721 research outputs found

    Towards markerless orthopaedic navigation with intuitive Optical See-through Head-mounted displays

    Get PDF
    The potential of image-guided orthopaedic navigation to improve surgical outcomes has been well-recognised during the last two decades. According to the tracked pose of target bone, the anatomical information and preoperative plans are updated and displayed to surgeons, so that they can follow the guidance to reach the goal with higher accuracy, efficiency and reproducibility. Despite their success, current orthopaedic navigation systems have two main limitations: for target tracking, artificial markers have to be drilled into the bone and calibrated manually to the bone, which introduces the risk of additional harm to patients and increases operating complexity; for guidance visualisation, surgeons have to shift their attention from the patient to an external 2D monitor, which is disruptive and can be mentally stressful. Motivated by these limitations, this thesis explores the development of an intuitive, compact and reliable navigation system for orthopaedic surgery. To this end, conventional marker-based tracking is replaced by a novel markerless tracking algorithm, and the 2D display is replaced by a 3D holographic Optical see-through (OST) Head-mounted display (HMD) precisely calibrated to a user's perspective. Our markerless tracking, facilitated by a commercial RGBD camera, is achieved through deep learning-based bone segmentation followed by real-time pose registration. For robust segmentation, a new network is designed and efficiently augmented by a synthetic dataset. Our segmentation network outperforms the state-of-the-art regarding occlusion-robustness, device-agnostic behaviour, and target generalisability. For reliable pose registration, a novel Bounded Iterative Closest Point (BICP) workflow is proposed. The improved markerless tracking can achieve a clinically acceptable error of 0.95 deg and 2.17 mm according to a phantom test. OST displays allow ubiquitous enrichment of perceived real world with contextually blended virtual aids through semi-transparent glasses. They have been recognised as a suitable visual tool for surgical assistance, since they do not hinder the surgeon's natural eyesight and require no attention shift or perspective conversion. The OST calibration is crucial to ensure locational-coherent surgical guidance. Current calibration methods are either human error-prone or hardly applicable to commercial devices. To this end, we propose an offline camera-based calibration method that is highly accurate yet easy to implement in commercial products, and an online alignment-based refinement that is user-centric and robust against user error. The proposed methods are proven to be superior to other similar State-of- the-art (SOTA)s regarding calibration convenience and display accuracy. Motivated by the ambition to develop the world's first markerless OST navigation system, we integrated the developed markerless tracking and calibration scheme into a complete navigation workflow designed for femur drilling tasks during knee replacement surgery. We verify the usability of our designed OST system with an experienced orthopaedic surgeon by a cadaver study. Our test validates the potential of the proposed markerless navigation system for surgical assistance, although further improvement is required for clinical acceptance.Open Acces

    WELDMAP: A Photogrammetric Suite Applied to the Inspection of Welds

    Get PDF
    [EN] This paper presents a new tool for external quality control in welds using close-range photogrammetry. The main contribution of the developed approach is the automatic assessment of welds based on 3D photogrammetric models, enabling objective and accurate analyses through an in-house tool that was developed, WELDMAP. As a result, inspectors can perform external quality control of welds in a simple and efficient way without requiring visual inspections or external tools, and thus avoiding the subjectivity and imprecisions of the classical protocol. The tool was validated with a large dataset in laboratory tests as well as in real scenarios.SIMinistry of Science and Innovation, Government of Spai

