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ABSTRACT The present work investigates a fault detection problem using a gain-scheduled filter for
discrete-time Linear Parameter Varying systems. We assume that we cannot directly measure the scheduling
parameter but, instead, it is estimated. On the one hand, this assumption imposes the challenge that the fault
detection filter should perform properly even when using an inexact parameter. On the other, it avoids the
burden associated with designing a complex estimation process for this parameter. We propose three design
approaches: the H2, H∞, and mixed H2 / H∞ gain-scheduled Fault Detection Filters designed via Linear
Matrix Inequalities. We also provide numerical simulations to illustrate the applicability and performance
of the proposed novel methods.

INDEX TERMS Fault detection and isolation, LPV systems,H2 gain-scheduled filter,H∞ gain-scheduled
filter.

I. INTRODUCTION
Faults are inherent in any complex engineering system, such
as, for instance, in a multitude of sensor and actuator sys-
tems used to drive and operate high degree-of-freedom elec-
tromechanical mechanisms. The presence of these faults may,
among others, lead to significant performance degradation
and can yield to unsafe operations [1]. Therefore it is of
utmost importance for the optimal and safe operation of such
complex engineering systems that the faults are promptly
detected and isolated so that they can be subsequently com-
pensated.

In the literature, there are two main approaches for dealing
with fault occurrence: the data-driven [2] and the model-
based [3] methods. For a particular application of wind tur-
bines, a direct comparison of both approaches is presented

The associate editor coordinating the review of this manuscript and
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in [4]. In [5], the authors present a comparison between
the model-based and data-driven approaches considering an
Unmanned Aerial Vehicle. In general, while it is not triv-
ial to develop or to identify an accurate dynamical model
of a given complex system, the model-based approach is
often preferable in practice as it provides a rigorous design
framework and is applicable in many practical cases. For
instance, in cases where the system is only partially observ-
able or where it requires further implementation of sen-
sors, controllers, or security measurements, it is difficult or
impossible to gather enough data to implement a data-driven
approach. However, it is still possible to obtain a model to
describe the system.

Fault Detection (FD) is a well-established model-based
approach where we can integrate the models on the design of
fault detection filters (FDF) [3], [6]–[9]. The main idea of an
FD is based on the use of residue generator filters, where the
model-based filters provide a residue signal that corresponds
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to the occurrence of faults. This signal is close to zero when
the system is in its nominal state, and it changes markedly
when a fault occurs [6], [9].

When the systems are nonlinear, the application of FD
using a set of linear approximations of the nonlinear models
may lead to practical problems. For instance, if a nonlin-
ear system is simply represented by a linear time-invariant
model, then it can generate false alarms or return false neg-
ative signals due to the lack of dynamical information in
the model [10]. In this case, the use of a Linear Parameter
Varying (LPV) modelling framework to model nonlinear sys-
tems in the FD context has been favoured in the literature,
as advocated in [11]–[14].

The effectiveness of the LPV framework for FD problems
has been demonstrated in many real applications, such as the
FD for a fixed-wing using a set-valued observer for LPV
systems [15], the FD for a winding machine using a polytopic
LPV approach [10], the FD for a glucose-insulin system [16]
and the FD for a Grid-Connected Hybrid Power Plant using
LPV systems associated with a search algorithm [17]. There
has been significant progress in the design methods and
analysis of LPV systems for the past decades. Some of the
recent results are, among many others, the design of FD
for LPV systems with bounded uncertainties as proposed
in [18], the unknown input observer (UIO) with LPV frame-
work in [19], the FD method for Lur’e systems in [20],
the FD approach for polytopic slidingmode observers in [21],
and the robust fault detection approach and the design of
a set-theoretic unknown input observer for LPV systems
in [22]. In [23], the authors present an FDF design under
a discrete-time Takagi-Sugeno Fuzzy Markovian jumping
system (MJS) framework with the presence of time-varying
delay, missing measurement, and partly unknown transition
probability. The authors in [24] study the dissipative-based
finite-time FDF for a discrete-time complex system in the
presence of random delays and channel fading. In [25],
the authors propose an event-triggered observer-based FDF
design using switched non-linear network control systems.
Shen et al. [26] present the design of fuzzy fault-tolerant
control for MJS, where the faults are reconstructed using
proportional integral observers. In [27], the authors study the
design of a simultaneous FDF and state-feedback control for
MJS under the premise that the transition matrix is partially
unknown. The paper [28] provides the design of a Fault
Accommodation Control for hidden-MJS, assuming that the
transition matrix in the Markov chain is partially unknown.
In [29] the filtering problem for the class of fuzzy singular
MJS is analyzed, considering that the system is subjected to
time-varying delays. An important aspect that must be con-
sidered in the design of an FD scheme is that FDfilters need to
be resilient against noise to minimize the occurrence of false
alarms [6], [9]. Another desirable aspect is that a fault must
be detected as soon as possible. To fulfil both tasks, usingH2
andH∞ norms can be useful as performance indexes. In this
case, the papers [30]–[32] present parameter-dependent Lin-
ear Matrix Inequalities (LMI) constraints to obtain H2 and

H∞ guaranteed cost values for the LPV systems. In [33],
the H2 guaranteed cost values are obtained through a gain
scheduled filter using LMI with Pólya’s relaxations, based
on a polynomial structure within the context of uncertain
scheduled parameters.

The LPV framework allows us to design control and fil-
ter solutions that depend on time-varying parameters, where
these parameters may be associated with any part of the
system. Regarding the structure of the FDF in the LPV
framework, we can distinguish them by the dependency
of the time-varying parameter: the parameter-independent
approach, which is also known as the robust structure [34],
[35]; and the parameter-dependent one, which is typically
referred to as the gain-scheduled structure [36], [37]. Com-
paring the conservative levels between the two different
strategies, the gain-scheduled one has a noticeable advantage
since it can be reconfigured on-line using the measurements
of the time-varying parameter. We consider in this paper
that the time-varying parameter is not directly accessible but,
instead, it is measured subject to the uncertainties associated
with this measurement. Hence, this imprecision is an addi-
tional challenge that needs to be taken into account within the
FD context, as it cannot be mistakenly considered as a fault,
which could lead to the occurrence of false alarms. We can
refer to [37] for works dealing with inexact measurements of
the time-varying parameter. These design methods are based
on the formulation of optimization problems as semi-definite
programming using LMI constraints. This formulation allows
us to draw FD solutions in the robust or gain-scheduled struc-
tures. The distinction between such structures is made during
the design process, where the polynomial degree associated
with each decision variable changes according to the desired
formulation. For a detailed explanation andmotivation on this
matter, we refer the interested readers to [30], [38]–[41].

A central distinguishing assumption in this paper is
that we consider discrete-time LPV systems in which the
time-varying parameters are estimated, and that these esti-
mated parameters are contaminated by additive noise. Typi-
cally, in the existingmethods in the literature, this imprecision
is ignored for design simplification. However, depending on
the system dynamics and the applied estimation process, this
discrepancy may lead the LPV system to lose performance
or to become unstable since it may be working outside its
designed operational range. An option within this scenario is
to implement a more sophisticated estimation process, which
will increase the computational burden in an on-line fashion.
Adding the assumption that the time-varying parameters are
imprecise in the design process of the FDF is particularly
useful since it allows to deal with the inexact estimated
parameter, presuming that the imprecision is inherent to the
estimation process. From the practical standpoint, the pro-
posed Gain-Scheduled Fault Detection Filter design, which is
inspired by the results in [33], [42]–[44], tackles this problem
without overburdening the estimation process.

While the motivation and applicability of using perfor-
mance indexes in the context of FD are conceivable, to the
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best of the authors’ knowledge, they have not yet been dis-
cussed thoroughly in the literature under the assumption that
the scheduling parameter is imprecisely known. Bearing this
inmind, themain contributions of the present paper, under the
imprecisely known scenario for the scheduling parameter, are
the design and analysis of:
• H2 FDF for discrete-time LPV systems,
• H∞ FDF for discrete-time LPV systems,
• mixedH2 /H∞ FDF for discrete-time LPV systems.

Furthermore, illustrative simulations to exemplify the pro-
posed approaches and to explore the implementation aspects
for all aforementioned FD filters are provided. The assump-
tion that the scheduling parameter is imprecise is considered
during the design process using the more recent LMI parses
ROLMIP [38], associated with YALMIP [45]. The conditions
for solving such problems are obtained via LMI and are based
on the results in [30], [31].

This paper is organized as follows: Sections II and III
present the necessary theoretical background and the problem
formulation, Section IV presents the main theoretical results,
Section V illustrates the results with an illustrative example,
and Section VI concludes the paper with some final com-
ments.

II. PRELIMINARIES
A. NOTATIONS
N andN+ denote respectively, the set of real numbers and the
set of positive real numbers. The n-th dimensional Euclidian
space with norm ‖ · ‖ is denoted by Rn. The symbol ′ denotes
the transpose matrix, and • represents blocks induced by
symmetry in a square matrix. The operator Her(·) denotes
the symmetric sum, e.g. Her(X ) = X ′ + X . The expected
value operator is represented byE(·). The setL2 is the class of
square-summable sequences, and forw = {w(0),w(1), . . .} ∈
L2 we write ‖w‖22 =

∑
∞

k=0 ‖w(k)‖
2.

