5 research outputs found

    Visualising mixed reality simulation for multiple users

    Get PDF
    Cowling, MA ORCiD: 0000-0003-1444-1563Blended reality seeks to encourage co-presence in the classroom, blending student experience across virtual and physical worlds. In a similar way, Mixed Reality, a continuum between virtual and real environments, is now allowing learners to work in both the physical and the digital world simultaneously, especially when combined with an immersive headset experience. This experience provides innovative new experiences for learning, but faces the challenge that most of these experiences are single user, leaving others outside the new environment. The question therefore becomes, how can a mixed reality simulation be experienced by multiple users, and how can we present that simulation effectively to users to create a true blended reality environment? This paper proposes a study that uses existing screen production research into the user and spectator to produce a mixed reality simulation suitable for multiple users. A research method using Design Based Research is also presented to assess the usability of the approach

    Travel simulation inside an Immersive Video Environment (IVE)

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.This research study explores different methods and technologies to simulate travel inside an IVE that contains videos from several different locations. From the most adequate method and technology, a prototype is developed and evaluated. The videos are static, meaning that each video was recorded on a single location, and the orientation an coordinates doesn't change. We want to simulate the travel between two different locations. The video of a location is called a task, and the travels are called transitions. Using information gathered from previous studies and using the available technologies, this document will create a prototype of travel transition for our IVE. Finally, we are going to evaluate a tour composed of tasks and transitions on a group of test users to assess the quality and usability of the transition prototype. The prototyping and evaluation are based on the crucial quality and usability factors concerning our custom IVE system

    Distance: a framework for improving spatial cognition within digital architectural models

    Get PDF
    This research investigates the need for improvements to navigation tools and locational awareness within digital architectural models so that users’ spatial cognition can be enhanced. Evidence shows that navigation and disorientation are common problems within digital architectural models, often impairing spatial cognition. When a designer or contractor explores a completed digital architectural model for the first time, it can be a progressively frustrating experience, often leading to the creation of an incorrect cognitive map of the building design. A reflective practice research method across three project-based design investigations is used drawing on aspects of architectural communication, digital interaction, and spatial cognition. The first investigation, Translation projects, explores the transformation of two- dimensional drawing conventions into three-dimensional interactive digital models, exposing the need for improved navigation and wayfinding. The second investigation, a series of artificial intelligence navigation projects, explores navigation methods to aid spatial cognition by providing tools that help to visualise the navigation process, paths to travel, and paths travelled. The third and final investigation, Distance projects, demonstrates the benefits of productive transition in the creation of cognitive maps. During the transition, assistance is given to aid the estimation of distance. The original contribution to knowledge that this research establishes is a framework for navigation tools and wayshowing strategies for improving spatial cognition within digital architectural models. The consideration of wayshowing methods, focusing on spatial transitions beyond predefined views of the digital model, provides a strong method for aiding users to construct comprehensive cognitive maps. This research addresses the undeveloped field of aiding distance estimation inside digital architectural models.There is a need to improve spatial cognition by understanding distance, detail, data, and design when reviewing digital architectural models

    The role of multisensory feedback in the objective and subjective evaluations of fidelity in virtual reality environments.

