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Abstract
In this article, an event-triggered robust control (ETRC) method is investigated
for multi-player nonzero-sum games of continuous-time input constrained non-
linear systems with mismatched uncertainties. By constructing an auxiliary
system and designing an appropriate value function, the robust control problem
of input constrained nonlinear systems is transformed into an optimal regulation
problem. Then, a critic neural network (NN) is adopted to approximate the value
function of each player for solving the event-triggered coupled Hamilton–Jacobi
equation and obtaining control laws. Based on a designed event-triggering
condition, control laws are updated when events occur only. Thus, both com-
putational burden and communication bandwidth are reduced. We prove that
the weight approximation errors of critic NNs and the closed-loop uncertain
multi-player system states are all uniformly ultimately bounded thanks to the
Lyapunov’s direct method. Finally, two examples are provided to demonstrate
the effectiveness of the developed ETRC method.
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1 INTRODUCTION

Due to dynamic uncertainties in practical systems, the controller has to be robust to avoid the control performance dete-
rioration of the closed-loop system; in turn, this implies that the control system is effective whenever the actual system
slightly deviates from its nominal conditions. During the past few decades, many robust control (RC) methods have been
developed for nonlinear systems in the control community.1-8 Lin et al.2 transformed the RC problem into an optimal
control (OC) problem by introducing a modified performance index function. To remove the requirement of knowing
the system dynamics, Wang et al.3 extended this strategy to deal with uncertain nonlinear systems by employing model
parameters learned on the input-output data. In the OC problem, it is necessary to solve the Hamilton–Jacobi–Bellman
(HJB) equation whose analytic solution is intractable for nonlinear systems.9,10 Fortunately, adaptive dynamic program-
ming (ADP) and reinforcement learning (RL) are suitable techniques proposed to overcome this difficulty by computing
forward-in-time.11-24

Many ADP or RL-based methods have been reported to solve OC problems for continuous-time (CT) nonlinear systems
with input constraints,16 external disturbances and uncertainties,25-31 failures32,33 and so forth. For example, Liu et al.28

proposed a decentralized control method for large-scale nonlinear (LSN) systems with matched interconnections with an
online learning OC method. Zhao et al.29 extended this method to LSN systems with unknown mismatched interconnec-
tions by establishing a set of neural network (NN)-based decentralized observers. Wang et al.30 proposed a RC method
for uncertain nonlinear systems based on online policy iteration. And then, for nonlinear systems with uncertainties,31

the robust tracking control was transformed into an OC by constructing an augmented nominal system and a modified
cost function. However, the aforementioned works were developed by using the ADP-based time-triggered control (TTC)
mechanism, which may increase the computational burden and not well managing the communication resource.

As a well-recognized effective technique for solving the above problems, the event-triggered strategy has attracted
extensive attention in the ADP community. Under the event-triggered strategy, the control input is updated when the
designed triggering condition is violated.34-41 Zhang et al.36 developed an ADP-based event-triggered control (ETC)
scheme for solving H∞ control in the perspective of zero-sum game problems. The control law and the disturbance
were updated by event-triggered and time-triggered mechanisms, respectively. To design a robust controller for nonlin-
ear systems with uncertainties, many ADP-based event-triggered RC (ETRC) methods have been developed.39-41 Wang
et al.40 proposed an ADP-based ETRC method for a class of uncertain nonlinear systems with input constraints. Yang
et al.41 developed an online integral RL-based ETC method to address robust constrained control problems for nonlin-
ear systems with external disturbances. In these aforementioned works, the basic idea lies in that the ETRC problem is
transformed into an event-triggered OC (ETOC) problem by a modified cost function. However, these methods only con-
sidered matched uncertainties, and thus were not applicable to systems with mismatched uncertainties. Zhang et al.42

decomposed the mismatched uncertainty into a matched and a mismatched components, and constructed a modified
value function to transform the ETRC problem into an ETOC problem.

Although RC schemes have been extensively reported, they considered the single controller only. In practice, many
complex systems are controlled by multiple controllers, which can be regarded as multiple players trying to minimize their
individual value functions, such as microgrid systems, traffic systems and so forth.43,44 For nonzero-sum games (NZSGs),
multiple players work neither in fully cooperation nor in fully competition. Zhang et al.44 developed an ADP-based ETC
method for multi-player NZSGs of unknown nonlinear systems. However, related research of multi-player nonlinear
(MPN) systems with uncertainties is still in its infancy. Meanwhile, control inputs are always constrained by limit bounds
given the physical characteristics of actuators. To deal with input constraints, nonquadratic utility functions are employed
to design the ADP-based controllers.27,38,41 However, for MPN systems, input constraints are rarely considered. Therefore,
it is urgent to develop an ADP-based ETRC scheme for NZSGs of MPN systems with input constraints and mismatched
uncertainties.

Motivated by the aforementioned works, this article focuses on solving the NZSG problem of MPN systems with input
constraints and mismatched uncertainties. The contributions and novelties of this work are summarized in the following
three aspects.

1. Different from existing works45,46 on developing the OC laws for multi-player systems without uncertainties, this article
develops an ADP-based ETRC method for MPN systems with uncertainties.

2. In contrast to existing time-triggered RC schemes3,25,47,48 for nonlinear systems with uncertainties, this article investi-
gates an ADP-based ETRC method for NZSGs of input-constrained MPN systems with mismatched uncertainties.
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3. Unlike existing works38,42 which developed ETRC methods for systems with single controller only, this article extends
ADP-based ETRC method to tackle NZSGs of uncertain MPN systems. Different from References 39-41 which focused
on developing ETRC for nonlinear systems with matched uncertainties, this article considers mismatched uncertain-
ties in the input-constrained MPN systems. Furthermore, both the OC laws and the auxiliary OC laws are updated
when events are triggered to reduce the computational and communication burdens.

4. Since a critic-only strategy is adopted to obtain the control laws, the computational burden is further reduced
comparing to the popular methods which employed the critic-actor structure.12,18

The article is organized as follows. In Section 2, the problem statement is introduced. In Section 3, an ADP-based
ETRC method is developed, and stability analysis is provided. In Section 4, two simulation examples are provided to
validate the proposed theoretical results. Section 5 briefly concludes this article.

