
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2011

Single View Modeling and View Synthesis Single View Modeling and View Synthesis

Miao Liao
University of Kentucky, miao.liao@gmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Liao, Miao, "Single View Modeling and View Synthesis" (2011). University of Kentucky Doctoral
Dissertations. 828.
https://uknowledge.uky.edu/gradschool_diss/828

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF DISSERTATION

Miao Liao

The Graduate School
University of Kentucky

2011

Single View Modeling and View Synthesis

ABSTRACT OF DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for

the degree of Doctor of Philosophy in
the Department of Computer Science

at the University of Kentucky

By
Miao Liao

Lexington, Kentucky

Director: Dr. Ruigang Yang, Associate Professor of Computer Science
Lexington, Kentucky 2011

Copyright c© Miao Liao 2011

ABSTRACT OF DISSERTATION

Single View Modeling and View Synthesis

This thesis develops new algorithms to produce 3D content from a single camera.
Today, amateurs can use hand-held camcorders to capture and display the 3D world in
2D, using mature technologies. However, there is always a strong desire to record and
re-explore the 3D world in 3D. To achieve this goal, current approaches usually make
use of a camera array, which suffers from tedious setup and calibration processes, as
well as lack of portability, limiting its application to lab experiments.

In this thesis, I try to produce the 3D contents using a single camera, making it
as simple as shooting pictures. It requires a new front end capturing device rather
than a regular camcorder, as well as more sophisticated algorithms. First, in order to
capture the highly detailed object surfaces, I designed and developed a depth camera
based on a novel technique called light fall-off stereo (LFS). The LFS depth camera
outputs color+depth image sequences and achieves 30 fps, which is necessary for
capturing dynamic scenes. Based on the output color+depth images, I developed a
new approach that builds 3D models of dynamic and deformable objects. While the
camera can only capture part of a whole object at any instance, partial surfaces are
assembled together to form a complete 3D model by a novel warping algorithm.

Inspired by the success of single view 3D modeling, I extended my exploration
into 2D-3D video conversion that does not utilize a depth camera. I developed a
semi-automatic system that converts monocular videos into stereoscopic videos, via
view synthesis. It combines motion analysis with user interaction, aiming to transfer
as much depth inferring work from the user to the computer. I developed two new
methods that analyze the optical flow in order to provide additional qualitative depth
constraints. The automatically extracted depth information is presented in the user
interface to assist with user labeling work.

In this thesis, I developed new algorithms to produce 3D contents from a single
camera. Depending on the input data, my algorithm can build high fidelity 3D models
for dynamic and deformable objects if depth maps are provided. Otherwise, it can
turn the video clips into stereoscopic video.

KEYWORDS: 3D Reconstruction, Single View, Depth Camera, Depth Recovery,
2D-3D Video Conversion

Author’s signature:

Date:

Single View Modeling and View Synthesis

By
Miao Liao

Director of Dissertation:

Director of Graduate Studies:

Date:

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the
University of Kentucky Library are as a rule open for inspection, but are to be used
only with due regard to the rights of the authors. Bibliographical references may
be noted, but quotations or summaries of parts may be published only with the
permission of the author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the dissertation in whole or in part also re-
quires the consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure
the signature of each user.

Name Date

DISSERTATION

Miao Liao

The Graduate School
University of Kentucky

2011

Single View Modeling and View Synthesis

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for

the degree of Doctor of Philosophy in
the Department of Computer Science

at the University of Kentucky

By
Miao Liao

Lexington, Kentucky

Director: Dr. Ruigang Yang, Associate Professor of Computer Science
Lexington, Kentucky 2011

Copyright c© Miao Liao 2011

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Ruigang Yang. He has guided me into this

field, inspired me to pursue my PhD on this topic and helped me on this thesis in

too many ways to enumerate. I could not have reached this point without him.

I also want to give many thanks to my committee members, Dr. Fuhua Zheng,

Dr. Melody Carswell and Dr. Brent Seales, for the time they spent on my thesis

review. I appreciate all of the suggestions and comments. I also want to acknowledge

my co-workers, Dr. Minglun Gong, Jiejie Zhu, Liang Wang, Qing Zhang and Jizhou

Gao, who have contributed to my thesis work.

