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Abstract: In this paper, a consensus tracking protocol for nonlinear agents is presented, which is based
on the Nonlinear Dynamic Inversion (NDI) technique. Implementation of such a technique is new in
the context of the consensus tracking problem. The tracking capability of nonlinear dynamic inversion
(NDI) is exploited for a leader-follower multi-agent scenario. We have provided all the mathematical
details to establish its theoretical foundation. Additionally, a convergence study is provided to show
the efficiency of the proposed controller. The performance of the proposed controller is evaluated in
the presence of both (a) random switching topology among the agents and (b) random switching of
leader–follower connections, which is realistic and not reported in the literature. The follower agents
track various trajectories generated by a dynamic leader, which describes the tracking capability of
the proposed controller. The results obtained from the simulation study show how efficiently this
controller can handle the switching topology and switching leader-follower connections.

Keywords: consensus tracking; distributed nonlinear dynamic inversion; leader–follower consensus

1. Introduction

Multiple UAV or multi-agent operation has been an exciting research area for years.
Multi-agent systems (MASs) play an important role in executing complex tasks, which are
usually difficult for a single UAV or agent. Examples of MASs applications are cooperative
mobile robotics [1], sensory networks [2], flocking [3], formation control of robot teams [4],
rendezvous of multiple spacecraft [5], etc. Agents share information over a communica-
tion network and take appropriate control action to agree on a decision, i.e., they achieve
consensus. The control action is generated by consensus protocols designed using control
theory. Researchers have proposed a variety of consensus protocols to solve different cate-
gories of consensus problems considering linear and nonlinear agents, like communication
issues (switching topology [6–8], delays [9–11], noise [12–14]), disturbance [15,16], and
fault [17,18].

A significant number of these protocols achieve the consensus with a single value,
which primarily depends on the initial values of the agents. However, in a real-world
scenario, the agents may need to converge to a time-varying consensus value, which is
available to a few agents of networked MASs. This problem can be categorized as a consen-
sus tracking problem (also known as a leader–follower consensus problem because a leader
agent provides the time-varying values). Leader–follower consensus protocols have been
proposed to solve this problem. In [19], the authors considered the nearest neighborhood
principle and showed that all agents’ states converged to the leader’s state if the agents were
jointly connected to the leader. However, this scheme was too restrictive. Ren and Beard [20]
addressed the same problem in [19] with directed topology and relaxed restriction on the
topology. Ren [21] showed that the consensus protocol of a proportional and derivative
type could track a time-varying reference state of a virtual leader, but a proportional-like
consensus protocol cannot do it. Peng et al. [22] solved a leader–following consensus
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problem. The leader agent has varying velocity and time-varying delays. Cao et al. [23]
presented leader–follower consensus using a variable structure method. Hong et al. [24]
proposed a distributed output regulation algorithm for linear agents. In [25], the authors
solved a consensus problem for unknown systems. Wang et al. [26] used a distributed
observer to solve an adaptive leader–follower consensus problem for higher-order agents.
In [27], the authors addressed fixed-time event/self-triggered leader–follower consensus
problems for networked multi-agent systems having nonlinear dynamics. In [28], the au-
thors proposed distributed adaptive protocol for cooperative tracking problem considering
pure relative output information. Guo et al. [29] discussed a fixed-time consensus tracking
problem of nonlinear agents via discontinuous protocols. In [30], the adaptive consen-
sus tracking control problem of nonlinear multi-agent systems (MASs) is solved using a
robust adaptive event-triggered sliding-mode control method. Additionally, the authors
considered unknown perturbations and limited network bandwidth in the problem.

