

{ 
t > t 0 : v ε1 (t) ≤ κe −θ (t−t 0 ) − ρ

ᾱℵ ℵ 0 + α3 + α4 

} 
. We assert that the point t̄ is impulsive. 

From Z(θ ) = 0 , it is obvious that 

v ε1 
¯(t) ≤κe ᾱ(t−t 0 ) + 

∫ t 

t 0 

ℵ 

−ℵ 0 e ᾱ(t−s ) ( α3 v ε1 (s − ϕ(s )) + α4 v ε1 (s − σ (s )) + ρ) ds, 

≤κe ᾱ( ̄t −t 0 ) + 

∫ t 

t 0 

ℵ 

−ℵ 0 e ᾱ(t−s ) 
[ 
α3 

(
κe −θ ( s −ϕ−t 0 ) − ρ

ᾱℵ 

ℵ 0 + α3 + α4 

)
+ α4 

(
κe −θ ( s −σ−t 0 ) − ρ

ᾱℵ 

ℵ 0 + α3 + α4 

)
+ ρ
] 

ds, 

= κe ᾱ( ̄t −t 0 ) + 

κℵ 

−ℵ 0 α3 e 
ϕθ

−( ̄α + θ ) 

(
e −θ ( ̄t −t 0 ) − e −α( ̄t −t 0 ) 

)
+ 

κℵ 

−ℵ 0 α4 e 
ϕθ

−( ̄α + θ ) 

(
e −θ ( ̄t −t 0 ) − e −α( ̄t −t 0 ) 

)
− ρ

ᾱℵ 

ℵ 0 + α3 + α4 

(
1 − e −α( ̄t −t 0 ) 

)
, 

< κe ᾱ( ̄t −t 0 ) + 

κℵ 

−ℵ 0 (α3 e 
ϕθ + α4 e 

σθ
)

−( ̄α + θ ) 

(
e −θ ( ̄t −t 0 ) − e −α( ̄t −t 0 ) 

)
− ρ

ᾱℵ 

N 0 + α3 + α4 

, 

= κe −θ ( ̄t −t 0 ) − ρ

ᾱℵ 

ℵ 0 + α3 + α4 

, 

which contradicts with the above condition (16) . Then let ρ → 0 + it is obvious to get v ε1 
¯(t) ≤ κe −θ ( ̄t −t 0 ) . Noting that t̄ > t 0 ,

it is easy to obtain that 

V ( ̄t ) ≤v ε1 ( ̄t ) , 

≤κe −θ( ̄t −t 0 ) , 

= ℵ 

−ℵ 0 v̄ ε1 e 
−θ( ̄t −t 0 ) , 

< ℵ 

−ℵ 0 , (18) 

which negates the equation V ( ̄t ) = ℵ 

−ℵ 0 . The set inclusion constraint is important in estimating the domain of attraction

when studying systems with saturation structure. However, it is based on the fact that the system’s trajectory is continuous. 

The traditional set inclusion constraint is infeasible when the system is subject to impulses. To address this issue, a new set

inclusion constraint for impulsive synchronization is developed, that is ρ(I N � P, 1) ⊂ ρ(I N � P, ℵ 

−ℵ 0 ) ⊂ L (H) . It should be

noted that the restriction ρ(I N � P, ℵ 

−ℵ 0 ) ⊂ L (H) is required to ensure that the system’s trajectory stays within the bounds

of ρ(I N � P, ℵ 

−ℵ 0 ) on both the continuous intervals and the impulse instants. Therefore, based on the previous discussions,

for all t ≥ t 0 − h , V (t) ≤ ℵ 

−ℵ 0 v̄ ε1 e 
−θ ( t−t 0 ) i.e, 

‖ e (t) ‖ ≤
√ 

λmax (P ) 

λmin (P ) ℵ 

ℵ 0 sup 

t 0 −h ≤s ≤t 0 

N ∑ 

i =1 

‖ 

χi (s ) ‖ 

2 
e −

θ
2 ( t−t 0 ) , (19) 
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where, e (t) = (e T 1 (t) , e T 2 (t)) T , P = diag(P 1 , P 2 ) 
T , χ ∈ ρ(I N � P, 1) . By using Definition 2.5 as a hint, we can determine that the

coupled delayed neural network (2) is exponentially synced to the isolated node (3). The proof is now completed. 

