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Abstract. In this paper, we adopt D-type and PD-type learning laws with the initial state of iteration
to achieve uniform tracking problem of multi-agent systems subjected to impulsive input. For the
multi-agent system with impulse, we show that all agents are driven to achieve a given asymptotical
consensus as the iteration number increases via the proposed learning laws if the virtual leader has
a path to any follower agent. Finally, an example is illustrated to verify the effectiveness by tracking
a continuous or piecewise continuous desired trajectory.
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1 Introduction

Multi-agent systems (MAS) have been widely used in various disciplines such as un-
manned vehicles, wireless sensor networks, and communication networks in the past
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decade. For example, every satellite in GPS is an agent, and the whole GPS is a multi-
agent system. Information can be exchanged between them, and information can be trans-
mitted to the ground to guarantee accurate positioning. The consensus problem is a fun-
damental issue for MAS because of its wide applications in formation control, distributed
estimation, and congestion control. In fact, consensus tracking over networks indicates
that outputs of all agents track a given objective synchronously. We note that abrupt
changes of states may exist at some time instants in biological and physical systems.
For example, the migration of birds is subject to abrupt changes due to harvesting and
diseases. For this scenario, MASs with impulse can well describe the inevitable interfer-
ence during the actual system operation. When GPS suffers from solar storm and other
external interference, their trajectory may shift, which is a pulse phenomenon. This paper
only discusses the case of instantaneous pulse; that is, the time of pulse generation is
very short compared with the whole process. To study the problem of uniform tracking of
impulsive MAS is to study whether the agents can return to the predetermined trajectory
through the information exchange after being disturbed by external environments. In
this regard, Cui conducted related research in [6]. However, very few existing papers
considered the consensus problem of MASs with impulse, for examples, [8, 14, 16, 21,
32, 35, 36, 38], in the conventional consensus framework. In addition, impulsive control
approach is advantageous in simplicity and flexibility for such kind of systems because
the standard continuous state information is not required. As a consequence, this approach
has been offered to study uniform tracking problem [9–11,15,27,28,31,39] and adaptive
consistency and synchronization problems [5, 7, 22–25, 29] for MASs.

For a robot performing a trajectory tracking task over a finite time interval, iterative
learning control (ILC) uses the error information measured during the previous or previ-
ous operations to correct the control input, such that the operation performance can be
improved along the iteration axis. Consequently, the desired trajectory can be precisely
tracked over the entire time interval by the inherent mechanism of learning. ILC was first
proposed in [2] for a robot, whereas Ahn and Chen [1] applied ILC to the consensus
tracking of a MAS. Recently, ILC laws have been extensively studies for various types
of MASs such as fractional order MAS [4, 17–20, 26, 33, 34, 37]. Note that MASs with
impulse can generate discontinuous inputs, thus it is still challenging to consider whether
ILC can be successfully applied to collect the sampled error data from each agent and
track continuous or discontinuous trajectory, i.e., achieving leader-following consensus
for nonlinear dynamics of MAS with impulse. In addition, [12,13] use Lyapunov stability
theory to analyze the coordination performance of MAS.

In consideration of all above discussions, we address the application of learning type
consensus tracking algorithms for MASs in this paper. In particular, we use D-type and
PD type ILC laws to derive the formation tracking performance of impulse MAS under a
fixed topology. The D-type ILC update law refers to a differential learning law, which uses
the derivative of error signals from the previous iteration to correct the input signals for the
next iteration. The PD-type ILC update law is the superposition of a proportional learning
law and a differential learning law. It uses error signals from the last iteration and their
derivatives to correct the input signals for the next iteration. A fundamental challenge
in this paper is how to design an effective ILC by using information of the tracked
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trajectory and the specified agent’s neighbors. This challenge is resolved by providing
flexible control inputs according the changes of system states at fixed points. The output
can be used to track a piecewise continuous trajectory by using continuous-time topology
connections involving some instantaneous information exchanges.

The rest of the paper is organized as follows: Section 2 provides the problem formu-
lation and preliminaries. Section 3 provides the main results of this paper. An illustrative
example is presented in Section 4.