Definition 1 (Unit-Simplex): The unit-simplex 3N of
dimension N ∈ N, with N ≥ 2 is defined as

3N =

{
ζ ∈ RN

:

N∑
i=1

ζi = 1, ζi ≥ 0, i = 1, . . . ,N

}
. (1)

Definition 2 (Multi-Simplex): The multi-simplex 3m,N is
defined as the Cartesian product of m simplexes (as in (1))
with dimension of N , that is, 3m,N = 3N × · · · × λN
with the Cartesian product containing m terms. Thus any
θ ∈ 3m,N can be decomposed as θ = (θ1, θ2, . . . , θm), with
θi = (θi1, θi2, . . . , θiN ) ∈ 3N , i ∈ {1, . . . ,m}.
Definition 3 (Homogeneous Polynomial): For a unit-

simplex 3N of dimension N ∈ N, a polynomial g(θ), θ ∈
3N is named a homogeneous polynomial of degree l ∈ N if
all its monomials have the same total degree l. As an example,
assuming θ = [θ1, θ2] ∈ 32, and g(θ ) = θ31 + θ

2
1 θ2 +

θ1θ
2
2 + θ

3
2 , g(θ) is said to be a homogeneous polynomial with

a degree l = 3. Set K(l)
N as the set of N -tuples obtained

from all possible combinations of N nonnegative integers
kj, j = 1, . . . ,N , with sum k1 + k2 + · · · + kN = l. A

homogeneous polynomial with l degree is defined as

A(θ ) =
∑
k∈K(l)

N

θkAk , (2)

where θk = θk11 .θ
k2
2 . . . . .θ

kN
N = 5

N
j=1θ

kj
j .

B. LPV SYSTEMS
Consider the following discrete-time LPV system

G :=
{
x(k + 1) = Aθ (k)x(k)+ Jθ (k)w(k)
z(k) = Cθ (k)x(k)+ Dθ (k)w(k),

(3)

where x(k) ∈ Rnx represents the state vector, w(k) ∈ Rnw

represents the exogenous input, and the z(k) ∈ Rnz denotes
the output signal. We assume that the matrices Aθ (k), Jθ (k),
Cθ (k), Dθ (k) in (3) depend on the parameter θ (k) in the affine
form as

Aθ(k) = A0 +
m∑
i=1

θi(k)Ai, (4)

where A0, . . . ,Am are given matrices and θ (k) =

(θ1(k), . . . , θm(k)) are bounded time-varying parameters sat-
isfying |θi(k)| ≤ ti, ti ∈ R+, i = 1, . . . ,m, ∀ k ≥ 0.
Similarly for Jθ (k),Cθ(k),Dθ (k). Observe that the affine form is
a particular case of the parameterized form in (2) with degree
equal to 1. Note that if we describe the matrices in (3) as
polynomials with a degree equal to 0, system (3) becomes
parameter-independent.

The procedure to choose each matrix A0 and Ai, i =
1, 2, . . . ,m that composeAθ(k) in (4) is as follows. Thematrix
A0 is related to the portion of the system’s dynamic that is
fixed while the matrices Ai are related to each time-varying
parameter, for example, A1 denotes how the time-varying
parameter θ1(k) influences the system’s dynamic, etc. As an
illustrative example, we may have[

1 0.1+θ1(k)
0 −0.75+θ2(k)

]
︸ ︷︷ ︸

Aθ(k)

=
[
1 0.1
0 −0.75

]︸ ︷︷ ︸
A0

+
[
0 1
0 0

]︸ ︷︷ ︸
A1

θ1(k) +
[
0 0
0 1

]︸ ︷︷ ︸
A2

θ2(k) .

(5)

C. H2 GUARANTEED COST ANALYSIS
The H2 norm is a performance criterion that is associated
with the energy of the impulse response of the system or,
in other words,

‖G‖2 = lim sup
T→∞

E

{
1
T

T∑
k=0

z(k)′z(k)

}
, (6)

where T is a positive integer that represents the time horizon
and w(k) is a standard white noise (Gaussian zero-mean in
which the covariance matrix is equal to the identity matrix)
as defined in [46].

Considering an asymptotically stable system in the
form (3), an upper bound for itsH2 norm can be obtained by
a set of parameter-dependent LMI constraints, as introduced
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in [30] and shown in the following lemma. For the sake of
simplicity in (7)-(9) belowwe set θ = θ (k), and β = θ (k+1).
Lemma 1: If there exist symmetric positive definite matri-

ces Pθ , and Wθ , such that[
Pβ−AθPθA′θ •

J ′θ I

]
> 0, (7)[

Wθ−DθD′θ •

PθC ′θ Pθ

]
> 0, (8)

and

Tr (Wθ ) < µ2, (9)

hold for all θ (k), k ≥ 0, then µ is an upper bound for the
H2 norm of system (3), that is, ‖G‖2 < µ.
Lemma 1 and its proof are presented in [30, Theorem 2].

D. H∞ GUARANTEED COST ANALYSIS
In this subsection we introduce a few concepts that will be
important later on regarding the H∞ norm. The H∞ norm
is a classical performance criterion which can be computed
using the Bounded Real Lemma (BRL), as proposed in [31]
for LPV systems. For the system as in (3), its H∞ norm is
defined by

‖G‖∞ = sup
‖w‖2 6=0

‖z‖2
‖w‖2

, w ∈ L2. (10)

In the following lemma, based on the conditions from [30],
we present the BRL for LPV systems where an upper bound
for theH∞ norm is computed via parameter-dependent LMI.
Lemma 2: If there exists a symmetric positive definite

matrix Pθ , such that
Pβ • • •

PθA′θ Pθ • •

J ′θ 0 γ I •

0 CθPθ Dθ γ I

 > 0, (11)

holds for all θ(k), k ≥ 0, then γ is an upper bound for the
H∞ norm of system (3), that is, ‖G‖∞ < γ .
The proof for Lemma 2 can be found in [47, Lemma 3].

III. GAIN SCHEDULED RESIDUE GENERATION PROBLEM
FORMULATION
A. PROBLEM FORMULATION
Consider the following LPV discrete-time system

Gf :=


x(k + 1) = Aθ(k)x(k)+ Bθ (k)u(k)+ Jθ (k)w(k)

· · · + Fθ (k)f (k)
y(k) = Cθ (k)x(k)+ Dθ (k)w(k)

· · · + Df θ (k)f (k),

(12)

where x(k) ∈ Rnx represents the state vector, u(k) ∈ Rnu

denotes the control input, w(k) ∈ Rnw is the exogenous input,
y(k) ∈ Rny is the measurement signal and f (k) ∈ Rnf is
the fault signal. We also consider that the signals w, f ∈ L2
and recall that the time-varying parameter θ(k) is bounded as
|θi(k)| ≤ ti, ti ∈ R+, i = 1, . . . ,m, ∀ k ≥ 0.

FIGURE 1. The gray region represents the feasible region generated by
each pair of the parameters (θi (k), σi (k)), borrowed from [33].

Remark 1: Notice that, as in [48, Chapter 11.3], it is
assumed that the faults can be model as an unknown and not
accessible additive signal f (k).
The FDF is defined as follows

F :=


η(k + 1) = A

ηθ̂(k)η(k)+M
ηθ̂ (k)u(k)

· · · +B
ηθ̂(k)y(k)

r(k) = C
ηθ̂ (k)η(k)+D

ηθ̂ (k)y(k),

(13)

where η(k) ∈ Rnη denote the filter state, u(k) ∈ Rnu denotes
the control input, y(k) ∈ Rny is the measurement signal and
r(k) ∈ Rnr is the residue signal. Note that the FDF (13)
depends only on the estimated parameter θ̂ . We assume that
the FDF in (13) can be written in the affine form similarly to
(4), so that the matrices in (13) are defined as

A
ηθ̂ (k) = Aη0 +

m∑
i=1

θ̂i(k)Aηi, (14)

and similarly for M
ηθ̂ (k), B

ηθ̂(k), C
ηθ̂(k), D

ηθ̂ (k). Hence,
the main focus of this paper is to design all the matrices Aηi,
Mηi,Bηi, Cηi, Dηi, i ∈ {1, . . . ,m}.

B. PARAMETER UNDER ADDITIVE UNCERTAINTY
One of the major premises of the present paper is that the
time-varying parameters θ (k) are not directly accessible.
Instead, we implement estimation procedures to gather an
estimation θ̂ (k) of the time-varying parameter θ (k), which are
not completely precise, meaning that we must assume that
θ̂ (k) is an inexact measurement of θ (k). The design under the
assumption of inexact measurements is dealt with a general
model described in [33], [49], in which we assume that the
estimated parameters θ̂(k) is a sum of the actual parameter
θ (k) with an orthogonal additive uncertainty σ (k), that is

θ̂i(k) = θi(k)+ σi(k), i = 1, . . . ,m (15)

where |σi(k)| ≤ di, di ∈ R+, i = 1, . . . ,m. Thus,
the domain of (θ(k), σ (k)) is as displayed in Fig.1.

C. THE AUGMENTED SYSTEM
From the aforementioned discussion we may define the
augmented system which depends on both time-varying
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parameters θ (k), θ̂ (k), by taking e(k) = r(k)− f (k), as

Gaug :=
{
x̌(k + 1) = Ǎ

θ̂ (k)θ (k)x̌(k)+ J̌θ̂(k)θ (k)w̌(k)

e(k) = Č
θ̂ (k)θ (k)x̌(k)+ Ďθ̂(k)θ (k)w̌(k),

(16)

where we consider the augmented vectors x̌ = [x ′(k) η′(k)]′,
w̌ = [u′(k) d ′(k) f ′(k)]′. In order to simplify the visualization
of the resulting LMI, we consider hereafter θ = θ(k), and θ̂ =
θ̂ (k). The following augmented matrices can be obtained:

Ǎ
θ̂ θ
=

[
Aθ 0

B
ηθ̂
Cθ A

ηθ̂

]
, J̌

θ̂ θ
=

[
Bθ Jθ Fθ

M
ηθ̂

B
ηθ̂
Dθ B

ηθ̂
Df θ

]
,

Č
θ̂ θ
=
[
D
ηθ̂
Cθ C

ηθ̂

]
, Ď

θ̂ θ
=
[
0 D

ηθ̂
Dθ D

ηθ̂
Df θ−I

]
.