2 PROBLEM STATEMENT

Consider a class of CT uncertain MPN systems described by

̇(t) =  ((t)) +
u∑

a=1
(a ((t)) ua(t) +a ((t)) 𝜉a ((t))) , (1)

where (t) ∈ Rn is the system state with (0) = 0, ua is the ath control input whose qth element is denoted as uaq, and
bounded as |uaq| ≤ ūa, q = 1, 2, … ,ma, ūa ∈ R is the upper-bound of uaq, andu is the number of players.  (⋅) ∈ Rn,
a(⋅) ∈ Rn×ma anda(⋅) ∈ Rn×sa are continuously differentiable matrix functions witha() ≠ a() and (0) = 0. 𝜉a()
is the unknown norm-bounded nonlinear perturbation, that is, there exists a known upper function such that ||𝜉a()|| ≤
Ξa() with 𝜉a(0) = 0 and Ξa(0) = 0.

Assumption 1. The function describing system dynamics  () +
∑u

a=1 (a()ua(t) +a()𝜉a()) is Lipschitz contin-
uous on a compact set Ω ∈ Rn, and the system (1) is controllable.

Assumption 2. There exists a nonnegative function Λa() such that

||+a ()a()𝜉a()||2 ≤ Λ2
a(),

where +a () denotes the Moore–Penrose pseudo-inverse of function a().38,42,47

To address the RC problem, the uncertain terma()𝜉a() can be decomposed into two components

a()𝜉a() = a()+a ()a()𝜉a()
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Term I

+ (In − a()+a ())a()𝜉a()
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Term II

,

where Terms I and II are the matched and the mismatched components, respectively. The RC problem is converted into
an OC problem by constructing the auxiliary system

̇(t) =  () +
u∑

a=1
(a()ua + ℏa()wa) , (2)

where ℏa() = (In − a()+a ())a(), and wa() ∈ Rsa is the auxiliary control law.
The value function of each player corresponding to (2) is defined as

a() =
∫

∞

t

⎛
⎜
⎜⎝
𝛿

u∑

b=1
Λ2

b ((𝜏)) + 𝜗
u∑

b=1
Ξ2

b ((𝜏)) +a ((𝜏),u(𝜏),w(𝜏))
⎞
⎟
⎟⎠

d𝜏, (3)
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ZHANG et al. 3089

where a ( ,u,w) = TQa +a(u) + 𝛾2∑u
b=1wT

bwb, w = [w1,w2, … , wu
], u = [u1,u2, … ,uu

], Qa ∈ Rn×n is
a symmetric positive definite matrix,a(u) is a nonnegative utility function, and 𝛿, 𝜗, and 𝛾 are positive constants. To
solve the constrained control problem,a(u)40,49 is chosen as

a(u) = 2
u∑

b=1
∫

ub

0
ūb tan h−1(𝜈∕ūb)Td𝜈,

where tanh−1(⋅) is the inverse of the hyperbolic tangent function tanh(⋅). Taking the time derivative of (3), we have

0 = 𝛿
u∑

b=1
Λ2

b() + 𝜗
u∑

b=1
Ξ2

b() +a( ,u,w) + ∇T
a ()

⎛
⎜
⎜⎝
 () +

u∑

b=1
(b()ub + ℏb()wb)

⎞
⎟
⎟⎠

with a(0) = 0, where ∇a() = 𝜕a()∕𝜕 . The Hamiltonian of system (2) is given by

a (∇a(), ,u,w) = 𝛿
u∑

b=1
Λ2

b() + 𝜗
u∑

b=1
Ξ2

b() +a( ,u,w)

+ ∇T
a ()

⎛
⎜
⎜⎝
 () +

u∑

b=1
(b()ub + ℏb()wb)

⎞
⎟
⎟⎠
. (4)

Define(Ω) as a set of admissible control pairs. According to Reference 9, the optimal value function ∗a () is obtained
by solving the HJ equation as

min
ua,wa∈(Ω)

a (∇∗a (), ,u,w) = 0 (5)

with ∗a (0) = 0, where∇∗a () = 𝜕∗a ()∕𝜕 . Therefore, the OC law u∗a() and the auxiliary OC law w∗
a() are derived as

u∗a() = −ūa tanh
(

1
2ūa


T
a()∇∗a ()

)
, (6)

w∗
a() = −

1
2𝛾2ℏa()T∇∗a (). (7)

Substituting (6) and (7) into (5), we have

0 = TQa +a ( ∗
u ()) + 𝛿

u∑

b=1
Λ2

b() + 𝜗
u∑

b=1
Ξ2

b() + ∇
∗
a

T()
⎛
⎜
⎜⎝
 () +

u∑

b=1

(
b()u∗b + ℏb()w∗

b
)⎞⎟
⎟⎠

+ 𝛾2
u∑

b=1
w∗

b
Tw∗

b, (8)

where  ∗
u () = [u∗1,u

∗
2, … ,u∗

u
]. As it is well known, (8) is a time-triggered HJ equation. Although ADP-based TTC

methods12,15 can solve the HJ equation, they often involve heavy computational burden and the resource waste. To address
these problems, we propose an ADP-based ETRC method in the following section.

Remark 1. In multi-agent systems, the controller of each agent is constructed by collecting the states of its neighbors only
in accordance with the communication topology. Then, all independent controllers construct the multiple controllers for
multi-agent systems. Different from multi-agent systems, the multi-player system considered in this article is driven by
multiple controllers with shared global system states.

Remark 2. It is worth mentioning that the traditional quadratic function is generally suitable to tackle control problems
of systems without input constraints. In order to eliminate the influence of the constrained control input, a modified
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3090 ZHANG et al.

nonquadratic function which adopts the tanh(⋅) function is constructed in the value function. Then, the constrained OC
law u∗a() = −ūa tanh

(
1

2ūa


T
a()∇∗a ()

)
is obtained, where tanh(⋅) ∈ (−1, 1) can guarantee that the control input varies

within the constraints.

Remark 3. It is noticed that the auxiliary system (2) is derived on the basis of the uncertain system (1), which implies
their dynamics are different. In References 38 and 42, a RC method was developed by transforming the RC problem into
an OC problem with a modified value function, and the theoretical analysis in Theorem 1 shows that the problem trans-
formation is reasonable. Inspired by these works, in this article, the RC problem of uncertain system (1) is transformed
into an OC problem of the auxiliary system (2) by introducing a modified value function, which reflects the upper bound
of uncertainties. It implies that the OC laws are designed considering the bias between the mathematical model and
the actual system. That is to say, the designed OC laws can guarantee the closed-loop uncertain system (1) to be stable.
According to the Lyapunov stability theorem, the OC laws of the auxiliary system (2) can guarantee the uncertain system
(1) to be asymptotically stable.