My deepest gratitude goes to the people who have had such a significant impact

on my life. My parents encouraged me to enter a Ph.D. program in the United States.

They have always given me unconditional support and love. My mother even hid her

rectal cancer from me until the last minutes of her life, just so as not to distract me

from my studies. She must be very happy knowing that I finally earned my degree.

Last but not least, I would like to express my infinite appreciation for my wife and

life mate, Yingxue. She married me when I was a struggling student and accompanied

me through this journey. I am so lucky to have married such an understanding,

supportive and beautiful woman.

iii

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . iv

List of Figures . vi

List of Tables . x

Chapter 1 Introduction . 1
1.1 Motivation and Goals . 1
1.2 A Brief Historical Note . 4
1.3 Single View Modeling and View Synthesis 7

1.3.1 Light Fall-off Stereo Depth Camera 7
1.3.2 Modeling Dynamic and Deformable Objects 10
1.3.3 2D-3D Video Conversion . 12

1.4 Innovations . 15
1.5 Dissertation Outline . 18

Chapter 2 Background and Related Work . 20
2.1 Shape Recovery . 20

2.1.1 Stereo Vision Methods . 20
2.1.2 Shape from X . 28

2.2 Shape Completion . 36
2.2.1 Volumetric Curving . 36
2.2.2 Volumetrical Merging . 44
2.2.3 3D Surface Registration (ICP) 44
2.2.4 Hole Filling . 52

2.3 2D-3D Video Conversion . 53
2.3.1 Optical Flow Estimation . 56
2.3.2 Foreground Extraction . 58

2.4 Discussion . 60

Chapter 3 Light Fall-off Stereo Depth Camera 62
3.1 Method . 63

3.1.1 Depth Recovery for a Pivot Point 63
3.1.2 Estimate a Depth Map for the Whole Scene 65
3.1.3 Practical Approximation . 67

3.2 Error Analysis . 68
3.3 Global Method . 73

3.3.1 Formulation under Energy Minimization 74
3.3.2 Optimization Approach . 75

iv

3.4 Prototype System Setup . 76
3.5 Experiments and Results . 80
3.6 Conclusion . 86

Chapter 4 Modeling Dynamic and Deformable Object 87
4.1 Matching Outlier Removal . 89
4.2 Surface Alignment . 91

4.2.1 Initial Alignment . 91
4.2.2 Warping Between Two Consecutive Frames 102
4.2.3 Warping All Frames Simultaneously 107

4.3 Exception Handling . 109
4.3.1 Occlusion Handling . 109
4.3.2 User Interaction . 111
4.3.3 Smoothing and Refinement . 112

4.4 Experiments and Results . 112
4.5 Conclusion . 115

Chapter 5 2D-3D Video Conversion . 118
5.1 Automatic Pre-Processing . 119

5.1.1 Structure from Motion and Optical Flow Estimation 120
5.1.2 Moving Object Extraction . 121
5.1.3 Perspective Depth Correction 125

5.2 User Interaction . 129
5.3 Depth Propagation . 130
5.4 Results . 132
5.5 User Study . 134

5.5.1 System Usability Study . 136
5.5.2 Result Quality Study . 138

5.6 Conclusion . 139

Chapter 6 Conclusion and Future Work . 141
6.1 Innovations . 142
6.2 Future Work . 144

Bibliography . 149

Vita . 169

v

LIST OF FIGURES

1.1 Baseball game re-exploration in 3D. 2
1.2 An illustration of the light fall-off effect. Left: light energy falls off as the

square of the distance, e.g., the irradiance of a unit area at distance 2r is
one fourth of that at distance r. Right: a real photograph showing the
effect. 8

1.3 The input to my system is range data (1st row) captured by a single camera
at different times, which is simulated with the data shared by [12]. And
the output is a sequence of watertight 4D models (2nd row) reconstructed
from a dynamic object. The 3rd row shows one 3D model in different views. 12

1.4 Turning an image into an stereo image by depth map. Image copyright of
Zitnick [6]. 13

2.1 A pair of stereo images before and after rectification. The first two are
the original images, while the last two are the rectified images. Note
that the corresponding features are on the same horizontal scan line after
rectification. 21