One of the significant events that cause the tracking failure is the actuator fault. There
exist a few papers that addressed the actuator fault in the consensus tracking problem.
Qin et al. [31] implemented sliding mode control to solve the consensus tracking problem
of nonlinear agents with actuator faults. They also considered disturbance in their study.
Mu et al. [32] proposed an event-triggered control strategy to solve the leader–following
consensus problem of agents with time-varying actuator faults. Xia et al. [33] presented
a fault-tolerant fuzzy tracking controller for nonlinear agents subject to actuator failures
and external disturbances. Gong et al. [34] studied an adaptive cooperative fault-tolerant
supervisory control problem for nonlinear leader–follower agents with unknown con-
trol coefficients and actuator faults. More results can be found in [35,36]. Along with
the actuator fault, switching topology is another event that is practical and causes diffi-
culties during the consensus process. A few works have been reported in the literature
where the effect of switching topology in tracking is studied. Wen et al. [6] presented
consensus Tracking of agents having Lipschitz node dynamics and switching Topologies.
Wang et al. [37] addressed a H∞ consensus tracking control problem for linear agents. They
considered switching topology and disturbances in their study. Razaq et al. [38] presented
a leader-based consensus of one-sided Lipschitz (OSL) agents under switching graphs
and input saturation. It can be mentioned that there exist a small number of papers that
discussed consensus tracking considering both the switching topology and actuator fault.
Sader et al. [39] presented the consensus tracking problem of agents’ nonlinear function,
exogenous disturbances, and actuator faults. They considered the switching communica-
tion topologies in their study. Liu et al. [40] designed a distributed fault-tolerant consensus
tracking control for multi-agent systems with actuator faults considering both fixed and
switching topologies. Additionally, Cao et al. [41] solved the same problem of consensus
tracking control of stochastic agents with actuator fault under randomly switched topology.

It can be mentioned that, in the leader–follower or consensus tracking problem, the
followers are connected to a few agents of the network. The connection between these
followers and the leader can also change in a similar way in which the switching topology
occurs. However, this leader–follower switching connection is not addressed in any paper.
We will address this problem along with the actuator fault in this paper.

All of these papers implemented linear and nonlinear control theory to design the
controller. There exists a control technique that is very efficient in designing controllers for
nonlinear plants. The philosophy behind NDI is to use feedback linearization theory to
remove the nonlinearities in the plant. Additionally, the response of the closed-loop plant is
similar to a stable linear system. There are many advantages to using an NDI controller, e.g.,
(a) closed-form control expression, (b) easy mechanization, (c) global exponential stability,
(d) inclusion of nonlinear kinematics in plant inversion, and (e) minimization of the need
for individual gain tuning or gain scheduling. It has been used to design controllers in
various applications. In [42], the authors designed an NDI-based flight controller. In [43],
NDI controller was implemented for autonomous landing of UAV. Lifeng et al. [44] used
Improved Dynamic Inversion to design trajectory tracking control for a quadrotor. In [45],
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the authors used an NDI controller to present a flying formation scheme. The follower
UAVs are used to track the desired attitude commanded by the leader. The attitude control
of a flexible aircraft was described using dynamic inversion by Caverly et al. [46]. Another
example of using NDI to solve an attitude control problem of a hovering quad tiltrotor
eVTOL Vehicle was presented by Lombaerts et al. [47]. In [48], the authors used NDI
to track the angular reference rates obtained from the guidance command in a missile
guidance problem. In [49], the authors presented a Nonlinear Dynamic Inversion (NDI)
based flight controller for a VTOL aircraft, including transition maneuvers. They used
virtual controls, generalized forces and moments to control its longitudinal motion. A
fault-tolerant control (FTC) scheme was proposed by Ma et al. [50]. The scheme was based
on extended state observer (ESO) and nonlinear dynamic inversion (NDI). In [51], trajectory
generation and control architecture for a fully autonomous autorotative flare are proposed.
These flare trajectories are tracked by a nonlinear dynamic inversion (NDI) control law.

These papers present the implementation of dynamic inversion to design a controller
for a single platform. Mondal et al. [14] proposed a distributed consensus protocol based on
NDI and named it Distributed NDI or DNDI. It has been implemented to solve consensus
problems with actuator fault [18], external disturbances [16], and bipartite consensus [52].
In this paper, we have proposed a variety of DNDI that exploits the tracking capability
of NDI and successfully solves a leader–following consensus tracking problem, which is
different from leaderless consensus in terms of concept and formulation. We have evaluated
the performance of the proposed controller in the presence of both (a) switching topology
among the agents and (b) switching connections between the leader and the followers.

The contribution in this paper is given as follows.

• Distributed Nonlinear Dynamic Inversion (DNDI) based control protocol is designed
to address the consensus tracking problem of nonlinear agents for the first time. This
is novel because we exploited the tracking capability of nonlinear dynamic inversion
(NDI) for a leader-follower multi-agent scenario.

• Detailed mathematical derivation of the controller is provided.
• Mathematical details for convergence study are presented, which gives proof of its

correctness.
• We have considered the presence of both (a) switching topology among the agents and

(b) switching connection between the leader and the followers to make the scenario
more realistic. This is new in the context of the consensus tracking problem.