Remark 4. For multi-player nonzero-games, the value function of each player is usually defined as a() =
∫
∞

t

(


T(𝜏)Qa(𝜏) +
∑u

b=1uT
b(𝜏)Rbub(𝜏)

)
d𝜏, where Qa and Rb are symmetric positive definite matrices. However, control

inputs are always constrained due to the physical characteristics. To deal with this difficulty, inspired by Wang et al.,40

Zhu et al.,49 the nonquadratic utility functiona(u) is established to limit the amplitude of the control input. Moreover,
to reduce the influence of uncertainties, the utility function 𝛾2∑u

b=1wT
bwb of the auxiliary OC input wa, the upper-bounded

functions 𝛿
∑u

b=1Λ
2
b() and 𝜗

∑u
b=1Ξ

2
b() are integrated in the value function. In other words, the influence of uncertainties

and control input constraints are considered in designing the value function.

3 EVENT-TRIGGERED ROBUST CONTROLLER DESIGN

3.1 ADP-based event-triggered robust control

Define a monotonic sequence of triggering instants {𝜚p}∞p=0 with 𝜚p < 𝜚p+1, p ∈ N, where 𝜚p is the pth sampling instant.
The sampled state can be written as

̂p(t) = (𝜚p), ∀t ∈ [𝜚p, 𝜚p+1).

The event-triggered error function ep(t) is defined as

ep(t) = ̂p(t) − (t),∀t ∈ [𝜚p, 𝜚p+1).

Then, the ETC law and the auxiliary ETC law are formulated as

ua( ̂p) = ua
(

ep(t) + (t)
)
, (9)

wa( ̂p) = wa
(

ep(t) + (t)
)
. (10)

Furthermore, the auxiliary system (2) becomes

̇(t) =  () +
u∑

a=1

(
a()ua( ̂p) + ℏa()wa( ̂p)

)
.

Thus, the ETOC law (6) and the auxiliary ETOC law (7) can be derived as

u∗a( ̂p) = −ūa tanh
(

1
2ūa


T
a( ̂p)∇∗a ( ̂p)

)
, (11)
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ZHANG et al. 3091

w∗
a( ̂p) = −

1
2𝛾2ℏa( ̂p)T∇∗a ( ̂p), (12)

where ∇∗a ( ̂p) = 𝜕∗a ( ̂p)∕𝜕 ̂p. Therefore, the event-triggered HJ equation can be expressed as

a

(
∇∗a (), ,

∗
u( ̂p),

∗
w( ̂p)

)
= ∇∗T

a ()
⎛
⎜
⎜⎝
 () +

u∑

b=1

(
b()u∗b( ̂p) + ℏb()w∗

b( ̂p)
)⎞⎟
⎟⎠
+ TQa

+a

(


∗
u( ̂p)

)
+ 𝛿

u∑

b=1
Λ2

b() + 𝜗
u∑

b=1
Ξ2

b() + 𝛾
2
u∑

b=1
w∗

b
T( ̂p)w∗

b( ̂p),

where
∗
u( ̂p) = [u∗1( ̂p),u∗2( ̂p), … ,u∗

u
( ̂p)] and

∗
w( ̂p) = [w∗

1( ̂p),w∗
2( ̂p), … ,w∗

u
( ̂p)].

Assumption 3. The OC law ua() is Lipschitz continuous such that

||u∗a((t)) − u∗a( ̂p)|| ≤ ua||ep(t)||,

where ua is a positive constant.

Assumption 4. The system input gain functiona() andℏa() are norm-bounded, that is, ||a()|| ≤ ga and ||ℏa()|| ≤
ℏa, where ga and ℏa are positive constants.50,51

Theorem 1. Consider the uncertain MPN system (1), Assumptions 1–4, and the ETOC law u∗a( ̂p) (11). There exists a matrix
Qa such that

𝜛

2
1𝜆min(Qa)||||2 ≥

3
2
||∇∗a ()||2, (13)

and if the event-triggering condition satisfies

||ep(t)||2 ≤
2(1 −𝜛2

1 )
∑u

a=1𝜆min(Qa)||||2

g2


2
u
∑u

b=1
2
ub

= e2
T , (14)

where 𝜆min(Qa) represents the minimal eigenvalue of Qa, 𝜛1 ∈ (0, 1) is a design parameter, and eT is the event-triggering
threshold. Then, the closed-loop system (1) is asymptotically stable.

Proof. See Appendix A. ▪

3.2 NN implementation

The optimal value function ∗a () can be approximated by a critic NN as


∗
a () =∗T

ca 𝜎ca() + 𝜉ca(), (15)

where ∗
ca ∈ Rlca is the ideal weight, 𝜎ca() ∈ Rlca is the activation function, lca is the number of hidden neurons, and

𝜉ca() ∈ R is the approximation error. The partial derivative of (15) with respect to  can be expressed by

∇∗a () = ∇𝜎T
ca()∗

ca + ∇𝜉T
ca(). (16)

The approximate ∗a () is formulated as

̂a() = ̂
T
ca𝜎ca(),
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3092 ZHANG et al.

where ̂ ca ∈ Rlca is the approximation of∗
ca. Similarly, we have

∇ ̂a() = ∇𝜎T
ca() ̂ ca.

According to (11), (12), and (16), the ETOC law (11) and the auxiliary ETOC law (12) are converted into

u∗a( ̂p) = −ūa tanh
(

1
2ūa


T
a( ̂p)

(
∇𝜎T

ca( ̂p)∗
ca + ∇𝜉T

ca( ̂p)
))

, (17)

w∗
a( ̂p) = −

1
2𝛾2ℏ

T
a( ̂p)

(
∇𝜎T

ca( ̂p)∗T
ca + ∇𝜉T

ca( ̂p)
)
. (18)

Then, the approximations of (17) and (18) are presented as

ûa( ̂p) = −ūa tanh
(

1
2ūa


T
a( ̂p)∇𝜎T

ca( ̂p) ̂ ca

)
, (19)

ŵa( ̂p) = −
1

2𝛾2ℏ
T
a( ̂p)∇𝜎T

ca( ̂p) ̂ ca. (20)

By introducing the critic NN, the Hamiltonian (4) is approximated by

̂a
(
̂ ca, , ̂ u( ̂p), ̂w( ̂p)

