300 research outputs found

    A virtual actuator approach for the secure control of networked LPV systems under pulse-width modulated DoS attacks

    Get PDF
    In this paper, we formulate and analyze the problem of secure control in the context of networked linear parameter varying (LPV) systems. We consider an energy-constrained, pulse-width modulated (PWM) jammer, which corrupts the control communication channel by performing a denial-of-service (DoS) attack. In particular, the malicious attacker is able to erase the data sent to one or more actuators. In order to achieve secure control, we propose a virtual actuator technique under the assumption that the behavior of the attacker has been identified. The main advantage brought by this technique is that the existing components in the control system can be maintained without need of retuning them, since the virtual actuator will perform a reconfiguration of the plant, hiding the attack from the controller point of view. Using Lyapunov-based results that take into account the possible behavior of the attacker, design conditions for calculating the virtual actuators gains are obtained. A numerical example is used to illustrate the proposed secure control strategy.Peer ReviewedPostprint (author's final draft

    Self-Triggered and Event-Triggered Set-Valued Observers

    Get PDF
    This paper addresses the problem of reducing the required network load and computational power for the implementation of Set-Valued Observers (SVOs) in Networked Control System (NCS). Event- and self-triggered strategies for NCS, modeled as discrete-time Linear Parameter-Varying (LPV) systems, are studied by showing how the triggering condition can be selected. The methodology provided can be applied to determine when it is required to perform a full (``classical'') computation of the SVOs, while providing low-complexity state overbounds for the remaining time, at the expenses of temporarily reducing the estimation accuracy. As part of the procedure, an algorithm is provided to compute a suitable centrally symmetric polytope that allows to find hyper-parallelepiped and ellipsoidal overbounds to the exact set-valued state estimates calculated by the SVOs. By construction, the proposed triggering techniques do not influence the convergence of the SVOs, as at some subsequent time instants, set-valued estimates are computed using the \emph{conventional} SVOs. Results are provided for the triggering frequency of the self-triggered strategy and two interesting cases: distributed systems when the dynamics of all nodes are equal up to a reordering of the matrix; and when the probability distribution of the parameters influencing the dynamics is known. The performance of the proposed algorithm is demonstrated in simulation by using a time-sensitive example

    Fault-tolerant Stochastic Distributed Systems

    Get PDF
    The present doctoral thesis discusses the design of fault-tolerant distributed systems, placing emphasis in addressing the case where the actions of the nodes or their interactions are stochastic. The main objective is to detect and identify faults to improve the resilience of distributed systems to crash-type faults, as well as detecting the presence of malicious nodes in pursuit of exploiting the network. The proposed analysis considers malicious agents and computational solutions to detect faults. Crash-type faults, where the affected component ceases to perform its task, are tackled in this thesis by introducing stochastic decisions in deterministic distributed algorithms. Prime importance is placed on providing guarantees and rates of convergence for the steady-state solution. The scenarios of a social network (state-dependent example) and consensus (time- dependent example) are addressed, proving convergence. The proposed algorithms are capable of dealing with packet drops, delays, medium access competition, and, in particular, nodes failing and/or losing network connectivity. The concept of Set-Valued Observers (SVOs) is used as a tool to detect faults in a worst-case scenario, i.e., when a malicious agent can select the most unfavorable sequence of communi- cations and inject a signal of arbitrary magnitude. For other types of faults, it is introduced the concept of Stochastic Set-Valued Observers (SSVOs) which produce a confidence set where the state is known to belong with at least a pre-specified probability. It is shown how, for an algorithm of consensus, it is possible to exploit the structure of the problem to reduce the computational complexity of the solution. The main result allows discarding interactions in the model that do not contribute to the produced estimates. The main drawback of using classical SVOs for fault detection is their computational burden. By resorting to a left-coprime factorization for Linear Parameter-Varying (LPV) systems, it is shown how to reduce the computational complexity. By appropriately selecting the factorization, it is possible to consider detectable systems (i.e., unobservable systems where the unobservable component is stable). Such a result plays a key role in the domain of Cyber-Physical Systems (CPSs). These techniques are complemented with Event- and Self-triggered sampling strategies that enable fewer sensor updates. Moreover, the same triggering mechanisms can be used to make decisions of when to run the SVO routine or resort to over-approximations that temporarily compromise accuracy to gain in performance but maintaining the convergence characteristics of the set-valued estimates. A less stringent requirement for network resources that is vital to guarantee the applicability of SVO-based fault detection in the domain of Networked Control Systems (NCSs)