2.2 Illustration of shape from texture. Image is from [83]. 29
2.3 Illustration of shape from shading. Image is from [109]. 31
2.4 Quasiconvexity of shape from focus/defocus. 32
2.5 Visual hull illustration by 2D examples. 37
2.6 Volumetric Reconstruction Using Photo Consistency. Image is from [155]. 41

3.1 The pivot point illuminated by a point light source at the first (left) and
the second (right) positions. 64

3.2 The setup for recovering a depth map for the whole scene. 66
3.3 Estimation error introduced by incident lighting direction changes for sur-

face point q, whose distance to line ST (offcenterness) is x and normal is
N . 68

3.4 Estimation error under different e and ∆r settings. r is set to 100. In
general the larger ∆r, the smaller estimation error E is. 70

3.5 Estimation errors under different ∆r and x settings. r is fixed at 100. . . 71
3.6 Estimation errors under differen r and x settings. ∆r is fixed at 100. . . 72
3.7 Estimation errors under different α and x settings. Both r and ∆r are set

to 100. 73
3.8 Images are captured under multiple lighting conditions. The light move-

ment is carefully controlled to minimize the change of incident directions
on the scene surface. 74

3.9 experimental setup. 76
3.10 Left 2 images: images taken with light at two positions. 3rd image is the

depth map, and 4th image is a view of the recovered 3D model. 80
3.11 A toy house with very fine details. I show its depth in 3D view. 81

vi

3.12 left image is a simple scene with plastic leaves and an apple in it. Right
image is its depth map. Both the leaves and the apple are non-lambertian. 81

3.13 A more complex scene. There are wood, metal,plastic in this scene. Since
I don’t deal with shadow areas, I ignore the pixels below a certain threshold. 82

3.14 Comparison between local method and global method. Left image: there
are two objects in the scene at different depth. The surface of these two
objects are very specular making the result quite sensitive to incident angle
change. Middle image: depth map obtained by per-pixel calculation from
two shaded images only. Right image: depth map processed by global
method from six shaded images. (The parameter λ is set to 0.15 in the
experiment) . 82

3.15 Depth recovered by different sensors. (first row) two sample scenes; (sec-
ond row) 3D plots of the recovered white paper, from left to right, showing
results from Canesta, Z-mini and LFS; (third row) 3D plots of the recov-
ered news paper. The mean depth is normalized to 0.5. 84

3.16 Some snapshots of my real-time system results. The insets show the depth
maps. 85

4.1 The flow chart of my overall algorithm. 89
4.2 Illustration of feature mismatching. Green lines show the correct featuring

matching and red line is the mismatching. The feature matchings are
mapped to vertex matchings on the partial surfaces. 90

4.3 Three points define a triad. 94
4.4 The need for occluded feature interpolation: 1st row from left to right:

frame 16, 17 and 18 of a walking giraffe toy. Note that one leg is completely
occluded in frame 17. 2nd row shows the reconstructed results of frame 17
without and with the occlusion handling. As can be seen in the left image,
the occluded leg is largely distorted. After features are interpolated, it is
corrected in the right image. 110

4.5 Mis-alignment is shown in the leftmost image. I manually add some feature
correspondences on the mis-aligned region in the corresponding images
(middle 2 images). The rightmost image shows that the surfaces are well
aligned with the additional feature matchings. 111

4.6 The comparison of results from different perturbations. As perturbation
amount increases, details are lost. 114

4.7 Six frames (frame 1, 10, 17, 24, 29 and 35 out of all 38 frames) are shown
in this figure. 1st row shows the rendered models. The black dots indicate
the tracked features. 2nd row is the partial meshes constructed from depth
maps. The 3rd row shows the reconstructed 3D models by my algorithm.
And the 4th row shows different views of the 3D model of frame 24. . . . 115

4.8 Frame 3, 5, 7, 11 and 17 out of total 18 frames are shown as an example
here. 1st row shows the color images. 2nd row are the captured depth maps.
The 3rd row shows the partial meshes constructed from depth maps. The
4th row shows the reconstructed 3D models by my algorithm. And the 5th

row shows different views of the 3D model of frame 5. 116

vii

4.9 Three different views of the reconstructed model from frame 5 of the real
data. The watertight model after smoothing is shown on the 2nd row. . 117