    Get PDF
    The use of virtual reality in academic and industrial research has been rapidly expanding in recent years therefore evaluations of the quality and effectiveness of virtual environments are required. The assessment process is usually done through user evaluation that is being measured whilst the user engages with the system. The limitations of this method in terms of its variability and user bias of pre and post-experience have been recognised in the research literature. Therefore, there is a need to design more objective measures of system effectiveness that could complement subjective measures and provide a conceptual framework for the fidelity assessment in VR. There are many technological and perceptual factors that can influence the overall experience in virtual environments. The focus of this thesis was to investigate how multisensory feedback, provided during VR exposure, can modulate a user’s qualitative and quantitative experience in the virtual environment. In a series of experimental studies, the role of visual, audio, haptic and motion cues on objective and subjective evaluations of fidelity in VR was investigated. In all studies, objective measures of performance were collected and compared to the subjective measures of user perception. The results showed that the explicit evaluation of environmental and perceptual factors available within VR environments modulated user experience. In particular, the results shown that a user’s postural responses can be used as a basis for the objective measure of fidelity. Additionally, the role of augmented sensory cues was investigated during a manual assembly task. By recording and analysing the objective and subjective measures it was shown that augmented multisensory feedback modulated the user’s acceptability of the virtual environment in a positive manner and increased overall task performance. Furthermore, the presence of augmented cues mitigated the negative effects of inaccurate motion tracking and simulation sickness. In the follow up study, the beneficial effects of virtual training with augmented sensory cues were observed in the transfer of learning when the same task was performed in a real environment. Similarly, when the effects of 6 degrees of freedom motion cuing on user experience were investigated in a high fidelity flight simulator, the consistent findings between objective and subjective data were recorded. By measuring the pilot’s accuracy to follow the desired path during a slalom manoeuvre while perceived task demand was increased, it was shown that motion cuing is related to effective task performance and modulates the levels of workload, sickness and presence. The overall findings revealed that multisensory feedback plays an important role in the overall perception and fidelity evaluations of VR systems and as such user experience needs to be included when investigating the effectiveness of sensory feedback signals. Throughout this thesis it was consistently shown that subjective measures of user perception in VR are directly comparable to the objective measures of performance and therefore both should be used in order to obtain a robust results when investigating the effectiveness of VR systems. This conceptual framework can provide an effective method to study human perception, which can in turn provide a deeper understanding of the environmental and cognitive factors that can influence the overall user experience, in terms of fidelity requirements, in virtual reality environments

    Interacción Natural Basada en un Conjunto Mínimo de Sensores Inerciales para Realidad Virtual sin Cables

    Get PDF
    La Realidad Virtual tiene un enorme potencial aún por explotar. Esta tesis doctoral pretende ir un paso más allá en el desarrollo de sistemas de Realidad Virtual inmersivos. En concreto, su objetivo fundamental es diseñar, desarrollar y evaluar una plataforma experimental sin cables para investigación en Realidad Virtual inmersiva con navegación natural e interacción manual basada en un conjunto mínimo de sensores inerciales. Para ello se emplea metodología científica desde la perspectiva de la interacción persona computador (Human Computer Interaction, HCI). A partir del objetivo fundamental, se elaboran las recomendaciones de diseño y especificaciones del sistema a desarrollar. Tras revisar en detalle el estado del arte y establecer el planteamiento metodológico, comienza el desarrollo de herramientas en las que se basará la creación de prototipos. Durante la tesis doctoral se desarrollan 3 herramientas de investigación y 5 prototipos que se evalúan a través de diversas pruebas con usuarios y 2 experimentos. En total, participan generosamente más de 85 personas. El desarrollo de prototipos da lugar a técnicas específicas que resultan de interés por sí mismas para la comunidad científica. Por otra parte, los experimentos también aportan resultados susceptibles de ser divulgados. Uno de los experimentos realizados permite evaluar las técnicas desarrolladas para implementar un sistema de Realidad Virtual con navegación natural. El otro experimento, estudia el comportamiento del sistema de tracking para interacción manual desarrollado durante el proyecto de investigación. Además, utiliza una televisión 3D y el casco de Realidad Virtual Oculus Rift para realizar un estudio comparativo de diversos aspectos como el rendimiento, usabilidad, nivel de presencia, dificultad y preferencia. El proyecto de investigación asociado a esta tesis doctoral da lugar a varias aportaciones de distinta naturaleza como publicaciones científicas, herramientas de investigación, algoritmos y trazas de datos, además de la propia plataforma experimental que permitirá abordar nuevos estudios de Realidad Virtual inmersiva con navegación natural e interacción manual
    corecore