3,499 research outputs found

    Stability of a class of multi-agent tracking systems with unstable subsystems

    Get PDF
    In this work, we pre-deploy a large number of smart agents to monitor an area of interest. This area could be divided into many Voronoi cells by using the knowledge of Voronoi diagram and every Voronoi site agent is responsible for monitoring and tracking the target in its cell. Then, a cooperative relay tracking strategy is proposed such that during the tracking process, when a target enters a new Voronoi cell, this event triggers the switching of both tracking agents and communication topology. This is significantly different from the traditional switching topologies. In addition, during the tracking process, the topology and tracking agents switch, which may lead the tracking system to be stable or unstable. The system switches either among consecutive stable subsystems and consecutive unstable subsystems or between stable and unstable subsystems. The objective of this paper is to design a tracking strategy guaranteeing overall successful tracking despite the existence of unstable subsystems. We also address extended discussions on the case where the dynamics of agents are subject to disturbances and the disturbance attenuation level is achieved. Finally, the proposed tracking strategy is verified by a set of simulations

    Active-passive dynamic consensus filters: Theory and applications

    Get PDF
    ”This dissertation presents a new method for distributively sensing dynamic environments utilizing integral action based system theoretic distributed information fusion methods. Specifically, the main contribution is a new class of dynamic consensus filters, termed active-passive dynamic consensus filters, in which agents are considered to be active, if they are able to sense an exogenous quantity of interest and are considered to be passive, otherwise, where the objective is to drive the states of all agents to the convex hull spanned by the exogenous inputs sensed by active agents. Additionally, we generalize these results to allow agents to locally set their value-of-information, characterizing an agents ability to sense a local quantity of interest, which may change with respect to time. The presented active-passive dynamic consensus filters utilize equations of motion in order to diffuse information across the network, requiring continuous information exchange and requiring agents to exchange their measurement and integral action states. Additionally, agents are assumed to be modeled as having single integrator dynamics. Motivated from this standpoint, we utilize the ideas and results from event-triggering control theory to develop a network of agents which only share their measurement state information as required based on errors exceeding a user-defined threshold. We also develop a static output-feedback controller which drives the outputs of a network of agents with general linear time-invariant dynamics to the average of a set of applied exogenous inputs. Finally, we also present a system state emulator based adaptive controller to guarantee that agents will reach a consensus even in the presence of input disturbances. For each proposed active-passive dynamic consensus filter, a rigorous analysis of the closed-loop system dynamics is performed to demonstrate stability. Finally, numerical examples and experimental studies are included to demonstrate the efficacy of the proposed information fusion filters”--Abstract, page iv

    Iterative learning control for multi-agent systems with impulsive consensus tracking

    Get PDF
    In this paper, we adopt D-type and PD-type learning laws with the initial state of iteration to achieve uniform tracking problem of multi-agent systems subjected to impulsive input. For the multi-agent system with impulse, we show that all agents are driven to achieve a given asymptotical consensus as the iteration number increases via the proposed learning laws if the virtual leader has a path to any follower agent. Finally, an example is illustrated to verify the effectiveness by tracking a continuous or piecewise continuous desired trajectory

    On the Control of Microgrids Against Cyber-Attacks: A Review of Methods and Applications

    Get PDF
    Nowadays, the use of renewable generations, energy storage systems (ESSs) and microgrids (MGs) has been developed due to better controllability of distributed energy resources (DERs) as well as their cost-effective and emission-aware operation. The development of MGs as well as the use of hierarchical control has led to data transmission in the communication platform. As a result, the expansion of communication infrastructure has made MGs as cyber-physical systems (CPSs) vulnerable to cyber-attacks (CAs). Accordingly, prevention, detection and isolation of CAs during proper control of MGs is essential. In this paper, a comprehensive review on the control strategies of microgrids against CAs and its defense mechanisms has been done. The general structure of the paper is as follows: firstly, MGs operational conditions, i.e., the secure or insecure mode of the physical and cyber layers are investigated and the appropriate control to return to a safer mode are presented. Then, the common MGs communication system is described which is generally used for multi-agent systems (MASs). Also, classification of CAs in MGs has been reviewed. Afterwards, a comprehensive survey of available researches in the field of prevention, detection and isolation of CA and MG control against CA are summarized. Finally, future trends in this context are clarified