• Realistic simulation study shows the accuracy of the proposed controller. Different
types of leader trajectories are generated to demonstrate the tracking capability of the
proposed controller.

The rest of the paper is organized as follows. In Section 2, the preliminaries are given.
In Section 3, the problem description is presented. Mathematical details of tracking DNDI
for leader–follower consensus tracking is shown in Section 4. The convergence study of
tracking DNDI is presented in Section 5. Simulation results are shown in Section 6, and
Section 7 gives the conclusion.

2. Preliminaries

In this section, we have presented a few topics that are relevant to this study.

2.1. Consensus Tracking of Multiple Agents

Let us consider N nonlinear agents connected by a communication topology. The agents
(called followers) need to track the trajectory of a leader XL(t), which is connected to a few
agents of the networked agents. If the followers’ states, i.e., Xi(t); i = 1, 2, . . . , N achieve
the consensus and track the leader’s states, i.e., if for any initial conditions limt→∞ |Xi(t)→
XL(t)| = 0, the followers are considered to achieve consensus tracking.
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2.2. Graph Theory

The communication among the agents can be represented by a weighted graph written
by G = {V , E}. The vertices V = {v1, v2, . . . , vN} of the graph are used to represent the
agents. The set of edges, i.e., E ⊆ V × V , shows the communication among the agents.
The elements of weighted adjacency matrix A = [aij] ∈ <N×N of G are given by aij > 0
if (vj, vi) ∈ E , otherwise aij = 0. There is no self-loop in the graph, i.e., the diagonal
elements of the adjacency matrix A as zero (aii = 0). The degree matrix is represented as
D ∈ <N×N = diag{d1 d2 . . . dN}, where di = ∑j∈Ni

aij. The Laplacian matrix is written as
L = D −A. In this paper, we consider the topology G of the network as undirected (i.e.,
aij = aji) and connected (vi, vj ∈ V , there exists a path from vi to vj).

2.3. Switching Leader-Follower Connection

In this paper, we have evaluated the performance of the proposed controller in the
presence of a switching leader–follower connection along with the switching topology
among the followers. In case of a consensus tracking problem, the leader’s state information
is available to a few follower agents. Let us consider the leader’s state information is
available to p agents, p ⊂ N, where N is the total number of followers. At any time t ≥ t0,
the recipient followers are changed (some of them or all), and the leader’s information is
available to q agents (p = q or p 6= q).

2.4. Lemma

The useful lemmas used in this paper are given as follows.

Lemma 1 ([20]). The Laplacian matrix L in an undirected graph is semi-positive definite, it has a
simple zero eigenvalue, and all the other eigenvalues are positive if and only if the graph is connected.
Therefore, L is symmetric and it has N non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤
. . . ≤ λN .

Lemma 2 ([53]). Let ψ1(t), ψ2(t) ∈ Rm be continuous positive vector functions, by Cauchy
inequality and Young’s inequality, there exists the following inequality:

ψ1(t)ψ2(t) ≤ ‖ ψ1(t) ‖‖ ψ2(t) ‖

≤ ‖ ψ1(t) ‖λ̄

λ̄
+
‖ ψ2(t) ‖ζ̄

ζ̄
(1)

where
1
λ̄
+

1
ζ̄
= 1

Lemma 3 ([54]). Let R(t) ∈ < be a continuous positive function with bounded initial R(0). If the
inequality holds Ṙ(t) ≤ −νR(t) + ς where, ν > 0, ς > 0, then the following inequality holds.

R(t) ≤ R(0)e−νt +
ς

ν

(
1− e−νt) (2)

3. Problem Formulation

In this section, the problem definition is given. The objective is to design a con-
sensus tracking protocol that enables a class of nonlinear agents’ (follower) states Xi(t);
i = 1, 2, . . . , N to achieve the consensus and track the desired signal (XL(t)) generated by a
leader agent, i.e., Xi(t)→ XL(t). The ith follower agent is described by

Ẋi = f (Xi) + g(Xi)Ui (3)

Yi = Xi (4)
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where, Xi ∈ <n, Ui ∈ <n are states and control, respectively. f is a continuously differen-
tiable vector-valued function representing the nonlinear dynamics.

Assumption 1. The matrix g(Xi) is invertible for all time.
The leader dynamics is given by

ẊL(t) = fL(XL(t), t) (5)

where, XL ∈ <n. fL is piecewise continuous in t.