4.10 1st and 2nd rows, from left to right: Frame 5, 7, 14 out of total 14 frames
of a deforming shirt. 3rd row shows 3 different views of the 3D model of
frame 5. 117

5.1 The pipeline of my system. 119
5.2 An illustration to compute the color variance ci(pi) at pixel pi in frame

Ii. Suppose pixel pi finds its correspondences p1 in frame I1, p2 in frame
I2, and up to pm in frame Im as shown by the orange arrows, and p1’s
neighboring pixel q1 has the smallest color difference with pi and so on
and so forth; then the cost ci(pi) is the variance of the color values from
pi,q1,q2 · · ·qm. 122

5.3 An intermediate result of the moving object extraction. Given one frame
Ii (upper left image), we can first compute its variance map Ci (upper
right image). Based on Ci, we can mask out the high-variance (bright
in the variance map) parts using graph-cut algorithm to get the initial
segmentation (lower left image). Furthermore, a user can provide only a
few color seeds, e.g., the green color in the grass and gray in the ground,
to remove the unexpected extracted parts and get the final segmentation
result (lower right image). 123

5.4 The illustration of the expanding optical flow. 126
5.5 The unit structure in frame t could be transformed into the 4 shapes in

frame t+1 illustrated on the right hand side. I only make use of the first
two cases to infer the depth change. 127

5.6 The length of the image of a line segment changes when it moves closer to
the camera. The ratio of the image length l1

l2
is inverse proportional the

ratio of the depth d1
d2

. 128
5.7 The segmented results (row 1, left image) is input in the user interface

and treated as predefined depth difference constraints (row 1, middle im-
age). The users need to use depth difference brush to indicate the depth
variation in the rest part of the image (row 1, right image). Generally,
cyan regions are closer than red regions and dark color scribblings are from
segmentation while light color scribblings are from user interaction. The
reconstructed 3D points are marked as yellow (row 2, left image) in the
user interface, and the users need to assign the computed depth value to
undefined regions (row 2, right image). 129

5.8 The results obtained by equal brush labeling along with the assistance
from SFM. The 1st row shows the user labeling on the first and last frames.
The 2nd row shows some frames from the generated stereo video. The 3rd

row are corresponding depth maps. 132

viii

5.9 The effectiveness of perspective depth correction algorithm. The two im-
ages on the 1st row are the first and last frame from a video. The left
image on the 2nd row is the depth map of the first frame and the middle
and right images are depth maps of the last frame without and with the
perspective depth correction respectively. 133

5.10 The scene of stationary camera and static objects will fail the three al-
gorithms in the preprocessing. However, the two labeling brushes: depth
difference brush and depth equivalence brush can still produce similar
visual 3D effect as does Guttmann’s method. Guttmann’s method (left
column) assigns different depth (color coded) to different layers of the
scene. My method (right column) achieves the same effect by applying
the depth difference brush twice. The dark red&cyan scribbling pair in-
dicate the depth difference of the old lady and the young man. And the
light red&cyan pair point out the difference between the young man and
the background. The results from both methods are visually comparable. 135

5.11 The moving object extraction results and its integration into the user
interface. The 1st and 2nd rows show the original images and segmented
result. the 3rd row shows the look of the user interaction. The dark
red&cyan pairs are automatically generated from the segmentation results
and the light red&cyan pairs are marked by user. The 4th row shows the
stereo images from the video. 135

5.12 The average time that the users took under different systems. 137
5.13 The average score that the users gave to videos generated by different

systems. 139

ix

LIST OF TABLES

3.1 Mean square deviation of depth recovered by different range sensors. . . 83
3.2 Mean square deviation becomes larger when angle between incident light

and surface normal increases. 84

4.1 The errors between reconstructed model of frame 1 and the ground truth.
From row 2 to row 5: 1-pixel, 3-pixel, 5-pixel and 10-pixel perturbation.
DimX, DimY, and DimZ are the size of the model in x,y,z dimensions.
Max Dist and Avg Dist are the maximum and average distance between
the result and ground truth. Details are lost when noise increases. 113

5.1 Users’ response to the post-study questionnaires, where UIA refers to
Guttmann et al.’s method and UIB refers to my approach 138

x

Chapter 1 Introduction

1.1 Motivation and Goals

This thesis develops new algorithms to produce 3D content from a single camera.