2 Preliminaries and notation

Consider a weighted directed graph composed of set of vertices V = {1, 2, 3, . . . , N},
N represents the number of agents in the system, the set of edges E ⊆ V × V , and the
adjacency matrix Z. Set Q = (V,E,Z). V represents the set of multi-agents. Set of
edge E is composed of directed sequence pairs (i, j), where (i, j) means that agent i can
pass information to agent j, that is, i is called the parent node of j, and j is called the
child node of i. All the sets adjacency with the i agent are called the adjacency sets of the
i agent denoted asMi = {j ∈ V | (j, i) ∈ E}. Z = (zi,j)N is the weighted adjacency
matrix of Q, which is composed of nonnegative elements zi,j . In particular, zi,i = 0; if
(j, i) ∈ E, zi,j = 1, it is means that agent j can pass information to agent i; if (i, j) /∈ E,
zi,j = 0, it is means that agent j can not pass information to agent i. The Laplace operator
of Q is defined as µ = D − Z, where D = diag(d1, d2, . . . , dN ). di represents the entry
degree of vertex i, that is, di = ΣNj=1zi,j . If a directed graph has one node that has no
parent and all other nodes have only one parent, the directed graph is called a spanning
tree.

In this paper, ‖a‖ is used to represent the 2-norm of vector a, and ‖A‖ is used to
represent the matrix norm compatible with it. The λ-norm of the function v is expressed
as ‖v‖λ: [0, α]→ Rn and ‖v‖λ = supt∈[0,α] e−λt‖v(t)‖, λ > 0.

The standard Kronecker product is defined as

H ⊗ L =

h11L · · · h1cL
...

. . .
...

ha1L · · · hacL

 ∈ Rab×cd,

where H = (hij)ac ∈ Ra×c, L ∈ Rb×d.
Consider a system withN agents, each agent with T pulse points. Q = (V,E,Z) rep-

resents their interaction topology. The ith agent is controlled by the following nonlinear
impulsive systems:

Ẋi(τ) = ~(Xi, τ) +Bui, τ 6= τt, t = 1, 2, . . . , T,

Xi(τ+) = Mt

(
Xi(τ−)

)
, τ = τt, t = 1, 2, . . . , T,

yi = C(τ)Xi

(1)

for all i ∈ V , τ ∈ [0, α]. This system is right-continuous, where Xi ∈ Rn is the state
vector of the ith agent, ui ∈ Rp is the control function of the ith agent, B is Rn×p
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matrix, yi ∈ Rm is the output vector of the ith agent, ~(·, ·) : [0, α] × Rn → Rn and
Mt : Rn → Rn are continuous, C(τ) is a continuous Rm×n matrix function. Impulsive
time sequence is denoted by 0 < τ1 < τ2 < · · · < τT < α. X (τ+t ) = limh→0+ X (τt+h)
and X (τ−t ) = X (τt) represent the right and left limits of X (τ) at τ = τt, respectively.

We need the following conditions:

(H1) ~(·, ·) satisfies the Lipschitz condition∥∥~(Xi+1,j , τ)− ~(Xi,j , τ)
∥∥ 6 θf

∥∥Xi+1,j −Xi,j
∥∥, θf > 0, (2)

for any τ ∈ [0, α] and Xi+1,j ,Xi,j ∈ Rn.
(H2) Mt(·) satisfies the Lipschitz condition∥∥Mt(x)−Mt(y)

∥∥ 6 θt‖x− y‖, θt > 0, t = 1, 2, . . . , T, (3)

for any x, y ∈ Rn.

Under assumptions (H1) and (H2), following [30, Remark 4.1], system (1) withX (0) =
X0 has a unique solution in a piecewise continuous functions space

Xi(τ) = X0 +

τ∫
0

[
~(Xi, s) +Bui(s)

]
ds+

∑
0<τt<τ

Mt

(
Xi(τt)

)
, τ ∈ [0, α]. (4)

Let yd(τ) be the expected consistent trace of the MAS on the time interval τ ∈ [0, α],
0 < α < ∞. Here, yd(τ) is not necessarily continuous on the whole time interval
[0, α]. We regard the desired trajectory yd(τ) as the virtual leader in the communication
topology and mark it with vertex 0. Then, the information exchange among agents can
be represented by an extended communication topology graph Q∗ = (V ∪ {0}, E∗, A∗),
where E∗ represents the edge set, and A∗ represents the weighted adjacency matrix. The
control objective is to design appropriate iterative learning laws such that the output of all
agents can asymptotically converge to the desired trajectory yd(τ).

