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ABSTRACT OF DISSERTATION

REAL-TIME CAPTURE AND RENDERING OF PHYSICAL SCENE WITH AN
EFFICIENTLY CALIBRATED RGB-D CAMERA NETWORK

From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera net-
works play an increasingly important role in many vision and graphics applications.
With the recent explosive growth of Augmented Reality (AR) and Virtual Reality
(VR) platforms, utilizing camera RGB-D camera networks to capture and render
dynamic physical space can enhance immersive experiences for users. To maximize
coverage and minimize costs, practical applications often use a small number of RGB-
D cameras and sparsely place them around the environment for data capturing. While
sparse color camera networks have been studied for decades, the problems of extrinsic
calibration of and rendering with sparse RGB-D camera networks are less well un-
derstood. Extrinsic calibration is difficult because of inappropriate RGB-D camera
models and lack of shared scene features. Due to the significant camera noise and
sparse coverage of the scene, the quality of rendering 3D point clouds is much lower
compared with synthetic models. Adding virtual objects whose rendering depend on
the physical environment such as those with reflective surfaces further complicate the
rendering pipeline.

In this dissertation, I propose novel solutions to tackle these challenges faced
by RGB-D camera systems. First, I propose a novel extrinsic calibration algorithm
that can accurately and rapidly calibrate the geometric relationships across an arbi-
trary number of RGB-D cameras on a network. Second, I propose a novel rendering
pipeline that can capture and render, in real-time, dynamic scenes in the presence of
arbitrary-shaped reflective virtual objects. Third, I have demonstrated a teleporta-
tion application that uses the proposed system to merge two geographically separated
3D captured scenes into the same reconstructed environment.

To provide a fast and robust calibration for a sparse RGB-D camera network, first,
the correspondences between different camera views are established by using a spher-
ical calibration object. We show that this approach outperforms other techniques
based on planar calibration objects. Second, instead of modeling camera extrinsic
using rigid transformation that is optimal only for pinhole cameras, different view
transformation functions including rigid transformation, polynomial transformation,



and manifold regression are systematically tested to determine the most robust map-
ping that generalizes well to unseen data. Third, the celebrated bundle adjustment
procedure is reformulated to minimize the global 3D projection error so as to fine-tune
the initial estimates. To achieve a realistic mirror rendering, a robust eye detector is
used to identify the viewer’s 3D location and render the reflective scene accordingly.
The limited field of view obtained from a single camera is overcome by our calibrated
RGB-D camera network system that is scalable to capture an arbitrarily large envi-
ronment. The rendering is accomplished by raytracing light rays from the viewpoint
to the scene reflected by the virtual curved surface. To the best of our knowledge,
the proposed system is the first to render reflective dynamic scenes from real 3D data
in large environments. Our scalable client-server architecture is computationally ef-
ficient - the calibration of a camera network system, including data capture, can be
done in minutes using only commodity PCs.

KEYWORDS: RGB-D Camera Network; Real-time Capture and Rendering; Virtual
Curved Mirror, 3D Telepresence, 3D Interaction.
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Chapter 1 Introduction

High quality capturing and rendering of three dimensional objects and environ-

ments are important to many applications in medicine, architecture, manufactur-

ing, education, and entertainment. With the recent explosive growth of virtual and

augmented reality platforms, such technologies are crucial in delivering realistic ex-

periences to users. Pokemon Go [10], one of the most successful augmented-reality

games, infuses virtual objects in the real world and has drawn an unprecedented at-

tention from the media. The game has achieved 100 million downloads in less than

one month and has generated over 200 million US dollars in revenue in the same

period [11]. While augmented-reality mixed synthetic objects with real-world scene,

virtual reality completely immerses users into a virtual environment using VR head-

sets [12,13] and has enjoyed an exponential growth in the gaming market [14]. While

gaming is the primary genre of these applications, the possibility of capturing, trans-

mitting, and rendering in real-time reconstructed objects and individuals to enhance

communication between users in VR has garnered a great deal of excitement [1].

Instead of seeing your friend in a live video feed on a computer, Holoportation sup-

ports high-quality 3D models of human to be captured and transmitted anywhere in

the world in real-time [2]. Such technologies open door to remote collaboration and

manipulation of objects and environments, without confining to the limited size of a

computer display as shown in Figure 1.1.

When capturing static or dynamic scenes for different augmented or mixed reality

applications, using multiple networked cameras has many advantages over a single

1



(a) (b)

Figure 1.1: Immersive applications: (a) A corporative game in a virtual environ-
ment [1]; (b) Remote users communicate in a shared 3D space [2].

camera. Single camera suffers from nonintuitive, self-occluding hulls when capturing

non-convex articulated 3D shapes like human bodies. The field of view and spatial

resolutions of a single camera, especially depth cameras, are often limited. Using

Simultaneous Localization and Mapping (SLAM) techniques [15–18] with a moving

camera can be used to capture a large static environment but does not work for dy-

namic scenes. On the other hand, using a stationary camera network can address

the limitations in both field of view and dynamic scene capturing. There are al-

ready a large body of work using color camera networks for various types of vision

processing [19–21]. Camera networks based on depth sensors such as Time-of-Flight

(TOF) or Structured Light cameras, however, are not as well-explored. Earlier depth

cameras suffer from high measurement noise and low spatial resolution. Due to the

recent success of low-cost commodity depth cameras such as Kinect and Xtion Pro

Live, there have been significant improvements in performance, thanks to better sens-

ing technology and the addition of a companion high-definition color camera [22–24].
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(a)

(b)

Figure 1.2: Virtual mirror applications: (a) Virtual try-on [3]; (b) Behavioral Inter-
ventions for children with ASD [4].

In fact, utilizing a pair of color and depth cameras has solved a number of chal-

lenging problems. For example, missing depth values and depth misalignment on

planar surfaces can be recovered by exploiting the co-located color and depth infor-

mation [3, 25]. It is natural to extend from a single RGB-D camera to a network of

RGB-D cameras, which are beneficial to a myriad of applications including 3D model

rendering, body pose tracking and understanding [26–28]. However, there are still

significant challenges to calibrate RGB-D camera networks and they will be discussed

in Section 1.1.1.

The capability of combining aligned 3D data with virtual objects can make the

rendering far more realistic than current AR/VR systems. Currently, physical objects

and scenes rendered in virtual world are fairly limited and lack the realism commonly

3



seen in full computer-generated imagery (CGI) contents. One reason is that reflec-

tions of objects on surfaces from different worlds are not accurately rendered. Imagine

that a potential home buyer could be rendered on the many reflective surfaces in a

new house, giving a far more realistic impression of actually being there. In fact,

diverse applications from tourism to manufacturing can benefit from such a technol-

ogy: from visiting the Hall of Mirrors in the Palace of Versailles or the Cloud Gate

at the Millennium Park in Chicago to designing the reflective body of the next gen-

eration automobile. In my dissertation, I consider the problem of rendering reflective

scene from physical environment on virtual specular surfaces of arbitrary geometry.

In fact, the work can be considered as an extension of other simulated-mirror-based

systems (SMD), in which a virtual flat mirror is simulated by rendering the mirror

image of physical scene, with possible addition of different virtual objects. As shown

in Figure 1.2, SMDs are used in virtual try-on systems [3, 29, 30], education [31, 32],

health [33,34], art [35], and even in behavioral interventions for young children with

autism spectrum disorders (ASD) [4].

1.1 Problem Statement

In my dissertation, I study two problems in building the next generation 3D envi-

ronment capturing and rendering systems. The first problem is on how to accurately

and rapidly calibrate a network of sparsely-placed RGB-D cameras. The second

problem is on how to create virtual specular surfaces that can dynamically render

reflection of physical environments. For the first problem, I have developed novel

algorithms that only rely on small overlap in fields of views from different camera,

4



(a) (b) (c)

(d) (e)

Figure 1.3: Capturing a large scene by a network of RGB-D cameras. Cameras are
sparsely placed with different poses.

and can achieve global minimization of 3D re-projection error over the entire network.

For the second problem, I have built novel real-time realistic rendering system of the

reflection of physical scenes over virtual curved mirrors. The physical dimension of

the captured space are significantly expanded comparing early works in [3, 29, 36].

1.1.1 Sparse RGB-D Camera Network

The prerequisite in using multiple cameras is to obtain the geometrical relationship

that fuses the individual camera perspectives into a unified space. An accurate and

robust calibration of multiple cameras is essential for applications that require large-

scale captured scene. However, it is challenging to calibrate a network of sparsely-

distributed RGB-D cameras as shown in Figure 1.3. There are three main challenges

5



to this task: first, the captured data from depth cameras often have missing and

noisy measurements, particularly on transparent or specular surfaces, and near depth

discontinuities. These imperfections can greatly deteriorate the accuracy of the geo-

metric alignment. Second, the sparsity of cameras makes it difficult to locate common

scene features needed for calibration across disparate camera views. Adjacent camera

views may share more scene features but even small alignment error between adja-

cent views could accumulate when it is extrapolated to the entire network. Finally, as

multiple cameras are often cumbersome to setup and maintain, it is highly desirable

to make the calibration procedure robust and easily adaptable to any changes in the

camera placement. There have been a number of recent works on RGB-D network

calibration [27, 37–39], but as we shall point out in Chapter 2, these approaches are

either impractical or prone to errors. To address the problems mentioned above, I

propose a fast and robust algorithm for calibrating a sparse network of multiple RGB-

D cameras by a spherical object in Chapter 3. Using only commodity hardware, the

entire calibration process of a camera network takes only minutes to complete.

1.1.2 Real-Time Rendering of Physical Scenes with Virtual Mirrors

The prerequisite in simulating a reflective surface is to render the visual contents

based on a user’s perspective. To simulate a large reflective surface that can cope

with wide displacement of a viewer, a camera-display system must be able to capture

the 3-D world, track the moving viewpoint, render new views and possibly add new

visual contents that are compatible with the scene geometry. The depth information

provided by the RGB-D cameras can be used to track the user’s viewpoint and render

6



(a)

Figure 1.4: The scene reflected by the curved mirror [5]

the scene dynamically. However, there are a number of technical challenges in the

remaining parts of the pipeline. First, as we have mentioned in Section 1.1.1, missing

and noisy measurements from depth cameras and limited field of view make rendering

large areas and familiar shapes difficult. Second, while a planar reflective surface

can be simply reduced to moving the view point to its mirror image [3], curved

mirrors, as shown in Figure 1.4, are significantly more difficult due to the aberration

effect in which reflected light rays from a single scene point do not converge into

an image point. To the best of our knowledge, there are no prior work in modeling

and demonstrating real-time reflection of large-scale physical environments on virtual

reflective surfaces. To achieve this goal, I present a virtual mirror system that can

render physical scenes in real-time on a virtual curved mirror in Chapter 4. Unlike

other mirror systems that only have a fixed viewpoint and limited field of view,

the proposed framework is capable of rendering reflective scenes based on a viewer’s

7



perspective.