Based on the augmented system as above, we can define
theH2 Fault Detection problem as follows.

H2 Fault Detection problem: Given a desired H2-gain
µ > 0, design the FDF as in (13) such that the H2 norm of
the augmented system (16) satisfies

‖Gaug‖2 = lim sup
T→∞

E

{
1
T

T∑
k=0

e(k)′e(k)

}
< µ. (17)

Similarly, we can define the H∞ Fault Detection problem
as follows.

H∞ Fault Detection problem: Given a desired H∞-gain
γ > 0, design the FDF as in (13) such that the H∞ norm of
the augmented system (16) satisfies

‖Gaug‖∞ = sup
‖w̌‖2 6=0,w̌∈L2

‖e‖2
‖w‖2

< γ. (18)

To guarantee that the FDF distinguishes properly the fault
signal from the disturbance one, we define the FD problem
by considering the norms as in (17) and (18). On the one
hand, the H2 norm is used as a performance index to make
the residue signal r(k) sensitive to the abnormal energy surge
in the system, which characterizes a fault. On the other hand,
the H∞ norm is defined to guarantee that the residue signal
r(k) can be made resilient against the disturbance. These
two definitions provide a distinction on the sensitivity of the
residue signal to the fault f (k) or to the disturbancew(k). Fur-
thermore, by using both definitions simultaneously, a mixed
H2/H∞ can be designed to combine the characteristic of each
approach to the FDF, aiming at obtaining a balanced design
of FDF.

D. CHANGE OF VARIABLES
From the discussion presented in the previous subsections,
a major assumption in this paper is that the parameter used by
the filter is an estimation of the real one affecting the system.
To deal with this assumption, it is necessary to employ some
procedures to design the fault detection filter (13). Using, for
instance, the procedures given in [49], [50], we can perform
a variable transformation to deal with this type of parameters
subjected to additive uncertainty. These variable transforma-
tions, applied to our context can be seen as

αi1(k) =
θi(k)+ ti

2ti
, α̂i1(k) =

σi(k)+ di
2di

.

Recalling that |θi(k)| ≤ ti, |σi(k)| ≤ di, it follows that 0 ≤
αi1(k) ≤ 1, 0 ≤ α̂i1(k) ≤ 1. The original parameters are
retrieved, for i = 1, . . . ,m, as

θi(k) = 2 tiαi1(k)− ti, σi(k) = 2 diα̂i1(k)− di.

Thus, we have that αi(k) = (αi1(k), αi2(k)) and α̂i(k) =
(α̂i1(k), α̂i2(k)), where αi2(k) = 1 − αi1(k), α̂i2(k) = 1 −
α̂i1(k), belong to the unit-simplex as in (1) withN = 2, so that
α(k) = (α1(k), . . . , αm(k)) and α̂(k) = (α̂1(k), . . . , α̂m(k))
belong to the multi-simplex 3m,2 = 32 × · · · × 32 with
m terms, according to the Definition II in Section II. We set
α̃(k) = (α(k), α̂(k)) ∈ 3m,2 ×3m,2, where α(k) is related to
θ (k), and α̂(k) to σ (k) (the additive noise time-varying param-
eter). Notice that the matrices in system (3) and in the FDF
in (13) can be rewritten using the new multi-simplex α̃(k),
following the procedure explained in [49], which uses the
polynomial homogenisation process presented in [51]. The
use of the parse ROLMIP [38], combined with YALMIP [45],
yields to a procedure as simple as setting the degrees of
the multi-simplex polynomials and the parameter boundaries.
Thus for the numerical procedure this change of variable will
be applied to derive the FDF in (13).

Another assumption made for the numerical procedure
is that the parameters are arbitrarily fast in time, so that,
by consequence, θ (k + 1) is independent from θ (k). How-
ever, the proposed conditions could be extended to deal
with the case with bounded rates of variation, as presented
in [30], [31].

IV. MAIN RESULTS
In this section, we describe the main contributions of this
paper on the design of fault detection filters for solving the
previously defined H2 and H∞ fault detection problems.
The main advantage of the FDF designed by using the H2
approach is that it yields a fast system’s response whenever
there is an unexpected additive input. On the other hand,
the main purpose of designing an FDF using the H∞ setup
is the ability to mitigate the influence of the disturbance on
the residue signal, preventing the occurrence of false alarms.
Combining the characteristics of both approaches through a
mixed H2/H∞ problem, makes it possible to increase the
performance of the resulting FDF. It is important to stress
that the results will be presented in terms of the original
parameters θ (k) and θ̂(k) to highlight that the derived fil-
ter only depends on the measurable parameter θ̂ (k). For
the numerical procedure, the change of variables presented
in sub-section III-D should be applied so that we end up
with multi-simplex polynomials with the new multi-simplex
parameter α̃ ∈ 3m,2 ×3m,2. In what follows, by feasible θ ,
β, θ̂ , we mean that the constraints imposed in Section III are
satisfied.

A. H2 FILTER DESIGN
The following theorem presents the LPV FDF design with
an upper bound for the guaranteed cost for the H2 norm of
system (16).
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Theorem 1: If there exist a scalar µ > 0 and symmet-
ric positive definite matrices Y11θ , Y22θ , Mθ , and matrices
Y12θ , X1θ̂ , X2θ̂ , X̄θ̂ , �θ̂ , ∇θ̂ , 0θ̂ , Cηθ̂ , Dηθ̂

with compatible
dimensions, and a given scalar parameter ξ such that the
inequalities (19), (20), (21), as shown at the bottom of the
page, hold for all feasible θ , β, θ̂ , then the LPV FDF (13) with
A
ηθ̂
= X̄−1

θ̂
∇
θ̂
, B

ηθ̂
= X̄−1

θ̂
�
θ̂
, M

ηθ̂
= X̄−1

θ̂
0
θ̂
, C

ηθ̂
= C

ηθ̂
,

and D
ηθ̂
= D

ηθ̂
solves theH2 fault detection problem (17).

Proof: First, apply the variable substitution ∇
θ̂
= X̄

θ̂
A
ηθ̂
,

�
θ̂
= X̄

θ̂
B
ηθ̂
, 0

θ̂
= X̄

θ̂
M
ηθ̂
, C

ηθ̂
= C

ηθ̂
, and D

ηθ̂
= D

ηθ̂
in

(20). Consider the following structures for X
θ̂
, Yθ , Yβ :

X
θ̂
=

[
X1θ̂ X̄

θ̂

X2θ̂ X̄
θ̂

]
, Yθ =

[
Y11θ •

Y21θ Y22θ

]
, Yβ =

[
Y11β •

Y21β Y22β

]
.

(22)

From the augmented matrices given in (16) and (22) it
follows that

X
θ̂
Ǎ
θ θ̂
=

[
X1θ̂ X̄

θ̂

X2θ̂ X̄
θ̂

] [
Aθ 0

B
ηθ̂
Cθ A

ηθ̂

]
=

[
X1θ̂Aθ+X̄θ̂Bηθ̂

Cθ X̄
θ̂
A
ηθ̂

X2θ̂Aθ+X̄θ̂Bηθ̂
Cθ X̄

θ̂
A
ηθ̂

]
,

J̌ ′
θ θ̂
X ′
θ̂
=

 B′θ M′
ηθ̂

J ′θ D′θB
′

ηθ̂

F ′θ D′f θB
′

ηθ̂

[ X ′1θ̂ X ′
2θ̂

X̄ ′
θ̂

X̄ ′
θ̂

]

=


B′θX

′

1θ̂
+M′

ηθ̂
X̄ ′
θ̂

B′θX
′

2θ̂
+M′

ηθ̂
X̄ ′
θ̂

J ′θX
′

1θ̂
+D′θB

′

ηθ̂
X̄ ′
θ̂

J ′θX
′

2θ̂
+D′θB

′

ηθ̂
X̄ ′
θ̂

F ′θX
′

1θ̂
+D′f θB

′

ηθ̂
X̄ ′
θ̂
F ′θX

′

2θ̂
+D′f θB

′

ηθ̂
X̄ ′
θ̂

 ,
so that we can rewrite the constraint (20) as−Yθ+ξ (Her(Xθ̂ Ǎθ θ̂ )) • •

X
θ̂
Ǎ
θ θ̂
−ξX ′

θ̂
Yβ−Her(Xθ̂ ) •

ξ J̌ ′
θ θ̂
X ′
θ̂

J̌ ′
θ θ̂
X ′
θ̂

−I

 < 0. (23)

Reorganizing (23) we get that[
−Yθ • •

0 Yβ •

0 0 −I

]
+

[
Ǎ′
θ θ̂
−I
J̌ ′
θ θ̂

]
X ′
θ̂
[ ξ I I 0 ]+ · · ·

×

[
ξ I
I
0

]
X
θ̂

[
Ǎ
θ θ̂

−I J̌
θ θ̂

]
< 0 (24)

so that (24) can be rewritten as

Qθβ + U ′
θ θ̂
X ′
θ̂
V + V ′X

θ̂
U
θ θ̂
< 0 (25)

where

Qθβ=
[
−Yθ • •

0 Yβ •

0 0 −I

]
, U

θ θ̂
=
[
Ǎ
θ θ̂
−I J̌

θ θ̂

]
, V = [ ξ I I 0 ] .