    REAL-TIME CAPTURE AND RENDERING OF PHYSICAL SCENE WITH AN EFFICIENTLY CALIBRATED RGB-D CAMERA NETWORK

    Get PDF
    From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an increasingly important role in many vision and graphics applications. With the recent explosive growth of Augmented Reality (AR) and Virtual Reality (VR) platforms, utilizing camera RGB-D camera networks to capture and render dynamic physical space can enhance immersive experiences for users. To maximize coverage and minimize costs, practical applications often use a small number of RGB-D cameras and sparsely place them around the environment for data capturing. While sparse color camera networks have been studied for decades, the problems of extrinsic calibration of and rendering with sparse RGB-D camera networks are less well understood. Extrinsic calibration is difficult because of inappropriate RGB-D camera models and lack of shared scene features. Due to the significant camera noise and sparse coverage of the scene, the quality of rendering 3D point clouds is much lower compared with synthetic models. Adding virtual objects whose rendering depend on the physical environment such as those with reflective surfaces further complicate the rendering pipeline. In this dissertation, I propose novel solutions to tackle these challenges faced by RGB-D camera systems. First, I propose a novel extrinsic calibration algorithm that can accurately and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on a network. Second, I propose a novel rendering pipeline that can capture and render, in real-time, dynamic scenes in the presence of arbitrary-shaped reflective virtual objects. Third, I have demonstrated a teleportation application that uses the proposed system to merge two geographically separated 3D captured scenes into the same reconstructed environment. To provide a fast and robust calibration for a sparse RGB-D camera network, first, the correspondences between different camera views are established by using a spherical calibration object. We show that this approach outperforms other techniques based on planar calibration objects. Second, instead of modeling camera extrinsic using rigid transformation that is optimal only for pinhole cameras, different view transformation functions including rigid transformation, polynomial transformation, and manifold regression are systematically tested to determine the most robust mapping that generalizes well to unseen data. Third, the celebrated bundle adjustment procedure is reformulated to minimize the global 3D projection error so as to fine-tune the initial estimates. To achieve a realistic mirror rendering, a robust eye detector is used to identify the viewer\u27s 3D location and render the reflective scene accordingly. The limited field of view obtained from a single camera is overcome by our calibrated RGB-D camera network system that is scalable to capture an arbitrarily large environment. The rendering is accomplished by raytracing light rays from the viewpoint to the scene reflected by the virtual curved surface. To the best of our knowledge, the proposed system is the first to render reflective dynamic scenes from real 3D data in large environments. Our scalable client-server architecture is computationally efficient - the calibration of a camera network system, including data capture, can be done in minutes using only commodity PCs

    Lidar-based Obstacle Detection and Recognition for Autonomous Agricultural Vehicles

    Get PDF
    Today, agricultural vehicles are available that can drive autonomously and follow exact route plans more precisely than human operators. Combined with advancements in precision agriculture, autonomous agricultural robots can reduce manual labor, improve workflow, and optimize yield. However, as of today, human operators are still required for monitoring the environment and acting upon potential obstacles in front of the vehicle. To eliminate this need, safety must be ensured by accurate and reliable obstacle detection and avoidance systems.In this thesis, lidar-based obstacle detection and recognition in agricultural environments has been investigated. A rotating multi-beam lidar generating 3D point clouds was used for point-wise classification of agricultural scenes, while multi-modal fusion with cameras and radar was used to increase performance and robustness. Two research perception platforms were presented and used for data acquisition. The proposed methods were all evaluated on recorded datasets that represented a wide range of realistic agricultural environments and included both static and dynamic obstacles.For 3D point cloud classification, two methods were proposed for handling density variations during feature extraction. One method outperformed a frequently used generic 3D feature descriptor, whereas the other method showed promising preliminary results using deep learning on 2D range images. For multi-modal fusion, four methods were proposed for combining lidar with color camera, thermal camera, and radar. Gradual improvements in classification accuracy were seen, as spatial, temporal, and multi-modal relationships were introduced in the models. Finally, occupancy grid mapping was used to fuse and map detections globally, and runtime obstacle detection was applied on mapped detections along the vehicle path, thus simulating an actual traversal.The proposed methods serve as a first step towards full autonomy for agricultural vehicles. The study has thus shown that recent advancements in autonomous driving can be transferred to the agricultural domain, when accurate distinctions are made between obstacles and processable vegetation. Future research in the domain has further been facilitated with the release of the multi-modal obstacle dataset, FieldSAFE