Remark 3.2. Generally speaking the impulse is to reduce lower speed cost, more secrecy, and greater robustness are features 

that distinguish impulsive control. When the continuous delayed neural network is exponentially stable but the impulses are 

input disturbances, sufficient conditions for exponential stability concerned with the magnitude and frequency of impulses 

are derived to maintain the exponential stability of the original neural network. When the continuous neural network is 

unstable, sufficient stability conditions that utilize impulsive effects to stabilize the unstable neural network are given. For 

example, [9,33] investigates the impulsive synchronization of neural networks. The authors of [53] examined the stability of 

a type of inertial BAM neural networks with delays that are time-varying. In particular, in [9] , impulsive control was used to

examine the dynamical and static multi synchronization issues. In order to achieve the desired control performance, we can 

design the impulsive strength artificially. Since actuator saturation is a common occurrence in almost all control systems, 

it is actually very challenging from the perspective of applications to accomplish the design aim for each control input. 

Moreover, in the aforementioned studies, the saturation structure of impulses has been neglected. Despite the fact that 

the synchronization problem has been analyzed by various researchers for neural networks that have saturated impulsive 

control in recent years [18,43,46] , there are still certain issues to investigate. This paper provides insights on impulse action,

particularly the saturation structure and proposes a novel method for evaluating the synchronization of neural networks 

with inertial term and coupling delay. 

In the following the effective control scheme v 1 (t) , v 2 (t) in (6) is provided by the actuator situation, i.e v 1 (t) =
∞ ∑ 

k =0 

sat(ϑ 1 (t)) δ(t − t k ) , v 2 (t) = 

∞ ∑ 

k =0 

sat(ϑ 2 (t)) δ(t − t k ) , M ≤ t k +1 − t k ≤ M, k ∈ Z + where M and M are positive constants. Dif-

ferent from previous theorems we are going to consider the actuator situation asymmetric character. Let ϑ 1 (t) = 

K̄ 1 e 1 (t) , ϑ 2 (t) = K̄ 2 e 2 (t) , where K̄ 1 , ̄K 2 are control gains. When i = 1 , 2 , · · · n , each component sat ( ̄K 1 i e 1 (t )) , sat ( ̄K 2 i e 2 (t )) is

therefore denoted as 

sat ( ̄K 1 i e 1 (t )) = 

{ −χi , K̄ 1 i e 1 (t) < −χi 

K̄ 1 i e 1 (t) , K̄ 1 i e 1 (t) ∈ [ −χi , ηi ] , 

ηi , K̄ 1 i e 1 (t) > ηi 

sat ( ̄K 2 i e 2 (t )) = 

{ −χi , K̄ 2 i e 2 (t) < −χi 

K̄ 2 i e 2 (t) , K̄ 2 i e 2 (t) ∈ [ −χi , ηi ] , 

ηi , K̄ 2 i e 2 (t) > ηi 

where ηi , χi > 0 . The following formula can then be used straight away [11] : 

sat s 
(
K̄ 1 i e 1 (t) − ˜ ξi 

)
= 

⎧ ⎨ 

⎩ 

ξ̄i , K̄ 1 i e 1 (t) − ˜ ξi > ξ̄i 

K̄ 1 i e 1 (t) − ˜ ξi , −ξ̄i ≤ K̄ 1 i e 1 (t) − ˜ ξi ≤ ξ̄i , 

−ξ̄i , K̄ 1 i e 1 (t) − ˜ ξi < −ξ̄i 

sat s 
(
K̄ 2 i e 2 (t) − ˜ ξi 

)
= 

⎧ ⎨ 

⎩ 

ξ̄i , K̄ 2 i e 2 (t) − ˜ ξi > ξ̄i 

K̄ 2 i e 2 (t) − ˜ ξi , −ξ̄i ≤ K̄ 2 i e 2 (t) − ˜ ξi ≤ ξ̄i , 

−ξ̄i , K̄ 2 i e 2 (t) − ˜ ξi < −ξ̄i 

where ξ̄i = 

ηi + χi 
2 , ˜ ξi = 

ηi −χi 
2 . Clearly, sat s 

(
K̄ 1 i e 1 (t) − ˜ ξi 

)
and sat s 

(
K̄ 2 i e 2 (t) − ˜ ξi 

)
are two symmetrical non normalized satura- 

tion functions respectively. The asymmetric saturation functions can therefore be stated as: 

sat(K 1 e 1 (t)) = sat s (K 1 e 1 (t) − ˜ ξ ) + 

˜ ξ , sat(K 2 e 2 (t)) = sat s (K 2 e 2 (t) − ˜ ξ ) + 

˜ ξ , (20) 