Presently, imaging technology has been so well developed that taking a picture is as

simple as point-and-shoot. Nevertheless, the recorded images are only 2-dimensional,

due to the loss of depth information during the capturing process. The 2D information

prevents the users from re-exploring the world in 3D on their display devices. Thus,

there is always a strong desire to record and re-explore the 3D world in 3D. To achieve

this goal, current approaches usually make use of a camera array.

However, multiple-camera setup has some obvious disadvantages compared to a

single camera. First, the calibration and synchronization process for multiple cameras

is tedious work and needs to be done every time the cameras are moved to a new

location. Second, the lack of portability makes multiple cameras not practical to carry

around for outdoor capturing activities. Last, purchasing and maintaining multiple

cameras could cost much more money than a single camera.

In other words, a camera array is not the right tool for amateur users to explore

the world in 3D, limiting its applications to lab experiments. This is my motivation

to investigate the new methods that use a single camera to record and build the world

in 3D. My ultimate goal is to enable the amateur users to capture and re-explore the

world in 3D using a hand-held camera. Imagine a future in which we can bring a

1

camcorder to a baseball game and, from the output footage, we should be able to

watch the game from any perspective we want, truly re-experience the ball game in

interactive 3D (figure 1.1).

Figure 1.1: Baseball game re-exploration in 3D.

This is an extremely difficult problem to solve since it is inherently ill-posed. In

this thesis, I am not trying to give a complete solution to the problem. Instead, I have

made a few steps towards the ultimate goal, each of which has its own applications.

The process of image formation (perspective projection) leads to the loss of depth.

If the camera can provide us with color images, as well as depth maps, it will be much

improved. Therefore, in the first step, I designed and developed a depth camera based

on a novel technique called light fall-off stereo (LFS). An LFS depth camera takes a

number of images from a stationary camera as the illumination source moves away

from the scene. Based on the inverse square law for light intensity, the ratio images

are directly related to scene depth from the perspective of the light source. The

LFS depth camera needs as few as two images, does not require calibrated cameras

or light sources, or reference objects in the scene. The LFS depth camera outputs

color+depth images sequences and achieves 30 fps, which is necessary for capturing

2

dynamic scenes.

In the second step, based on the output from the depth camera, I seek to produce a

visually plausible model that deforms naturally, and which is consistent with the input

data. The core idea is based on the assumption that the deformation is continuous

and predictable in a short temporal interval. While the camera can only capture part

of a whole surface at any time instance, partial surfaces reconstructed from different

times are assembled to form a complete 3D surface for each time instance, even when

the shape is under severe deformation. A mesh warping algorithm, based on linear

mesh deformation, is used to align different partial surfaces.

Lastly, I remove the requirement of depth on the camera, which means I can take

any video clips from regular camcorders as my input. The depth information needs

to be inferred with the assistance of user interaction. I developed a semi-automatic

system that converts conventional videos into stereoscopic videos by combining mo-

tion analysis with user interaction, aiming to transfer as much as possible work from

the user to the computer. In addition to the widely-used structure from motion

(SFM) techniques, I develop two new methods that analyze the optical flow, in or-

der to provide additional qualitative depth constraints. With these algorithms, the

user’s labeling task is significantly simplified. A quadratic programming is further

formulated to incorporate both quantitative depth and qualitative depth (such as

those from user scribbling) to recover dense depth maps for all frames, from which

stereoscopic views can be synthesized.

The proposed approach in each step has wide applications in the real world. For

instance, the LFS depth camera provides one more option for the users in addition

3

to the existing depth cameras. The system of step two would enable modeling of

dynamic objects in an outdoor environment. Imagine that you see an interesting

street performer, and use a depth camera to make a surrounding shot. When you

are back home and put the shot into computer, the 3D dynamic models will be built

automatically by the proposed method. Then you can watch the performance from

whichever viewpoints you want.

Given the recent success of 3D movies in Hollywood, there has been a renewed

public interest in stereoscopic videos. Although new contents can be captured by

stereoscopic cameras, or CG contents can be re-rendered in the stereo mode, con-

verting the large collection of legacy monocular movies and videos to stereo remains

labor intensive. The semi-automatic conversion system in the final step points to a

smarter way to convert conventional videos into stereoscopic videos.