    Auto-calibration of depth camera networks for people tracking

    Get PDF

    Object Association Across Multiple Moving Cameras In Planar Scenes

    Get PDF
    In this dissertation, we address the problem of object detection and object association across multiple cameras over large areas that are well modeled by planes. We present a unifying probabilistic framework that captures the underlying geometry of planar scenes, and present algorithms to estimate geometric relationships between different cameras, which are subsequently used for co-operative association of objects. We first present a local1 object detection scheme that has three fundamental innovations over existing approaches. First, the model of the intensities of image pixels as independent random variables is challenged and it is asserted that useful correlation exists in intensities of spatially proximal pixels. This correlation is exploited to sustain high levels of detection accuracy in the presence of dynamic scene behavior, nominal misalignments and motion due to parallax. By using a non-parametric density estimation method over a joint domain-range representation of image pixels, complex dependencies between the domain (location) and range (color) are directly modeled. We present a model of the background as a single probability density. Second, temporal persistence is introduced as a detection criterion. Unlike previous approaches to object detection that detect objects by building adaptive models of the background, the foreground is modeled to augment the detection of objects (without explicit tracking), since objects detected in the preceding frame contain substantial evidence for detection in the current frame. Finally, the background and foreground models are used competitively in a MAP-MRF decision framework, stressing spatial context as a condition of detecting interesting objects and the posterior function is maximized efficiently by finding the minimum cut of a capacitated graph. Experimental validation of the method is performed and presented on a diverse set of data. We then address the problem of associating objects across multiple cameras in planar scenes. Since cameras may be moving, there is a possibility of both spatial and temporal non-overlap in the fields of view of the camera. We first address the case where spatial and temporal overlap can be assumed. Since the cameras are moving and often widely separated, direct appearance-based or proximity-based constraints cannot be used. Instead, we exploit geometric constraints on the relationship between the motion of each object across cameras, to test multiple correspondence hypotheses, without assuming any prior calibration information. Here, there are three contributions. First, we present a statistically and geometrically meaningful means of evaluating a hypothesized correspondence between multiple objects in multiple cameras. Second, since multiple cameras exist, ensuring coherency in association, i.e. transitive closure is maintained between more than two cameras, is an essential requirement. To ensure such coherency we pose the problem of object associating across cameras as a k-dimensional matching and use an approximation to find the association. We show that, under appropriate conditions, re-entering objects can also be re-associated to their original labels. Third, we show that as a result of associating objects across the cameras, a concurrent visualization of multiple aerial video streams is possible. Results are shown on a number of real and controlled scenarios with multiple objects observed by multiple cameras, validating our qualitative models. Finally, we present a unifying framework for object association across multiple cameras and for estimating inter-camera homographies between (spatially and temporally) overlapping and non-overlapping cameras, whether they are moving or non-moving. By making use of explicit polynomial models for the kinematics of objects, we present algorithms to estimate inter-frame homographies. Under an appropriate measurement noise model, an EM algorithm is applied for the maximum likelihood estimation of the inter-camera homographies and kinematic parameters. Rather than fit curves locally (in each camera) and match them across views, we present an approach that simultaneously refines the estimates of inter-camera homographies and curve coefficients globally. We demonstrate the efficacy of the approach on a number of real sequences taken from aerial cameras, and report quantitative performance during simulations