)
= 𝛿

u∑

b=1
Λ2

b() + 𝜗
u∑

b=1
Ξ2

b() +a
(
 , ̂ ( ̂p), ̂( ̂p)

)

+ ̂
T
ca∇𝜎ca()

(
 () +

u∑

a=1
a()ûa( ̂p) +

u∑

a=1
a()ŵa( ̂p)

)

≜ eca,

where ̂ u( ̂p) = [û1( ̂p), û2( ̂p), … , ûu
( ̂p)] and ̂w( ̂p) = [ŵ1( ̂p), ŵ2( ̂p), … , ŵu

( ̂p)]. The critic NN is trained
by minimizing the objective function Eca = (1∕2)eT

caeca. Then, the critic NN weight ̂ ca is updated by

̇

̂ ca = −𝛼c
1

(1 + ΦT
aΦa)2

(
𝜕Eca

𝜕

̂ ca

)
= −𝛼c

( eca

(1 + ΦT
aΦa)2

)
Φa, (21)

where 𝛼c > 0 is the learning rate, and Φa = ∇𝜎ca()
(
 () +

∑u
a=1a()ûa( ̂p) +

∑u
a=1ℏa()ŵa( ̂p)

)
.

The training process of the critic NNs is shown in Figure 1. After training, the converged weight vectors of the critic
NNs are employed to construct robust controllers which drive the uncertain system (1).

Lemma 1. Considering the auxiliary system (2), the critic NN weight error dynamics is guaranteed to be uniformly ultimately
bounded (UUB) with the updating law (21).

Proof. The related proof is similar to that in References 33-38, so it is omitted here. ▪

Remark 5. The ideal weight vector ∗
ca which corresponds to the optimal value function ∗a () is not unique. In this

article, the goal is to find an approximate weight ̂ ca to approximate the OC policy. In other words, the approxi-
mate weight vector ̂ ca is required to converge to a small region of the ideal weight ∗

ca. According to Lemma 1, the
weight error dynamics of the critic NN is guaranteed to be UUB with updating law (21), that is, it converges to the
optimum.

Remark 6. In this article, Eca = 1
2

eT
caeca is defined as the objective function for training the critic NN. In existing ADP-based

control methods, the gradient descent method is widely employed to train the critic NN weights through the updating
rule (21). Moreover, many improved updating rules have been developed based on experience replay,36 swarm intelli-
gence,7 and nested structure.16 In this article, we focus on developing an ETRC scheme for multi-player NZSGs with input
constraints and mismatched uncertainties. Thus, the typical updating rule is sufficient to train the critic NN weights of
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ZHANG et al. 3093

F I G U R E 1 The training process of the critic NNs

each player, and we can also refer to aforementioned improved updating rules according to different control objectives.
Furthermore, the simulation results demonstrate the rationale of the updating rule (21).

3.3 Stability analysis

Assumption 5. ∇𝜎ca(), ∇𝜉ca(), ̃ ca and∗
ca are norm-bounded, that is,

||∇𝜎ca()|| ≤ ∇𝜎ca, ||∇𝜉ca()|| ≤ ∇𝜉ca,max{|| ̃ ca||, ||∗
ca||} ≤ W ca,

where ∇𝜎ca, ∇𝜉ca, and W ca are positive constants.37,41,51-55

Assumption 6. The auxiliary OC law w∗
a() is Lipschitz continuous, that is,

||w∗
a((t)) − w∗

a( ̂p)|| ≤ wa||ep(t)||, (22)

where wa is a positive constant.44,50

Theorem 2. Considering the auxiliary system (2), the approximate ETOC law (19) and the approximate auxiliary ETOC
law (20), the critic NN whose weights are tuned by (21), and Assumptions 1–6, the closed-loop auxiliary system is guaranteed
to be UUB when the event-triggering condition

||ep(t)||2 ≤
(1 −𝜛2

2 )
∑u

a=1𝜆min(Qa)||||2

uw
= ê2

T , (23)

holds, where 𝜛2 ∈ (0, 1) and uw > 0 are the design parameters, and êT is the event-triggering threshold.

Proof. See Appendix A.2. ▪

Remark 7. It is worth pointing out that the triggering condition (14) in Theorem 1 and the triggering condition (23) in
Theorem 2 are different. Theorem 1 aims to guarantee the stability of the closed-loop system (1) theoretically. While, the
triggering condition (23) is designed for the proposed ADP-based ETRC method which is actually implemented for the
auxiliary system (2).

Remark 8. Theorem 2 proves that the system state  will converge to the compact set Ω if the triggering condition
(23) is satisfied. For Case 1, when the system state  lies outside the compact set Ω , and the designed event-triggering
condition (23) holds, we have ̇L2(t) < 0. For Case 2, the control input is updated when the event-triggering condition (23)
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3094 ZHANG et al.

is violated, and the event-triggering error ep is reset to zero such that the event-triggering condition (23) is satisfied. Then,
we have ̇L2(t) < 0. Based on the analysis above, it concludes that the system state  will converge to the compact set Ω
as long as the event-triggering condition (23) is satisfied and  lies outside the compact setΩ . Thus, there is no conflict
in these two conditions.

Remark 9. For Assumption 1, the Lipschitz condition is basic and popular for nonlinear systems in the control
field.6,23,36,41,44 In this article, we develop an ETRC method for uncertain MPN systems under this assumption. For
Assumptions 2 and 4, since the controlled plant is controllable, the input gain functions a() and ℏa() are reason-
able to assume that they are norm-bounded by two positive constants.37,41,44 Moreover, G+

a () is the Moore–Penrose
pseudo-inverse of the input gain function a(), which can be assumed to be norm-bounded. Meanwhile, it is reason-
able to assume the uncertain term a()𝜉a() has an upper-bound function such that ||G+

a ()a()𝜉a()||2 ≤ Λ2
a()

as in References 2,36,41, and 44. For Assumptions 3 and 6, the input gain functions a() and ℏa() satisfy Lipschitz
continuity according to Assumption 1. Meanwhile, ∇∗a () = ∇𝜎T

ca()∗
ca + ∇𝜉T

ca() is assumed to satisfy the Lipschitz
condition since the optimal value function ∗a () is continuously differentiable. Furthermore, tanh(⋅) is a hyperbolic tan-
gent function and Lipschitz continuous. Thus, it is reasonable to assume that there exist two Lipschitz constants such that
||u∗a((t)) − u∗a(p(t))|| ≤ ua||ep(t)|| and ||w∗

a((t)) − w∗
a( ̂p)|| ≤ wa||ep(t)||.32-42 For Assumption 5, the ideal weight vec-

tor∗
ca is norm-bounded since it is a constant vector. According to Lemma 1, we can obtain that ̃ ca is norm-bounded,

so it is reasonable to assume that max{|| ̃ ca||, ||∗
ca||} ≤ W ca.4,6,11,12,20-42