1.2 Contributions of Dissertation

The research work presented in this dissertation addresses the challenges of cali-

brating a network of sparsely-placed RGB-D cameras and develops a novel system of

rendering large 3D physical scene in real-time for virtual curved mirror. The main

contributions of my work are as follows:

1. Unlike other approaches that rely on planar calibration objects, the usage of

a spherical object overcomes the problem of limited scene features shared by

sparsely placed cameras. Specifically, an effective sphere-fitting algorithm is

used to identify the moving locations of the sphere center in both the color and

depth images. The sphere center can be robustly estimated from any viewpoint

as long as a small part of the sphere surface can be observed.

2. Rigid transformation is typically used to represent camera extrinsic and has

been shown to be the optimal for the pinhole camera model. An initial esti-

mate of the extrinsic is obtained based on the corresponding locations across

different views. The obtained extrinsic is further refined using the simultaneous

optimization on the entire network. However, real cameras have imperfection

and a more flexible transformation could provide higher fidelity in aligning 3D

point clouds from different cameras. I systematically compare a broad range

of transformation functions including rigid transformation, intrinsic-extrinsic

factorization, polynomial regression, and manifold regression. The experiments
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demonstrate that linear regression produces the most accurate calibration re-

sults.

3. To provide an efficient calibration procedure and to support real-time 3D ren-

dering and dynamic viewpoints, the proposed algorithm is implemented in a

client-and-server architecture where data capturing and part of the 3D pro-

cessing tasks are carried out at the clients. The architecture is capable of

transmitting and processing large volume of RGB-D data across the network

so as to reconstruct dynamic large 3D scenes, which are synthesized by seam-

lessly fusing multiple video streams acquired by different cameras. Based on

the designed client-and-server architecture in our RGB-D camera network, the

proposed system can bring users into the same, large reconstructed environment

by merging geographically separated 3D captured scenes.

4. To achieve a realistic mirror rendering, the proposed system uses eye tracking to

capture the viewpoint of the user, and simulate the mirror effect by tracing light

rays from the viewpoint to the reconstructed 3D scene after reflecting off the

reflective surface. To address the limited field of view issue from a single camera,

a calibrated RGB-D camera network is built to provide richer 3D information

for reflective scenes rendering. The proposed system is demonstrated through

a series of experiments to show the accuracy of the calibration and the quality

of the virtual mirror rendering. To the best of our knowledge, the proposed

system is the first to render real-time mirror-like reflective scenes from real 3D

data in large environments.
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1.3 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 reviews previous

works of multi-camera calibration, virtual mirror simulation and telepresence. In

Chapter 3, I describe in details the proposed system which includes sphere center

detection, pairwise camera calibration, and the simultaneous optimization for the

RGB-D camera network. A thorough comparison of different view transformations

and incorporate a global optimization procedure in refining the results is provided.

In Chapter 4, I describe the proposed framework of rendering reflective scenes on a

virtual curved mirror in the reconstructed 3D environment by our calibrated RGB-D

camera network. The Ray tracing technique to render correct dynamic scenes on

virtual mirror surfaces is utilized. In the following section, an application based on

remote 3D interaction in our RGB-D camera network system is implemented. Finally,

the dissertation is concluded and the future work is discussed in Chapter 5.

Copyright c© Po-Chang Su, 2017.

10



Chapter 2 Literature Review

In this chapter, we review previous works related to our proposed physical scene

capture and rendering system. The works are categorized into three areas: multi-

camera calibration, virtual mirror rendering, and telepresence.

2.1 Multi-Camera Calibration

Extrinsic calibration requires a calibration object visible to different cameras in

order to establish correspondences. For color camera calibration, commonly used

calibration objects include planar checkerboards [19, 40–42], laser pointers [43–45],

circular patterns [46, 47], planar mirrors [48], and other custom-made objects [49].

None of these calibration objects work for depth sensors as they rely on distinctive

colors or texture patterns that are not observable to depth sensors. Additionally,

they require a dense camera network to obtain accurate camera extrinsics. As such,

their calibration procedures tend to be time-consuming and are unable to restore the

calibration rapidly in a volatile environment, where cameras may be added, moved,

or removed. Instead, objects with significant depth variations need to be used to cal-

ibrate depth sensors. For example, a planar calibration pattern with holes were used

in [50]. Planar objects were also used by Herrera et al. who utilized the four corners

of the calibration plane [51]. Liu et al. instead used a moving stick with one end

fixed for RGB-D camera calibration [52]. A common drawback of these approaches is

that the sharp depth edges along these objects usually have significant measurement

noise on the depth images. Such noise can lead to erroneous correspondences across
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different views.

In [6], the authors of [51] improved their earlier scheme by using the planarity

constraint defined based on the corners of a checkerboard plane. The use of planar,

instead of point, features alleviates the problem associated with depth discontinuities.

Similar approaches could also be found in [53] and [54], both of which used planarity

constraints to detect the correspondences between the depth images. However, the

calibration accuracy is still poor due to the low spatial resolution of depth cameras.

To improve the accuracy, Shim et al. used the corresponding 3D positions, rather

than 2D features, to optimally calibrate multiple RGB-D cameras [23]. Specifically,

they identified the two major sources of depth measurement error to be the changes in

scene depth, and the amount of captured infrared light. Based on these two factors,

they constructed an error model to optimize the calibration results. On the other

hand, the authors did not address the issue of limited common scene features when

the cameras are sparsely spaced.

Calibrations without using any specialized reference objects or patterns have also

been studied [55–57]. In [55], silhouette extracted from a person was used for cal-

ibration. In [56], Carrera et al. calibrated a robotic camera platform by detecting

invariant SURF feature correspondences across different views. In [57], the extrinsic

was estimated based on point correspondences established from the unstructured mo-

tion of objects in the scene. These methods typically have lower precision than those

based on reference objects due to imprecise knowledge of the unknown scene features,

which can lead to erroneous correspondences from different viewpoints. In [58], Li et

al. proposed a method to calibrate multiple cameras based on users joint positions.
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The calibration process can be accomplished by aligning skeleton data across different

camera views. However, their system has the difficulties of fusing noisy skeleton data

from wide-baseline camera network setup.

Besides calibration objects, another key difference between RGB-D cameras and

color cameras is the availability of both color and depth information in RGB-D cam-

eras. Appropriate fusion of multiple data channels can potentially achieve more

accurate depth measurements and extrinsic calibration [22,24,59]. Prasad et al. first

demonstrated depth resolution enhancement through color and depth registration by

using a novel system with a 2D sensor, a 3D sensor, and an image multiplier [59].

In [22], reference depth images generated by a pair of stereo cameras were used to

calibrate a Time-of-Flight (ToF) depth sensor. The depth image quality can also be

improved by utilizing both active and passive depth measurements. Hansard et al.

used 3D projective transformation to calibrate both the ToF and color cameras [24].

The geometric relation could then be found by aligning range images with parallax

reconstructions.

With the advent of low-cost commodity RGB-D cameras, there are now software

libraries that can easily align the depth image to the color image for a RGB-D cam-

era [60]. However, a common assumption of all these methods is a close baseline

among different cameras so that the transformation among different views can be

easily accomplished. Based on [60], the works in [27,37,39] calibrated a RGB-D cam-

era network to reconstruct 3D objects. Nevertheless, none of them can accurately

reconstruct an entire 3D scene including static background and dynamic foreground

as they utilized checkerboard and iterative closest point algorithm to align dense

13



point clouds of foreground objects. The reconstructed scenes would be misaligned

based on their proposed methods.

Increasingly, the topic of calibration of wide-area networks of sparsely-spaced cam-

eras has been investigated [21, 61–63], though the majority of the techniques require

special equipments and image features. Kuo et al. used GPS position and images

taken by mobile devices to calibrate a fixed camera in a camera network [21]. Ly et al.

utilized image of lines to improve the calibration results for multiple cameras with only

partially overlapping fields of view [61]. In [62], an active self-calibration of a multi-

camera system scheme was proposed to solve the problem of non-overlapping views

and occlusion by automatically rotating and zooming each camera. A probabilistic

model was used to find the appropriate relative pose during extrinsic calibration.

In [63], the authors used large planer scenes such as the floor or ceiling to calibrate

cameras with disparate views. The use of pan-tilt-zoom cameras or special scene

features limits the types of applications where these techniques can be deployed.

Recently, there have been a number of works using spherical objects for multi-

camera calibration [7, 38, 64–66]. In [65, 66], the authors have shown that using a

spherical object for calibration could produce better results than using the tradi-

tional checkerboard as in [54]. However, the comparisons were done only for cameras

separated by a narrow baseline. Yang et al. setup a dense camera network to recon-

struct the 3D scene in a small area [64]. The ICP algorithm is utilized to optimize

camera extrinsics. However, the comparisons were done only for cameras separated by

a narrow baseline. Yang et al. reconstructed the 3D scene in a small area by a dense

camera network [64]. The ICP algorithm is utilized to optimize camera extrinsics.
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However, the proposed method did not demonstrate live captured 3D data including

background can be well extrapolated in large environments. For sparse camera net-

works, Ruan et al. used a spherical object and estimated the location of the sphere

center for extrinsic calibration of multiple depth cameras [38]. However, the sphere

detection was not very robust because color information was not used. Furthermore,

as the cameras were not time-synchronized, the technique was labor intensive as the

sphere needed to be physically moved and affixed to different locations in order to

capture enough data for calibration. In [7], we independently proposed a RGB-D

camera network calibration scheme based on sphere center detection. Using both

the color and depth channels, we developed an automatic noise removal algorithm to

robustly identify the sphere and estimate its center location. As our cameras were

time-synchronized, a user could simply waive the sphere in the environment once

and the data collection process would be done. A drawback of [7] is in its reliance

on the simplistic rigid transformation based pairwise camera registration, which is

inadequate for non-pinhole cameras and can lead to error accumulation. In this

dissertation, we extend the scheme in [7] by first using a more flexible view transfor-

mation function to minimize error in registration and then introducing a simultaneous

optimization framework to further refine the extrinsic parameters. Comparison of the

proposed scheme with our earlier work and other state-of-the-arts schemes discussed

here can be found in Section 3.4.
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2.2 Virtual Mirror Rendering

Current virtual mirror rendering systems commonly mount a camera near to the

display [67–73]. A system that can allow customers to try on virtual customized shoes

combining with captured images to increase realistic effects was presented in [67–69].