Let the null spaces for U
θ θ̂

and V be given by

NU =

[
I 0

Ǎ
θ θ̂

J̌
θ θ̂

0 I

]
, and NV =

[
−I 0
ξ I 0
0 I

]
. (26)

Now, if we pre- and post-multiply (23) by N ′U and NU ,
respectively, and apply twice the Schur complement to the
result of this procedure we recover the conditions presented
in (7) with Pθ = Y−1θ and Pβ = Y−1β . Pre- and post-
multiplying (23) by NV we get the bounds for the scalar
parameter ξ ∈ (−1, 1). Regarding the constraints (21) we
consider the same variable substitutions as at the start of
the proof. After that, applying twice the Schur complement,
we obtain the constraint (8) withWθ = Mθ . �

B. H∞ FILTER DESIGN
In the following theorem, we present the design of LPV FDF
via LMI in order to obtain a guaranteed H∞ upper bound of
the augmented system in (16).
Theorem 2: If there exist a scalar γ > 0 and symmet-

ric positive definite matrices W11θ , and W22θ and matrices
W12θ , K1θ̂ , K2θ̂ , K̄θ̂ , �θ̂ , ∇θ̂ , 0θ̂ , Cηθ̂ , Dηθ̂

with compatible
dimensions and a given scalar parameter ξ such that (27)

trace(Mθ ) < µ2, (19)

−Y11θ+ξ (Her(X1θ̂Aθ+�θ̂Cθ )) • • • • • •

−Y12θ+ξ (X2θ̂Aθ+�θ̂Cθ+∇
′

θ̂
) −Y22θ+ξ Her(∇θ̂ ) • • • • •

X1θ̂Aθ+�θ̂Cθ+ξX1θ̂ ∇
θ̂
+ξX ′

2θ̂
Y11β−X ′1θ̂−X1θ̂ • • • •

X2θ̂Aθ+�θ̂Cθ+ξ X̄θ̂ ∇
θ̂
+ξ X̄ ′

θ̂
Y ′12β−X2θ̂−X̄

′

θ̂
Y22β−Her(X̄θ̂ ) • • •

ξ (B′θX
′

1θ̂
+0′

θ̂
) ξ (B′θX

′

2θ̂
+0′

θ̂
) B′θX

′

1θ̂
+0′

θ̂
B′θX2θ̂+0

′

θ̂
−I • •

ξ (J ′θX
′

1θ̂
+D′dθ�

′

θ̂
) ξ (J ′θX

′

2θ̂
+D′dθ�

′

θ̂
) J ′θX

′

1θ̂
+D′dθ�

′

θ̂
J ′θX
′

2θ̂
+D′dθ�

′

θ̂
0 −I •

ξ (F ′θX
′

1θ̂
+D′f θ�

′

θ̂
) ξ (F ′θX

′

2θ̂
+D′f θ�

′

θ̂
) F ′θX

′

1θ̂
+D′f θ�

′

θ̂
F ′θX

′

2θ̂
+D′f θ�

′

θ̂
0 0 −I


< 0, (20)



Mθ • • • • •

C ′θD
′

ηθ̂
Y11θ • • • •

C′
ηθ̂

Y ′12θ Y22θ • • •

0 0 0 I • •
D′dθD

′

ηθ̂
0 0 0 I •

D′f θD
′

ηθ̂
−I 0 0 0 0 I


> 0, (21)
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holds for all feasible θ , β, θ̂ then the LPV FDF (13) with
A
ηθ̂
= K̄−1

θ̂
∇
θ̂
,B

ηθ̂
= K̄−1

θ̂
�
θ̂
,M

ηθ̂
= K̄−1

θ̂
0
θ̂
, C

ηθ̂
= C

ηθ̂
,

andD
ηθ̂
= D

ηθ̂
solves theH∞ fault detection problem (18).

Proof: We apply the variable substitutions ∇
θ̂
= K̄

θ̂
A
ηθ̂
,

�
θ̂
= K̄

θ̂
B
ηθ̂
, 0

θ̂
= K̄

θ̂
M
ηθ̂
, C

ηθ̂
= C

ηθ̂
, and D

ηθ̂
= D

ηθ̂
in (27), as shown at the bottom of the page. Assuming the
structure ofWθ , Kθ̂ , as

Wθ =

[W11θ W12θ

W ′12θ W22θ

]
, K

θ̂
=

[
K1θ̂ K̄

θ̂

K2θ̂ K̄
θ̂

]
, (28)

as well as the augmented matrices in (16), we get the follow-
ing matrices

K
θ̂
Ǎ
θ θ̂
=

[
K1θ̂ K̄

θ̂

K2θ̂ K̄
θ̂

] [
Aθ 0

B
ηθ̂
Cθ A

ηθ̂

]
=

[
K1θ̂Aθ+K̄θ̂Bηθ̂

Cθ K̄
θ̂
A
ηθ̂

K2θ̂Aθ+K̄θ̂Bηθ̂
Cθ K̄

θ̂
A
ηθ̂

]
,

J̌ ′
θ θ̂
K′
θ̂
=

 B′θ M′
ηθ̂

J ′θ D′θB
′

ηθ̂

F ′θ D′f θB
′

ηθ̂

[ K ′1θ̂ K ′
2θ̂

K̄ ′
θ̂

K̄ ′
θ̂

]

=


B′θK

′

1θ̂
+M′

ηθ̂
K̄ ′
θ̂

B′θK
′

2θ̂
+M′

ηθ̂
K̄ ′
θ̂

J ′θK
′

1θ̂
+D′θB

′

ηθ̂
K̄ ′
θ̂

J ′θK
′

2θ̂
+D′θB

′

ηθ̂
K̄ ′
θ̂

F ′θK
′

1θ̂
+D′f θB

′

ηθ̂
K̄ ′
θ̂
F ′θK

′

2θ̂
+D′f θB

′

ηθ̂
K̄ ′
θ̂

 .
From the above, inequality (27) can be rewritten as
−Wθ+ξ (Her(Kθ̂

Ǎ
θ θ̂
)) • • •

K
θ̂
Ǎ
θ θ̂
−ξK′

θ̂
−Wβ−Kθ̂

−K′
θ̂

• •

ξ J̌ ′
θ θ̂
K′
θ̂

J̌ ′
θ θ̂
K′
θ̂

−γ 2I •

Č
θ θ̂

0 Ď
θ θ̂
−I

 < 0. (29)

We can reorganize (29) as
−Wθ • • •

0 −Wβ • •

0 0 −γ 2I •

Č
θ θ̂

0 Ď
θ θ̂
−I

+
 Ǎ′

θ θ̂

−I

J̌ ′
θ θ̂

0

K′
θ̂
[ ξ I I 0 0 ]+ · · ·

×

[ ξ I
I
0
0

]
K
θ̂

[
Ǎ
θ θ̂
−I J̌

θ θ̂
0
]
< 0 (30)

so that (30) can be written as

Q
θ θ̂β
+ U ′

θ θ̂
K′
θ̂
V + V ′K

θ̂
U
θ θ̂
< 0, (31)

where

Q
θ θ̂β
=


−Wθ • • •

0 −Wβ • •

0 0 −γ 2I •

Č
θ θ̂

0 Ď
θ θ̂

−I

 ,

U ′
θ θ̂
=

 Ǎ′
θ θ̂

−I

J̌ ′
θ θ̂

0

 , V ′ =
[ ξ I
I
0
0

]
. (32)

Now, we pre- and post-multiply the inequality (31) by I Ǎ′
θ θ̂

0 0

0 J̌ ′
θ θ̂

I 0

0 0 0 I

 , (33)

and its transpose, respectively, and after that, applying the
Schur complement and using arguments similar to those
explained at the end of the proof for Theorem 1, we obtain
constraints that are equivalent to those of the BRL (11),
concluding the proof. �

C. MIXED H2 / H∞ FAULT DETECTION FILTER DESIGN
FOR LPV SYSTEMS
This section provides a mixed procedure aiming to improve
the FD performance by combining the results for H2 and
H∞ norms introduced earlier in this section. A simple
approach to obtain a mixed solution when dealing with LMI
constraints is to solve both optimization problems simul-
taneously, for instance, we can consider the following two
optimization statements
(i) For a fixed weighting scalar 0 < ν < 1, we solve the

constrains assuming an objective function of the form

g(µ, γ ) = inf{νµ+ (1− ν)γ }, (34)

where ‖Gaug‖
2
2 < µ and ‖Gaug‖

2
∞ < γ .

(ii) Given one of the upper bounds of theH2 orH∞ norms,
µ > 0 or γ > 0, respectively, we solve the constraints
to minimize the other upper bound.