3 Controllability results

We use the symbol σi,j(τ) to represent all the information received by the jth agent in
the ith iteration. Then, it can be expressed as the sum of the information transmitted from
other agents to the jth agent and the possible information transmitted from the leader to
the jth agent

σi,j(τ) =
∑
h∈Nj

zj,h
(
yi,h(τ)− yi,j(τ)

)
+ dj

(
yd(τ)− yi,j(τ)

)
.

The jth agent can get information directly from the desired trajectory. That is, if
(0, j) ∈ E∗, then dj = 1; otherwise, dj = 0. Where the first subscript of σ and y indicates
the number of iterations, and the second subscript indicates the sequence number of the
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agent. The subscripts of z and d are explained in Section 2. The derivative of the σi,j(τ)
function is defined as follows:

σ̇i,j(τ0) =

{
lim∆τ→0

σi,j(τ0+∆τ)−σi,j(τ0)
∆τ , τ0 6= τt, t = 1, 2, . . . , T,

limτ→τ+
0
σi,j(τ), τ0 = τt, t = 1, 2, . . . , T.

In order to make the intelligent body track the target trajectory iteration number
increases, the following D-type learning laws are employed:

ui+1,j(τ) = ui,j(τ) + P (τ)σ̇i,j(τ), (5)

where P (τ) is a Rp×p matrix function and is differentiable during the interval [0, α]. The
initial state learning rule is as follows:

Xi+1,j(0) = Xi,j(0) +BP (0)σi,j(0). (6)

Set ψi,j(τ) as the tracking error of the agent; that is, ψi,j(τ) = yd(τ) − yi,j(τ). The
learning law (3) can be written as

σi,j(τ) =
∑
h∈Nj

zj,h
(
ψi,j(τ)− ψi,h(τ)

)
+ djψi,j(τ). (7)

We set all involved quantities of all agents of arbitrary iteration into vector form
as Xi(τ) = (Xi,1(τ)T,Xi,2(τ)T, . . . ,Xi,N (τ)T)T, ui(τ) = (ui,1(τ)T, ui,2(τ)T, . . . ,
ui,N (τ)T)T, ψi(τ)=(ψi,1(τ)T, ψi,2(τ)T, . . . , ψi,N (τ)T)T, σi(τ)= (σi,1(τ)T, σi,2(τ)T,
. . . , σi,N (τ)T)T, where (·)T is the transpose of (·). Then, (5), (6), and (7) can be written
as follows:

ui+1(τ) = ui(τ) +
(
(µ+D)⊗ P (τ)

)
ψ̇i(τ), (8)

Xi+1(0) = Xi(0) +
(
(µ+D)⊗BP (0)

)
ψi(0), (9)

σi(τ) =
(
(µ+D)⊗ Im

)
ψi(τ).

To study the multi-agent consensus problem with pulse points, (H1), (H2) and the
following assumptions are necessary in this paper.

Assumption 1. The desired trajectory yd is trackable; that is, there exists a state Xd
satisfies yd = CXd.

For brevity, let θ0 = max(θt) and

β1 = sup
τ∈[0,α]

∥∥Im ⊗ C(τ)
∥∥,

β2 = sup
τ∈[0,α]

∥∥∥∥(µ+D)⊗
(

d

dτ
BP (τ)

)∥∥∥∥,
β3 = sup

τ∈[0,α]

∥∥(µ+D)⊗
(
BQ(τ)

)∥∥,
http://www.journals.vu.lt/nonlinear-analysis
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and

Φ(C,B, P ) :=
∥∥ImN − (µ+D)⊗

(
C(τ)BP (τ)

)∥∥
+

∑
0<τt<α

θt
∥∥(µ+D)⊗ C(τ)BP (τ)

∥∥, (10)

where θt is the Lipschitz constant in (3).