Jimeno-Morenilla et al. proposed a stereoscopic vision system for users viewing 3D

virtual shoes on their feet [68]. Yang et al. developed a two-stage object tracking

method to align virtual shoes with moving feet accurately [69]. Similar systems can

be found in [70–73], where people can virtually try different clothes and handbags

based on virtual mirror rendering on a display. Saakes et al. proposed an interactive

system that users can design and put on the virtual clothes on-the-fly in front of

the virtual mirror [72]. A projector was used to project the virtual clothes on the

users to achieve high-fidelity feedback. In [73], the authors proposed an intelligent

virtual mirror system to customize users clothes based on fashion trend and personal

preference. The system is capable of learning users preference of wearing and giving

recommendations to each individual. However, all of the aforementioned systems

cannot generate virtual view with arbitrary perspective for users. To provide free

viewpoint functionality, the authors proposed a system that allowed a user to view

himself or herself in 360 degree [29, 74, 75]. Multiple RGB cameras were mounted

around the user for capturing the movement of human body. However, the back-

ground was not rendered on the display, which lacked the essential characteristic of

a mirror where the reflective scenes changed based on the user’s viewpoint.

Recently, Ju et al. used multiple RGB-D cameras placed in front of a viewer to
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render reflections in a virtual plane mirror [3]. While their proposed system can render

reflective scenes based on the viewer’s perspective, the rendering results on the facial

part is poor due to the misalignment of camera views and lack of surface meshing.

Also, for a specular surface with arbitrary geometry, there are few viewpoints at which

a single perspective image can be obtained [76]. Specifically, light rays emanating

from a scene point may be reflected through multiple paths towards the viewpoint,

resulting in a so-called multi-viewpoint image. For specific configurations such as a

spherical mirror, the center is the only point that can produce a single viewpoint

image. As such, using a virtual pinhole camera at the viewpoint to render the mirror

image as described in [3] is no longer applicable.

Aside from planar mirror systems, curved mirror surface has also received wide

attention among researchers. Techniques to render curved mirror reflections can be

generally classified into two groups: graphics based visualization and light field imag-

ing. The former focused on rendering realistic 2D views of curved object reflection

of well defined 3D scenes (i.e. geometry, reflectance properties and textures) [77].

The later built novel sensing devices to enhance the capture space by using convex

shape mirrors to widen the field of view [78], such as the applications in robotic

navigation [79] and omni-directional stereo [80]. Different from previous work, this

dissertation has two unique research goals: first, we aim at simulating the visual ef-

fect of curved surface reflection rather than using a real curved mirror for capturing;

second, instead of using handcrafted 3D models for visualization, we utilize sensing

devices to acquire the real world scene as the input source for dynamic curved mirror

view rendering. These two key features can benefit many VR and AR applications,
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such as teleconferencing, where users can perceive each other in a broader environ-

ment with real world illumination [81].

It is not an easy task to achieve curved mirror simulation in the real scene. Com-

pared with the planar mirror, curved mirror has different optical properties. The

reflection largely depends on the surface curvature, which does not yield perspective

view transformation [82, 83]. To obtain correct reflective scenes, the authors treated

each point of the curved mirror as a small planar mirror tangent to the surface

and generate independent reflected rays [84–90]. High-fidelity rendering for reflective

scenes with curved surfaces can be achieved by using thousands of triangle meshes.

In particular, ray tracing based methods can be adopted and often used for mixed

reality applications [88–90]. However, a limitation of those works is the failure of

considering user’s viewpoint change in a dynamic environment. Miguel et al. pro-

posed a forward projection method to efficiently estimate a vertex’s reflection point

on the quadric surfaces [91]. However, they only demonstrated reflective scenes can

be accurately rendered on a sphere shape surface. The global scenes in these works

are either handcrafted 3D model or small area captured by a single camera. Their

proposed systems cannot generate large-scale real scenes captured by RGB-D cam-

eras – the captured data are often noisy with missing surfaces and the alignments

are imperfect due to uncertainty associated with camera pose. The addition of the

capturing subsystem also presents significant challenges in maintaining the real-time

performance as demanded by an interactive mirror experience. The proposed virtual

mirror system is capable of simultaneously capturing and rendering dynamic reflection

from a virtual arbitrarily-shaped curved mirror under the real-time constraint. The
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multiple well-calibrated RGB-D cameras can cover the entire physical environment

for accommodating the movement of the viewer and a significantly convex mirror.

2.3 Telepresence

Current multimedia technologies are transforming the way we communicate and

interact in our daily routines. Video chat is a typical example that allows people

to have remote conversations and be able to see each other together with the sur-

rounding environments. While 2D video is efficient for remote conversation with the

basic communication requirements, it may not be sufficient for activities which de-

mand high engagement and interaction, such as virtual classroom [92] or immersive

gaming [93]. As an emerging technique, telepresence aims to integrate spatial immer-

sion and virtual realty to create a perception of being physically present in a shared

non-physical environment. To date, many telepresence systems are proposed to offer

immersive and realistic experiences to end-to-end users. For example, a telepres-

ence robot is designed to enable teachers to deliver motivating lectures remotely [94];

dynamic scene generation based on perspective views can make the co-space experi-

ence more engaging and absorbing [95]. To enhance the awareness of co-location of

participants in the same virtual space, audio-visual data and other stimuli are often

employed. Therefore, high-speed video transmission and real-time data visualization

are crucial to provide immediate feedback [67, 96, 97] for remote 3D interaction sys-

tem. However, creating the visual perception that dynamically synthesizes realistic

virtual environment from the first-person view in real-time has not yet well addressed.

While current telepresence systems produce reasonable 3D interactive experience,
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there is still a great potential of improving the rendered visual effects to deliver a

more realistic sense of face-to-face interaction. Some of existing work only provide a

3D image with a fixed viewpoint on a 2D display without the ability to offer arbitrary

perspective view [98–100]. Such limitation can significantly affect full interaction be-

tween users. Early attempts on incorporating user’s viewpoint in telepresence systems

only put the users in graphics-rendered virtual environment instead of putting them

in real scenes [92, 101–103]. To implement a telepresence system that can render

real 3D scenes, Maimone et al. built a RGB-D camera network for capturing and

reconstructing 3D data [95]. The rendering of visual contents changes based on the

viewer’s perspective. However, the proposed system only reconstruct a partial region

of the environment and users from different places cannot be put into the same en-

vironment. To achieve high-quality 3D telepresence, either a cluster of cameras or

3D projectors can be used for the environmental setup [100,104–106]. However, such

hardware installment is expensive and not feasible for general users. By incorporating

a network of sparsely placed commodity RGB-D cameras, the proposed 3D telepres-

ence system can reconstruct large dynamic 3D scenes for geographically separated

users without compromising to low quality output. With the prevalence of 802.11ad

wireless standard, the data transmission in the proposed system can be carried out

in real-time.

Copyright c© Po-Chang Su, 2017.
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Chapter 3 RGB-D Camera Network Calibration

The use of multiple RGB-depth cmaeras can capture a wider field of view for

acquiring more dynamic 3D information in large environment. In this chapter, we

describe in details our RGB-D camera calibration system which includes sphere center

detection, pairwise camera calibration, and the global optimization for the camera

network. A thorough comparison of different view transformations and incorporated

the simultaneous optimization procedure in refining the results is provided.

3.1 Overview

The block diagram in Figure 3.1 shows the basic architecture and data flow of

our proposed framework. Each RGB-D camera is controlled by a client process. The

server process, which can be run in the same computer as the clients or a separate

computer on the network, collect all necessary information from the clients to compute

the extrinsic parameters. All the client processes and the server process are time-

synchronized using the Network Time Protocol (NTP) with time drift less than 4

milliseconds [107]. While the accuracy of the extrinsic parameters could be measured

with respect to ground-truth data, the ultimate test is on how well they can contribute

to the 3D reconstruction of real-world scene beyond the ground-truth set. As such, our

architecture is designed with this goal in mind and supports real-time 3D rendering

– color and depth images are compressed and streamed to the server, which can use

the previously computed extrinsic parameters to perform 3D reconstruction in real

time. Our framework applies to camera networks consisting of depth cameras and/or
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Figure 3.1: This figure provides an overview of our RGB-D cameras calibration frame-
work for real-time 3D rendering in a client-server distributed architecture. On the
client side, each of the Kinect camera clients produces a pair of color and depth im-
ages. The sphere center detection module uses these raw data to estimate the location
of sphere center. During calibration, the estimates are sent to the server, which pro-
duces first an rough estimate of the extrinsic camera matrices and the sphere center
locations in the world coordinate system. The results are then refined by a simulta-
neous optimization process to produce optimal extrinsic matrices, which are used to
produce real-time rendering results.

co-located depth-color cameras such as Kinect cameras. The main functional blocks

in Figure 3.1 are as follows:

Sphere Center Detection: The 3D locations of the center of a moving sphere are

estimated from the color and depth images. They are used as visual corre-

spondences across different camera views. There are two reasons for choosing a

sphere as a calibration object. First, it is suitable for wide baseline: any small

surface patch on the sphere is sufficient to estimate the location of its center.

As such, two cameras capturing different sides of the sphere can still use the

sphere center as a correspondence. Second, instead of using the error-prone
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point or edge features as correspondences, depth measurements of the sphere

surface are mostly accurate and the spherical constraint can be used to provide

a robust estimate of the center location. This step is independently executed at

each camera client. The details of the procedure can be found in Section 3.3.1.

Pairwise Calibration: To provide an initial estimate of the extrinsic parameter of

each camera, we perform pairwise calibration to find the view transformation

function from each camera to an arbitrarily-chosen reference coordinate sys-

tem. The server receives from each client the estimated sphere center locations

and the associated time-stamps. Correspondences are established by grouping

measurements from different cameras that are collected within the time synchro-

nization error tolerance. Then, a system of equations with all correspondences

as data terms and parameters of the view transformations as unknowns are

solved at the server to provide an initial guess of the transformation functions.