1.2 A Brief Historical Note

Before I introduce my dissertation work, let me first present a brief historical note on

how I arrived at my interests.

In 2007, numerous real-time depth cameras were emerging on the commercial

market, thanks to the advancement in both supporting hardware and software. In-

spired by the popularity of the depth cameras, I developed my own real-time depth

camera based on my previous work ”Light Fall-off Stereo” (LFS). LFS takes a num-

ber of images from a stationary camera as the illumination source moves away from

the scene. Based on the inverse square law for light intensity, the ratio images are

directly related to scene depth from the perspective of the light source. Compared to

4

previous reconstruction methods for non-lamebrain scenes, LFS needs as few as two

images, does not require calibrated camera or light sources, or reference objects in the

scene. As the ratio of two images is enough to estimate the depth, the computational

simplicity makes it possible to build a real-time depth sensor using the commodity

hardware. The built depth sensor generates VGA (640 x 480) resolution depth maps

as well as color images at 30Hz.

With existing off-the-shelf depth cameras, many applications became possible.

Compared to the laser scanners, depth cameras capture a surface instead of a scan line

at each instance, making it possible to capture those dynamic objects which cannot

be kept static for a long period of time e.g., human faces. In 2008, by observing the

advantages of the depth cameras, under the guidance of my advisor, I started working

on a project called Self-Completion of 4D (Space+Time) Models, which is supported

by NSF awards. The project aims to building a complete 4D model by capturing a

dynamic scene over time from different locations. The recovered models can be used

in many applications, such as simulations to create realistic virtual environments, to

render special effects, and perhaps simply to allow everyone to enjoy their cherished

moments, such as a baby’s first step, in interactive 3D.

In my first attempt to solve this problem, I tried to extend the traditional methods

of completing rigid objects to non-rigid objects. The trick is to segment a non-rigid

object into piece-wise rigid parts, and apply the rigid methods to the individual parts.

The problem with this method is that not all the non-rigid objects are articulated,

so it is impossible to reasonably segment those objects into smaller rigid parts. Plus,

the intermediate region between two separate rigid parts is not well defined, and it is

5

usually opt to artifacts. Therefore, I proposed a method that deals with deformable

objects and avoids the assumptions on the object’s motion. The result is the first

part of my thesis work.

The success of the 4D reconstruction project inspires me to explore the methods

that could achieve the same results with the output video clips of a regular cam-

corder. However, after reading the literature, I found that it is extremely hard, if not

impossible, to build high fidelity 4D models from videos. The main reason is that

we cannot obtain high quality depth information from monocular videos by existing

state-of-the-art techniques. After realizing this, I dropped my attempt of building 4D

models, and started to investigate the possibilities of a relatively easier task: turning

a monocular video into a stereo video.

As cognitive studies by Koenderink and his colleges [1] show, the human visual

system is more tuned in to depth order and precedence than to absolute depth.

Therefore, accurate disparity values are not needed in order to create convincing

3D viewing experience. In the meantime, Guttmann [2] had developed a system

that semi-automatically converts a monocular video into a stereo video. The system

merely relies on users to provide the depth ordering information of the objects in the

video and propagate the information to every pixel on every frame. In fact, although

high quality depth maps cannot be obtained, some sparse absolute or relative depth

information can be acquired by visual cues that are exhibited by the video. By

observing this, I developed a more sophisticated system that will first automatically

extract any 3D information before asking for user input; thus, the second part of my

thesis work.

6

Since all three parts of this work fall into 3D recovery and reconstruction using a

single camera (depth camera/regular camera), I have coined these collective processed

as single view modeling and view synthesis.

1.3 Single View Modeling and View Synthesis

In this section, I will first introduce the basic ideas behind the LFS depth camera,

and the efforts I made to create a real-time depth sensor. Then, I will briefly provide

a high level overview of the other two parts of my thesis: modeling of dynamic and

deformable objects, and stereo view synthesis from monocular video clips.