where η = (η1 , η2 , . . . , ηn ) T , χ = (χ1 , χ2 , . . . , χn ) T and 

˜ ξ = 

η−χ
2 . Thereafter, we rewrite the error system in the following

manner: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

de 1 (t) 
dt 

= −e 1 (t) + e 2 (t) , 

de 2 (t) 
dt 

= A e 1 (t) − B e 2 (t) + 

ˆ C f (e 1 (t)) + 

ˆ D f (e 1 (t − ϕ(t))) + I(t) + 

N ∑ 

j=1 

H i j W e 1 (t) + 

N ∑ 

j=1 

H i j W̄ e 1 (t − σ (t)) , 

e 1 (t + 
k 
) = e 1 (t k ) + sat(K 1 e 1 (t k ) − ˜ ξ ) + 

˜ ξ , e 2 (t + 
k 
) = e 2 (t k ) + sat(K 2 e 2 (t k ) − ˜ ξ ) + ξ , t = t k , 

e 1 (s ) = ξ1 (s ) , e 2 (s ) = ξ2 (s ) , s ∈ [ t 0 − h, t 0 ] . 

(21) 

Using the asymmetric saturated impulsive control technique, we will present some suitable criteria for the synchro- 

nization of inertial neural networks in the following theorem. The dead zone function is considered as dz(K 1 e 1 (t) − ˜ ξ )

and dz(K 2 e 2 (t) − ˜ ξ ) described by dz(K 1 e 1 (t) − ˜ ξ ) = sat s (K 1 e 1 (t) − ˜ ξ ) − K 1 e 1 (t) + 

˜ ξ , dz(K 2 e 2 (t) − ˜ ξ ) = sat s (K 2 e 2 (t) − ˜ ξ ) −
K 2 e 2 (t) + 

˜ ξ . The error dynamics (21) can therefore be stated as: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

de 1 (t) 
dt 

= −e 1 (t) + e 2 (t) , 

de 2 (t) 
dt 

= A e 1 (t) − B e 2 (t) + 

ˆ C f (e 1 (t)) + 

ˆ D f (e 1 (t − ϕ(t))) + I(t) + 

N ∑ 

j=1 

H i j W e 1 (t) + 

N ∑ 

j=1 

H i j W̄ e 1 (t − σ (t)) , 

e 1 (t + 
k 
) = e 1 (t k ) + dz(K 1 e 1 (t) − ˜ ξ ) + K 1 e 1 (t k ) , e 2 (t + 

k 
) = e 2 (t k ) + dz(K 2 e 2 (t) − ˜ ξ ) + K 2 e 2 (t k ) , t = t k , 

e 1 (s ) = ξ1 (s ) , e 2 (s ) = ξ2 (s ) , s ∈ [ t 0 − h, t 0 ] . 

(22) 
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Definition 3.3. The INN system (22) is said to be stable exponentially, if there exists constants Q ≥ 1 and ε, for all ini-

tial value ψ(t) such that | e (t) | ≤ Q| ψ(t) | exp ( −ε( t − t 0 ) ) , t ≥ t 0 , is in a domain ϒ that includes the origin’s open section.

Suppose ϒ = R n , it is said to be globally stable. 

Theorem 3.4. Suppose that there exist constants α1 > 0 , α2 > 0 , α3 > 0 , α4 > 0 and some n × n diagonal matrices P 1 > 0 , P 2 >

0 , M > 0 , Z 1 > 0 , Z 2 > 0 , M 

T Z 2 M ≤ 0 and matrices U, W > 0 such that the following inequalities hold: 

I N �
(
2 P 1 − P 1 M + M 

T Z 1 M + P 2 A δ−1 + (H � P 2 W ) ς 

−1 − α1 P 1 
)

≤ 0 , (23) 

I N �
(
P 1 M 

−1 + P 2 A δ − 2 P 2 B + P 2 ̂  C Z −1 
1 

ˆ C T P 2 + P 2 ̂  D Z −1 
2 

ˆ D 

T P 2 + (H � P 2 W ) ς 

+ 

(
H H 

T 
� P 2 W̄ Z −1 

3 W̄ P 2 
)

− α1 P 2 
)

≤ 0 , (24) 

[
(I + K 1 ) 

T P 1 (I + K 1 ) − ˜ �1 P 1 (I + K 1 ) 
T P 1 − 1 

2 
U 

T W 

P 1 − W 

]
≤ 0 , (25) 

[
(I + K 1 ) 

T P 2 (I + K 1 ) − ˜ �2 P 2 (I + K 1 ) 
T P 2 − 1 

2 
U 

T W 

P 2 − W 

]
≤ 0 , (26) 

In ̃

 � + α1 T < 0 , (27) 

then the leader-following synchronization between INN (1) and (3) will be realized. 