Remark 10. The triggering instant 𝜚p can be calculated according to (14). Then, we can obtain the intersampling time
Δ𝜚p = 𝜚p+1 − 𝜚p, p ∈ N. However, if the minimum intersampling time Δ𝜚min = min{Δ𝜚p}, p ∈ N is zero, the well-known
Zeno behavior will occur.56 Fortunately, related proves which demonstrated that the minimum intersampling time
Δ𝜚min > 0 have been given in detail in References 34-42. Thus, the proof of Zeno behavior exclusion is omitted here.
Furthermore, simulation results in the following section are provided to show the minimum intersampling time
Δ𝜚min > 0.

4 SIMULATION STUDIES

MPN systems have drawn much attention due to their wide practical applications.43,44 In this section, we consider two
general simulation examples to verify the effectiveness of the developed ADP-based ETRC method.

4.1 Example 1

Consider the MPN system modified from Reference 50 with mismatched uncertainties as

̇ =  () + 1()u1 +1()𝜉1() + 2()u2 +2()𝜉2() (24)

with

 () =

[
2 − 21

X

]
,1() =

[
0

cos(21) + 2

]
,2() =

[
0

sin(42
1 ) + 2

]
,1() =

[
0.2
0

]
,2() =

[
0.3
0

]
,

X = −0.51 − 2 − 0.252(cos(21) + 2)2 + 0.252(0.5 sin(42
1 ) + 2)2),

𝜉a() = 𝜆a11 cos(1∕(2 + 𝜆a2)) + 𝜆a32 sin(𝜆a412),

where a = 1, 2, ∈ [1,2]T ∈ R2 is the system state, 𝜆a1, 𝜆a2, 𝜆a3, and 𝜆a4 are the unknown parameters randomly chosen
as 𝜆a1 ∈ [−1, 1], 𝜆a2 ∈ [−100,100], 𝜆a3 ∈ [−0.2, 1], and 𝜆a4 ∈ [−100, 0], respectively.

After calculation, we can get


+
1 () = [0, 1∕(cos(21) + 2)], (I − 1()+1 ())1() =

[
0.2
0

]
≜ ℏ1(),

||𝜉1()||2 ≤ ||||2 ≜ Ξ2
1(), ||+1 ()1()𝜉1()||2 = 0 ≜ Λ2

1(),
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ZHANG et al. 3095


+
2 () = [0, 1∕(sin(42

1 ) + 2)], (I − 2()+2 ())2() =

[
0.3
0

]
≜ ℏ2(),

||𝜉2()||2 ≤ ||||2 ≜ Ξ2
2(), ||

+
2 ()2()𝜉2()||2 = 0 ≜ Λ2

2().

Then, the auxiliary system related to (24) is expressed as

̇ =  () + 1()u1 + ℏ1()w1() + 2()u2 + ℏ2()w2(),

where w1,w2 ∈ R are the auxiliary control inputs. Based on (3), the value function is chosen as

a(0) =
∫

∞

0

⎛
⎜
⎜⎝


TQa + ||||2 +a(u) +
u∑

b=1
||wb||2

⎞
⎟
⎟⎠

dt,

where Q1 = 5I2, Q2 = 6I2 and

a(u) = 2
N=2∑

a=1∫

ua

0
ūatanh−1(𝜈∕ūa)Td𝜈

with ūa = 0.5. The learning rates of the critic NNs are set as lc1 = lc2 = 0.8. Since there is no guiding method to select
activation functions, they are selected as 𝜎c1() = 𝜎c2() = [2

1 , 12, 
2
2 ]

T based on repeated “trial and error”. The
weight vectors of the critic NNs are defined as ̂ ca = [ ̂

1
ca, ̂

2
ca, ̂

3
ca ]T. Let the initial system state be x0 = [1,−1]T.

The auxiliary system states are illustrated in Figure 2, where the states 1 and 2 all converge to a small region
of zero (SRZ) after 5 s. From Figure 3, we can observe that ̂ c1 and ̂ c2 converge to [0.1153,−0.4542, 0.6292]T and
[−0.5773, 0.2646,−0.3400]T, respectively. Then, the converged critic NN weight vector ̂ ca is applied to the proposed
ETRC method (19) to drive the system (24).

Select 𝜆11 = 0.2, 𝜆12 = 100, 𝜆13 = 1, 𝜆14 = −1, 𝜆21 = −0.2, 𝜆22 = 100, 𝜆23 = −0.2, and 𝜆24 = −100. The state trajectories
of the closed-loop system (24) and corresponding control signals are shown in Figure 4, which shows that the control
signals can guarantee the closed-loop system (24) to approach a SRZ. From Figure 5, we can see that the minimum
intersampling timeΔ𝜚min > 0, and the Zeno behavior is excluded. The event-triggering error and threshold are displayed
in Figure 6A, we can find that the ||ep(t)|| and eT both approach a SRZ after 5 s. Figure 6B describes that the required
samples of time-triggered RC (TTRC) and ETRC methods are 300 samples and 101 samples, respectively. It means that 66%
transmission has been reduced between the actuator and the controller. Thus, the proposed ADP-based ETRC method
can reduce the computational burden, as well as save the communication resource.

F I G U R E 2 The auxiliary system states of Example 1.
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3096 ZHANG et al.

F I G U R E 3 Convergence of critic NN weight vectors ̂ c1 and ̂ c2 of Example 1.

F I G U R E 4 (A) State trajectories of closed-loop system of Example 1. (B) The ETC inputs of Example 1.

F I G U R E 5 The sampling period of Example 1.
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ZHANG et al. 3097

F I G U R E 6 (A) Event-triggered error and threshold of Example 1. (B) Cumulative number of samples of Example 1.