1.3.1 Light Fall-off Stereo Depth Camera

Recovering depth information from 2D images is one of the central problems in com-

puter vision. Many different cues in the images have been used, such as stereoscopic

disparity, shading, textures, focus and defocus. The vast majority of these methods

makes a strong assumption that objects in the scene reflect light equally in all di-

rections. Such a diffuse or Lambertian surface assumption is violated by almost all

real-world objects, leading to incorrect depth estimates. Although techniques that

go beyond Lambertian surfaces have been proposed, they typically require precise

calibration of cameras and/or light sources, sufficient surface textures, or reference

objects in the scene.

I exploit a different cue in the image formulation process, namely the inverse

square law for light intensity. As illustrated in Figure 1.2 (left), the intensity of light

observed from a source of constant intrinsic luminosity falls off as the square of the

7

1
2

EE =
4

1
3

EE =
9

Figure 1.2: An illustration of the light fall-off effect. Left: light energy falls off as the
square of the distance, e.g., the irradiance of a unit area at distance 2r is one fourth
of that at distance r. Right: a real photograph showing the effect.

distance from the object. A real example is provided in Figure 1.2 (right), the scene

is illuminated with a flash light, objects further away appear to be darker due to the

fall-off of light intensity over distance. It can be derived that

I(p) =
kp
r2
p

, or rp ∝ 1/
√
I(p), (1.1)

where I(p) is the pixel value of a scene point p, rp is the distance between the

light source and p, and kp is a constant related to the intensity of the light source

and the reflectance and orientation of point p. In fact, in this ideal setup in which

the object is flat with a uniform color, we can almost assume that kp is identical for

all surface points; therefore the pixel values directly provide a qualitative measure of

depth.

However, real-world objects are usually not flat and typically have spatially vary-

ing textures. To deal with these practical issues, we can take an additional image

under a different lighting configuration. The new pixel intensity then is

I ′(p) =
kp
r′2p

(1.2)

8

If we compute the ratio of I(p) and I ′(p), the impact of reflectance cancels out,

making the ratio only related to the depth. Furthermore, if we measure the distance

between the two light positions (i.e., ∆r = r′p − rp), which is very easy to do, we can

compute the scene depth to the light source.

The above formulation, which I called light fall-off stereo (LFS), holds for scenes

with arbitrary bidirectional texture function (BTF), and therefore can be used to

design a practical depth acquisition system with a single camera and a moving light

source. As I will show later, LFS is easier to implement compared to existing depth

acquisition methods for arbitrary BRDF/BTFs. It only needs as few as two images,

making it possible to capture dynamic scenes.

I developed a real-time depth recovery system using Light Fall-off Stereo (LFS).

Based on the formulation above, my system uses a single camera to capture a scene

under two different lighting conditions: one illuminated by a near point light source

and the other by a far one. Per-pixel depth is solved based on the pixel intensity

ratio and the distance between the two lights, without the need for matching pixels.

My system can generate a VGA (640x480) resolution depth map at 30Hz. Quan-

titative accuracy evaluation shows that my system compares favorably to other com-

mercial 3D range sensors, particularly in textured areas. In addition, my system

is made of commodity off-the-shelf components, offering an inexpensive solution to

real-time, high-resolution, video-rate range sensing.

9

1.3.2 Modeling Dynamic and Deformable Objects

Once a real-time depth camera is available in hand, I will use it to build 4D models of

dynamic and deformable objects. Here I don’t stick to a certain kind of depth sensor,

as long as it outputs synchronized color and depth image sequences. Therefore, in

this part of my work, how to generate the best depth maps is not my focus. In this

part, I only focus on how to stitch and merge the existing piecewise surfaces.

Recent advances in camera self-calibration and stereoscopic vision have made it

possible to create high-quality 3D models using a single hand-held camera (e.g., [3]) or

even a community photo collections [4]. However, most of these techniques are limited

to static objects. Typical treatment for dynamic scenes has been widely studied using

an array of surrounding cameras, (e.g., [5,6]). Compared to a single camera, a camera

array is cumbersome, less affordable, and not practical to carry around for outdoor

capturing activities. Using a single depth camera or stereo camera pair to capture a

dynamic scene is a challenging problem since it can capture only the visible part of

a dynamic object at each time instance. Fortunately, the underlying dynamic nature

of the scene can be used to help provide more samples over time. In the simplest

case, if the object is rigid or articulated, this model-completion task becomes the

well-studied Structure-from-Motion (e.g., [7,8]) problem using 3D point registration.