Before we introduce the main result of this section, con-
sider the following set of variables

ψ =
{
W11θ > 0, W12θ , W22θ > 0, X1θ̂ , X2θ̂ , Y11θ ,

× K1θ̂ , Y12θ , Y22θ ,K2θ̂ , Mθ > 0, X̄
θ̂
= K̄

θ̂
> 0,



−W11θ+ξ (Her(K1θ̂Aθ+�θ̂Cθ )) • • • • • • •

−W ′12θ+ξ (∇
′

θ̂
+K2θ̂Aθ+C

′
θ�
′

θ̂
) −W ′22θ+ξ (Her(∇θ̂ )) • • • • • •

K1θ̂Aθ+�
′

θ̂
Cθ+ξK ′1θ̂ ∇

θ̂
+ξK ′

2θ̂
W ′11β−Her(K1θ̂ ) • • • • •

K2θ̂Aθ+�
′

θ̂
Cθ+ξ K̄ ′

θ̂
∇
θ̂
+ξ K̄ ′

θ̂
W ′12β−K̄

′

θ̂
−K2θ̂ W ′22β−Her(K̄θ̂ ) • • • •

ξ (K1θ̂Bθ+0θ̂ )
′ ξ (K2θ̂Bθ+0θ̂ )

′ B′θK
′

1θ̂
y+0′

θ̂
B′θK

′

2θ̂
+0′

θ̂
−γ 2 I • • •

ξ (K1θ̂ Jθ+�θ̂Ddθ )
′ ξ (K2θ̂ Jθ+�θ̂Ddθ )

′ J ′θK
′

1θ̂
+D′dθ�

′

θ̂
J ′θK
′

2θ̂
+D′dθ�

′

θ̂
0 −γ 2 I • •

ξ (K1θ̂Fθ+�θ̂Df θ )
′ ξ (K2θ̂Fθ+�θ̂Df θ )

′ F ′θK
′

1θ̂
+D′f θ�

′

θ̂
F ′θK

′

2θ̂
+D′f θ�

′

θ̂
0 0 −γ 2 I •

D
ηθ̂
Cθ C

ηθ̂
0 0 0 D

ηθ̂
Ddθ D

ηθ̂
Df θ−I −I


< 0 (27)

VOLUME 9, 2021 143355



L. P. Carvalho et al.: Gain-Scheduled Fault Detection Filter for Discrete-Time LPV Systems

× ∇
θ̂
, �

θ̂
, 0

θ̂
, C

ηθ̂
, D

ηθ̂

}
∪ ζ1, (35)

where ζ1 denotes the set containing µ and γ .
The following theorem provides a sufficient condition for

the FDF design for the mixedH2/H∞ problem.
Theorem 3: If, for given upper bounds µ > 0 and γ > 0,

there exists ψ as in (35) such that the inequalities (27), and
(19)-(21) hold for all feasible θ , β, θ̂ , then a suitable LPV
FDF as in (13) which solves simultaneously theH∞ and H2
fault detection problems (17) and (18) is given by A

ηθ̂
=

X̄−1
θ̂
∇
θ̂
, B

ηθ̂
= X̄−1

θ̂
�
θ̂
, M

ηθ̂
= X̄−1

θ̂
0
θ̂
, C

ηθ̂
= C

ηθ̂
,

and D
ηθ̂
= D

ηθ̂
. Alternatively, one can consider both or

one of the upper bounds µ and γ as variables and solve the
optimization problems in ψ according to (i) or (ii) above.

Proof: The proof follows directly from the proofs of
Theorems 1 and 2.
Remark 2: Note that Theorems 1, 2 and 3 are LMI con-

ditions that provide the system performance regarding the
H∞, H2, and H2/H∞, norms respectively. Observe that the
LMI conditions in (19), (20), (21), and (27), are defined as
an infinite dimensional optimization problem that must be
solved, meaning that the LMI constraints depends on θ and θ̂ .
By using the change of variables presented in sub-section III-
D and explained at the beginning of this section, we can
rewrite the LMI optimization problems in terms of the new
multi-simplex parameter α̃ ∈ 3m,2 × 3m,2, meaning that
the LMI constraints now depends solely on α̃. This type of
polynomial relaxations allows the problem to be rewritten
as an analysis of the positivity of homogeneous polynomial
matrices (see Definition II-A), which is the procedure made
by ROLMIP [38] and YALMIP [45]. In order to solve the
problem that is given in terms of positivity of homogeneous
polynomial matrices, which is a finite-dimensional problem,
we can use a semi-definite programming solver, such as
SeDuMi [52] or Mosek [53].
Remark 3: Note that in Theorems 1, 2 and 3, the variables

that define whether the FDF is in the robust form or in the
affine form, are ∇

θ̂
, �

θ̂
, 0

θ̂
, C

ηθ̂
, D

ηθ̂
, and X̄

θ̂
. If the degree

of those homogeneous polynomial matrices are set to be
0, the FDF designed will be robust, meaning that the FDF
obtained will be parameter-independent. For a homogeneous
polynomial matrices with degree equal to 1, the FDF obtained
will be in the affine form. Observe that a higher degree of the
homogeneous polynomial can be set, leading to the design
of FDF with higher degree. It is important to discuss that it
is also allowed to change the degree of the other variables
in Theorems 1, 2 and 3, such as Y11θ , Y12θ , Y22θ , Mθ , W11θ ,
W12θ , andW22θ , with this choice mainly affecting the level of
conservatism and the computational effort.
Remark 4: Another point that should be highlighted is

that, as the number of LMI lines increases, the computa-
tional effort required to solve the optimization problem also
increases. For that reason, the optimization problem for The-
orem 3 requires more computational resources since it simul-
taneously deals with the LMI constraints from Theorem 1
and 2, which more than doubles the number of LMI lines.

FIGURE 2. Illustration of the coupled tank model scheme, where h1
represents the level for the first tank, h2 represents the level for
the second tank, and u1 denotes the input on the first tank.

TABLE 1. Numerical parameters of the coupled tank model.

This effect can be seen in the upper bound analysis of the
numerical example presented in the next section.

V. NUMERICAL EXAMPLE
In this section, we present a numerical example to illus-
trate the applicability of the FD techniques presented in
Section IV. We first describe the simulation setup, and later,
we present the results obtained applying Theorems 1, 2 and 3.
The physical system we use in this example is the coupled

tank system as shown in Fig. 2.
We can describe the dynamical equations of this system

that give the relationships between the input and output flows
of each tank. A complete description of the modeling process
is presented in [54]. Considering h1(k) and h2(k) as the
water levels in tank 1 and 2, respectively, we set x(k) =
[h1(k) h2(k)]′ as the state vector for the state-space represen-
tation of the system with the system’s dynamic matrix A be
given by

A=
1
Acs


ωg√
2gh10

−

ωg√
2gh10 − h

2
0

−

ωg√
2gh10 − h

2
0

+θ(k)

ωg√
2gh10 − h

2
0

+θ(k)
ωg√
2gh20

−

ωg√
2gh10 − h

2
0

 .
(36)

The parameter values as given in [54] are presented
in Table 1.

We also assume that the linearization point is h1 = 25 cm
and h2 = 10 cm, where these values are arbitrarily chosen.
We consider that the time-varying parameter θ (k) in the tank
model (36) represents the uncertainty in the first tank, mod-
elling a variation on the valve discharge coefficient between
tank 1 and tank 2. Therefore, the state-space matrices in the
affine form are given by

A1 =
[
−0.0239 −0.0127
0.0127 −0.0285

]
, A2=

[
0 1
1 0

]
, B1,2=

[
0.71
0

]
,
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J1,2 =
[
0.0071

0

]
, F1,2 =

[
0.71
0

]
, C1,2 = I2×2,

Dd1,2 =
[
0.001
0.001

]
, Df1,2 =

[
0
0

]
, K = [−1.03 −0.33 ] ,

|θ (k)| ≤ ti = 0.03. (37)

Note that, F1,2 has the same structure of the control input
matrix B, representing an abnormal input in the first tank.
Additionally, note that the matrix Df 1,2 is null since we do
not consider sensor fault in the simulation. The matrices
presented in (37) represent the model of the coupled tanks in
the continuous-time domain. Since we need the system and
its polytope described in the discrete-time domain, we use
Taylor series expansion, as described in [55]. The procedure
allows us to set the number of terms in the Taylor series,
which increases the reliability of the discrete representation
with the potential of increasing the computational cost. The
sampling time was taken as T = 5ms, and the number of
terms in the Taylor series was 2.

For the parameter estimation, we need apriori information
on the range of σ (k). Some methods have been presented
in the literature to obtain it as, for example, through Monte
Carlo simulations, as presented in [33]. The bound value of
σ (k) can be set using some previous knowledge about the
system associated with the estimation process. It is possible
to find the value of di analytically or via simulation. Since
obtaining the range of σ (k) is not themain focus of the present
paper, for the numerical simulation we set the range of σ (k)
as |σ (k)| ≤ di = 0.01. To obtain the estimated parameter
θ̂ (k), we implemented the Recursive Least Square (RLS)
algorithm [56], [57]. We note that any other adaptive filter
algorithm can also be implemented to obtain θ̂ , such as the
H∞ adaptive filter algorithm or the LeastMean Square-based
algorithm.
Remark 5: Note that the level of reliability in the esti-

mation process is directly connected to the value of σ (k).
This happens since the value of the obtained σ (k) changes
depending on the reliability of the estimation process: the
less reliable the estimation process is, the higher the value of
σ (k) will be. Another important discussion is that the increase
of bound for σ (k) will lead to the increase of conservatism
in the optimization problem since the LMI constraints must
guarantee the stability and performance within the grey area
in Fig. 3(a). On the other hand, assuming that di = 0, the con-
straints will guarantee stability and performance solely on
the black line in Fig. 3(a). It is important to recall that the
only information necessary during the design process are the
boundary values of the parameter θ and additive noise σ .
The imprecise parameter θ̂ (k) = θ (k) + σ (k) behavior is

presented in Fig. 3(a), which we assume to be the representa-
tion of an imprecision in the valve that couples the first tank
with the second one. Fig.3(b) shows all three fault signals
that the system is subjected to, separately. The dashed blue
line in Fig.3(b) represents an abrupt abnormal increase of
1% on the input u1 that starts at k = 100 (Fault 1). The
green line in Fig.3(b) corresponds to an oscillatory fault due
to an oscillation on the input u1 (Fault 2). The magenta line
in Fig.3(b) is associated to an incipient fault so that the input

FIGURE 3. The imprecise scheduled parameter θ̂ , and the fault signals.

FIGURE 4. The behavior of the upper bounds µ and γ for Theorems 1
and 2 in function of the scalar ξ .

u1 smoothly increases by 1% (Fault 3). The main purpose
of the setup here is to cover a wide range of fault types in
order to verifywhether the proposed approach is able to detect
these faults before any severe problem may occur. Lastly,
we assume that the system is subjected to a white noise signal.