    Event-triggered optimal control of completely unknown nonlinear systems via identifier-critic learning

    Get PDF
    summary:This paper proposes an online identifier-critic learning framework for event-triggered optimal control of completely unknown nonlinear systems. Unlike classical adaptive dynamic programming (ADP) methods with actor-critic neural networks (NNs), a filter-regression-based approach is developed to reconstruct the unknown system dynamics, and thus avoid the dependence on an accurate system model in the control design loop. Meanwhile, NN adaptive laws are designed for the parameter estimation by using only the measured system state and input data, and facilitate the identifier-critic NN design. The convergence of the adaptive laws is analyzed. Furthermore, in order to reduce state sampling frequency, two kinds of aperiodic sampling schemes, namely static and dynamic event triggers, are embedded into the proposed optimal control design. Finally, simulation results are presented to demonstrate the effectiveness of the proposed event-triggered optimal control strategy

    Event-triggered robust control for multi-player nonzero-sum games with input constraints and mismatched uncertainties

    Get PDF
    In this article, an event-triggered robust control (ETRC) method is investigated for multi-player nonzero-sum games of continuous-time input constrained nonlinear systems with mismatched uncertainties. By constructing an auxiliary system and designing an appropriate value function, the robust control problem of input constrained nonlinear systems is transformed into an optimal regulation problem. Then, a critic neural network (NN) is adopted to approximate the value function of each player for solving the event-triggered coupled Hamilton-Jacobi equation and obtaining control laws. Based on a designed event-triggering condition, control laws are updated when events occur only. Thus, both computational burden and communication bandwidth are reduced. We prove that the weight approximation errors of critic NNs and the closed-loop uncertain multi-player system states are all uniformly ultimately bounded thanks to the Lyapunov's direct method. Finally, two examples are provided to demonstrate the effectiveness of the developed ETRC method

    Consensus tracking of nonlinear agents using distributed nonlinear dynamic inversion with switching leader-follower connection

    Get PDF
    In this paper, a consensus tracking protocol for nonlinear agents is presented, which is based on the Nonlinear Dynamic Inversion (NDI) technique. Implementation of such a technique is new in the context of the consensus tracking problem. The tracking capability of nonlinear dynamic inversion (NDI) is exploited for a leader-follower multi-agent scenario. We have provided all the mathematical details to establish its theoretical foundation. Additionally, a convergence study is provided to show the efficiency of the proposed controller. The performance of the proposed controller is evaluated in the presence of both (a) random switching topology among the agents and (b) random switching of leader–follower connections, which is realistic and not reported in the literature. The follower agents track various trajectories generated by a dynamic leader, which describes the tracking capability of the proposed controller. The results obtained from the simulation study show how efficiently this controller can handle the switching topology and switching leader-follower connections.Engineering and Physical Sciences Research Council (EPSRC): EP/R009953/

    Distributed Event-triggered Bipartite Consensus for Multi-agent Systems Against Injection Attacks

    Get PDF
    This paper studies fully distributed data-driven problems for nonlinear discrete-time multi-agent systems (MASs) with fixed and switching topologies preventing injection attacks. We first develop an enhanced compact form dynamic linearization model by applying the designed distributed bipartite combined measurement error function of the MASs. Then, a fully distributed event-triggered bipartite consensus (DETBC) framework is designed, where the dynamics information of MASs is no longer needed. Meanwhile, the restriction of the topology of the proposed DETBC method is further relieved. To prevent the MASs from injection attacks, neural network-based detection and compensation schemes are developed. Rigorous convergence proof is presented that the bipartite consensus error is ultimately boundedness. Finally, the effectiveness of the designed method is verified through simulations and experiment
    • …
    corecore