Proof: A Lyapunov functional candidate is constructed as follows 

V (t) = V 1 (t) + V 2 (t) , (28) 

where V 1 (t) = 

N ∑ 

i =1 

e T 
1 i 
(t) P 1 e 1 i (t ) , V 2 (t ) = 

N ∑ 

i =1 

e T 
2 i 
(t) P 2 e 2 i (t) . 

Taking the derivative of V (t) along the trajectories of (6) 

D 

+ V 1 (t) = 2 

N ∑ 

i =1 

e T 1 i (t) P 1 ̇ e 1 i (t) , 

= − 2 

N ∑ 

i =1 

e T 1 i (t) P 1 e 1 i (t) + 2 

N ∑ 

i =1 

e T 1 i (t) P 1 e 2 i (t) , 

≤ − 2 

N ∑ 

i =1 

P 1 e 
T 
1 i (t) e 1 i (t) + 

N ∑ 

i =1 

P 1 e 
T 
1 i (t) Me 1 i (t) + 

N ∑ 

i =1 

P 1 e 
T 
2 i (t) M 

−1 e 2 i (t) , 

D 

+ V 2 (t) = 2 

N ∑ 

i =1 

e T 2 i (t) P 2 ̇ e 2 i (t) , 

= 2 

N ∑ 

i =1 

e T 2 i (t) P 2 

( 

A e 1 i (t) − B e 2 i (t) + 

ˆ C f (e 1 i (t)) + 

ˆ D f (e 1 i (t − ϕ(t))) + I(t) + 

N ∑ 

j=1 

H i j W e 1 i (t) 

+ 

N ∑ 

j=1 

H i j W̄ e 1 i (t − σ (t)) 

) 

, 

= 2 

N ∑ 

i =1 

e T 2 i (t) P 2 A e 1 i (t) − 2 

N ∑ 

i =1 

e T 2 i (t) P 2 B e 2 i (t) + 2 

N ∑ 

i =1 

e T 2 i (t) P 2 ̂  C f (e 1 i (t)) + 2 

N ∑ 

i =1 

e T 2 i (t) P 2 ̂  D f (e 1 i (t − ϕ(t))) 

+ 2 

N ∑ 

i =1 

e T 2 i (t) P 2 

N ∑ 

j=1 

H i j W e 1 i (t) + 2 e T 2 i (t) P 2 

N ∑ 

j=1 

H i j W̄ e 1 i (t − σ (t)) . 

Then, we can get 

D 

+ V (t) = 2 

N ∑ 

i =1 

P 1 e 
T 
1 i (t) e 1 i (t) −

N ∑ 

i =1 

P 1 Me T 1 i (t) e 1 i (t) + 

N ∑ 

i =1 

P 1 M 

−1 e T 2 i (t) e 2 i (t) + 

N ∑ 

i =1 

P 2 A δe T 2 i (t) e 2 i (t) 

+ 

N ∑ 

i =1 

P 2 A δ−1 e T 1 i (t) e 1 i (t) − 2 

N ∑ 

i =1 

P 2 B e T 2 i (t) e 2 i (t) + 

N ∑ 

i =1 

e T 2 i (t) P 2 ̂  C Z −1 
1 

ˆ C T P 2 e 2 i (t) + 

N ∑ 

i =1 

e T 1 i (t) M 

T Z 1 Me 1 i (t) 
537 



K. Udhayakumar, S. Shanmugasundaram, A. Kashkynbayev et al. Applied Mathematical Modelling 113 (2023) 528–544 

 

 

 

+ 

N ∑ 

i =1 

e T 2 i (t) P 2 ̂  D Z −1 
2 

ˆ D 

T P 2 e 2 i (t) + 

N ∑ 

i =1 

e T 1 i (t − ϕ(t)) M 

T Z 2 Me 1 i (t − ϕ(t)) + e T 2 (H � P 2 W ) ς (t) e 2 (t) 

+ e T 1 (t)(H � P 2 W ) ς 

−1 e 1 (t) + e T 2 (t) 
(
H H 

T 
� P 2 W̄ Z −1 

3 W̄ P 2 
)
e 2 ( t) + e T 1 ( t − σ ( t))( I N � Z 3 ) e 1 (t − σ (t)) , 

≤e T 1 (t) 
[
I N �

(
2 P 1 − P 1 M + M 

T Z 1 M + P 2 A δ−1 + (H � P 2 W ) ς 

−1 − α1 P 1 
)]

e 1 (t ) 