Theorem 1. Consider the multi-agent system (1) based on fixed topology communicate
with (H1), (H2), and Assumption 1 holding, and apply the D-type learning control law (5)
and the initial state learning rule (6). As the iteration number approaches infinity, the
tracking error ψi(τ) converges to zero, i.e., limi→∞ yi,j(τ) = yd(τ) for all τ ∈ [0, α] if
the desired trajectory has a path to any follower agent and

Φ(C,B, P ) < 1, (11)

where Φ defined by (10).

It should be noted that each iteration will update the parameters of the entire system,
and the value range of the system’s independent variable τ is bounded, but the number of
iterations is not be limited. In other words, the convergence meaning here indicates that
a pointwise convergence over the entire time interval as the iteration number increases to
infinity.

Proof. The tracking error of the jth agent in the (i+ 1)th iteration is

ψi+1,j(τ) = yd(τ)− yi+1,j(τ) = ψi,j(τ)−
(
yi+1,j(τ)− yi,j(τ)

)
.

Set yi(τ) = (yi,1(τ)T, yi,2(τ)T, . . . , yi,N (τ)T)T, then

yi+1(τ)− yi(τ) = Im ⊗ C(τ)
(
Xi+1(τ)−Xi(τ)

)
, (12)

and
ψi+1(τ) = ψi(τ)− Im ⊗ C(τ)

(
Xi+1(τ)−Xi(τ)

)
. (13)

From (4) it can be known that

Xi+1(τ)−Xi(τ)

= Xi+1(0)−Xi(0) +
∑

0<τt<τ

[
Mt

(
Xi+1(τt)

)
−Mt

(
Xi(τt)

)]
+

τ∫
0

[
F (Xi+1, s)− F (Xi, s) + (IN ⊗B)

(
ui+1(s)− ui(s)

)]
ds, (14)

where F (Xi, s) = (~(Xi,1, s)T, ~(Xi,2, s)T, . . . , ~(Xi,N , s)T)T, and IN is an N × N
identity matrix.
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According to (8) and (9), (14) can be written as

Xi+1(τ)−Xi(τ)

= (µ+D)⊗BP (0)ψi(0) +
∑

0<τt<τ

[
Mt

(
Xi+1(τt)

)
−Mt

(
Xi(τt)

)]
+

τ∫
0

[
F (Xi+1, s)− F (Xi, s) + (µ+D)⊗BP (s)ψ̇i(s)

]
ds, (15)

where
τ∫

0

(µ+D)⊗BP (s)ψ̇i(s) ds

= (µ+D)⊗BP (τ)ψi(τ)− (µ+D)⊗BP (0)ψi(0)

−
τ∫

0

(µ+D)⊗
(

d

ds
BP (s)

)
ψi(s) ds. (16)

Then,

Xi+1(τ)−Xi(τ)

= (µ+D)⊗BP (τ)ψi(τ) +
∑

0<τt<τ

[
Mt

(
Xi+1(τt)

)
−Mt

(
Xi(τt)

)]
+

τ∫
0

[
F (Xi+1, s)− F (Xi, s)− (µ+D)⊗

(
d

ds
BP (s)

)
ψi(s)

]
ds. (17)

Taking norm to both sides of (17), according to the (2) and (3), we can get∥∥Xi+1(τ)−Xi(τ)
∥∥

6
∥∥(µ+D)⊗BP (τ)

∥∥‖ψi‖λeλτ +
∑

0<τt<τ

θt
∥∥Xi+1(τt)−Xi(τt)

∥∥
+ θf

∥∥Xi+1 −Xi
∥∥
λ

eλτ − 1

λ

+

∥∥∥∥(µ+D)⊗
(

d

dτ
BP (τ)

)∥∥∥∥‖ψi‖λ eλτ − 1

λ
. (18)

In a similar way, we can get∥∥Xi+1(τs)−Xi(τs)
∥∥

6
∥∥(µ+D)⊗BP (τ)

∥∥‖ψi‖λeλτs +
∑

0<τt<τs

θt
∥∥Xi+1(τt)−Xi(τt)

∥∥
+ θf

∥∥Xi+1 −Xi
∥∥
λ

eλτs−1

λ

+

∥∥∥∥(µ+D)⊗
(

d

dτ
BP (τ)