Remark 11. From Assumptions 3 and 6, we know that there exist two Lipschitz constants ua and wa such that
||u∗a((t)) − u∗a( ̂p)|| ≤ ua||ep(t)|| and ||w∗

a((t)) − w∗
a( ̂p)|| ≤ wa||ep(t)||, respectively. Actually, they are selected by “trial

and error” with repeated simulations. It is worth pointing out that the large Lipschitz constant may lead to more trig-
gered events, and wasting more computational and communication resources, but small Lipschitz constant may cause
system instability. Thus, appropriate Lipschitz constants are selected to tradeoff the triggering frequency and the control
performance.

4.2 Example 2

We consider the following MPN system with mismatched uncertainties as

̇ =  () + 1()u1 +1()𝜉1() + 2()u2 +2()𝜉2() + 3()u3 +3()𝜉3() (25)

with

 () =

[
2

−2 sin1 − 0.152

]
,1() =

[
0
1

]
,1() =

[
0.2
0

]
,

2() =

[
0

0.75

]
,2() =

[
0.3
0

]
,3() =

[
0

0.5

]
,3() =

[
0.25

0

]
,

𝜉a()= 𝜆a11 cos(1∕(2 + 𝜆a2)) + 𝜆a32 sin(𝜆a412),

where a = 1, 2, 3, ua is control input bounded by |uaq| ≤ ūa = 1.2, 𝜆a1, 𝜆a2, 𝜆a3, and 𝜆a4 are the unknown parameters with
𝜆a1 ∈ [−1, 1], 𝜆a2 ∈ [−100,100], 𝜆a3 ∈ [−0.2, 1], and 𝜆a4 ∈ [−100, 0].

Similar to Example 1, we have

ℏ1() =

[
0.2
0

]
, ℏ2() =

[
0.3
0

]
, ℏ3() =

[
0.25

0

]
, ||𝜉a()||2 ≤ ||||2 ≜ Ξ2

a(),

||+a ()a()𝜉a()||2 = 0 ≜ Λ2
a(), a = 1, 2, 3.

Thus, the auxiliary system related to (25) can be expressed as

̇ =  () + 1()u1 + ℏ1()w1() + 2()u2 + ℏ2()w2() + 3()u3 + ℏ3()w3(),
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3098 ZHANG et al.

F I G U R E 7 The auxiliary system states of Example 2.

F I G U R E 8 Convergence of critic NN weight vectors ̂ c1, ̂ c2, and ̂ c3 of Example 2.

where w1, w2, and w3 ∈ R are the auxiliary control inputs. Let Q1 = 5, Q2 = 6I2, and Q3 = 12I2. The value function is
selected similarly to Example 1. Let the initial system state be x0 = [1,−1]T.

Simulation results are shown in Figures 7–12. From Figure 7, we can find that the system states converge to
a SRZ after 35 s. Figure 8 shows the critic NN weights ̂ c1, ̂ c2, and ̂ c3 converge to [0.0825, 0.1898,−0.4153]T,
[−0.2810,−0.7404, 0.3451]T, and [1.1371,−0.3102, 0.4200]T, respectively. Then, we apply the converged critic NN
weight vector ̂ ca to construct the ETRC. The parameters of uncertainties 𝜉a(), a = 1, 2, 3 are chosen as
Table 1.

The state trajectories of closed-loop system (25) are shown in Figure 9, we can observe that the system states approach
a SRZ. As displayed in Figure 10, the control inputs are piecewise signals which indicate that they are updated at the sam-
pling time 𝜚p only and keep unchanged during the time interval [𝜚p, 𝜚p+1). The minimum intersampling time Δ𝜚min > 0
is shown in Figure 11, and it reveals the exclusion of the Zeno behavior. Figure 12A shows the event-triggering error
||ep(t)|| is beneath the threshold eT , and both of them converge to SRZs as time increases. Figure 12B indicates that the
ETRC method needs 106 samples, while the TTRC method needs 800 samples. It can be concluded that 86% transmis-
sion has been reduced between the actuator and the controller. Hence, the computational burden is reduced and the
communication resource are saved.

 10991239, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6550 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [30/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ZHANG et al. 3099

F I G U R E 9 State trajectories of closed-loop system of Example 2.
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F I G U R E 10 The ETC inputs of Example 2.

F I G U R E 11 The sampling period of Example 2.
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3100 ZHANG et al.

F I G U R E 12 (A) Event-triggered error and threshold of Example 2. (B) Cumulative number of samples of Example 2.

T A B L E 1 Parameters of uncertainties

𝝀a1 𝝀a2 𝝀a3 𝝀a4

a = 1 0.2 100.0 1.0 −1.0

a = 2 −0.2 100.0 −0.2 −100.0

a = 3 −1.0 −100.0 0 −100.0

Remark 12. The initial critic NN weights are selected according to the initial admissible control input of each player.
However, there is no guiding method to obtain the initial admissible control input, thus, we select the initial critic NN
weights by repeated “trial and error”.

5 CONCLUSIONS

This article mainly focused on designing multiple event-triggered robust controllers for MPN systems with input con-
straints and mismatched uncertainties, and the computational burden and the communication resource are all saved.
The RC problem is transformed into an OC problem by constructing an auxiliary system. To reduce the computational
burden and save the communication resource, a novel triggering condition is presented to determine whether the control
laws are updated or not. To derive the ETRC law of each player, a critic NN is employed to approximate its value func-
tion. Then, according to the Lyapunov stability theorem, both the critic NN weight error dynamics and the states of the
closed-loop system are guaranteed to be UUB. Finally, two simulation examples are provided to verify the effectiveness
of the proposed ETRC scheme.

In practical implementations, we notice that the independent players in MPN systems have their own transmission
sequences, rather than taking the transmission actions synchronously. Therefore, it is worth considering how to relax the
requirement of synchronous transmission actions in our future work.
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APPENDIX A

A.1 Appendix
Select a Lyapunov function candidate as L1 =

∑u
a=1L1a, where L1a = ∗a (). Its time derivative is expressed as

̇L1a(t) = ∇∗T
a ()

⎛
⎜
⎜⎝
 () +

u∑

b=1

(
b()u∗b( ̂p) +b()𝜉b()

)⎞⎟
⎟⎠

= ∇∗T
a ()

⎛
⎜
⎜⎝
 () +

u∑

b=1

(
b()u∗b( ̂p) + b()+b ()b()𝜉b()

)⎞⎟
⎟⎠
+ ∇∗T

a ()
u∑

b=1
ℏb()𝜉b(). (A1)

According to (8), we have

∇∗T
a () () = −TQa −a ( ∗

u ()) − 𝛾2
u∑

b=1
w∗T

b w∗
b − 𝛿

u∑

b=1
Λ2

b() − ∇
∗T
a ()

u∑

b=1

(
b()u∗b + ℏb()w∗

b
)