+ e T 2 (t) 
[
I N �

(
P 1 M 

−1 + P 2 A δ − 2 P 2 B + P 2 ̂  C Z −1 
1 

ˆ C T P 2 + P 2 ̂  D Z −1 
2 

ˆ D 

T P 2 + (H � P 2 W ) ς 

+ 

(
H H 

T 
� P 2 W̄ Z −1 

3 W̄ P 2 
)

− α1 P 2 
)]

e 2 (t) 

+ e T 1 (t − ϕ(t)) 
[
I N �

(
M 

T Z 2 M 

)]
e 1 (t − ϕ(t)) 

+ e T 1 (t − σ (t)) [ I N � Z 3 ] e 1 (t − σ (t)) + e T 1 (t) α1 P 1 e 1 (t) + e T 2 (t) α1 P 2 e 2 (t) , 

≤α1 V (t) . (29) 

From Lemma 2.7 , if e 1 (t) , e 2 (t) ∈ U , where set U = 

{ 
e 1 (t) , e 2 (t) ∈ R 

n : − ˆ δi ≤ K i 1 e 1 (t) − ˜ ξi − U i e 1 (t) ≤ ˆ δi , i = 1 , 2 , · · · N 

} 
, ̂  δ =

η+ χ
2 , we can get −dz T (K 1 e 1 (t) − ˜ ξ ) W (dz(K 1 e 1 (t) − ˜ ξ ) + Ue 1 (t)) ≥ 0 , −dz T (K 1 e 2 (t) − ˜ ξ ) W (dz(K 1 e 2 (t) − ˜ ξ ) + Ue 2 (t)) ≥ 0 ,

i.e, if e 1 (t) , e 2 (t) ∈ U , where set U = { e 1 (t) , e 2 (t) ∈ R 

n : −χi ≤ K i 1 e 1 (t) − U i e 1 (t) ≤ ηi , i = 1 , 2 , · · · N } , then 

−dz T (K 1 e 1 (t) − ˜ ξ ) W (dz(K 1 e 1 (t) − ˜ ξ ) + Ue 1 (t)) ≥ 0 , −dz T (K 1 e 2 (t) − ˜ ξ ) W (dz(K 1 e 2 (t) − ˜ ξ ) + Ue 2 (t)) ≥ 0 (30) 

Taking ˜ U = { e 1 (t) , e 2 (t) ∈ R 

n : − min ( ηi , χi ) ≤ K i 1 e 1 (t) − U i e 1 (t) ≤ min ( ηi , χi ) , i = 1 , 2 , · · · N } , one obtains ˜ U ⊆ U . When t = 

t 0 , from (30) , one obtains 

−dz T (K 1 e 1 (t 0 ) − ˜ ξ ) W (dz(K 1 e 1 (t 0 ) − ˜ ξ ) + Ue 1 (t 0 )) ≥ 0 , 

−dz T (K 1 e 2 (t 0 ) − ˜ ξ ) W (dz(K 1 e 2 (t 0 ) − ˜ ξ ) + Ue 2 (t 0 )) ≥ 0 . (31) 

And one can demonstrate this 

V 

(
t + 0 

)
= 

(
e 1 ( t 0 ) + dz 

(
K 1 e 1 ( t 0 ) − ˜ ξ

)
+ K 1 e 1 ( t 0 ) 

)T 
P 1 
(
e 1 ( t 0 ) + dz 

(
K 1 e 1 ( t 0 ) − ˜ ξ

)
+ K 1 e 1 ( t 0 ) 

)
+ 

(
e 2 ( t 0 ) + dz 

(
K 1 e 2 ( t 0 ) − ˜ ξ

)
+ K 1 e 2 ( t 0 ) 

)T 
P 2 
(
e 2 ( t 0 ) + dz 

(
K 1 e 2 ( t 0 ) − ˜ ξ

)
+ K 1 e 2 ( t 0 ) 

)
, 

≤e 1 ( t 0 ) 
T (I + K 1 ) 

T P 1 (I + K 1 ) e 1 ( t 0 ) + e 1 ( t 0 ) 
T (I + K 1 ) 

T P 1 dz 
(
K 1 e 1 ( t 0 ) − ˜ ξ

)
+ dz T 

(
K 1 e 1 ( t 0 ) − ˜ ξ

)
P 1 (I + K 1 ) e 1 ( t 0 ) + dz T 

(
K 1 e 1 ( t 0 ) − ˜ ξ

)
P 1 dz 

(
K 1 e 1 ( t 0 ) − ˜ ξ

)
+ e 2 ( t 0 ) 

T (I + K 1 ) 
T P 2 (I + K 1 ) e 2 ( t 0 ) + e 2 ( t 0 ) 