)∥∥∥∥‖ψi‖λ eλτs−1

λ
. (19)
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Multiply both sides of the inequality (19) by e−λτs :∥∥Xi+1(τs)−Xi(τs)
∥∥e−λτs

6
∥∥(µ+D)⊗BP (τ)

∥∥‖ψi‖λ +
∑

0<τt<τs

θte
−λ(τs−τt)

∥∥Xi+1(τt)−Xi(τt)
∥∥e−λτt

+ θf‖Xi+1 −Xi‖λ
1− e−λτs

λ

+

∥∥∥∥(µ+D)⊗
(

d

dτ
BP (τ)

)∥∥∥∥‖ψi‖λ 1− e−λτs

λ
. (20)

Substituting (15) into (13) and taking norm to it. According to (3) and (2), we can get∥∥ψi+1(τ)
∥∥ 6

∥∥ImN − (µ+D)⊗ (C(τ)BP (τ))
∥∥‖ψi(τ)‖

+ β1

∥∥∥∥ ∑
0<τt<τ

θt
[
Xi+1(τt)−Xi(τt)

]∥∥∥∥
+ θfβ1

τ∫
0

‖Xi+1 −Xi‖ds+ β1β2

τ∫
0

∥∥ψi(s)∥∥ds. (21)

Multiply both sides of inequality (21) by e−λτ according to (20):∥∥ψi+1(τ)
∥∥e−λτ 6

∥∥ImN − (µ+D)⊗
(
C(τ)BP (τ)

)∥∥∥∥ψi(τ)
∥∥e−λτ

+ β1
∑

0<τt<τ

θt
∥∥(µ+D)⊗BP (τ)

∥∥‖ψi‖λ
+ β1

∑
0<τt<τ

θt
∑

0<τt<τ

θte
−λ(τ−τt)‖Xi+1 −Xi‖λ

+ β1
∑

0<τt<τ

θtθf‖Xi+1 −Xi‖λ
1− e−λα

λ

+ β1
∑

0<τt<τ

θt

∥∥∥∥(µ+D)⊗
(

d

dτ
BP (τ)

)∥∥∥∥‖ψi‖λ 1− e−λα

λ

+ θfβ1e−λτ
τ∫

0

‖Xi+1 −Xi‖ ds+ β1β2e−λτ
τ∫

0

∥∥ψi(s)∥∥ ds. (22)

Then, taking λ-norm to (22), we have

‖ψi+1‖λ 6
∥∥ImN − (µ+D)⊗

(
C(τ)BP (τ)

)∥∥‖ψi‖λ
+

∑
0<τt<α

θt
∥∥(µ+D)⊗BP (τ)

∥∥‖ψi‖λ
+

∑
0<τt<α

θt
∑

0<τt<α

θte
−λ(α−τt)‖Xi+1 −Xi‖λ
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+
∑

0<τt<α

θtθf‖Xi+1 −Xi‖λ
1− e−λα

λ

+
∑

0<τt<α

θt

∥∥∥∥(µ+D)⊗
(

d

dτ
BP (τ)

)∥∥∥∥‖ψi‖λ 1− e−λα

λ

+ θf
1− e−λα

λ
β1‖Xi+1 −Xi‖λ + β1β2

1− e−λα

λ
‖ψi‖λ. (23)

According to (18) and impulsive Gronwall’s inequality (see [3, Lemma 4.2]), we can
get ∥∥Xi+1(τ)−Xi(τ)

∥∥ 6

[∥∥(µ+D)⊗BP (τ)
∥∥∥∥ψi(τ)

∥∥
+ α

∥∥∥∥(µ+D)⊗
(

d

ds
BP (τ)

)∥∥∥∥∥∥ψi(τ)
∥∥]

×
∏

0<τt<α

(1 + θt)e
θfα. (24)

Then, taking λ-norm to (24), we have

‖Xi+1 −Xi‖λ 6

[
‖(µ+D)⊗BP (τ)‖+ α

∥∥∥∥(µ+D)⊗
(

d

dτ
BP (τ)