Details of this step can be found in Section 3.3.2.

Simultaneous Optimization: The estimated view transformations are then used

to bootstrap a pseudo bundle adjustment procedure. This procedure simulta-

neously adjusts all the extrinsic parameters and the true 3D locations of the

sphere center so as to minimize the sum of 3D projection errors across the entire

network. Details of this step can be found in Section 3.3.3.
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3.2 Problem Formulation

Before we delve into the details of each component, this section formulates the

problem of extrinsic calibration of RGB-D camera network and define all the symbols

used in this dissertation. A RGB-D sensor consists of a color camera and a depth

camera. We first formalized the color camera projection process. Using the coordi-

nate system at the optical center of the color camera as reference, we denote a 3D

scene point as Xc = [Xc, Yc, Zc, 1]T . The subscript c indicates the usage of the color

camera’s coordinate system. The color camera project process is modeled by a 3× 3

camera projection matrix Kc and a scalar distortion function Lc(·). Specifically, Xc

is projected onto the image coordinate xc on the color camera plane as follows:

xc = Kc · Lc

(∥∥∥∥[Xc/Zc

Yc/Zc

]∥∥∥∥)
Xc/Zc

Yc/Zc

1

 (3.1)

The camera matrix Kc is defined as follows:

Kc =

fx γ ox
0 fy oy
0 0 1

 (3.2)

based on the intrinsic parameters of the camera including the focal lengths (fx, fy),

the principal point (ox, oy), and the skew factor γ. Lc(·) is a scalar distortion func-

tion that models the radial distortion of the lens, typically expressed as a sixth-degree

polynomial [108]. Methods to obtain these intrinsic camera parameters are well doc-

umented [40].

The depth camera model projects the 3D scene point Xd = [Xd, Yd, Zd, 1]T with

respect to its local coordinate system to two components: the 2D image coordinates

xd = [xd, yd, 1]T and the depth measurement zd. For the 2D image coordinates, the
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projection process is similar to that of the color camera as described in Equation

(3.1):

xd = Kd · Ld

(∥∥∥∥[Xd/Zd

Yd/Zd

]∥∥∥∥)
Xd/Zd

Yd/Zd

1

 (3.3)

with its own camera matrix Kd and distortion function Ld. The depth measurement

is related to the actual depth based on the following model:

zd =
1− α1Zd

α0Zd

(3.4)

where α0 and α1 are the parameters that correct depth measurement [109]. To fuse

the color and depth information, the color camera and the depth camera need to

be calibrated in order to obtain the transformation Pd between the two coordinate

systems:

Xc = PdXd (3.5)

Pd is pre-computed using the method in [110].

Consider a network of m RGB-D cameras {C1, C2, ..., Cm}. The goal of the

extrinsic calibration is to transform between the local coordinate system of each

camera and an arbitrarily chosen world coordinate system. Without loss of generality,

we choose the coordinate system of the color camera C1 to be our world coordinate

system. To allow a broad range of extrinsic transformations, we consider the following

formulation of the mapping between the 3D point Xw in world coordinates to the 3D

point X
(j)
d in the jth local depth camera coordinates:

h(X
(j)
d ) = PjXw for j = 1, . . . ,m. (3.6)

Pj is the extrinsic matrix for the jth depth camera and h(·) is a data-independent fea-

ture mapping that can introduce higher order terms to provide a potentially better fit
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of the data. The specific types of Pj and h(·) tested in this dissertation are described

in Section 3.3.2. The usages of Equation (3.6) in analysis and synthesis are different.

During the analysis stage, we have multiple observations X
(j)
d from different cameras

of an unknown 3D point Xw. The goal is to estimate P−1j h(·) so as to minimize

the overall discrepancies after projecting the image points onto the same world co-

ordinate system. During the synthesis stage, we reverse the above process by using

the estimated P−1j h(·) to project a known 3D point Xw onto each local coordinate

system. If the mapping P−1j h(·) is not invertible, its Moore-Penrose pseudoinverse,

denoted as h†(Pj·), will be used. For example, we can compute the color information

by relating the local 3D point X
(j)
c in the jth color camera coordinates to Xw using

the following formula:

X(j)
c = P

(j)
d h† (PjXw) for j = 1, . . . ,m. (3.7)

Equations (3.1), (3.3), (3.4), (3.6), and (3.7) altogether describe the relationship

between an image point (x
(j)
c ,x

(j)
d , z

(j)
d ) in each of the RGB-D cameras and a 3D scene

point Xw in the world coordinate system. The problem of extrinsic calibration can

now be formulated as follows: using multiple Xw and their corresponding camera im-

age points {(x(1)
c ,x

(1)
d , z

(1)
d ), . . . , (x

(m)
c ,x

(m)
d , z

(m)
d )} to optimally compute the extrinsic

matrices Pj for j = 1, 2, 3, . . . ,m.
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Figure 3.2: Sphere center detection in a camera network

3.3 Proposed Method

3.3.1 Sphere Detection by joint color and depth information

The prerequisite for solving the extrinsic calibration problem as described in Sec-

tion 3.2 is to establish the correspondence between an image point from each camera

and a 3D point in the physical space. Our proposed system uses the center of a

spherical calibration object as the target 3D point for calibration. Figure 3.2 illus-

trates a sphere in the camera network and Figure 3.3 shows our sphere detection

process. While the sphere center is not directly visible to any camera, the spherical

constraint implies that the observation of a reasonably-size surface patch from any

direction can be used to deduce the location of the center. In this section, we describe

the algorithm in identifying the calibration object and estimating its center from the

captured color and depth images.

To facilitate the detection of the sphere in the color channel, it is painted with

a highly distinctive color (see the top row of Figure 3.3). To minimize the effect
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 3.3: Sphere Center Detection: each column shows the process at a different
camera in the network. The top row images 3.3a-3.3e are the input RGB and depth
images. The middle row images 3.3f-3.3j show the results of detected sphere regions
and the bottom row images 3.3k-3.3o represent the initial detected spheres in 3D with
the red dots indicating the estimated sphere centers.

of varying illumination, we first convert the RGB image into HSV color space and

detects the specific color using a pre-trained Gaussian mixture model classifier in the

hue-saturation space. The real-time detection of the sphere is further aided by using

a simple background subtraction, and focusing the color search within the foreground

region.

The detected color pixels of the sphere are then mapped to the corresponding

28



depth pixels based on the intrinsic alignment between the two modalities as stated

in Equation (3.5). Combining the spatial coordinates and the depth value, we can

invert Equations (3.3) and (3.4) to obtain the local 3D coordinates of the detected

sphere surface points. As pointed out in Section 1.1.1, depth measurements could

be quite noisy. In order to obtain a robust estimate of the center location based on

these noisy measurements, we apply a RANSAC procedure by iteratively identifying

all the 3D points that satisfy the surface equation of a 3D sphere of a known radius

r̄ [111]. Specifically, we compute the sphere equation, parameterized by A1, A2, A3,

and A4, by carrying out the following constrained optimization:

min
A1···A4

∑
k

(x2k + y2k + z2k + A1xk + A2yk + A3zk − A4) (3.8)

subjected to the constraint:∣∣∣∣ √(A2
1 + A2

2 + A2
3)/4− A4 − r̄

∣∣∣∣ ≤ ε (3.9)

where ε is a pre-defined error tolerance in the radius measurement. The estimated

sphere center is given by (−A1/2,−A2/2,−A3/2). This estimation is highly robust

in our setup for a number of reasons. First, the noisy depth measurements tend to

concentrate around the edge of the sphere. However, this has little effect on the

estimation of the sphere center location as it is an isotropic quantity. Second, we

have chosen a large enough sphere (radius > 100 mm in a 5m × 5m room) so that

the RANSAC procedure typically retains more than a thousand pixels per camera

frame for the estimation. Even with a fair amount of occlusion, we have more than

sufficient data points to solve for the optimization problem which has only 4 degrees

of freedom. The initial detected spheres in 3D with the estimated sphere centers
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Figure 3.4: Pairwise Calibration: Camera 2 to Camera N are aligned to the reference
coordinate (Camera 1)

are shown in Figure 3.3k-3.3o. Repeating the same procedure for n video frames,

we obtain the trajectory {c1, ..., cn} of the estimated sphere centers in the local 3D

space.

3.3.2 Extrinsic between Pairwise Cameras

After the locations of the moving sphere center are detected at each camera,

we can use them as correspondences to estimate the extrinsic parameters between

each camera and the reference camera frame as illustrated in Figure 3.4. The focus

on a pair of camera simplifies the optimization but is likely to be suboptimal. As

such, this step only produces an initial estimate of the extrinsic parameters which

will be later refined in Section 3.3.3. While all cameras are time-synchronized, the

sphere may not be simultaneously visible to both cameras in question. Thus, the

first step is to filter out those frames in which the sphere is visible to one but not

the other. We denote the filtered, time-synchronized trajectories of sphere center
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locations in local 3D coordinates at camera pair Cr and Cq as {C(r)
1 ,C

(r)
2 , ...,C

(r)
n }

and {C(q)
1 ,C

(q)
2 , ...,C

(q)
n }. To keep the calibration effort low, the number of calibration

data points could be quite small so the challenge is to use a flexible transformation

that can generalize well to the entire scene based the limited training data. Existing

approaches almost exclusively focus on using rigid transformation but it is unclear if

there are other types of transformations that might be able to produce better results.

As such, we have experimentally tested a number of different transformations which

are reviewed in the following subsections.

3.3.2.1 Rigid Transformation

The six degrees of freedom rigid transformation is commonly used to describe a

relative camera pose in 3D space. For the camera pair (Cq, Cr), the transformation

is determined by a rotation matrix R(qr) parameterized by the three rotation angles

θx, θy, and θz and a translation vector t(qr) = [tx, ty, tz]
T between the two camera

centers. Putting them in the form of Equation (3.7) with Cr as the world (reference)

coordinate system, we have h(·) as the identity function and the extrinsic matrix as

P−1q =

(
R(qr) t(qr)

0 1

)
(3.10)

To compute each unknown parameter, we require at least n > 6 correspondences.