Assumption 2. XL(t) and ẊL(t) are assumed to be bounded.

It can be mentioned that the leader’s state information is available to a few agents of
the networked agents.

4. Distributed Nonlinear Dynamic Inversion for Consensus Tracking

Considering the agent (Equations (3) and (4)) and leader dynamics (Equation (5)), the
consensus tracking error of ith agent (scalar n = 1) is given by

ei = ∑
j∈Ni

aij
(
xi − xj

)
+ βi(xi − xL) (6)

Simplifying Equation (6), we obtain

ei = (di + βi)xi − aiX− βixL (7)

where X ∈ <N , xL defines the state of a scalar agent, and βi shows if ith agent is connected
to the leader. The tracking error is given for the agents with state vector Xi ∈ <n; n > 1.

Ei =
(
d̄i + β̄i

)
Xi − āiX− β̄iXL (8)

where Ei ∈ <n, d̄i = (di ⊗ In) ∈ <n×n, āi = (ai ⊗ In) ∈ <n×nN , β̄i = (βi ⊗ In) ∈ <n×n,
XL ∈ <n, and X = [XT

1 XT
2 . . . XT

N ]
T ∈ <nN . We enforce the first-order error dynamics

as follows.
Ėi + KiEi = 0 (9)

Differentiation of Equation (9) gives

Ėi =
(
d̄i + β̄i

)
Ẋi − āiẊ− β̄iẊL

=
(
d̄i + β̄i

)
[ f (Xi) + g(Xi)Ui]− āiẊ− β̄iẊL (10)

The expressions of Ei and Ėi are substituted in Equation (9) to obtain(
d̄i + β̄i

)
[ f (Xi) + g(Xi)Ui]− āẊ− β̄iẊL + Ki

((
d̄i + β̄i

)
Xi − āiX− β̄iXL

)
= 0 (11)

Control Ui of ith agent is obtained by simplifying Equation (11) as follows.

Ui = (g(Xi))
−1

[
− f (Xi) +

(
d̄i + β̄i

)−1
(

āiẊ + β̄iẊL − Ki

((
d̄i + β̄i

)
Xi − āiX− β̄iXL

))]
(12)

5. Convergence Study of DNDI for Consensus Tracking

The convergence study of DNDI is presented here. We define a smooth scalar function:

Ṽ =
1
2

XT(L̃⊗ In)X (13)
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L̃⊗ In can be represented by
L̃⊗ In = S̃ΩS̃T (14)

where, S̃ ∈ <nN×nN is the left eigenvalue matrix of L̃⊗ In, Ω =
(
diag{0, λ2(L̃), λ3(L̃

)
, . . . ,

λN
(

L̃)} ⊗ In
)
∈ <nN×nN is eigenvalue matrix, S̃T S̃ = S̃S̃T = InN×nN .

Ṽ =
1
2

XT(L̃⊗ In)X

=
1
2

XT S̃ΩS̃TX

=
1
2

XT S̃
√

Ω
√

ΩS̃TX

=
1
2

XT S̃
√

ΩΩ̄
√

Ω̄−1
√

Ω̄−1
√

Ω̄ΩS̃TX

=
1
2

XT S̃ΩΩ̄−1ΩS̃TX (15)

=
1
2

XT S̃Ω
(

S̃T S̃
)

Ω̄−1
(

S̃T S̃
)

ΩS̃TX

=
1
2

XT
(

S̃ΩS̃T
)(

S̃Ω̄−1S̃T
)(

S̃ΩS̃T
)

X

=
1
2

XT(L̃⊗ In)Φ(L̃⊗ In)X

=
1
2

ETΦE

where Ω̄ = (diag{λ2(L), λ2(L), λ3(L), . . . , λN(L)} ⊗ In) ∈ <nN×nN , E = [ET
1 ET

2 . . . ET
N ]

T ∈
<nN , and Φ = S̃Ω̄−1S̃T ∈ <nN×nN .

Remark 1. Using Equations (13) and (15), we can write

λmin(Φ)

2
‖ E ‖2≤ V ≤ λmax(Φ)

2
‖ E ‖2 (16)

Ṽ =
1
2

XT(L̃⊗ In)X =
1
2

XTE (17)

Remark 2. According to Lemma 1, λ2 > 0. Hence, Ω̄ is invertible.

Remark 3. Φ = S̃Φ̄−1S̃T is positive definite matrix. Hence, Ṽ is positive definite subject to
consensus error and qualify for a Lyapunov function.