)∥∥∥∥]
×

∏
0<τt<α

(1 + θt)e
θfα‖ψi‖λ. (25)

Substitute (25) into (23) and then set λ→∞,[ ∑
0<τt<α

θt
∑

0<τt<α

θte
−λ(α−τt) +

∑
0<τt<α

θtθf
1− e−λα

λ
+ θf

1− e−λα

λ
β1

]
×
[∥∥(µ+D)⊗BP (τ)

∥∥+ α

∥∥∥∥(µ+D)⊗
(

d

dτ
BP (τ)

)∥∥∥∥] ∏
0<τt<α

(1 + θt)e
θfα

+
∑

0<τt<α

θt

∥∥∥∥(µ+D)⊗
(

d

dτ
BP (τ)

)∥∥∥∥1− e−λα

λ
+ β1β2

1− e−λα

λ
→ 0

and

‖ψi+1‖λ 6
∥∥ImN − (µ+D)⊗

(
C(τ)BP (τ)

)∥∥‖ψi‖λ
+

∑
0<τt<α

θt
∥∥(µ+D)⊗ C(τ)BP (τ)

∥∥‖ψi‖λ. (26)

By (26) and (11),
lim
i→∞

‖ψi+1‖λ = 0.

The proof is completed.
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Further, we consider the PD-type learning law

ui+1,j(τ) = ui,j(τ) + P (τ)σ̇i,j(τ) +Q(τ)σi,j(τ), (27)

where P (τ) and Q(τ) are p × p matrix functions and differentiable during the interval
[0, α]. The initial state learning rule is as follows:

Xi+1,j(0) = Xi,j(0) +BP (0)σi,j(0). (28)

From above one has the following result.

Theorem 2. Consider the multi-agent system (1) based on fixed topology communicate
with (H1), (H2), and Assumption 1 holding, and apply the PD-type learning control
law (27) and the initial state learning rule (28). As the iteration number approaches
infinity, the tracking error ψi(τ) converges to zero, i.e., limi→∞ yi,j(τ) = yd(τ) for
all τ ∈ [0, α] if the desired trajectory has a path to any follower agent and

Φ(C,B, P ) < 1,

where Φ defined by (10).

Proof. The proof is similar to Theorem 1. So we mainly express the differences.
Clearly, the tracking error is

ψi+1(τ) = ψi(τ)− Im ⊗ C(τ)
(
Xi+1(τ)−Xi(τ)

)
. (29)

We need to compute the state error (Xi+1(τ) − Xi(τ)) similar to (14), and by (15) and
(16), we obtain

Xi+1(τ)−Xi(τ)

= (µ+D)⊗BP (τ)ψi(τ) +
∑

0<τt<τ

[
Mt

(
Xi+1(τt)

)
−Mt

(
Xi(τt)

)]
+

τ∫
0

[
F (Xi+1, s)− F (Xi, s)

]
ds

+

τ∫
0

[
(µ+D)⊗

(
BQ(s)− d

ds
BP (s)

)
ψi(s)

]
ds. (30)

Taking norm to both sides of (3) via (2) and (3), we can derive∥∥Xi+1(τ)−Xi(τ)
∥∥

6
∥∥(µ+D)⊗BP (τ)

∥∥‖ψi‖λeλτ +
∑

0<τt<τ

θt
∥∥Xi+1(τt)−Xi(τt)

∥∥
+ θf‖Xi+1 −Xi‖λ

eλτ − 1

λ

+

∥∥∥∥(µ+D)⊗
(
BQ(τ)− d

dτ
BP (τ)

)∥∥∥∥‖ψi‖λ eλτ − 1

λ
, (31)
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Similar to (19), we can get∥∥Xi+1(τs)−Xi(τs)
∥∥

6 ‖(µ+D)⊗BP (τ)
∥∥‖ψi‖λeλτs +

∑
0<τt<τs

θt
∥∥Xi+1(τt)−Xi(τt)

∥∥
+ θf‖Xi+1 −Xi‖λ

eλτs − 1

λ

+

∥∥∥∥(µ+D)⊗
(
BQ(τ)− d

dτ
BP (τ)

)∥∥∥∥‖ψi‖λ eλτs − 1

λ
. (32)