Our goal is to find R(qr) an t(qr) that minimizes the following cost function:

JRT (R(qr), t(qr)) =
n∑

i=1

∥∥∥C(r)
i − P−1q C

(q)
i

∥∥∥2 (3.11)
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Due to the orthogonality constraint on the rotation matrix R(qr), we use the least-

square based method in [112] by first computing the covariance matrix as follows:

A =
n∑

i=1

[(C̄(q) −C
(q)
i ) · (C̄(r) −C

(r)
i )T ] (3.12)

where C̄(q) = 1
n
·
∑n

i=1C
(q)
i and C̄(r) = 1

n
·
∑n

i=1 C
(r)
i are the respective centroids of

the two correspondence sets. Using Singular Value Decomposition A = USV T , we

can compute the rotation matrix as R(qr) = V UT and t(qr) = C̄(q) − C̄(r).

3.3.2.2 Polynomial Regression

The rigid transformation is sufficient if all sources of intrinsic distortion have

been fully compensated. In practice, there are always residual error and a more

flexible regression model could further minimize the error without overfitting. In this

section, we focus on d-degree polynomial transformation F (qr)(·) to map C
(q)
i to C

(r)
i

for i = 1, 2, . . . , n. We can parameterize the polynomial fitting problem by treating

F (qr) as a matrix multiplication with the extrinsic matrix P−1q , again treating Cr as

the world frame, after a feature mapping function hd(·). The overall cost function to

be minimized is as follows:

JPR(P−1q ) =
n∑

i=1

∥∥∥C(r)
i − P−1q hd(C

(q)
i )
∥∥∥2 (3.13)

hd(·) expands an input 3D point into the products of all cross terms with up to d

coordinates. For example, in the case d = 2, h2(·) is as follows:

h2
(
[x y z 1]T

)
=
[
x2 y2 z2 xy xz yz x y z 1

]T
(3.14)

The corresponding extrinsic matrix P−1q would be a 4× 10 matrix. This matrix has

30 degrees of freedom after removing redundancy based on the use of homogeneous
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coordinates. While a regression function with a higher degree can fit the calibration

data better, it might have problems generalizing to unseen data, especially outside the

vicinity of the sphere trajectory. This problem can be addressed by cross-validation

and we will evaluate and compare regression functions of different degrees in Sec-

tion 3.4.

3.3.2.3 Manifold Alignment

Even without overfitting, non-rigid transformations can produce non-Euclidean

artifacts that can significantly degrade the quality of the 3D reconstruction. As such,

it is important to preserve as much as possible the metric relationship within the data.

Manifold Alignment [8], unlike rigid body transformation and polynomial regression,

can align correspondences across datasets, while preserving metric structures within

each individual dataset. For camera calibration, its flexibility can potentially model

the alignment better than rigid transformation, while preserving Euclidean relation-

ship better than polynomial regression. In this dissertation, we adapt the feature-level

alignment in [8] for our camera calibration problem. Given two valid 3D trajectories

at camera Cr and Cq, the mapping functions (F (r),F (q)) can register the points in

the manifold space by minimizing the following cost function:

JMA(F (r),F (q)) = µ

n∑
i=1

‖F (r)C
(r)
i − F (q)C

(q)
i ‖2+

n∑
i=1

n∑
j=1

W i,j
r ‖F (r)C

(r)
i − F (r)C

(r)
j ‖2+

n∑
i=1

n∑
j=1

W i,j
q ‖F (q)C

(q)
i − F (q)C

(q)
j ‖2 (3.15)
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The first term of Equation (3.15) is the alignment cost between the two trajectories.

The second and the third terms attempt to preserve the local metric relationship

by incorporating the similarity measurements W i,j
r and W i,j

q . Specifically, W i,j
r =

exp(−‖C(r)
i −C

(r)
j ‖2) and W i,j

q = exp(−‖C(q)
i −C

(q)
j ‖2). µ is an empirical parameter

to balance the two parts of the cost function.

To map the manifold alignment representation to our extrinsic matrix represen-

tation, it is easy to see that P−1q =
(
F (r)

)−1
F (q) with an identity feature mapping.

To ensure both F (r) and F (q) are invertible, the formulation in [8] also incorporates

a regularization constraint to enforce a constant volume after the alignment. Unlike

rigid transformation or polynomial regression, m invocations of pairwise manifold

alignment with the reference camera will produce m different transformations at the

reference camera. In order to produce just one transformation at the reference frame,

we modify the cost function (3.15) so that the same transformation is used to simul-

taneously minimize the error with respect to every other camera.

3.3.3 Simultaneous Optimization

In the final stage, we jointly refine all the extrinsic parameters estimated from

the previous steps to produce the simultaneously optimal extrinsic parameters. Our

simultaneous optimization algorithm is based on Bundle Adjustment (BA) [113],

which has been widely used in many 3D reconstruction applications. The goal of

bundle adjustment is to simultaneously adjust the camera parameters and 3D points

to minimize the overall projection error between the observed and expected locations

of the 3D points. In the original formulation of [113], BA was carried out based on
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the estimated 3D points and their 2D projections as follows:

min
Pj ,Xi

n∑
i=1

m∑
j=1

vijd(f(Pj,Xi), x̃ij)
2 (3.16)

where m and n are the total number of cameras and 3D scene points respectively.

The function f denotes the relation that maps 3D point Xi in world coordinate to 2D

image pixel xij by the corresponding projection matrix Pj. The variable vij ∈ {0, 1}

indicates whether the point is visible by camera j. The function d denotes a distance

function on the camera plane.

For our problem, we are interested in minimizing distance errors in 3D space

instead of in 2D, and the obtained optimal extrinsic parameters will be used for our

real-time 3D rendering. We assume that the intrinsic parameters of all camera are

known. The input of for this stage are the m sequences of n 3D sphere center locations

from the m RGB-D cameras: {C(j)
1 ,C

(j)
2 ...,C

(j)
n } for j = 1, 2, . . . ,m. The goal is to

find the n “true” 3D points {C1,C2 ...,Cn} and the optimal extrinsic matrices Pj

for j = 1, 2, . . . ,m that transform these 3D points to the m observed sphere center

sequences. Our pseudo bundle adjustment equation can be written as follows:

min
Pj ,Ci=1,...,n

n∑
i=1

m∑
j=1

vij ‖ h† (PjCi)−C
(j)
i ‖2 (3.17)

Different from the classical BA, our formulation uses the 3D Euclidean distance in the

local camera coordinate system. The minimization problem (3.17) is non-linear and

the standard approach is to use the Levenberg-Marquardt (LM) algorithm [114,115],

which is an iterative procedure to find a local minimum of a cost function. At the

tth iteration step, our adapted LM procedure first computes an estimate of [Ci]t for
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i = 1, 2, . . . , n based on averaging the projections of the data points onto the world

frame using the estimated [Pj]t−1:

[Ci]t =
1∑m

j=1 vij

m∑
j=1

vij[Pj]
†
t−1h

(
C

(j)
i

)
(3.18)

Then, LM updates the estimates of the extrinsic matrices as follows:

[Pj]t = [Pj]t−1 + ∆
(j)
t (3.19)

where ∆
(j)
t is determined based on a combination of steepest-descent and Gaussian-

Newton methods in minimizing the cost function in (3.17) but fixing Ci = [Ci]t

for i = 1, 2, . . . , n. The iteration continues until the reduction in the cost function

becomes negligible. The details of the LM procedure can be found in [115].

3.4 Experiments

The proposed algorithm is agnostic about the type of depth-sensing technologies,

may that be stereo, structured-light or time-of-flight RGB-D cameras. For concrete-

ness, we have chosen to use Microsoft Kinect v.1 structured-light cameras to capture

all color and depth images in the experiments. They are inexpensive, which is an im-

portant consideration to build a large camera network. In addition, recent study has

shown that structured-light cameras provide a good price and performance tradeoff

among different types of depth sensors [116].

The setup of our camera network is shown in Figure 4.3. The camera network con-

sists of 5 Kinect camera sparsely placed in an indoor room of 45.36m2. A client-server

architecture is built for parallel computing and data collection from the cameras.
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Figure 3.5: Overview of our camera network setup.

Each camera is connected to a separate client computer, which is a Wintel machine

with Intel Core 2 Quad Q9650 processor, 8GB of RAM, running Windows 7. The

server is Wintel machine with Intel Core i7-5820k processor and GeForce GTX-1080

GPU, 32.0GB of RAM, running Windows 10. The local network is a 100BASE-

TX ethernet. In practice, our proposed system does not require extra setup effort

or additional equipment. We have tested a multi-camera network using Wi-Fi and

commodity hardware in our laboratory, various classrooms and auditorium in our uni-

versity. During initial calibration stage, each client sends the identified sphere centers

and timestamp information to the server. For online 3D rendering, each client sends

aligned color and depth images with 640× 480 resolution at 30 fps to the server. As

such, static and dynamic objects are captured and reconstructed in real-time. To

ensure the server receives the accurate corresponding frames sent by each camera,

we set up a local NTP time server to synchronize all computers. The time server is

equipped with a GPS Board, which provides a precise PPS (pulse per second) signal
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for time synchronization. After synchronizing with the local time server, system time

for capturing each frame among all computers are within 4 ms offset.

The performance of the proposed system described in Section 3.3 is systematically

measured. A yellow sphere with known radius R̄ is used as the calibration object as

described in Section 3.3.1. We have tested spheres of different radii ranging from

127mm to 203.2mm. While there is no definitive mathematical relationship between

the size of the ball and the algorithm, a larger ball is visible to more cameras and

in general requires fewer video frames for calibration. As such, all the results in

Section 3.3.1 are based on using the sphere with radius R̄ = 203.2mm. The three

approaches of camera view transformation described in Section 3.3.2, including rigid

transformation, polynomial regression, and manifold alignment, were tested. For

polynomial regression, we have tested linear feature mapping feature and two variants

of the quadratic feature mapping: a simplified version (3.14) without the cross terms

and (3.14) itself. These three forms of regressions are denoted as Regression I with

12-DOF, Regression II with 21-DOF, Regression III with 30-DOF, respectively. Each

of these methods is combined with the simultaneous optimization step as described

in Section 3.3.3. To compare these methods with the state-of-the-art, we include

the scheme by Herrera et al. [6] based on their publicly available software. Both

quantitative and qualitative results of calibrations were measured as described below.