T (I + K 1 ) 
T P 2 dz 

(
K 1 e 2 ( t 0 ) − ˜ ξ

)
+ dz T 

(
K 1 e 2 ( t 0 ) − ˜ ξ

)
P 2 (I + K 1 ) e 2 ( t 0 ) + dz T 

(
K 1 e 2 ( t 0 ) − ˜ ξ

)
P 2 dz 

(
K 1 e 2 ( t 0 ) − ˜ ξ

)
− dz T 

(
K e 1 ( t 0 ) − ˜ ξ

)
W dz 

(
K e 1 ( t 0 ) − ˜ ξ

)
− dz T 

(
K e 1 ( t 0 ) − ˜ ξ

)
W Ue 1 ( t 0 ) 

− dz T 
(
K e 2 ( t 0 ) − ˜ ξ

)
W dz 

(
K 1 e 2 ( t 0 ) − ˜ ξ

)
− dz T 

(
K 1 e 2 ( t 0 ) − ˜ ξ

)
W Ue 2 ( t 0 ) 

− ˜ �1 e 1 ( t 0 ) 
T P 1 e 1 ( t 0 ) + 

˜ �1 e 1 ( t 0 ) 
T P 1 e 1 ( t 0 ) − ˜ �2 e 2 ( t 0 ) 

T P 2 e 2 ( t 0 ) + 

˜ �2 e 2 ( t 0 ) 
T P 2 e 2 ( t 0 ) , 

≤ ˜ �V (t 0 ) . (32) 

From (29) and (32), one can get that when k = 0 , t 0 < t ≤ t 1 , 

V (t) ≤V (t + 0 ) exp ( α1 ( t − t 0 ) ) , 

≤ ˜ �V ( t 0 ) exp ( α1 ( t − t 0 ) ) , 

V ( t 1 ) ≤ ˜ �V ( t 0 ) exp ( α1 ( t 1 − t 0 ) ) . (33) 

Therefore, it is easy to see that V ( t 1 ) ≤ V ( t 0 ) exp ( ln 

˜ � + α1 T ) . And from condition (27) , In ̃  � + α1 T < 0 , we get V ( t 1 ) ≤ θ ,

i.e e 1 ( t 1 ) 
T P 1 e 1 ( t 1 ) + e 2 ( t 1 ) 

T P 2 e 2 ( t 1 ) ≤ θ , that is e 1 ( t 1 ) , e 2 ( t 1 ) ⊂ U . Similarly, we get 

V 

(
t + 1 

)
≤ ˜ �V ( t 1 ) , 

≤ ˜ �2 V ( t 0 ) exp ( α1 ( t 1 − t 0 ) ) . (34) 

When k = 1 , t 1 < t ≤ t 2 , we get 

V (t) ≤ V e 
(
t + 1 

)
exp ( α1 ( t − t 1 ) ) , 

≤ ˜ �2 V ( t 0 ) exp ( α1 ( t − t 0 ) ) , 

V ( t 2 ) ≤ ˜ �2 V ( t 0 ) exp ( α1 ( t 2 − t 0 ) ) . (35) 
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By means of mathematical deduction, when k = h − 1 , t h −1 < t ≤ t h , suppose that 

V (t) ≤ ˜ �h V ( t 0 ) exp ( α1 ( t − t 0 ) ) , 

V ( t k ) ≤ ˜ N 

h V ( t 0 ) exp ( α1 ( t k − t 0 ) ) . (36) 

It is simple to demonstrate that V ( t k ) ≤ V ( t 0 ) exp (h ( ln 

˜ � + α1 T )) . From (27) , one can get V ( t k ) ≤ θ , i.e e T 1 ( t k ) P 1 e 1 ( t k ) +
e T 

2 ( t k ) P 2 e 2 ( t k ) ≤ θ . Therefore, e 1 ( t k ) , e 2 (t k ) ⊂ U . And from (30) , one has 

V 

(
t + 

k 

)
≤ ˜ �V ( t k ) ≤ ˜ �h +1 V ( t 0 ) exp ( α1 ( t k − t 0 ) ) . (37) 

When k = h, t h < t ≤ t h +1 , we obtain, 

V (e (t)) ≤ ˜ �k +1 V ( e ( t 0 ) ) exp ( μ( t − t 0 ) ) , 

≤ V ( e ( t 0 ) ) exp ((k + 1)( ln 

˜ N + μT )) . (38) 