In the following, we present the simulation results in two
distinct parts: the upper bound behavior analysis and tempo-
ral analysis. We analyze the obtained values for the upper
bounds µ and γ when performing a search in the scalar
ξ ∈ ]−1 1[ with 100 steps with the same length.

A. UPPER BOUND ANALYSIS
Fig. 4 presents the upper bound analysis considering two
different structures for the FDF, the robust and the affine
forms. From Fig. 4 the first plot represents the upper bound
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FIGURE 5. The behavior of the upper bound µ for Theorem 3 in function
of the scalar ξ , using the fixed value of γ = 0.01.

FIGURE 6. System states behavior when subjected to the faults
separately.

value of µ obtained via Theorem 1, using the ξ scalar term.
Notice that there is a visible difference in the values for the
robust form, but the difference is not as evident as that for the
affine form. The effectiveness of the scalar search is greater
for the robust case, which is expected since it has a higher
level of conservatism. The same statements can be made for
the second plot, which presents the results obtained using
Theorem 2. Another information that can be extracted from
Fig.4 is that the affine form is indeed a more relaxed solution
due to the lower value of the upper bounds throughout the
scalar search.

From Fig. 5, it can be observed that the upper bound behav-
ior has a similar behavior to the results shown in Fig. 5 with
pronounced curves. The presence of tortuous curves around
the origin in Fig. 5 aremainly due to the fact that the optimiza-
tion problem in Theorem 3 combines the LMI constraints
from Theorems 1 and 2. Hence, Theorem 3 has a higher num-

ber of LMI lines, consequently increasing the optimization
problem’s conservatism. As previously discussed, the scalar
search has a higher impact on the optimization problem per-
formance as the size of the LMI rises.

Fig. 4 and Fig. 5 present the results for the upper bounds
behavior (µ or γ ) after performing the scalar search for ξ
related to Theorems 1, 2, and 3. In what follows, in order to
derive the FDF, the value of ξ was fixed to ξ = 0.2.
Regarding the results obtained for the H2 norm using

Theorem 1 the FDF is given by

Aηaff1 =
[
−1.02 −3.75
0.01 0.05

]
, Aηaff2 =

[
−0.00 −0.03
0.00 −0.01

]
,

Bηaff1 =

[
−0.99 −3.99
−0.00 0.08

]
, Bηaff2 =

[
0.00 3.97
−0.00 −0.10

]
,

Mηaff1 =
[
−0.71
−0.00

]
, Mηaff2 =

[
−0.70
−0.00

]
,

Cηaff1 = [ 0.49 1.82 ] , Cηaff2 = [ 0.00 0.04 ] ,

Dηaff1 = [ 0.50 1.95 ] , Dηaff2 = [−0.49 −1.90 ] .

FromTheorem 2, related to theH∞ norm, the FDF is given
by

Aηaff1 =
[
−0.89 −70.49
0.01 0.87

]
, Aηaff2 =

[
0.12 4.89
−0.00 −0.06

]
,

Bηaff1 =

[
−0.93 −70.16
−0.00 0.89

]
, Bηaff2 =

[
0.09 71.08
−0.00 −0.91

]
,

Mηaff1 =
[
−0.75
0.00

]
, Mηaff2 =

[
−0.71
0.00

]
,

Cηaff1 = [ 0.49 38.96 ] , Cηaff2 = [ 0.00 0.04 ] ,

Dηaff1 = [ 0.49 38.96 ] , Dηaff2 = [−0.49 −38.91 ] .

Regarding the mixed H2 / H∞ results, the affine filter
obtained using Theorem 3 is given by

Aηaff1 =
[
−1.02 −4.23
0.01 −0.00

]
, Aηaff1 =

[
−0.00 1.13
0.00 −0.01

]
,

Bηaff1 =

[
−1.00 −3.81
0.00 0.01

]
, Bηaff2 =

[
−0.00 5.04
0.00 −0.02

]
,

Mηaff1 =
[
−0.71
0.00

]
, Mηaff2 =

[
−0.70
−0.00

]
,

Cηaff1 = [ 0.49 32.34 ] , Cηaff2 = [ 0.00 −16.76 ] ,

Dηaff1 = [ 0.49 32.25 ] , Dηaff2 = [−0.50 −49.21 ] .

1) EVALUATION FUNCTION
In a fault detection process, the next step after generating the
residue signal is to evaluate the residue signal to properly
detect the fault. The evaluation process uses an evaluation
function EVAL(k), and a threshold TH. We consider that a
fault occurs if the EVAL(k) value surpasses the threshold TH.
As in [3], [58], we define EVAL(k) as

EVAL(k) ,

√√√√ k∑
i=k−L

r(i)′r(i), (38)

where L denotes the evaluation window. Note that the proper
choice of L affects the FD performance, due to the fact
that a small L may not detect the fault since the evaluation
signal might not have enough time to surpass the threshold.
On the opposite side, if L is too large, it may lead to the
occurrence of false alarms. For the numerical simulations,
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FIGURE 7. The residue signal obtained for all FDF designs and all fault types.
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FIGURE 7. (Continued.) The residue signal obtained for all FDF designs and all fault types.

we set TH = 1, and L = 250. There are several ways to
define the evaluation function and the threshold. However,
since this is not the focus of this work, we refer interested
readers to the papers [3], [58] and references therein for a
thorough discussion on the topic.

B. TEMPORAL SIMULATION
In this section we provide the residue signal and the evalua-
tion function obtainedwhen the system is subjected to Fault 1,
Fault 2, Fault 3, and Faultless. We also compare our results
with those by using [59, Theorem 1]. Before that, we present
in Fig. 6 the states of the system for all situations.

In Fig.6 the dashed blue line represents the state when
subjected to Fault 1, the green line denotes the state behavior
when Fault 2 is implied to the system, and the magenta line
represents the state when Fault 3 is inflicted in the system.

The dotted black line represents the system in its nominal
condition, meaning there is no fault occurrence. Note that all
three fault signals cause an error on the state near 10% of the
nominal value.

Now the results obtained using the FDF designed with
Theorem 1, 2 and 3 are presented, as well as a comparison
with the results obtained using [59, Theorem 1]. Firstly,
we discuss the results derived from the residue signal and,
after that, those from the evaluation function.

From the sub-plots in Fig. 7, it can be seen that the FDF
designed using Theorems 1, 2 and 3 respond only when
the fault signal was present. Note that the FDF designed
using Theorem 3 gives a higher value during the simulation
for all three faults. Figs.7 shows that the results obtained
using Theorem 3 consistently yield a residue signal with a
lower standard deviation and higher peak value. Inspecting
Figs. 7 we can state that the residue signal when there are

143360 VOLUME 9, 2021



L. P. Carvalho et al.: Gain-Scheduled Fault Detection Filter for Discrete-Time LPV Systems

FIGURE 8. The evaluation function obtained for all affine FDF designs and all fault types.
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FIGURE 8. (Continued.) The evaluation function obtained for all affine FDF designs and all fault types.

TABLE 2. Detection interval obtained for the affine FDF.

no faults is close to zero in all simulations, as expected.
This characteristic provides a higher value of the evaluation
function leading to a lower occurrence of false alarms. Next,
we present the evaluation function obtained from the residue
signals presented in Fig. 7.

The results for each graphic in Fig. 8 are presented
in Table 2. Observe that the FDF designed using Theorem 1, 2
and 3 detected all three faults. Note that [59, Theorem 1]
in some cases did not detect Fault 3, which is an incipient

fault. The main advantage of our approach is the polyno-
mial relaxation made during the design processes, which
allows us to obtain a better solution in the optimization
process.

In Fig.9 it is possible to observe the performance for
all FDF side-by-side, and it is noticeable that the FDF
designed using Theorem 3 presented a higher performance,
as intended. It can also be noticed that for Fault 1, after
k = 200, the evaluation function changes its behavior by
becoming flattered, which is as intended since Fault 1 loses its
intensity at this point in the simulation. This same behavior
is also apparent for the oscillatory fault. From the obtained
results, we can say that the proposed approach seems to
be a viable solution for the Fault Detection problem. It is
important to point out that the approaches presented herein
apply to any system that is possible to be described as an LPV
system.
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FIGURE 9. Comparison of the evaluation function obtained with the
affine FDF for all fault cases.

VI. CONCLUSION
We have presented three design methods of gain-scheduling
fault detection filters under the linear parameter varying
framework for solving the fault detection and isolation prob-
lem. These approaches are developed based on two differ-
ent performance indexes, the H2-norm and the H∞-norm,
which can be combined to provide a mixed H2/H∞-norm
approach. For all three approaches, we take into account

the availability of real-time estimation of the time-varying
parameters that can directly be used in the design of the
FDF. A distinguishing feature of our approach is that we
assume an unreliable estimation process. The main advantage
of implementing such proposed solutions is that it lessens
the burden on the on-line estimation process, allowing us to
use less sophisticated procedures without losing reliability on
the FD process. Simulation results show the efficacy of the
proposed approaches for solving the fault detection problem
in an illustrative example.

Alongside this line of research, there are some possible
ways to improve the results presented here, for instance,
by using the sensitivity index H− in the design of an FDF
or considering a non-homogeneous Markov chain for the
modeling of the noise affecting the measurement of the time-
varying parameter.

REFERENCES
[1] M. Rodrigues, D. Theilliol, S. Aberkane, and D. Sauter, ‘‘Fault tolerant

control design for polytopic LPV systems,’’ Int. J. Appl. Math. Comput.
Sci., vol. 17, no. 1, pp. 27–37, Mar. 2007.

[2] Z. Chen, ‘‘Data-driven fault detection for industrial processes,’’ in Journal
of Process Control, vol. 1. Wiesbaden, Germany: Springer-Vieweg, 2017.