    Gain-Scheduled Fault Detection Filter For Discrete-time LPV Systems

    Get PDF
    The present work investigates a fault detection problem using a gain-scheduled filter for discrete-time Linear Parameter Varying systems. We assume that we cannot directly measure the scheduling parameter but, instead, it is estimated. On the one hand, this assumption imposes the challenge that the fault detection filter should perform properly even when using an inexact parameter. On the other, it avoids the burden associated with designing a complex estimation process for this parameter. We propose three design approaches: the H2{\mathcal {H}_{2}} , H∞{\mathcal {H}_{\infty }} , and mixed H2/H∞{\mathcal {H}_{2}} / {\mathcal {H}_{\infty }} gain-scheduled Fault Detection Filters designed via Linear Matrix Inequalities. We also provide numerical simulations to illustrate the applicability and performance of the proposed novel methods

    A hybrid automata approach for monitoring the patient in the loop in artificial pancreas systems

    Get PDF
    The use of automated insulin delivery systems has become a reality for people with type 1 diabetes (T1D), with several hybrid systems already on the market. One of the particularities of this technology is that the patient is in the loop. People with T1D are the plant to control and also a plant operator, because they may have to provide information to the control loop. The most immediate information provided by patients that affects performance and safety are the announcement of meals and exercise. Therefore, to ensure safety and performance, the human factor impact needs to be addressed by designing fault monitoring strategies. In this paper, a monitoring system is developed to diagnose potential patient modes and faults. The monitoring system is based on the residual generation of a bank of observers. To that aim, a linear parameter varying (LPV) polytopic representation of the system is adopted and a bank of Kalman filters is designed using linear matrix inequalities (LMI). The system uncertainty is propagated using a zonotopic-set representation, which allows determining confidence bounds for each of the observer outputs and residuals. For the detection of modes, a hybrid automaton model is generated and diagnosis is performed by interpreting the events and transitions within the automaton. The developed system is tested in simulation, showing the potential benefits of using the proposed approach for artificial pancreas systems.Peer ReviewedPostprint (published version

    Fault Detection for Cyber-Physical Systems: Smart Grid case

    Get PDF
    The problem of fault detection and isolation in cyber-physical systems is growing in importance following the trend to have an ubiquitous presence of sensors and actuators with network capabilities in power networks and other areas. In this context, attacks to power systems or other vital components providing basic needs might either present a serious threat or at least cost a lot of resources. In this paper, we tackle the problem of having an intruder corrupting a smart grid in two different scenarios: a centralized detector for a portion of the network and a fully distributed solution that only has limited neighbor information. For both cases, differences in strategies using Set-Valued Observers are discussed and theoretical results regarding a bound on the maximum magnitude of the attacker’s signal are provided. Performance is assessed through simulation, illustrating, in particular, the detection time for various types of faults in IEEE testbed scenarios

    Set-valued estimators for Uncertain Linear Parameter-Varying systems

    Get PDF
    Funding Information: This work was partially supported by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) through Institute for Systems and Robotics (ISR), under Laboratory for Robotics and Engineering Systems (LARSyS) project UIDB/50009/2020, through project PCIF/MPG/0156/2019 FirePuma and through COPELABS, University Lusófona project UIDB/04111/2020. Publisher Copyright: © 2022 Elsevier B.V.In this paper, we tackle the problem of state estimation for uncertain linear systems when bounds are known for the disturbances, noise and initial state. Practical systems often have parameters that cannot be measured precisely at every iteration. The framework of Uncertain Linear Parameter-Varying systems (Uncertain LPVs) have attracted attention from the community and have seen applications from the aerospace industry to mechatronic systems, among many other examples. By formulating the problem as the solution of a feasibility program, we show that the optimal convex solution can be computed through an enumeration of the vertices of the estimates. Resorting to this result, three algorithms are proposed: an approximation algorithm using only set operations; an exact convex hull method returning the optimal convex set suitable for cases where estimates do not have a large number of vertices; and an event-triggering algorithm suitable for fault/attack detection that combines both the convex and nonconvex methods. Simulations are conducted using a motor speed model where some of the parameters cannot be measured exactly pointing out that the uncertainty matrices are responsible for the accuracy of the approximation algorithm, and also that the point-based method is suitable for online estimation.publishersversionpublishe
    • …
    corecore