Differentiating Equation (13), we get

˙̃V = XT(L̃⊗ In)Ẋ = ETẊ =
N

∑
i=1

ET
i

[
f (Xi) + g(Xi)Ui

]
(18)

where, E = [ET
1 ET

2 . . . ET
N ]

T ∈ <nN . Substituting the control Ui expression in Equation (18)
yields

˙̃V =
N

∑
i=1

ET
i

[(
d̄i + β̄i

)−1
(āiẊ + β̄iẊL − KiEi)

]
= −

N

∑
i=1

ET
i
(
d̄i + β̄i

)−1KiEi +
N

∑
i=1

ET
i
(
d̄i + β̄i

)−1 āiẊ

+
N

∑
i=1

ET
i
(
d̄i + β̄i

)−1
β̄iẊL (19)
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According to Lemma 2, we can write ET
i
(
d̄i + β̄i

)−1 āiẊ ≤‖ Ei ‖ ‖
(
d̄i + β̄i

)−1 āiẊ ‖

≤ ‖ Ei ‖2

2
+
‖
(
d̄i + β̄i

)−1 āiẊ ‖2

2
(20)

and

ET
i
(
d̄i + β̄i

)−1
β̄iẊL ≤‖ Ei ‖ ‖

(
d̄i + β̄i

)−1
β̄iẊL ‖≤

‖ Ei ‖2

2
+
‖
(
d̄i + β̄i

)−1
β̄iẊL ‖2

2
(21)

Substituting the inequality relation in Equation (19)

˙̃V ≤
N

∑
i=1

[
− ET

i
(
d̄i + β̄i

)−1KiEi+ ‖ Ei ‖2 +
‖
(
d̄i + β̄i

)−1 āiẊ ‖2

2
+
‖
(
d̄i + β̄i

)−1
β̄iẊL ‖2

2

]
(22)

Let us design the gain Ki as follows.

Ki =
(
d̄i + β̄i

)(
1 +

αi
2

λmax(Φ)
)

(23)

Equation (22) is written as

˙̃V ≤
N

∑
i=1

[
− αi

2
λmax(Φ) ‖ Ei ‖2 +

‖
(
d̄i + β̄i

)−1 āiẊ ‖2

2

+
‖
(
d̄i + β̄i

)−1
β̄iẊL ‖2

2

]
≤ −αiṼ + η̃ (24)

where, η̃ =
‖(d̄i+β̄i)

−1
āiẊ‖2

2 +
‖(d̄i+β̄i)

−1
β̄i ẊL‖2

2 . Applying Lemma 3 we obtain

Ṽ ≤ η̃

αi
+

(
Ṽ(0)− η̃

αi

)
e−αit (25)

Therefore, it is clear that Ṽ is bounded as t → ∞. Moreover, we present the Uniformly
Ultimate Boundedness (UUB) as follows.

Using Equations (16) and (25), and Lemma 1.2 presented by Ge et al. [54], we can write

λmin(Φ)

2
‖ E ‖2≤ Ṽ ≤ η̃

αi
+

(
Ṽ(0)− η̃

αi

)
e−αit (26)

We can write Equation (26) as follows.

λmin(Φ)

2
‖ E ‖2 ≤ η̃

αi
+

(
Ṽ(0)− η̃

αi

)
e−αit

‖ E ‖ ≤

√√√√2 η̃
αi
+ 2
(

Ṽ(0)− η̃
αi

)
e−αit

λmin(Φ)
(27)

It can be observed that, if Ṽ(0) = η̃
αi

, then

‖ E ‖≤ κ∗ (28)
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∀t ≥ 0 and κ∗ =
√

2η̃
αiλmin(Φ)

. If Ṽ(0) 6= η̃
αi

then for any given κ > κ∗ there exist a time τ̃ > 0
such that ∀t > τ̃, ‖ E ‖≤ κ.

κ =

√√√√2 η̃
αi
+ 2
(

Ṽ(0)− η̃
αi

)
e−αiT

λmin(Φ)
(29)

Therefore, we can write
lim
t→∞
‖ E ‖= κ∗ (30)

Hence, it is proved that the error is bounded and the consensus tracking is successful.

6. Simulation Study

We have presented the simulation results and discussion in this section.

6.1. Agent Dynamics

We have considered ten agents (N = 10) for simulation. Highly nonlinear terms like
sin and cos are included in the agents dynamics. The dynamics for ith agent [14] is given in
Equations (31) and (32).