    Dynamic shape capture using multi-view photometric stereo

    Full text link

    Single View Modeling and View Synthesis

    Get PDF
    This thesis develops new algorithms to produce 3D content from a single camera. Today, amateurs can use hand-held camcorders to capture and display the 3D world in 2D, using mature technologies. However, there is always a strong desire to record and re-explore the 3D world in 3D. To achieve this goal, current approaches usually make use of a camera array, which suffers from tedious setup and calibration processes, as well as lack of portability, limiting its application to lab experiments. In this thesis, I try to produce the 3D contents using a single camera, making it as simple as shooting pictures. It requires a new front end capturing device rather than a regular camcorder, as well as more sophisticated algorithms. First, in order to capture the highly detailed object surfaces, I designed and developed a depth camera based on a novel technique called light fall-off stereo (LFS). The LFS depth camera outputs color+depth image sequences and achieves 30 fps, which is necessary for capturing dynamic scenes. Based on the output color+depth images, I developed a new approach that builds 3D models of dynamic and deformable objects. While the camera can only capture part of a whole object at any instance, partial surfaces are assembled together to form a complete 3D model by a novel warping algorithm. Inspired by the success of single view 3D modeling, I extended my exploration into 2D-3D video conversion that does not utilize a depth camera. I developed a semi-automatic system that converts monocular videos into stereoscopic videos, via view synthesis. It combines motion analysis with user interaction, aiming to transfer as much depth inferring work from the user to the computer. I developed two new methods that analyze the optical flow in order to provide additional qualitative depth constraints. The automatically extracted depth information is presented in the user interface to assist with user labeling work. In this thesis, I developed new algorithms to produce 3D contents from a single camera. Depending on the input data, my algorithm can build high fidelity 3D models for dynamic and deformable objects if depth maps are provided. Otherwise, it can turn the video clips into stereoscopic video

    Multi-scale metrology for automated non-destructive testing systems

    Get PDF
    This thesis was previously held under moratorium from 5/05/2020 to 5/05/2022The use of lightweight composite structures in the aerospace industry is now commonplace. Unlike conventional materials, these parts can be moulded into complex aerodynamic shapes, which are diffcult to inspect rapidly using conventional Non-Destructive Testing (NDT) techniques. Industrial robots provide a means of automating the inspection process due to their high dexterity and improved path planning methods. This thesis concerns using industrial robots as a method for assessing the quality of components with complex geometries. The focus of the investigations in this thesis is on improving the overall system performance through the use of concepts from the field of metrology, specifically calibration and traceability. The use of computer vision is investigated as a way to increase automation levels by identifying a component's type and approximate position through comparison with CAD models. The challenges identified through this research include developing novel calibration techniques for optimising sensor integration, verifying system performance using laser trackers, and improving automation levels through optical sensing. The developed calibration techniques are evaluated experimentally using standard reference samples. A 70% increase in absolute accuracy was achieved in comparison to manual calibration techniques. Inspections were improved as verified by a 30% improvement in ultrasonic signal response. A new approach to automatically identify and estimate the pose of a component was developed specifically for automated NDT applications. The method uses 2D and 3D camera measurements along with CAD models to extract and match shape information. It was found that optical large volume measurements could provide suffciently high accuracy measurements to allow ultrasonic alignment methods to work, establishing a multi-scale metrology approach to increasing automation levels. A classification framework based on shape outlines extracted from images was shown to provide over 88% accuracy on a limited number of samples.The use of lightweight composite structures in the aerospace industry is now commonplace. Unlike conventional materials, these parts can be moulded into complex aerodynamic shapes, which are diffcult to inspect rapidly using conventional Non-Destructive Testing (NDT) techniques. Industrial robots provide a means of automating the inspection process due to their high dexterity and improved path planning methods. This thesis concerns using industrial robots as a method for assessing the quality of components with complex geometries. The focus of the investigations in this thesis is on improving the overall system performance through the use of concepts from the field of metrology, specifically calibration and traceability. The use of computer vision is investigated as a way to increase automation levels by identifying a component's type and approximate position through comparison with CAD models. The challenges identified through this research include developing novel calibration techniques for optimising sensor integration, verifying system performance using laser trackers, and improving automation levels through optical sensing. The developed calibration techniques are evaluated experimentally using standard reference samples. A 70% increase in absolute accuracy was achieved in comparison to manual calibration techniques. Inspections were improved as verified by a 30% improvement in ultrasonic signal response. A new approach to automatically identify and estimate the pose of a component was developed specifically for automated NDT applications. The method uses 2D and 3D camera measurements along with CAD models to extract and match shape information. It was found that optical large volume measurements could provide suffciently high accuracy measurements to allow ultrasonic alignment methods to work, establishing a multi-scale metrology approach to increasing automation levels. A classification framework based on shape outlines extracted from images was shown to provide over 88% accuracy on a limited number of samples
    • …
    corecore