− 𝜗
u∑

b=1
Ξ2

b(). (A2)

Substituting (A2) into (A1), and recalling Assumptions 2–4, we get

̇L1a(t) = −
u∑

b=1

(
𝛿Λ2

b() + 𝜗Ξ
2
b() + 𝛾

2w∗
b

T()w∗
b()

)
− TQa −a ( ∗

u ()) + ∇∗a T()
u∑

b=1
b()+b ()b()𝜉b()

+ ∇∗a T()
u∑

b=1
b()

(
u∗b( ̂p) − u∗b()

)
+ ∇∗a T()

u∑

b=1
ℏb()

(
𝜉b() − w∗

b()
)

≤ −
u∑

b=1

(
𝛿Λ2

b() + 𝜗Ξ
2
b() + 𝛾

2w∗
b

T()w∗
b()

)
− TQa −a ( ∗

u ()) +
3
2
||∇∗a ()||2

+ 1
2
‖‖‖

u∑

b=1
b()+b ()b()𝜉b()

‖‖‖
2
+ 1

2
‖‖‖

u∑

b=1
b()

(
u∗b( ̂p) − u∗b()

) ‖‖‖
2
+ 1

2
‖‖‖

u∑

b=1
ℏb(𝜉b() − w∗

b())
‖‖‖

2

≤ −
u∑

b=1

(
𝛿Λ2

b() + 𝜗Ξ
2
b() + 𝛾

2w∗
b

T()w∗
b()

)
− TQa −a ( ∗

u ()) +
3
2
||∇∗a ()||2

+ u

2

u∑

b=1
g2

bΛ2
b() +

u

2

u∑

b=1


2
ubg2

b||ep(t)||2 +
u

2

u∑

b=1

‖‖‖ℏb
(
𝜉b() − w∗

b()
) ‖‖‖

2

≤ −TQa −a ( ∗
u ()) +

3
2
||∇∗a ()||2 +

u

2
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g2

b
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u

2
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)
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u

2
ℏ
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Denoting

Δ() =
(
u

2
g2 − 𝛿

) u∑

b=1
Λ2

b() +
(
u

2
ℏ

2
− 𝜗

) u∑

b=1
Ξ2

b() +
(
u

2
ℏ

2
− 𝛾2

) u∑

b=1
w∗

b
T()w∗

b(),

where g = max{g1, g2, … , g
u
} and ℏ = max{ℏ1, ℏ2, … , ℏu

}, and based on (A3), we have

̇L1(t) =
u∑

a=1

̇L1a(t)

≤ −
u∑

a=1


TQa −
u∑

a=1
a ( ∗

u ()) +


2
u

2
g2
u∑

b=1


2
ub||ep(t)||2 +uΔ() +

3
2

u∑

a=1
||∇∗a ()||2

≤ −𝜛2
1

u∑

a=1
𝜆min(Qa)||||2 +

3
2

u∑

a=1
||∇∗a ()||2 +uΔ() + (𝜛2

1 − 1)
u∑

a=1
𝜆min(Qa)||||2 +


2
u

2
g2
u∑

b=1


2
ub||ep(t)||2.

By selecting the parameters as 𝛿 ≥ u
2

g2, 𝜗 ≥ u
2
ℏ

2
, and 𝛾2

≥
u
2
ℏ

2
, we haveuΔ() ≤ 0, and ̇L1(t) becomes

̇L1(t) ≤ −𝜛2
1

u∑

a=1
𝜆min(Qa)||||2 +

3
2

u∑

a=1
||∇∗a ()||2 + (𝜛2

1 − 1)
u∑

a=1
𝜆min(Qa)||||2 +


2
u

2
g2
u∑

b=1


2
ub||ep(t)||2.

Then, when conditions (13) and (14) hold, we have

̇L1(t) < 0, ∀ ≠ 0.

According to Lyapunov stability theorem,57,58 for L1(t) > 0 and ̇L1(t) < 0, ∀ ≠ 0, we can conclude that the closed-loop
system (1) is asymptotically stable.

A.2 Appendix
Choose the Lyapunov function candidate as

L2(t) = L21(t) + L22(t), (A4)

where L21(t) =
∑u

a=1
∗
a () and L22(t) =

∑u
a=1

∗
a ( ̂p).

Since the event triggering mechanism is introduced, the stability should be analyzed with the following two cases.

Case 1. Events are not triggered, that is, ∀t ∈ [𝜚p, 𝜚p+1). It implies that ̇L22(t) = 0. Taking the time derivative of L21(t), we
can obtain

̇L21(t) =
u∑

a=1

⎛
⎜
⎜⎝
∇∗T

a()
⎛
⎜
⎜⎝
 () +

u∑

b=1

(
b()ûb( ̂p) + ℏb()ŵb( ̂p)

)⎞⎟
⎟⎠

⎞
⎟
⎟⎠
.

Then, based on (A2), we get

̇L21(t) = −
u∑

a=1

⎛
⎜
⎜⎝


TQa +a ( ∗
u ()) + 𝛿

u∑

b=1
Λ2

b()
⎞
⎟
⎟⎠
−
u∑

a=1

⎛
⎜
⎜⎝
𝜗

u∑

b=1
Ξ2

b() + 𝛾
2
u∑

b=1
w∗

b
T()w∗

b()
⎞
⎟
⎟⎠

+
u∑

a=1
∇∗T

a ()
u∑

b=1
b()

(
ûb( ̂p) − u∗b()

)
+
u∑

a=1
∇∗T

a ()
u∑

b=1
ℏb()

(
ŵb( ̂p) − w∗

b()
)
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≤ −
u∑

a=1

⎛
⎜
⎜⎝


TQa +a ( ∗
u ()) + 𝛿

u∑

b=1
Λ2

b()
⎞
⎟
⎟⎠
−
u∑

a=1

⎛
⎜
⎜⎝
𝜗

u∑

b=1
Ξ2

b() + 𝛾
2
u∑

b=1
w∗

b
T()w∗

b()
⎞
⎟
⎟⎠

+ 1
2
‖‖‖

u∑

b=1
b

(
ûb( ̂p) − u∗b()

) ‖‖‖
2
+ 1

2
‖‖‖

u∑

b=1
ℏb

(
ŵb( ̂p) − w∗

b()
) ‖‖‖

2
+u

u∑

a=1

‖‖‖∇𝜎
T
ca()∗

ca + ∇𝜉T
ca()