Ẋi1 = Xi2 sin(2Xi1) + Ui1 (31)

Ẋi2 = Xi1 cos(3Xi2) + Ui2 (32)

where, Xi =
[
Xi1 Xi2

]T . The dynamics of Equations (31) and (32) are written in the form
given in Equations (3) and (4) as follows.

f (Xi) =

[
Xi2 sin(2Xi1)
Xi1 cos(3Xi2)

]
(33)

and

g(Xi) =

[
1 0
0 1

]
(34)

and

Ui =

[
Ui1
Ui2

]
(35)

where Xi ∈ <2. The states X1i of all the agents are denoted by X1 = [X11 X21 . . . X101 ].
Similarly, we denote X2 = [X12 X22 . . . X102 ], U1 = [U11 U21 . . . U101 ], and U2 =
[U12 U22 . . . U102 ]. The errors in X1 and X2 is given by E in X1 and E in X2, respectively.

6.2. Communication Topology

The communication topology used in this simulation study is given as follows.

A =



0 0 1 1 1 1 0 1 1 1
0 0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0 0 1
1 0 0 0 1 1 0 0 0 1
1 0 0 1 0 1 0 1 0 0
1 0 0 1 1 0 1 1 1 0
0 0 1 0 0 1 0 1 1 0
1 1 0 0 1 1 1 0 0 1
1 0 0 0 0 1 1 0 0 1
1 1 1 1 0 0 0 1 1 0


(36)



Sensors 2022, 22, 9537 9 of 23

The leader–follower connection is given by

β =
[
0 1 0 0 0 0 0 1 0 1

]
(37)

β(i); i = 1, 2, . . . , N denotes the connection between leader with ith follower agent. β
shows that the leader is connected to follower agents 2, 8, and 10.

6.3. Results and Discussion: Fixed Topology

We have considered two cases to describe the controller’s performance. They are
discussed in the following section.

6.3.1. Case 1: Leader States-Constant and Ramp Function

In this case, the leader dynamics are given as follows.

ẊL1 = 1 (38)

ẊL2 = 0 (39)

The consensus tracking controls U1 and U2, generated by the DNDI, are shown in Figures 1
and 2, respectively. These controls produce the state trajectories. The states of the leader
(XL1 and XL2 ) are ramp and constant functions, respectively. It can be seen that the agents’
states X1 and X2 track the leader states XL1 and XL2 , respectively (shown in Figures 3 and 4).
The states achieve consensus with values dictated by the leader. The consensus error Ei in
states Figures 5 and 6 shows the tracking accuracy.
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Figure 1. Control U1 of agents.
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Figure 3. Consensus tracking of state X1 of the agents.
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Figure 4. Consensus tracking of state X2 of the agents.
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Figure 5. Consensus error Ei in state X1 of agents.
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Figure 6. Consensus error E2 in state X1 of agents.

6.3.2. Case 2: Leader States-Sinusoid Function

In this case, the leader dynamics are considered as follows.

ẊL1 = 1.5XL1(t) cos(2t + 1) + XL2(t) cos(4t) (40)

ẊL2 = 2XL2(t) sin(3t) (41)

The consensus controls U1 and U2 are shown in Figures 7 and 8, respectively. It can be
observed that the control signals are different from case 1. This is due to the leader’s states,
which are sinusoid in nature as given in Equations (40) and (41).
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Figure 7. Control U1 of agents.
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Figure 8. Control U2 of agents.

The state trajectories X1 and X2 are shown in Figures 9 and 10, respectively. The agents
achieve consensus on the leader’s trajectories. The leader’s states are different, but the
consensus controller has managed to track them.
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Figure 9. Consensus tracking of state X1 of the agents.
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Figure 10. Consensus tracking of state X2 of the agents.

The accuracy of consensus tracking is described by the errors Ei in X1 and X2, which
are shown in Figures 11 and 12, respectively. The consensus tracking errors become zero in
a few seconds, which explains the effectiveness of the proposed controller.
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Figure 11. Consensus error Ei in state X1 of agents.
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Figure 12. Consensus error E2 in state X1 of agents.

6.4. Results and Discussion: Switching Topology and Switching Leader-Follower Connections

In this case, we have presented the case where both (a) switching topology among the
agents and (b) switching connection between the leader and the followers. The switching
topologies are generated by the Algorithm 1.