3.4.1 Quantitative Evaluation

For the initial calibration, about 1000 RGB-D images are captured for sphere

detection by each camera. The whole calibration process is fully automatic in our
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Table 3.1: Execution performance on our RGB-D camera network calibration

Task Processing time
Sphere center detection 44ms (per frame)

Pairwise calibration 60ms
Global optimization 2.2s

constructed client-server architecture. The speed performance of each task during the

calibration stage is shown in Table 3.1. The total execution time for our calibration

is 47 seconds. The short execution time enables rapid reconfiguration of the camera

network for any target applications. For real-time 3D capture after the calibration,

the pairwise calibration step and simultaneous optimization are no longer needed.

Instead, the color and depth data are locally compressed using motion-JPEG and

transmitted to the server for rendering. The bandwidth requirement for 5 camera is

measured to be 157.4 Mbits per second on average and the rendering speed of the

point clouds from all cameras at the server is approximately 20 frames per second.

Next, we evaluate our sphere fitting algorithm. The goal of the sphere fitting

algorithm is to estimate the location of the sphere center C(t) at frame t based on

the observed 3D depth points Xdi(t) for i = 1, . . . , Dp(t) identified on the sphere

surface. While it is difficult to establish groundtruth for the unobservable sphere

centers, we know the groundtruth radius of the sphere to be R̄ = 203.2 mm. As

such, we can calculate the average deviation from the groundtruth radius of the radii

estimated based on the identified sphere centers:

σ =

√√√√ 1∑T
t=1Dp(t)

T∑
t=1

Dp(t)∑
i=1

(
R̄− ‖Xdi(t)−C(t)‖

)2
(3.20)

300 sequential frames are tested to evaluate the sphere fitting accuracy. The esti-
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Figure 3.6: The 3D projection error of camera 1 for each frame.

mate is unbiased with standard deviation σ equalled to 6.42 mm or 3.15 % of the

groundtruth radius.

After the initial pairwise calibration, the acquired initial extrinsics are then op-

timized by our pseudo bundle adjustment algorithm. To test whether the estimated

extrinsics can extrapolate unseen data, we apply them on a separate testing set of

RGB-D images, which has the 200 detected sphere centers for each camera, to val-

idate the correctness of the calibration. The back-projection error for each camera

is compared across all the schemes. To calculate back-projection error, we use the

pre-computed extrinsic matrices to project the 3D sphere center locations in local

coordinates to the global frame, take the average of the projections from all the cam-

eras, back-project it onto each local coordinate system and calculate the root mean

square error (RMSE). To show that there is no bias in each method, we show the 3D

projection error of camera 1 for each frame in Figure 3.6. As shown in the figure, dif-

ferent curves representing different schemes seldom cross over each other. This shows

that the relative performance among the five schemes stay constant regardless of the
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Table 3.2: 3-d projection errors on validation data

Local Coordinate Herrera [6] Rigid [7] Manifold [8] Regression I Regression II Regression III
Camera 1 2.74 ± 0.23 2.40 ± 0.2 2.24 ± 0.22 1.98 ± 0.19 1.87 ± 0.17 1.80 ± 0.15
Camera 2 2.73 ± 0.22 2.36 ± 0.21 2.01 ± 0.23 2.01 ± 0.15 1.94 ± 0.16 1.88 ± 0.18
Camera 3 4.94 ± 0.54 4.56 ± 0.42 2.29 ± 0.22 2.12 ± 0.2 1.90 ± 0.16 1.85 ± 0.2
Camera 4 2.86 ± 0.22 2.29 ± 0.18 1.56 ± 0.12 1.44 ± 0.11 1.40 ± 0.1 1.49 ± 0.12
Camera 5 1.86 ± 0.17 2.33 ± 0.2 2.27 ± 0.17 2.05 ± 0.19 1.88 ± 0.17 1.84 ± 0.17

Average 3.03 2.79 2.07 1.92 1.80 1.77

Table 3.3: p-value hypothesis testing

Local Coordinate R. III - Herrera [6] R. III - Rigid [7] R. III - Manifold [8] R. III - R. I R. III - R. II
Camera 1 0.0001 0.0001 0.0001 0.0905 0.9996
Camera 2 0.0001 0.0001 0.9998 0.9952 0.9999
Camera 3 0.0001 0.0001 0.0001 0.1302 0.9999
Camera 4 0.0001 0.0001 0.0001 0.1517 0.9989
Camera 5 0.0001 0.0001 0.0001 0.8743 0.9999

location of the sphere. As the plots for other cameras are similar, only the results for

camera 1 are shown in the figure. Table 3.2 shows the mean and standard deviation

of the 3D projection errors of the entire trajectory for each camera-method combina-

tion. Table 3.3 and 3.4 show the p-values and t-values when comparing Regression

III with each the other methods, with the null hypothesis that the two methods

produce similar results and the alternative hypothesis that Regression III produces

better results. The sample size is 40. Based on the recommendation by Fisher [117],

there are very strong evidence (p < 0.001) among the majority of the cameras against

the null hypothesis when comparing Regression III with Herrera [6], Rigid [7], and

Manifold [8]. On the other hand, there are no evidence (p > 0.1) against the null

hypothesis when comparing Regression III with the other two regression techniques.

For the visual alignments, the plots of the sphere movement points in the global

frames are in Figure 3.7. One can see that there are significant misalignment error
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Table 3.4: t-value hypothesis testing

Local Coordinate R. III - Herrera [6] R. III - Rigid [7] R. III - Manifold [8] R. III - R. I R. III - R. II
Camera 1 -17.84 -15.12 -8.56 -1.34 3.32
Camera 2 -15.96 -8.31 3.49 2.59 5.74
Camera 3 -33.34 -33.09 -5.18 -1.13 4.58
Camera 4 -18.56 -16.18 -7.14 -1.03 3.08
Camera 5 -17.37 -14.41 -5.62 1.15 5.75

among trajectories from different cameras in Herrera’s scheme and the Rigid scheme.

The Manifold scheme produces a skewed global frame but appears to produce rea-

sonable alignment. All regression schemes produce similar alignment results, with

minor improvements as the degree of freedom increases. We should caution that

while the testing data are different from the training data, they are all captured in

the same center area where there is a significant overlap among the fields of view

of different cameras. To extrapolate the coverage into areas with little overlap, we

evaluate in the next section the visual quality of captured 3D environment including

static background and moving foreground when the system performs real-time 3D

rendering.

3.4.2 Qualitative Evaluation

In this section, we evaluate the results of our real-time 3D rendering in indoor en-

vironment by RGB-D camera network. Figure 3.8a and 3.8b show the coverage area

from each camera and the merged camera view respectively. One can see that the

center area has a higher density of point cloud than the surroundings. To compare

alignment accuracy among different camera view transformations, we first consider

the reconstruction of the foreground objects near the center of the captured area,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Sphere movement points alignment: (a) Herrera [6]; (b) Rigid [7]; (c)
Manifold [8]; (d) Regression I; (e) Regression II; (f) Regression III.
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(a) (b)

Figure 3.8: Real-time camera view merging in indoor room using Regression I. Field
of view for each camera is rendered in a different color in the left image.

which include a stationary mannequin and a walking person. Two randomly-selected

virtual viewpoints of the mannequin and one viewpoint of the person are shown in

Figure 3.9. Similar to the numerical results in Section 3.4.1, using polynomial regres-

sion produces better alignment on the model’s face and feet than the other methods.

Next, we evaluate the reconstruction quality of the entire indoor scene for each view

transformation method. In Figure 3.10, Herrera’s scheme has significant alignment

problem when extending beyond the center area. Rigid and Manifold schemes pro-

duce similar reconstruction results. All regression schemes have better alignments

(less holes in the reconstructions) but Regression II and III start to introduce non-

linear distortion in the background wall. The reason is the data from the training

set are overfitted by higher degree parameters and cross terms, which can no longer

preserve the geometry of the far-distance objects outside the calibration area. Over-

all, Regression I produce the best reconstruction results in our experiments with the
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Figure 3.9: Comparison of 3D point cloud alignments zoom-in on the specific targets.
From left to the right column: (1) Herrera [6]; (2) Rigid [7]; (3) Manifold [8]; (4)
Regression I; (5) Regression II; (6) Regression III.

minimal amount of misalignment and geometrical distortion.

Copyright c© Po-Chang Su, 2017.
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Figure 3.10: Comparison of 3D point cloud alignments on the indoor environment.
From the top to the bottom (row-major order): (a) Herrera [6]; (b) Rigid [7]; (c)
Manifold [8]; (d) Regression I; (e) Regression II; (f) Regression III.

Figure 3.11: Real-time demonstration of our camera network system in the classroom.
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Chapter 4 Real-time Physical Scene Rendering System

In this chapter, we describe the proposed real-time physical scene rendering system

with multiple RGB-D cameras. The system can render in real-time dynamic 3D scenes

on a virtual arbitrarily-shaped curved mirror. Moreover, we explore the possibility of

using dynamically reconstructed scenes to enhance 3D interactions between people

who are geographically separated.

4.1 Curved Mirror Simulation

To simulate a virtual curved mirror, the simple setup of having a video camera

on top of a monitor and showing the output of the camera on the monitor is clearly

insufficient - the viewpoint is fixed for a camera while the mirror depends on the

position of the viewer. In addition, for a curved mirror surface, light rays emanating

from a scene point may be reflected through multiple paths towards the viewpoint.

Thus, the main challenge of simulating the curved mirror is to render reflective content

correctly on the display depending on the viewers perspective. In order to simulate a

large curved mirror surface that can cope with wide displacement of a viewer, a camera

display system must be able to capture the 3D environment while rendering the new

view based on the viewer’s position. Furthermore, it must be able to accomplish all

these tasks in real-time and with high fidelity, otherwise the virtual mirror system

loses the instant visual feedback required to provide the realism of a mirror.
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Figure 4.1: Overview of our curved mirror rendering framework.

4.1.1 Overview

The major functional building blocks of our virtual mirror rendering system are

shown in Figure 4.1. The system is based on the framework in Chapter 3, a server-

client architecture for calibrating multiple cameras, capturing and rendering physical

scenes in real-time. Our multiple RGB-D camera calibration software collects point

clouds from disparate cameras can be registered into an unified coordinate system. To

provide scalability, each RGB-D camera is connected to a computer served as a client

to collect depth and color information and detect correspondences for calibration. As

such, much of the computational tasks can be executed on client side. Next, the server

receives the data from the clients and then rendering 3D environments and reflective

scene on virtual curved mirror. Each client establishes time synchronization across

the camera network using Network Time Protocol (NTP) [107]. Details of rendering

reflective scene on virtual curved mirror are described in the following section.
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Figure 4.2: Scene reflection on virtual curved mirror

4.1.2 Reflective Scene on Virtual Curved Mirror

The process of generating reflective scene on a virtual mirror is shown in Fig-

ure 4.2. RGB-D information of the environment and 3D position of the viewpoint are

necessary to accomplish this process in a virtual mirror system. The mirror image is

based on reflecting a virtual light ray from the reconstructed 3D scene to our eye. For

example, the scene point A is reflected to the spot A′ on the virtual curved mirror

surface in Figure 4.2.