Suppose that for t h < t ≤ t h +1 , one derives that t − t 0 ≤ t h +1 − t 0 = t h +1 − t h + t h + · · · − t 1 + t 1 − t 0 ≤ (h + 1) T . Hence, 
t−t 0 

T ≤
h + 1 . From the theorem condition (27) , In ̃  � + α1 T < 0 , it is simple to demonstrate this, when t h < t ≤ t h +1 , 

V (t) ≤ V ( t 0 ) exp 

(
t − t 0 

T 
(ln ̃

 � + α1 T ) 
)

(39) 

and 

V (t) ≤ V ( t 0 ) exp 

(
−( t − t 0 ) 

(
− ln 

˜ �

T 
− α1 

))
. (40) 

Therefore from (28) 

λmin (P ) || e (t) || 2 ≤ V (t) ≤ λmax (P ) || e (t) || 2 , (41) 

where e (t) = (e 1 (t) , e 2 (t)) T , P = diag(P 1 , P 2 ) , then the inequality provided below holds true: 

|| e (t) || ≤
√ 

V ( e ( t 0 ) ) 

λmin (P ) 
exp 

(
−( t − t 0 ) 

1 

2 

(
− 1 

T 
ln 

˜ � − α1 

))
. (42) 

Therefore, from Definition 3.3 , and conditions (23) − (27) , every trajectory of the error signal converge to the origin as

t → ∞ , for all t ≥ t 0 . That is, the leader-following synchronization between addressed leader-follower systems through the

control law (20) will be achieved. 

4. Numerical simulations 

This section includes two examples to further illustrate our results. 

Example 4.1. Consider the INN (1) with coupling delays and the isolated node (3) with the corresponding system parame-

ters: 	 = 3 , n = 2 , I(t) = (0 , 0) T , ϕ(t) = 1 , σ (t) = 1 , f i ( ω i (t) ) = tanh (ω i (t)) , i = 1 , 2 , 3 , 4 , 5 and matrices ˆ A , ˆ B , ˆ C , ˆ D are given

by: 

ˆ A = 

(
1 0 

0 1 

)
, ˆ B = 

(
1 0 

0 1 

)
, ˆ C = 

(
π
4 

+ 1 20 . 01 

0 . 12 

π
4 

+ 1 

)
, ˆ D = 

(−π 1 . 3 

2 
√ 

2 
0 . 11 

0 . 11 −π 1 . 3 

2 
√ 

2 

)
. 

The delayed and non-delayed coupling matrices W̄ and W are given as follows: 

W̄ = 

(
0 . 4 0 

0 0 . 4 

)
, W = 

(
0 . 2 0 

0 0 . 2 

)
. 

Fig. 1 , shows the coupled network’s topological structure. The following is the equivalent Laplacian matrix and leader adja- 

cency matrix: 

L = 

⎛ 

⎜ ⎜ ⎝ 

1 0 0 −1 0 

−1 1 0 0 0 

0 −1 1 0 0 

0 0 −1 1 0 

0 −1 0 0 1 

⎞ 

⎟ ⎟ ⎠ 

, 

H = diag { 1 , 0 , 1 , 0 , 0 } . 
The phase diagram of the node that is isolated (4) with the initial values h (0) = (1 . 0 , 2 . 01) T , y (0) = (1 . 0 , 2 . 01) T is shown

in Fig. 2 . When there is no control input, the coupled delayed INN (1) cannot achieve the same synchronization behavior

as the isolated inertial delayed neural networks (3) . The coupled delayed INN (1) will be synchronized exponentially to the
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Fig. 1. The topological structure of the network. 

Fig. 2. The phase plot of the isolated node (4) . 

Fig. 3. The state trajectories with saturated impulsive control. 

 

 

 

isolated node (3) . The saturation control with impulses will be developed as follows. To that aim, we examine the saturation

level S i = (1 , 1) T , i = 1 , 2 , 3 , 4 , 5 while also obtaining certain matrices as follows: 

P 1 = 

(
0 . 04 0 

0 0 . 04 

)
, P 2 = 

(
0 . 102 0 

0 0 . 102 

)
. (43) 

The leader following error system (6) , according to Theorem 3.1 , converges to zero exponentially when the impulsive se-

quence is t 2 n = 0 . 12 n, n ∈ Z + . Synchronization between INNs with coupling delays (1) and neural network node with inertial

term and isolated delay (3) is achieved via the impulsive saturated control as exhibited in the Figs. 3 , 4 , 5 . 

Remark 4.1. Because equation (1) with the parameters in Example 4.1 is initially unstable, most known studies on the 

synchronization problem of delayed inertial neural networks without impulses like [2,34,38] cannot be applied to it. On the 

contrary, the saturated impulsive control approaches suggested in this study can successfully achieve exponential synchro- 

nization. 
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Fig. 4. The state trajectories with saturated impulsive control. 