Multiply both sides of inequality (32) by e−λτs :∥∥Xi+1(τs)−Xi(τs)
∥∥e−λτs

6
∥∥(µ+D)⊗BP (τ)

∥∥‖ψi‖λ +
∑

0<τt<τs

θte
−λ(τs−τt)

∥∥Xi+1(τt)−Xi(τt)
∥∥e−λτt

+ θf‖Xi+1 −Xi‖λ
1− e−λτs

λ

+

∥∥∥∥(µ+D)⊗
(
BQ(τ)− d

dτ
BP (τ)

)∥∥∥∥‖ψi‖λ 1− e−λτs

λ
. (33)

Substituting (3) into (29) and taking norm to it. According to formula (2) and (3), we
can get∥∥ψi+1(τ)

∥∥ 6
∥∥ImN − (µ+D)⊗

(
C(τ)BP (τ)

)∥∥∥∥ψi(τ)
∥∥

+ β1

∥∥∥∥ ∑
0<τt<τ

θt
[
Xi+1(τt)−Xi(τt)

]∥∥∥∥
+ θfβ1

τ∫
0

‖Xi+1 −Xi‖ ds+ β1(β2 + β3)

τ∫
0

∥∥ψi(s)∥∥ds. (34)

Similar to (22), multiply both sides of inequality (34) by e−λτ according to (33):∥∥ψi+1(τ)
∥∥e−λτ

6
∥∥ImN − (µ+D)⊗

(
C(τ)BP (τ)

)∥∥∥∥ψi(τ)
∥∥e−λτ

+ β1
∑

0<τt<τ

θt
∥∥(µ+D)⊗BP (τ)

∥∥‖ψi‖λ
+ β1

∑
0<τt<τ

θt
∑

0<τt<τ

θte
−λ(τ−τt)‖Xi+1 −Xi‖λ

+ β1
∑

0<τt<τ

θtθf‖Xi+1 −Xi‖λ
1− e−λα

λ
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+ β1
∑

0<τt<τ

θt

∥∥∥∥(µ+D)⊗
(
BQ(τ)− d

dτ
BP (τ)

)∥∥∥∥‖ψi‖λ 1− e−λα

λ

+ θfβ1e−λτ
τ∫

0

‖Xi+1 −Xi‖ ds+ β1(β2 + β3)e−λτ
τ∫

0

∥∥ψi(s)∥∥ds. (35)

Then, taking λ-norm to (35) and λ→∞, we have

‖ψi+1‖λ 6
∥∥ImN − (µ+D)⊗

(
C(τ)BP (τ)

)∥∥‖ψi‖λ
+

∑
0<τt<α

θt
∥∥(µ+D)⊗ C(τ)BP (τ)

∥∥‖ψi‖λ. (36)

By (36) and (11),
lim
i→∞

‖ψi+1‖λ = 0.

The proof is completed.

4 An example

We can use the following procedures to carry out computer simulation experiments:
Step 1. Give the expression of the target trajectory yd, the expression of the multi-

agent system (1), and the initial parameters of the D-type or PD-type learning laws.
Step 2. Generate the system output yi.
Step 3. Calculate the tracking error ψ and its norm ‖ψ‖. If ‖ψ‖ < ε, the program

ends. If ‖ψ‖ > ε, go to Step 4. Here, ε is a given positive real number.
Step 4. Update the input according to the learning law using tracking errors and the

communication topological relationship between agents, then go to Step 2.
We consider the following MAS consisting of five agents:

Ẋi(τ) =

(
sin(Xi,1(τ)−Xi,2(τ))

cos(Xi,2(τ))− 2

)
+

(
4 −2
−3 2

)
ui, τ 6= 2, 4,

Xi(τ+t ) = 0.01Xi(τt), τt = 2, 4, yi =

(
2 −5
−1 3

)
Xi

(37)

for all i ∈ V , τ ∈ [0, 6], where Xi,1 represents the first state of the ith agent, and Xi,2
represents the second state. Initial value as follows:

X1(0) =

(
3

2

)
, X2(0) =

(
0

−1

)
, X3(0) =

(
1

3

)
, X4(0) =

(
2

2

)
.