The method to calibrate RGB-D camera network for 3D scene capture has been

described in Chapter 3. After aligning all the cameras to the same coordinate, the

system proceeds to the rendering phase for virtual mirror rendering. To render re-

flective scenes on a virtual curved mirror, 3D point clouds obtained from the RGB-D
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cameras are triangulated into surface meshes for ray tracing from eye position. To

support real-time rendering, we create surface meshes for each camera separately and

merge them together at the server to avoid expensive mesh refinement processes.

Given a pair of aligned RGB-D image Icj and Idj , each pixel and any two of neigh-

boring pixels in Idj can form 3D triangles. Specifically, each local region consists

of four pixels u1 = (x, y), u2 = (x + 1, y), u3 = (x, y + 1), u4 = (x + 1, y + 1) in

the depth image Idj and can generate two triangles T1 = (Eu1u2 , Eu2u3 , Eu1u3) and

T2 = (Eu2u3 , Eu2u4 , Eu3u4). Here x and y are denoted as the column and row indices

in depth image. E represents triangle’s edge in 3D space. If one of the edges in

the triangle is longer than an empirically defined threshold Et, that triangle will be

discarded. The threshold is determined by the depth of the triangle. If the triangle is

far from the reference camera, higher threshold is defined for checking the triangle’s

eligibility. To colorize triangle meshes, we compute the barycentric point to deter-

mine what percentage for each vertex’s RGB value contributing to the surface in the

triangle.

Since the reconstructed 3D environments may have many missing regions caused

by the occlusions between foreground and background, we pre-capture static back-

ground from each camera to provide more complete triangulated surfaces during ray

tracing process. To further improve the quality of a reconstructed scene, the 3D scene

scanning algorithm can be adopted in [25], a volumetric reconstruction method called

truncated signed distance function or TSDF that can fuse captured point clouds into

a single surface. The TSDF value stored at each voxel is based on the signed distance

towards the closest 3D scene point. The sign of this distance value is based on whether
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the voxel is in front or behind the implicit surface as defined by the local surface nor-

mal. The distance value is truncated as only the voxel values that are sufficiently

closed to the surface are recorded. Given a TSDF structure, we can generate the

surface by first raycasting from the optical center of the virtual camera and traverse

through the voxel structure. A visible surface point is identified when the ray passes

through a zero-crossing region in which the distance values change from positive to

negative. The camera pose of a moving RGB-D camera is estimated sequentially by

aligning the captured 3D point cloud at the current frame with the predictive surface

points obtained from the TSDF structure followed by an Euclidean transformation

corresponding to the last estimated camera pose. The alignment is achieved by es-

timating the rotation and translation based on the iterative closest point algorithm

(ICP), which minimizes the combined point-plane energy for all existing point-pair

between the current frame and the predicted frame. The resulting transformation is

then applied to the TSDF structure so that it aligns with the current frame. After

the alignment, we can then proceed to update the TSDF structure using the cur-

rent frame data. By repeating the previous steps, the 3D surfaces can be accurately

generated.

After forming surfaces from captured point clouds, the eye detector in our sys-

tem tracks the midpoint between the two eyes of the viewer in the color image and

calculates the 3D position based on the depth image. Virtual light rays are traced

from the viewpoint to each rendering position on the curve surface and then reflected

into the physical space. The algorithm then searches all stored triangular meshes and

identifies the one intersecting with each reflected ray as the reflected scene point to
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Figure 4.3: Camera network setup for virtual mirror rendering.

be rendered. As shown in Figure 4.2, the reflective scenes are rendered on a virtual

curved mirror in our system. To obtain precise rendering results, the ray tracing

algorithm on quadratic surface is used for our virtual curved mirror rendering [118].

4.1.3 Experiments

4.1.3.1 Environmental Setup

In our experiments, Microsoft Kinect v.2 cameras are used to capture color and

depth images. The camera network consists of 4 cameras sparsely placed in a medium

sized space 5.2m × 5.4m where background and dynamic foreground objects can be

captured. Figure 4.3 is our camera network setup. The chosen reference camera

tracks viewer’s eye and estimates its 3D position for ray tracing reconstructed scenes.

A client-server architecture is built for data collection from the cameras. Each camera

is connected to a separate computer and send aligned and compressed RGB-D image

data with 960× 540 resolution to a server during the calibration stage and for online
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Figure 4.4: Eye tracking by IntroFace [9]

3D environment and virtual mirror rendering. The total bandwidth for each frame is

about 1.02MB, with 0.96MB for 3D data and 0.06MB for color data. Therefore, the

total data bandwidth requirement is about 4.1MB per frame or 980Mbps at 30fps.

With the prevalence of 40/100 Gigabit Ethernet or even with the latest 802.11ad

wireless standard, our architecture can scale up to more cameras without having any

issue on data transmission. To ensure the server receives the right corresponding

frames sent by each camera, we set up a local NTP time server to synchronize all

computers. We installed a GPS Board at the time server, which can output a accurate

PPS (pulse per second) signal. After synchronizing with the local time server, system

time for capturing each frame among all computers are less than 4ms clock skew,

which is negligible for typical human movements.

Our virtual mirror system is implemented by C/C++. In addition, OpenCV

library is used for 3D image processing and OpenGL library is used for 3D scene

rendering. To render reflective dynamic scenes, we use CUDA to accelerate the ray

tracing algorithm. A viewer’s eye position is tracked by using software IntraFace [9]
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as Shown in Figure 4.4. The hardware setting for the server is Intel Core (TM)

i7-5820k CPU at 3.30 GHz and 32.0GB of RAM. The GPU is GeForce GTX-1080.

4.1.3.2 Calibration Results

To calibrate our camera network, we capture about 250 RGB-D images from each

client and perform pairwise camera calibration. Then, bundle adjustment with 30

iterations is used to optimize the extrinsic parameters of each camera by minimizing

the total 3D projection errors. To evaluate the alignment errors, root mean square

error (RMSE) is used to calculate detected sphere center between the reference camera

and all other cameras in the reference coordinate:

Ep =

√√√√ 1

n

n∑
i=1

[(x̂i − xi)2 + (ŷi − yi)2 + (ẑi − zi)2] (4.1)

where (x̂i, ŷi, ẑi) is the observed sphere center point, (xi, yi, zi) is the estimated

sphere center point, n is the number of sphere center points in the reference camera

coordinate. Since the estimated extrinsic parameters will be used to transform 3D

points from local camera coordinate to the reference coordinate for online 3D ren-

dering, we apply them on another three sets of detected sphere centers to check the

accuracy of our camera calibration. The error analysis result in Table 4.1 showed

that the average of RMSE for each camera pair was under 2.325cm resulting in less

than 0.6% relative error over the entire environment.

4.1.3.3 Reflective Scenes Rendering Results

Figure 4.5 is our reconstructed 3D environment. The curved, green light shiny sur-

face is the virtual mirror surface. Each virtual light ray originated from the viewer’s
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Table 4.1: Alignment error analysis by RMSE

Validation data RMSE (cm) # of frames
Dataset 1 2.325 238
Dataset 2 2.2 245
Dataset 3 2.23 232

Figure 4.5: Reconstructed 3D environment with virtual mirror.

eye position and reflected by the virtual curved surface traces out the reconstructed

scene through a 960x540 image plane. Our CUDA optimized code captures and ren-

ders at, on average, 6.7 frames per second. Our experimental results using different

types of curved mirror surfaces are shown in Figure 4.6, 4.7 and 4.8. To compare

the range of rendering scenes between single camera and multiple cameras, first, the

results by using only one Kinect camera are shown in Figure 4.6. The top row of Fig-

ure 4.6a is the RGB image captured from the reference camera and Figure 4.6b, 4.6c

and 4.6d are the corresponding reflective scenes. The reflective scenes are very limited

due to the insufficient captured 3D information.

By setting up multiple cameras around the environment, we can acquire a much
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(a) (b)

(c) (d)

Figure 4.6: Reflective scenes on different virtual curved surface rendered by only 1
camera: (a) Input RGB image; (c) Ellipsoidal mirror; (c) Sphere mirror; (d) Sandglass
mirror.

wider view on the mirror surfaces. The results by using multiple Kinect cameras with

different viewpoint positions are shown in Figure 4.7 and 4.8. The top rows are input

RGB images and the rest of the rows are reflective scenes. The results showed that

the reflective scenes changed based on the viewer’s eye position detected by the eye

tracker. Convex mirror surfaces are capable of capturing a large environment in a

small rendering surface. While the multiple camera setup enlarges the field of view,

there are still some uncovered ranges that cannot be readily captured, for example,

ceiling and very far distance scenes. For the concave type of mirror shown in the last
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Figure 4.7: Reflective scenes on different virtual curved surface rendered by 4 cameras.
From top to bottom: (1) Input RGB image; (2) Ellipsoidal mirror; (3) Sphere mirror;
(4) Sandglass mirror.
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Figure 4.8: Reflective scenes on different virtual curved surface rendered by 4 cameras.
From top to bottom: (1) Input RGB image; (2) Ellipsoidal mirror; (3) Sphere mirror;
(4) Sandglass mirror.
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row of Figure 4.7 and 4.8, the captured objects in near distance from the camera were

enlarged while the captured scenes in far distance were flipped vertically.

4.2 Application: 3D Telepresence

In this section, an application based on remote 3D interaction is implemented in

our RGB-D camera network. Our real-time scene acquisition and reconstruction sys-

tem enables people to communicate in a 3D environment. The availability to acquire

and render wide-viewed real world with dynamic perspectives to end users provides

realistic interactive experiences. The system is scalable to bring multiple users from

different places into a large reconstructed environment. A series of experiments are

performed to verify the proposed system and demonstrate the potential benefits to

existing telepresence systems with better motivating and engaging effects.