‖‖‖
2

≤ −
u∑

a=1

⎛
⎜
⎜⎝


TQa +a ( ∗
u ()) + 𝛿

u∑

b=1
Λ2

b()
⎞
⎟
⎟⎠
−
u∑

a=1

⎛
⎜
⎜⎝
𝜗

u∑

b=1
Ξ2

b() + 𝛾
2
u∑

b=1
w∗

b
T()w∗

b()
⎞
⎟
⎟⎠

+ 2u

u∑

a=1
(∇𝜎2

caW
2
ca + ∇𝜉

2
ca) +

u

2
g2
u∑

a=1

‖‖‖ûa( ̂p) − u∗a()
‖‖‖

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Υ1

+ u

2
ℏ

2
u∑

a=1

‖‖‖ŵa( ̂p) − w∗
a()

‖‖‖
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Υ2

. (A5)

By applying Young’s inequality ||O + P||2 ≤ 2||O||2 + 2||P||2, and using (17)–(20), Υ1 and Υ2 become

Υ1 =
‖‖‖
(

ûa( ̂p) − u∗a( ̂p)
)
+
(

u∗a( ̂p) − u∗a()
) ‖‖‖

2

≤ 2‖‖‖ûa( ̂p) − u∗a( ̂p)
‖‖‖

2
+ 2‖‖‖u∗a( ̂p) − u∗a()

‖‖‖
2

≤ 2‖‖‖ −ūa tanh
(

1
2ūa


T
a( ̂p)∇𝜎T

ca( ̂p) ̂ ca

)
+ ūa tanh

(
1

2ūa


T
a( ̂p)

(
∇𝜎T

ca( ̂p)∗
ca + ∇𝜉T

ca( ̂p)
))‖‖‖

2
+ 22

ua||ep(t)||2

≤
1
2


2
tanh||

T
a( ̂p)||2‖‖‖∇𝜉

T
ca( ̂p) + ∇𝜎T

ca( ̂p) ̃ ca
‖‖‖

2
+ 22

ua||ep(t)||2

≤
1
2


2
tanhg2

(
∇𝜎2

c W
2
ca + ∇𝜉

2
ca

)
+ 22

ua||ep(t)||2, (A6)

Υ2 =
‖‖‖
(

ŵa( ̂p) − w∗
a( ̂p)

)
+
(

w∗
a( ̂p) − w∗

a()
) ‖‖‖

2

≤ 2‖‖‖ŵa( ̂p) − w∗
a( ̂p)

‖‖‖
2
+ 2‖‖‖w∗

a( ̂p) − w∗
a()

‖‖‖
2

≤ 2‖‖‖ −
1

2𝛾2ℏ
T
a( ̂p)∇𝜎T

ca( ̂p) ̂ ca +
1

2𝛾2ℏ
T
a( ̂p)

(
∇𝜎T

ca( ̂p)∗T
ca + ∇𝜉T

ca( ̂p)
) ‖‖‖

2
+ 22

wa||ep(t)||2

≤
1

2𝛾4 ||ℏ
T
a( ̂p)||2‖‖‖∇𝜉

T
ca( ̂p) + ∇𝜎T

ca( ̂p) ̃ ca
‖‖‖

2
+ 22

wa||ep(t)||2

≤
1

2𝛾4ℏ
2 (
∇𝜎2

c W
2
ca + ∇𝜉

2
ca

)
+ 22

wa||ep(t)||2, (A7)

where tanh is a Lipschitz constant of tanh(⋅). Considering (A5) and (A6), ̇L21(t) becomes

̇L21(t) ≤ −
u∑

a=1


TQa + 0 + uw||ep(t)||2 −
u∑

a=1

⎛
⎜
⎜⎝
a ( ∗

u ()) + 𝛿
u∑

b=1
Λ2

b() + 𝜗
u∑

b=1
Ξ2

b()
⎞
⎟
⎟⎠
−u𝛾

2
u∑

b=1
||w∗

b()||
2
, (A8)

where 0 = 1
4
(u

2
tanhg4 + 2

𝛾

4uℏ
4
+ 8u)

∑u
a=1(∇𝜎

2
caW

2
ca + ∇𝜉

2
ca) and uw =

∑u
a=1(ug2


2
ua +uℏ

2


2
wa) are positive

constants.
Considering ̇L22(t) = 0 and introducing (A8), the time derivative of L2(t) in (A4) is given by

̇L2(t) ≤ −𝜛2
2

u∑

a=1
𝜆min(Qa)||||2 + 0 + uw||ep(t)||2 + (𝜛2

2 − 1)
u∑

a=1
𝜆min(Qa)||||2. (A9)

Then, we have ̇L2(t) < 0 when conditions (23) satisfies and (t) lies outside the compact set

Ω =

{
 ∶ |||| ≤

√
0

𝜛

2
2
∑u

a=1𝜆min(Qa)

}
. (A10)
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Case 2. Events are triggered, that is, ∀t = 𝜚p+1. The difference of the Lyapunov function candidate L2(t) in (A4) is given as

ΔL2(t) = L2( ̂p+1) − L2

(
(𝜚−p+1)

)

= ΔL21(t) + ΔL22(t).

From Case 1, it shows ̇L2(t) < 0 for all t ∈ [𝜚p, 𝜚p+1). Considering the continuity of the auxiliary system state and the value
function, we have

ΔL21(t) =
u∑

a=1

(

∗
a ( ̂p+1) − ∗a

(
(𝜚−p+1)

))
≤ 0,

ΔL22(t) =
u∑

a=1

(

∗
a ( ̂p+1) − ∗a ( ̂p)

)
≤ −𝜈

(
||ep+1(𝜚p)||

)
,

where (𝜚−p+1) = limΔt→0 (𝜚p+1 − Δt), 𝜈(⋅) is a class- function and ep+1(𝜚p) = ̂p+1 − ̂p. Therefore, ΔL2(t) ≤
−𝜈(||ep+1(𝜚p)||), which implies that L2(t) decreases at ∀t = 𝜚p+1.

Based on the above analysis, it concludes that the closed-loop auxiliary system (2) is guaranteed to be UUB. It is noticed
that ̂p is sampled from the system state  . That is to say, ̂p is not an independent state, thus ̂p can also be guaranteed
to be UUB if  has an ultimate bound.
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