[3] J. Chen and R. J. Patton,RobustModel-Based Fault Diagnosis for Dynamic
Systems (The International Series on Asian Studies in Computer and Infor-
mation Science), vol. 3. New York, NY, USA: Springer, 2012. [Online].
Available: https://books.google.com.br/books?id=_wvrBwAAQBAJ

[4] Z. Zhang, ‘‘Comparison of data-driven and model based methodologies of
wind turbine fault detection with scada data,’’ EWEA, Brussels, Belgium,
Tech. Rep., Mar. 2014.

[5] P. Freeman, R. Pandita, N. Srivastava, and G. J. Balas, ‘‘Model-based and
data-driven fault detection performance for a small UAV,’’ IEEE/ASME
Trans. Mechatronics, vol. 18, no. 4, pp. 1300–1309, Aug. 2013.

[6] R. Isermann, R. Schwarz, and S. Stolzl, ‘‘Fault-tolerant drive-by-wire
systems,’’ IEEE Control Syst., vol. 22, no. 5, pp. 64–81, Oct. 2002.

[7] M. Witczak, Fault Diagnosis and Fault-Tolerant Control Strategies for
Non-Linear Systems (Lecture Notes in Electrical Engineering), vol. 266.
Springer, 2014, pp. 375–392.

[8] H. Noura, D. Theilliol, J.-C. Ponsart, and A. Chamseddine, Fault-
Tolerant Control Systems: Design and Practical Applications (Advances
in Industrial Control). London, U.K.: Springer, 2009. [Online]. Available:
https://books.google.com.br/books?id=_LDl6-9t6UoC

[9] R. J. Patton, P. M. Frank, and R. N. Clark, Issues of Fault Diagnosis for
Dynamic Systems. Springer, 2013.

[10] M. Rodrigues, M. Sahnoun, D. Theilliol, and J.-C. Ponsart, ‘‘Sen-
sor fault detection and isolation filter for polytopic LPV systems:
A winding machine application,’’ J. Process Control, vol. 23, no. 6,
pp. 805–816, 2013.

[11] C. Briat, O. Sename, and J.-F. Lafay, ‘‘Design of LPV observers for LPV
time-delay systems: An algebraic approach,’’ Int. J. Control, vol. 84, no. 9,
pp. 1533–1542, Sep. 2011.

[12] C. Hoffmann andH.Werner, ‘‘A survey of linear parameter-varying control
applications validated by experiments or high-fidelity simulations,’’ IEEE
Trans. Control Syst. Technol., vol. 23, no. 2, pp. 416–433, Mar. 2015.

[13] P. N. Kvieska, M. Ait-Ahmed, and G. Lebret, ‘‘LPV systems: Theoretical
results for gain scheduling,’’ inProc. Eur. Control Conf. (ECC), Aug. 2009,
pp. 3166–3171.

[14] J. Mohammadpour and C. W. Scherer, Control of Linear Parameter Vary-
ing Systems With Applications (SpringerLink: Bücher). New York, NY,
USA: Springer, 2012. [Online]. Available: https://books.google.com.br/
books?id=Gvr6yurJI9IC

[15] P. Rosa and C. Silvestre, ‘‘Fault detection and isolation of LPV systems
using set-valued observers: An application to a fixed-wing aircraft,’’ Con-
trol Eng. Pract., vol. 21, no. 3, pp. 242–252, 2013.

[16] L. Kovács, ‘‘LPV fault detection of glucose-insulin system,’’ in Proc. 14th
Medit. Conf. Control Autom., Dec. 2006, pp. 1–5.

[17] M. M. Morato, D. J. Regner, P. R. C. Mendes, J. E. Normey-Rico, and
C. Bordons, ‘‘Fault analysis, detection and estimation for a microgrid
via H2/H∞ LPV observers,’’ Int. J. Electr. Power Energy Syst., vol. 105,
pp. 823–845, Feb. 2019.

VOLUME 9, 2021 143363



L. P. Carvalho et al.: Gain-Scheduled Fault Detection Filter for Discrete-Time LPV Systems

[18] J. Tan, S. Olaru, M. Roman, F. Xu, and B. Liang, ‘‘Invariant set-based
analysis of minimal detectable fault for discrete-time LPV systems with
bounded uncertainties,’’ IEEE Access, vol. 7, pp. 152564–152575, 2019.

[19] A. H. Hassanabadi, M. Shafiee, and V. Puig, ‘‘UIO design for singular
delayed LPV systems with application to actuator fault detection and
isolation,’’ Int. J. Syst. Sci., vol. 47, no. 1, pp. 107–121, 2016.

[20] A. N. Hanafi, M. M. Seron, and J. A. De Doná, ‘‘Fault estimation and con-
troller compensation in lure systems by LPV-embedding,’’ Int. J. Control,
vol. 92, no. 8, pp. 1914–1927, Aug. 2019.

[21] H. Hamdi, M. Rodrigues, C. Mechmeche, and N. B. Braiek, ‘‘Fault diag-
nosis based on sliding mode observer for LPV descriptor systems,’’ Asian
J. Control, vol. 21, no. 1, pp. 89–98, Jan. 2019.

[22] F. Xu, J. Tan, Y. Wang, X. Wang, B. Liang, and B. Yuan, ‘‘Robust fault
detection and set-theoretic UIO for discrete-time LPV systems with state
and output equations scheduled by inexact scheduling variables,’’ IEEE
Trans. Autom. Control, vol. 64, no. 12, pp. 4982–4997, Dec. 2019.

[23] R. Sakthivel, V. T. Suveetha, H. Divya, and R. Sakthivel, ‘‘Fault detec-
tion finite-time filter design for T–S fuzzy Markovian jump system with
missing measurements,’’ Circuits, Syst., Signal Process., vol. 40, no. 4,
pp. 1607–1634, Apr. 2021.

[24] R. Sakthivel, V. T. Suveetha, V. Nithya, and R. Sakthivel, ‘‘Finite-time
fault detection filter design for complex systems with multiple stochastic
communication and distributed delays,’’Chaos, Solitons Fractals, vol. 136,
Jul. 2020, Art. no. 109778.

[25] Y. Liu, A. Arunkumar, R. Sakthivel, V. Nithya, and F. Alsaadi, ‘‘Finite-
time event-triggered non-fragile control and fault detection for switched
networked systems with random packet losses,’’ J. Franklin Inst., vol. 357,
no. 16, pp. 11394–11420, Nov. 2020.

[26] M. Shen, Y. Ma, J. H. Park, and Q.-G. Wang, ‘‘Fuzzy tracking control for
Markov jump systems with mismatched faults by iterative proportional-
integral observers,’’ IEEE Trans. Fuzzy Syst., early access, Dec. 1, 2020,
doi: 10.1109/TFUZZ.2020.3041589.

[27] L. Carvalho, A. De Oliveira, and O. Costa, ‘‘H2/H∞ simultaneous fault
detection and control for Markov jump linear systems with partial obser-
vation,’’ IEEE Access, vol. 8, pp. 11979–11990, 2020.

[28] L. P. Carvalho, T. E. Rosa, B. Jayawardhana, and O. L. V. Costa, ‘‘Fault
accommodation controller under Markovian jump linear systems with
asynchronous modes,’’ Int. J. Robust Nonlinear Control, vol. 30, no. 18,
pp. 8503–8520, Dec. 2020.

[29] G. Zhuang, S.-F. Su, J. Xia, and W. Sun, ‘‘HMM-based asynchronous H∞
filtering for fuzzy singular Markovian switching systems with retarded
time-varying delays,’’ IEEE Trans. Cybern., vol. 51, no. 3, pp. 1189–1203,
Mar. 2021.

[30] J. De Caigny, J. F. Camino, R. C. L. F. Oliveira, P. L. D. Peres, and
J. Swevers, ‘‘Gain-scheduled H2 and H∞ control of discrete-time poly-
topic time-varying systems,’’ IET Control Theory Appl., vol. 4, no. 3,
pp. 362–380, 2010.

[31] J. De Caigny, J. F. Camino, R. C. L. F. Oliveira, P. L. D. Peres, and
J. Swevers, ‘‘Gain-scheduled dynamic output feedback control for discrete-
time LPV systems,’’ Int. J. Robust Nonlinear Control, vol. 22, no. 5,
pp. 535–558, 2012.

[32] T. E. Rosa, C. F. Morais, and R. C. L. F. Oliveira, ‘‘New robust LMI
synthesis conditions for mixed H2/H∞ gain-scheduled reduced-order DOF
control of discrete-time LPV systems,’’ Int. J. Robust Nonlinear Control,
vol. 28, no. 18, pp. 6122–6145, Dec. 2018.

[33] J. M. Palma, C. F. Morais, and R. C. L. F. Oliveira, ‘‘H2 gain-scheduled fil-
tering for discrete-time LPV systems using estimated time-varying param-
eters,’’ in Proc. Annu. Amer. Control Conf., Jun. 2018, pp. 4367–4372.

[34] L. Frezzatto, M. C. de Oliveira, R. C. L. F. Oliveira, and P. L. D. Peres,
‘‘Robust H∞ filter design with past output measurements for uncertain
discrete-time systems,’’ Automatica, vol. 71, pp. 151–158, Sep. 2016.

[35] A. P. Pandey and M. C. de Oliveira, ‘‘A new discrete-time stabilizability
condition for linear parameter-varying systems,’’ Automatica, vol. 79,
pp. 214–217, May 2017.

[36] A. Sadeghzadeh, ‘‘Gain-scheduled continuous-time control using
polytope-bounded inexact scheduling parameters,’’ Int. J. Robust
Nonlinear Control, vol. 28, no. 17, pp. 5557–5574, Nov. 2018.