4.2.1 Overview

Our proposed framework for 3D telepresence is shown in Figure 4.9. A camera

network is first calibrated and then used to provide users with dynamically recon-

structed environments based on our proposed scheme in Chapter 3. The scalability

of a camera network is provided by connecting each camera to a computer served

as a client to capture, process and transmit RGB-D data. The server is responsible

for calculating extrinsics between cameras and rendering 3D scenes. The dynamic

target objects from a remote site are merged into the reconstructed environment in

real-time. Details of our proposed framework are described in the following section.
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Figure 4.9: Overview of our 3D telepresence framework.

4.2.2 Scene Reconstruction and Remote Target Fusion

We describe our proposed system that can merge target objects from remote

places into a dynamically reconstructed environment. The camera network calibration

scheme in Chapter 3 is extended to further expand the field of view while maintaining

as few cameras as possible. Previously we assume there is a significant overlap in the

same center area among the fields of view of different cameras. Pairwise calibration

can be carried out smoothly to find the view transformation from each camera to

an arbitrarily-chosen reference camera. However, non-overlapping issues occur when

cameras point to non-central region as illustrated in Figure 4.10. Here we use the

same mathematical notation to denote camera. For each camera Cj in the camera
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Figure 4.10: The camera network with non-overlapping between reference camera C1

and camera C4, C6.

network (j = 1, . . . ,m), if there is no overlapping with reference camera C1, it will

search other cameras that share field of view in the same regions. The closest camera

in physical distance with valid corresponding pairs to Cj is selected and then used to

estimate indirect view transformation between C1 and Cj. After initial calibration,

we optimize camera extrinsics using Equation 3.17 for our camera network.

After camera network calibration, the system starts estimating view transforma-

tion between the reference camera and the camera at a remote location. Our remote

target fusion relies on depth information of planar floor to make the floor for both

places align in parallel. Here we assume floor occupies most of the lower portion of

the captured images. To segment out the floor, first, we calculate the surface normal

of each 3D point based on neighboring 3D points. More specifically, for each pixel

61



Figure 4.11: Flow chart of planar floor alignment

and its neighboring pixels u1 = (x, y), u2 = (x + 1, y) and u3 = (x, y + 1) in the

depth image Idj , we can calculate the surface normal Ns by taking the cross product

of the vectors L1 = V (u2) − V (u1) and L2 = V (u3) − V (u1), where u and v are

the column and row indices in Idj . V (·) is the 3D point obtained by back-projecting

2D image point to 3D space in Equation 3.7.

Next, we classify the surface normals into several groups based on their directions.

Since we know planar floor dominates the lower part of the image, a group that

contains most surface normals must belong to the floor. The initial segment result is

converted into the binary image, which indicates the detected floor as white region.

Then, the flood-fill algorithm is applied to determine the largest connected blob as
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aligning correspondence [119]. Therefore, the corresponding point pairs are built to

align the floors between the reference camera and the remote camera. We downsample

the number of corresponding pairs by taking the first pixel of each n × n block in

the image. The transformation Pm+1 can be estimated by minimizing the distance

between the corresponding pairs [112]. The workflow of the planar floor alignment

algorithm is shown in Figure 4.11. After estimating the transformation for the floor

alignment, a remote target is captured and brought into the reconstructed scene

by RGB-D camera network. At the remote site, the static background mask based

on depth information is used to extract the foreground target from the captured

scene. The RGB-D data of the target is sent over to the server and then rendered to

accomplish dynamic scene reconstruction for remote 3D interaction.

4.2.3 Experiments

4.2.3.1 Environmental Setup

In our 3D telepresence experiments, we use Microsoft Kinect V2 cameras to cap-

ture RGB-D images. The camera network that consists of 5 RGB-D cameras sparsely

placed in a 10.2m × 6.4m space for physical environment reconstruction is shown in

Figure 4.12. Another camera placed at a remote location captures the foreground

target objects. The server is responsible for collecting RGB-D data from all the cam-

eras and rendering the 3D environments. The total data bandwidth requirement for

6 cameras transmitting compressed RGB-D data to the server is 6.1MB per frame

or 1,464 Mbps at 30fps. Same as our virtual mirror system, the server receives the
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(a) (b) (c)

(d) (e)

Figure 4.12: The sparse camera network in the indoor environment. The camera in
(b) faces the non-central region.

data in real-time with the popular 40/100 Gigabit Ethernet, and a local NTP time

server is set up to synchronize all computers for camera network calibration. To

simultaneously provide the results to end-to-end users, we use screen sharing soft-

ware for viewing the dynamically reconstructed 3D scenes. Our proposed system is

implemented by C/C++. OpenCV library is used for image processing and view

transformation of 3D point clouds. For visualization, we use OpenGL library to ren-

der 3D scenes. To achieve real-time performance, the hardware setting for the server

is Intel Core (TM) i7-5820k CPU at 3.30 GHz and 32GB of RAM with powerful

GPU GTX-1080 to accelerate rendering speed. For each client, the hardware setting

is Intel Core (TM) i7-4770s CPU at 3.1 GHz and 16GB of RAM.
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4.2.3.2 Quantitative Evaluation

We evaluate the results of our camera network calibration quantitatively in this

section. First, 5 RGB-D cameras in different poses are sparsely placed to cover the

entire indoor environment. We simulated the non-overlapping situation illustrated in

Figure 4.10. The camera pairs between each camera and the reference camera may

not simultaneously observe ball movement in all the captured frames. During the

initial camera calibration, we capture the 500 RGB-D images with different ball posi-

tions throughout the whole environment. Our neighboring camera searching method

is used to find the initial extrinsics between the camera pairs. Then, the pseudo

bundle adjustment is employed to optimize the extrinsics for each camera in the last

calibration stage. Similar to the alignment testing experiments in Section 4.1.3.2, we

apply the estimated extrinsics on another 5 RGB-D image sequences of sphere move-

ment to validate the alignment accuracy. The root mean square error (RMSE) for

the camera pairs had average of 3.32cm. As a result, the relative error over the entire

captured environment was 0.58%. For remote target fusion, we randomly selected

three different places to align their floors with the reconstructed environment. A

plane fitting algorithm using RANSAC is applied to search a plane that best fits the

given 3D points and the surface normal of the plane can be estimated. The results

showed that the angle difference of the surface normals between each floor and the

reference floor was less than 0.023 degrees. Thus, we can know the floors from the

different places are successfully aligned at the same plane.
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Figure 4.13: The reconstructed 3D environment by our Kinect v.2 camera network.
Each camera view rendered by different color is shown in the bottom of the figure.

4.2.3.3 Qualitative Evaluation

We evaluate the quality of our reconstructed 3D scenes in this section. First,

the top-down view of the reconstructed environment in 3D point clouds is shown in

Figure 4.13. The field of view for each camera encoded by different color is in the

bottom of the figure. From a visual standpoint, there is no misaligned issue in the

overlapping regions - the person and the sphere ball are well-aligned. By merging the

multiple camera views using our calibration scheme, the whole environment can be

accurately generated in real-time. Note that background scenes may be occluded by
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(a)

(b)

Figure 4.14: The results of 3D interactions for the geographically separated users
(a)(b): The remote camera view is shown in the upper right of the figure and each
camera view in the camera network is shown in the bottom of the figure.
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foreground objects in images. Therefore, to further improve the rendering quality, we

pre-capture the static background to fill the missing regions caused by the foreground

objects and perform surface meshing to generate the 3D surfaces. The results of

our reconstructed 3D environments after fusion with the remote target are shown

in Figure 4.14. The camera view at the remote site is in the upper right of the

image. The remote target is naturally merged into the reconstructed environment.

Our system is scalable to bring multiple users from multiple places for remote 3D

interactions.

Copyright c© Po-Chang Su, 2017.
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Chapter 5 Conclusions and Future Work

In this dissertation, I have presented a real-time physical scene capture and render-

ing system with an efficiently calibrated RGB-D camera network. A fast and robust

method for RGB-D camera network calibration using a spherical object has been

proposed to address the issue of finding correspondences for a network of sparsely

placed RGB-D cameras. The proposed 3D sphere center estimation scheme has been

shown to produce a robust estimate of the sphere center trajectory. Compared with

planar calibration objects, our solution is more reliable and requires less overlap be-

tween camera views. Using the observed sphere center trajectories at different camera

views, we have tested four types of extrinsic camera calibrations including rigid trans-

formation, manifold alignment, linear transformation and quadratic transformation,

followed by a customized global refinement based on bundle adjustment. Our results

have shown that linear transformation produced the best results by providing good

alignment in the central view overlapping region and preserving geometric features

in the peripheral area that has limited camera coverage. The proposed scheme has

been implemented using a client-server architecture that enables rapid calibration

and real-time 3D scene rendering.

To simulate a mirror that can reflect physical scenes, I have presented a novel

system for rendering virtual arbitrarily-shaped curved mirror with multiple RGB-D

cameras by using raytracing. The system can collect real 3D information provided

by each camera and generate precise reflective scenes on virtual mirror surfaces in

a large environment. The real-time implementation in our system can generate dy-
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Figure 5.1: Reconstructed 3D physical environment applied to VR device.

namic scenes for users based on their viewpoints. The experimental results have

demonstrated accurate calibration of up to 4 RGB-D cameras and real-time ren-

dering of reflected scenes on different virtual curved mirrors. As an application of

providing realistic interactive experience to geographically separated users, the 3D

telepresence system based on our RGB-D camera network has been designed. The

experimental results have shown that the remote user was naturally and accurately

fused into a dynamically reconstructed environment for remote 3D interaction. With

the ability to transmit and process large volumes of RGB-D data in real-time, the

system is scalable to reconstruct a large-scale 3D scene and bring multiple users from

remote places into the same environment.

For future work, I plan to extend our camera netowrk system to cover an area

as large as an entire floor of the building, and to develop more data-efficient repre-

sentations so as to scale the network to tens and hundreds of cameras. For physical
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scene rendering, I am currently working on a number of extensions of the current

system. First, the rendering quality could be improved through better surface mesh-

ing processes over the aggregated triangular meshes on dynamic foreground objects.

Second, higher efficiency could be achieved through better searching process of where

the reflected rays landed on the 3D scenes. Third, multiple reflections in the case of

concave mirror need to be considered for more accurate rendering. Fourth, multiple

viewers can be supported through the use of individual VR goggle displays as shown

in Figure 5.1. By integrating Virtual Reality with a unique wide-area Kinect camera

network, our system has potential to be a breakthrough in the world of augmented

virtuality as mixed reality.

Copyright c© Po-Chang Su, 2017.
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