Fig. 5. The error signals with saturated impulsive control. 

Fig. 6. The chaotic behavior of the isolated node (4) in Example 4.2. 

 

 

 

Example 4.2. Consider the underlying coupled delayed INNs which take into account both current-state and delayed cou- 

pling: 

d 2 ω i (t) 

dt 2 
= − ˆ A 

dω i (t) 

dt 
− ˆ B ω i (t) + 

ˆ C f (ω i (t)) + 

ˆ D f (ω i (t − ϕ(t))) + I(t) + 

N ∑ 

j=1 

H i j W ω j (t) + 

N ∑ 

j=1 

H i j W̄ ω j (t − σ (t)) , 

(44) 

where the values of ˆ A , ˆ B , ˆ C , ˆ D , W and W̄ are given as follows: 

ˆ A = 

(
0 . 4 0 

0 0 . 4 

)
, ˆ B = 

(
1 . 6 0 

0 1 . 6 

)
, ˆ C = 

(
1 . 8 18 

0 . 2 1 . 8 

)
, ˆ D = 

(
−2 0 . 1 

0 −2 

)
, 

W = 

(
0 . 6 0 . 

0 0 . 6 

)
, W̄ = 

(
0 . 4 0 

0 0 . 4 

)
, 

and f (ω i (t)) = (| ω i (t) + 1 | − | ω i (t) − 1 | ) / 2 , ϕ = 1 , σ = 1 , i = 1 , 2 , 3 , 4 , 5 , then inertial neural networks (1) exists chaotic be-

havior with the initial values h (0) = (0 . 1 , 0 . 2) T which is shown in Fig. 6 . Now examine the INNs with exponential synchro-

nization (44) and asymmetric saturated impulsive control (20) . If η = 0 . 1 , we can deduce that the coupled delayed inertial
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Fig. 7. The state trajectories with asymmetric saturated impulsive control. 

Fig. 8. The state trajectories with asymmetric saturated impulsive control. 

 

 

 

 

 

 

 

neural networks (44) are exponentially synchronized with the isolated node (3) under asymmetric saturated impulsive con- 

trol (20) using Theorem 3.2. Figs. 7 and 8 demonstrate the state trajectories of inertial neural networks (44) under the initial

conditions ξi (s ) = (3 i, 6 i ) T , ξ̄i (s ) = (3 i, 6 i ) T , i = 1 , 2 , 3 , 4 , 5 . 

Remark 4.2. Actuator saturation nonlinearities are common in many dynamical systems because every physical actuator 

is subject to its maximum and minimum limits. Impulse saturation may be detrimental to the synchronization process as 

compared to unconstrained impulsive control. Figs. 3 and 4 make it clear that the impulsive controller’s saturation reduces 

the rate at which synchronization convergence occurs. That is because the actuator saturation degrades the performance of 

the system. The asymmetric character of saturation is very common in practical situations. It is easy to see from Fig. 7 and

8 that the existence of asymmetric saturation in the impulsive controller further slows down the convergence rate than the 

actuator saturation of the synchronization. 

5. Conclusion 

In this article, some novel suitable conditions for the leader-following synchronization problem of neural networks with 

inertial term are proposed that considers two types of delays at the same time. Using variable transformation on inertial 

neural networks, a given model can be transformed into first order differential equations and by substituting saturation non 

linearity for a dead-zone function and some adequate conditions for the exponential synchronization of coupled delayed 

INNs can be deduced in terms of LMIs. In addition, an asymmetric saturated impulsive control method is proposed in the

leader-following synchronization pattern to achieve exponential synchronization of the addressed INNs. Finally, simulation 

results are used to validate the theoretical research findings. It should be noted that our findings are only applicable in sit-

uations when the impulse and time delay are known or measured. On the other hand, the impulse signal can sometimes be

controlled or monitored throughout many application scenarios, particularly in control components, and it is also stochastic. 

Actuator saturation can be addressed using one of two strategies. The first one takes into account the saturation nonlinearity 

at the outset of the control design based on a control law, another is referred to as a anti-windup compensator, which adds

more feedbacks to the actuator to maintain it within acceptable bounds. The primary benefit of this approach is that the

compensator functions in concert with the existing linear controller and only intervenes when saturation is reached. The 

issue of master-slave fixed-time synchronization of a discontinuous coupled inertial neural network with saturation actuator 

indefinite functionals will be the focus on future research. 
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