2,487 research outputs found

    Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions

    Get PDF
    Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research

    Advanced image processing techniques for detection and quantification of drusen

    Get PDF
    Dissertation presented to obtain the degree of Doctor of Philosophy in Electrical Engineering, speciality on Perceptional Systems, by the Universidade Nova de Lisboa, Faculty of Sciences and TechnologyDrusen are common features in the ageing macula, caused by accumulation of extracellular materials beneath the retinal surface, visible in retinal fundus images as yellow spots. In the ophthalmologists’ opinion, the evaluation of the total drusen area, in a sequence of images taken during a treatment, will help to understand the disease progression and effectiveness. However, this evaluation is fastidious and difficult to reproduce when performed manually. A literature review on automated drusen detection showed that the works already published were limited to techniques of either adaptive or global thresholds which showed a tendency to produce a significant number of false positives. The purpose for this work was to propose an alternative method to automatically quantify drusen using advanced digital image processing techniques. This methodology is based on a detection and modelling algorithm to automatically quantify drusen. It includes an image pre-processing step to correct the uneven illumination by using smoothing splines fitting and to normalize the contrast. To quantify drusen a detection and modelling algorithm is adopted. The detection uses a new gradient based segmentation algorithm that isolates drusen and provides basic drusen characterization to the modelling stage. These are then fitted by Gaussian functions, to produce a model of the image, which is used to compute the affected areas. To validate the methodology, two software applications, one for semi-automated (MD3RI) and other for automated detection of drusen (AD3RI), were implemented. The first was developed for Ophthalmologists to manually analyse and mark drusen deposits, while the other implemented algorithms for automatic drusen quantification.Four studies to assess the methodology accuracy involving twelve specialists have taken place. These compared the automated method to the specialists and evaluated its repeatability. The studies were analysed regarding several indicators, which were based on the total affected area and on a pixel-to-pixel analysis. Due to the high variability among the graders involved in the first study, a new evaluation method, the Weighed Matching Analysis, was developed to improve the pixel-to-pixel analysis by using the statistical significance of the observations to differentiate positive and negative pixels. From the results of these studies it was concluded that the methodology proposed is capable to automatically measure drusen in an accurate and reproducible process. Also, the thesis proposes new image processing algorithms, for image pre-processing, image segmentation,image modelling and images comparison, which are also applicable to other image processing fields

    A pilot study for the digital replacement of a distorted dentition acquired by Cone Beam Computed Tomography (CBCT)

    Get PDF
    Abstract Introduction: Cone beam CT (CBCT) is becoming a routine imaging modality designed for the maxillofacial region. Imaging patients with intra-oral metallic objects cause streak artefacts. Artefacts impair any virtual model by obliterating the teeth. This is a major obstacle for occlusal registration and the fabrication of orthognathic wafers to guide the surgical correction of dentofacial deformities. Aims and Objectives: To develop a method of replacing the inaccurate CBCT images of the dentition with an accurate representation and test the feasibility of the technique in the clinical environment. Materials and Method: Impressions of the teeth are acquired and acrylic baseplates constructed on dental casts incorporating radiopaque registration markers. The appliances are fitted and a preoperative CBCT is performed. Impressions are taken of the dentition with the devices in situ and subsequent dental models produced. The models are scanned to produce a virtual model. Both images of the patient and the model are imported into a virtual reality software program and aligned on the virtual markers. This allows the alignment of the dentition without relying on the teeth for superimposition. The occlusal surfaces of the dentition can be replaced with the occlusal image of the model. Results: The absolute mean distance of the mesh between the markers in the skulls was in the region of 0.09mm ± 0.03mm; the replacement dentition had an absolute mean distance of about 0.24mm ± 0.09mm. In patients the absolute mean distance between markers increased to 0.14mm ± 0.03mm. It was not possible to establish the discrepancies in the patient’s dentition, since the original image of the dentition is inherently inaccurate. Conclusion: It is possible to replace the CBCT virtual dentition of cadaveric skulls with an accurate representation to create a composite skull. The feasibility study was successful in the clinical arena. This could be a significant advancement in the accuracy of surgical prediction planning, with the ultimate goal of fabrication of a physical orthognathic wafer using reverse engineering

    SDOCT Imaging to Identify Macular Pathology in Patients Diagnosed with Diabetic Maculopathy by a Digital Photographic Retinal Screening Programme

    Get PDF
    INTRODUCTION: Diabetic macular edema (DME) is an important cause of vision loss. England has a national systematic photographic retinal screening programme to identify patients with diabetic eye disease. Grading retinal photographs according to this national protocol identifies surrogate markers for DME. We audited a care pathway using a spectral-domain optical coherence tomography (SDOCT) clinic to identify macular pathology in this subset of patients. METHODS: A prospective audit was performed of patients referred from screening with mild to moderate non-proliferative diabetic retinopathy (R1) and surrogate markers for diabetic macular edema (M1) attending an SDOCT clinic. The SDOCT images were graded by an ophthalmologist as SDOCT positive, borderline or negative. SDOCT positive patients were referred to the medical retina clinic. SDOCT negative and borderline patients were further reviewed in the SDOCT clinic in 6 months. RESULTS: From a registered screening population of 17 551 patients with diabetes mellitus, 311 patients met the inclusion criteria between (March 2008 and September 2009). We analyzed images from 311 patients' SDOCT clinic episodes. There were 131 SDOCT negative and 12 borderline patients booked for revisit in the OCT clinic. Twenty-four were referred back to photographic screening for a variety of reasons. A total of 144 were referred to ophthalmology with OCT evidence of definite macular pathology requiring review by an ophthalmologist. DISCUSSION: This analysis shows that patients with diabetes, mild to moderate non-proliferative diabetic retinopathy (R1) and evidence of diabetic maculopathy on non-stereoscopic retinal photographs (M1) have a 42.1% chance of having no macular edema on SDOCT imaging as defined by standard OCT definitions of DME when graded by a retinal specialist. SDOCT imaging is a useful adjunct to colour fundus photography in screening for referable diabetic maculopathy in our screening population

    3D imaging in forensic odontology

    Get PDF
    • …
    corecore