Algorithm 1 Random topology generation.

for k = 1 to Np do
for i = 1 to N do

for j = 1 to N do
x ← random number x ∈ (0, 1)
if x > 0.5 then

Ak(i, j)← 1
Ak(j, i)← 1

else
Ak(i, j)← 0
Ak(j, i)← 0

end if
if i = j then

Ak(i, j)← 0
end if

end for
end for

end for

We have generated Np adjacency matrices, which denote the undirected topologies.
N denotes the number of followers. The (i, j)th, i, j = 1, 2, . . . , N element of kth adjacency
matrix k = 1, 2, . . . , Np is generated depending on the value of a random variable x, which
is mentioned in the Algorithm 1. One topology at each time instant is selected (denoted by
As) randomly (among Np topologies) using the Algorithm 2. A random integer ind in the
range [1, Np] is selected, and the corresponding topology Aind is chosen as As.
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Algorithm 2 Selection of topology.

for i = 1 to Ts do
x ← random number x ∈ (0, 1)
if x > 0.5 then

ind← random_integer([1 Np], 1)
AS ← Aind

else
AS remains same

end if
end for

Ts is the simulation time. Algorithms 1 and 2 were designed for implementing switch-
ing topology among the followers. Next, we will present the algorithms to describe the
changing connections between the leader and the followers. NL leader–follower connec-
tions are generated using Algorithm 3. It can be observed that each element of the array
temp is generated depending on the random variable x and a threshold value l. All the
arrays generated are stored in the variable LF_con.

Algorithm 3 Switching leader–follower connection.

for i = 1 to NL do
for j = 1 to N do

x ← random number x ∈ (0, 1)
if x > l then

temp(j)← 1
else

temp(j)← 0
end if

end for
LF_con(i, :)← temp

end for

The leader–following switching connection is selected using the Algorithm 4. At each
simulation time instant, one random integer ind is generated, and the array corresponding
to ind in LF_con is selected as β. We considered the values of Np and NL as 100 and 30,
respectively. The switching of topologies among the agents and switching connection of
the leader–follower are shown in Figures 13 and 14, respectively. The topologies among the
follower (given by the topology number) agents change at every time instant according to
Algorithm 2. Similarly, the connections between the leader and the followers (given by the
connection number) change according to Algorithm 4.

Algorithm 4 Selection of leader–follower connection.

for i = 1 to Ts do
x ← random number x ∈ (0, 1)
if x > l then

ind← random_integer([1 NL], 1)
β← LF_con(ind, :)

else
β remains same

end if
end for
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Figure 13. Consensus error Ei in state X1 of agents.
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Figure 14. Consensus error E2 in state X1 of agents.

The tracking consensus controls U1 and U2 are shown in Figures 15 and 16, respectively.
They have differences from other cases, which is the effect of the switching topology
and connections.
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Figure 15. Control U1 of agents.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time(s)

-1000

-800

-600

-400

-200

0

200

400

600

800

U
2

Agent1

Agent2

Agent3

Agent4

Agent5

Agent6

Agent7

Agent8

Agent9

Agent10

Figure 16. Control U2 of agents.

The state trajectories are generated by the control. The states of the followers started
tracking efficiently within 2 s (see Figures 17 and 18). The effect of the switching is more
visible within this time. However, the DNDI-based controller managed to reduce the error
(see Figures 19 and 20) and improved the tracking performance. Therefore, it is clear
that the proposed controller can perform the consensus tracking even in the presence of
switching topology among followers and switching leader-follower connections.
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Figure 17. Consensus tracking of state X1 of the agents.
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Figure 18. Consensus tracking of state X2 of the agents.
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Figure 19. Consensus error Ei in state X1 of agents.
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Figure 20. Consensus error E2 in state X1 of agents.

7. Conclusions

The DNDI-based fault-tolerant controller has been used to solve the consensus tracking
control of nonlinear agents for the first time. This derivation is different compared to
our previous work about leaderless consensus control. Moreover, switching topology
among the agents and switching leader–follower connections are considered, which is
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more realistic and addressed for the first time. A convergence study is presented to
prove the tracking capability of the controller. A realistic simulation study evaluates the
controller’s performance, where different types of leader trajectories are generated, and the
agents successfully track the leader’s states. The results show that the proposed controller
works efficiently in this realistic scenario. Therefore, the proposed controller is a potential
candidate for consensus tracking applications.
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