[37] J.M. Palma, C. F.Morais, and R. C. L. F. Oliveira, ‘‘H2 control and filtering
of discrete-time LPV systems exploring statistical information of the time-
varying parameters,’’ J. Franklin Inst., vol. 357, no. 6, pp. 3835–3864,
Apr. 2020.

[38] C. M. Agulhari, A. Felipe, R. C. L. F. Oliveira, and P. L. D. Peres, ‘‘Algo-
rithm 998: The robust LMI parser—A toolbox to construct LMI conditions
for uncertain systems,’’ ACM Trans. Math. Softw., vol. 45, pp. 36:1–36:25,
Aug. 2019. [Online]. Available: http://rolmip.github.io

[39] K. A. Barbosa, C. E. de Souza, and D. Coutinho, ‘‘Admissibility analysis
of discrete linear time-varying descriptor systems,’’ Automatica, vol. 91,
pp. 136–143, May 2018.

[40] B. Zhang, S. Xu, Q. Ma, and Z. Zhang, ‘‘Output-feedback stabilization of
singular LPV systems subject to inexact scheduling parameters,’’ Automat-
ica, vol. 104, pp. 1–7, Jun. 2019.

[41] M. F. Amorim, A. P. C. Gonçalves, and M. Souza, ‘‘Optimal H2 output-
feedback control of sampled systems,’’ in Proc. 4th IFAC Symp. Telematics
Appl., Porto Alegre, RS, Brasil, vol. 49, Nov. 2016, pp. 126–131.

[42] M. Sato and D. Peaucelle, ‘‘Gain-scheduled output-feedback controllers
using inexact scheduling parameters for continuous-time LPV systems,’’
Automatica, vol. 49, no. 4, pp. 1019–1025, 2013.

[43] P. Apkarian and P. Gahinet, ‘‘A convex characterization of gain-scheduled
H∞ controllers,’’ IEEE Trans. Autom. Control, vol. 40, no. 5, pp. 853–864,
May 1995.

[44] P. Apkarian and R. J. Adams, ‘‘Advanced gain-scheduling techniques for
uncertain systems,’’ in Proc. Amer. Control Conf., 1997, pp. 209–228.

[45] J. Lofberg, ‘‘YALMIP: A toolbox for modeling and optimization in MAT-
LAB,’’ in Proc. IEEE Int. Conf. Robot. Autom., Sep. 2004, pp. 284–289.

[46] K. A. Barbosa, C. E. de Souza, and A. Trofino, ‘‘Robust H∞/H2
filtering for discrete-time uncertain linear systems using parameter-
dependent Lyapunov functions,’’ in Proc. Amer. Control Conf., vol. 4,
2002, pp. 3224–3229.

[47] C. E. de Souza, K. A. Barbosa, and A. T. Neto, ‘‘Robust H∞ filtering
for discrete-time linear systems with uncertain time-varying parameters,’’
IEEE Trans. Signal Process., vol. 54, no. 6, pp. 2110–2118, Jun. 2006.

[48] R. Isermann, Fault-Diagnosis Systems: An Introduction From Fault Detec-
tion to Fault Tolerance. Berlin, Germany: Springer, 2005. [Online]. Avail-
able: https://books.google.com.br/books?id=6yUfoZhGMY0C

[49] M. J. Lacerda, E. S. Tognetti, R. C. L. F. Oliveira, and P. L. D. Peres,
‘‘A new approach to handle additive and multiplicative uncertainties in
the measurement for LPV filtering,’’ Int. J. Syst. Sci., vol. 47, no. 5,
pp. 1042–1053, Apr. 2016.

[50] C. Briat, Linear Parameter-Varying and Time-Delay Systems (Advances in
Delays and Dynamics). Berlin, Germany: Springer, 2015.

[51] R. C. L. F. Oliveira, P.-A. Bliman, and P. L. D. Peres, ‘‘Robust LMIs with
parameters in multi-simplex: Existence of solutions and applications,’’ in
Proc. 47th IEEE Conf. Decis. Control, Dec. 2008, pp. 2226–2231.

[52] J. F. Sturm, ‘‘Using SeDuMi 1.02, a MATLAB toolbox for optimiza-
tion over symmetric cones,’’ Optim. Methods Softw., vol. 11, nos. 1–4,
pp. 625–653, 1999.

[53] M. ApS, ‘‘MOSEK optimization toolbox for MATLAB,’’ User’s Guide
Reference Manual, Version, vol. 4, pp. 1–346, Sep. 2019.

[54] Feedback Instruments Ltd., FeedBack Coupled Tanks Control Experiments
33-041S (For Use With MATLAB), 1 ed. Crowborough, U.K.: Park Road,
Jul. 2013, pp. 1–49.

[55] M. F. Braga, C. F. Morais, E. S. Tognetti, R. C. L. F. Oliveira, and
P. L. D. Peres, ‘‘A new procedure for discretization and state feedback
control of uncertain linear systems,’’ in Proc. 52nd IEEE Conf. Decis.
Control, Dec. 2013, pp. 6397–6402.

[56] S. R. D. Paulo, Adaptive Filtering: Algorithms and Practical Implementa-
tion. New York, NY, USA: Springer, 2013.

[57] A. H. Sayed, Adaptive Filters. Hoboken, NJ, USA: Wiley, 2011.
[58] P. M. Frank and X. Ding, ‘‘Survey of robust residual generation and

evaluation methods in observer-based fault detection systems,’’ J. Process
Control, vol. 7, no. 6, pp. 403–424, 1997.

[59] Z.-H. Zhang and G.-H. Yang, ‘‘Fault detection for discrete-time uncertain
LPV systems using non-minimal order filter,’’ J. Franklin Inst., vol. 355,
no. 2, pp. 902–921, Jan. 2018.

LEONARDO DE PAULA CARVALHO received
the bachelor’s degree in electrical engineering
from the Universidade Federal do Mato Grosso
do Sul (UFMS), Brazil, in 2012, and the master’s
degree in electrical engineering from the Universi-
dade Estadual de Campinas (UNICAMP), Brazil,
in 2016. He is currently pursuing the Ph.D. degree
with the Universidade de São Paulo, Brazil, and
the University of Groningen, The Netherlands. His
research interests include control and filtering the-

ory, fault detection, fault-tolerant control, convex optimization,Markov jump
linear systems, networked control systems, and linear parameter varying.

143364 VOLUME 9, 2021

http://dx.doi.org/10.1109/TFUZZ.2020.3041589


L. P. Carvalho et al.: Gain-Scheduled Fault Detection Filter for Discrete-Time LPV Systems

JONATHAN M. PALMA received the B.Sc.
degree in electronic engineering from the Uni-
versity of Bío-Bío, Concepción, Chile, in 2014,
and the master’s and Ph.D. degrees in electri-
cal engineering from the University of Camp-
inas, in 2016 and 2019, respectively. He currently
works as an Academic and a Researcher with the
Engineering Faculty, University of Talca, Curico,
Chile. His research interests include control the-
ory, mainly investigating linear parameter-varying

(LPV) dynamics, and Markov jump linear systems (MJLS). Other research
topics include the development of protocols for energy-efficiency in net-
worked control systems; automatic control of combustion systems using
optical instrumentation; and stability analysis, control and mathematical
modeling applied to biological systems (also called biomathematics).

TABITHA E. ROSA received the bachelor’s degree
in mechatronics engineering from the Centro Fed-
eral de Educação Tecnológica de Minas Gerais
(CEFET-MG), Brazil, in 2014, and the master’s
degree in electrical engineering from the Universi-
dade Estadual de Campinas (UNICAMP), Brazil,
in 2017. She is currently pursuing the Ph.D. degree
with the University of Groningen, The Nether-
lands. Her master’s project focused on robust con-
trol, looking more specifically into the problem

of output feedback control for linear parameter varying systems. For her
bachelor’s thesis, she proposed the automation and modeling of a system
of interactive tanks and a discrete-time control project using decoupling
techniques for multi-variable systems. For her current research, she inves-
tigates the problem of integrating models and real-time data for zero-defect
manufacturing control systems.

BAYU JAYAWARDHANA (Senior Member,
IEEE) received the B.Sc. degree in electrical
and electronics engineering from the Institut
Teknologi Bandung, Bandung, Indonesia, in 2000,
the M.Eng. degree in electrical and electronics
engineering from Nanyang Technological Univer-
sity, Singapore, in 2003, and the Ph.D. degree
in electrical and electronics engineering from
Imperial College London, London, U.K., in 2006.
He was with Bath University, Bath, U.K., and with

The University of Manchester, Manchester, U.K. He is currently a Professor
of mechatronics and control of nonlinear systems with the Faculty of Science
and Engineering, University of Groningen, Groningen, The Netherlands. His
research interests include the analysis of nonlinear systems, systems with
hysteresis, mechatronics, robotics, and systems biology. He is a member of
the Conference Editorial Board of the IEEE Control Systems Society. He is a
Subject Editor of the International Journal of Robust and Nonlinear Control
and an Associate Editor of the European Journal of Control.

OSWALDO LUIZ DO VALLE COSTA (Senior
Member, IEEE) was born in Rio de Janeiro, Brazil,
in 1959. He received the B.Sc. and M.Sc. degrees
in electrical engineering from the Catholic Uni-
versity of Rio de Janeiro, in 1981 and 1983,
respectively, and the Ph.D. degree in electrical
engineering from the Imperial College of Science
and Technology, London, U.K., in 1987. From
1987 to 1988, he was a Postdoctoral Research
Assistant with the Department of Electrical Engi-

neering, Imperial College. He is currently a Full Professor with the Control
Group, Department of Telecommunications and Control Engineering, Poly-
technic School of the University of São Paulo, São Paulo, Brazil. His research
interests include stochastic control, optimal control, and jump systems.

VOLUME 9, 2021 143365