The communication topology is shown in Fig. 1, where 0 represents the leader. Ac-
cording to Fig. 1, the Laplace matrix is

µ =


1 −1 0 0
−1 2 0 −1
−1 −1 2 0
0 0 −1 1

 ,
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Figure 1. The topological graph for (37).

andD = diag(1, 2, 2, 1). The target trajectory, i.e., the trajectory of vertex 0, is as follows:
yd = (yd1, yd2)T, where

yd1 = 2 cos(2τ)− τ, τ ∈ [0, 6],

and

yd2 =


τ sin(τ), τ ∈ [0, 2],

τ sin(τ) + 1, τ ∈ (2, 4],

τ sin(τ) + 2, τ ∈ (4, 6].

Here, yd1 and yd2 represent the first and second dimension of the target trajectory,
respectively. The D-type learning control law is

ui+1(τ) = ui(τ) + (µ+D)⊗
(

0.4 0.7
0.65 1.15

)
ψ̇i(τ),

while PD-type counterpart is

ui+1(τ) = ui(τ) + (µ+D)⊗
(

0.4 0.7
0.65 1.15

)
ψ̇i(τ)

− (µ+D)⊗
(

0.4 0.7
0.65 1.15

)
ψi(τ),

where u1(τ) = [0, 0]T. Φ(C,B, P ) = 0.8918 < 1, which satisfies the condition of
Theorems 1 and 2. Therefore, the multi-agent system can uniformly track the target
trajectory under the given learning control. Figures 2 and 3 show that the error between
the output value and the target trajectory gradually converges to 0 (both D-type and PD-
type).

Figures 4–7 show the iterative learning process of two output trajectories with D-type
learning law. Figures 8–11 show the iterative learning process of two output trajectories
with PD-type learning law. Figure 12 shows the iteration profile of the initial values.

As the number of iterations increases, the output trajectory gradually converges to
the desired trajectory. When the iteration reaches 250th, the consensus errors of P-type
learning law and PD-type learning law are shown in Table 1.
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Figure 2. The output error (D-type).

Figure 3. The output error (PD-type).

Figure 4. The trajectory of the first iteration (D-type).
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Figure 5. The trajectory of the 12th iteration (D-type).

Figure 6. The trajectory of the 36th iteration (D-type).

Figure 7. The trajectory of the 60th iteration (D-type).
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Figure 8. The trajectory of the first iteration (PD-type).

Figure 9. The trajectory of the 50th iteration (PD-type).

Figure 10. The trajectory of the 150th iteration (PD-type).
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Figure 11. The trajectory of the 250th iteration (PD-type).

Figure 12. Iteration of the initial state.

Table 1. Tracking errors of each agent.

agent 1 2
component 1 2 1 2
D-type 5.72e−04 8.00e−04 9.70e−04 1.12e−03
PD-type 2.63e−03 4.28e−03 6.02e−03 8.24e−03

agent 3 4
component 1 2 1 2
D-type 1.25e−03 1.36e−03 1.47e−03 1.57e−03
PD-type 1.11e−02 1.46e−02 1.95e−02 2.61e−02

As can be seen from the table, when the number of iterations reaches 250, the system’s
convergence error under the control of the D-type learning law is significantly smaller
than the PD-type learning law. For this numerical example, a more complex learning law
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does not necessarily lead to better control effect. However, we should remind that the
introduction of a proportional term may help stabilize the system dynamics.

5 Conclusion

To solve the problem of uniform tracking of impulsive MAS, this paper uses two kinds
of iterative learning laws to control the system and finds sufficient conditions for the
system to converge to the target trajectory under the control of two kinds of learning laws
respectively. The conditions show that when the initial parameters of the system meet
certain conditions, we can adjust the initial parameters of the learning law. After finite
iterations, the error between the output and the target trajectory can be sufficiently small.
Compared with the single agent, MAS can exchange information between agents, which
can better ensure the effectiveness of tracking. Compared with the continuous system,
a pulse system is more general and more in line with real cases. Finally, a numerical
example is given to demonstrate the effectiveness of the conclusion. Furthermore, we will
construct a fractional iterative learning law to control the impulsive MAS and study its
consistency tracking.
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