Here, I would like to develop a similar technique for time-varying objects deforming

arbitrarily but predictably, so that visible partial surfaces can be assembled together

to complete a water-tight object surface.

Existing non-rigid Structure from Motion (SFM) techniques (e.g., [9,10]) can only

10

handle small deformation or viewpoint changes. Encouraged by the recent develop-

ment of full-frame range sensors and the rapid progress in stereo matching research, I

expect that color+depth maps captured in the video rate will be practically available

soon. The focus of this part is how to fuse partial deformable surfaces over time

to form a complete model. In general, this deformable model completion task is an

ill-posed problem [10] — the occluded part can be in any shape at any instance.

Fortunately most dynamic cases behave continuously in a short temporal interval as

we observe in the real world, even though this may not be valid in rare cases when

extreme deformation happens under an sudden impulse (such as the popping of a

balloon). Under this assumption, I seek to produce a visually plausible model that is

deforming naturally and consistently with the input.

My entire modeling pipeline can be separated into three steps. In the first step, an

image sequence is captured using a depth camera (or a stereo camera). Each captured

depth map defines a partial surface of a deforming object at each time instance, and

I use the image sequence to locate temporal point correspondences. Those correspon-

dences are then used as anchor points in the second step to warp partial surfaces, so

they become part of the same object surface at the same time instance. Extended

from variational linear mesh deformation approaches [11], I developed a global defor-

mation algorithm, in order to warp all partial surfaces together to their destination

positions in a single step. After that, partial surfaces are assembled together into a

complete watertight surface using a volumetric method in the third step. All surfaces

are also optimized in order to complete missing regions and remove remaining errors

at the same time. Compared with the ground truth deformation data, the experiment

11

Figure 1.3: The input to my system is range data (1st row) captured by a single
camera at different times, which is simulated with the data shared by [12]. And the
output is a sequence of watertight 4D models (2nd row) reconstructed from a dynamic
object. The 3rd row shows one 3D model in different views.

shows that my approach can accurately recover the time-varying 3D shape sequence

of a deforming object (as shown in Figure 1.3).

1.3.3 2D-3D Video Conversion

On the other hand, if we don’t have a depth camera but a regular camcorder, this

means we are given a video sequence without any depth information. I explore the

possibilities to turn these sequences into stereoscopic video pairs, enabling 3D percep-

tion and lifelike viewer experiences (Figure 1.4). As cognitive studies by Koenderink

and his colleges [1] show, the human visual system is more tuned in to depth order

and precedence than to absolute depth. Therefore, accurate disparity values are not

needed in order to create an immersive 3D viewing experience.

The production of filmed (as opposed to CG) 3D content requires either the cap-

12

+

Figure 1.4: Turning an image into an stereo image by depth map. Image copyright
of Zitnick [6].

ture of stereoscopic or multiple-camera content, or the conversion of 2D to 3D con-

tent in post-production. The former has several disadvantages, including specialized

equipment and production pipeline. Conversion technologies, on the other hand, can

be applied to any existing conventional content, inducing older material. However,

despite the conversion advantages, most 3D content today is created by specialized

cameras and not by conversion technologies. A notable exception is the June 2006

release of the movie ”Superman Returns”, which included 20 minutes of 3D images

converted from the 2D original digital footage. It was recently declared that a com-

pany called ”In-Three” may convert all six ”Star Wars” movies to 3D, in a process

that seems to be mostly manual.

13

Although there exists commercial software (e.g. Tri-Def DDD c©) that automat-

ically turns images into stereo ones, the 3D effect is lacking. Understandably, con-

verting a single image or a monocular video into stereo requires knowing the depth

information for every pixel in the scene. Recovering 3D range from a single 2D image

is an ill-posed problem. A universal approach that requires no user interaction will

be extremely difficult, if not impossible, to achieve. The goal of my research is to

reduce the amount of user interaction as much as possible by taking advantage of the

movement in the scene.

Although structure-from-motion techniques (SFM) is an obvious choice and has

been explored in several prior papers [13–15], I introduce two more methods to esti-

mate scene depth. The first is based on the observation that in many follow shots, the

foreground remains in the center of the screen and changes little while the background

changes frequently. The second is based on the observation that as an object moves

towards or far away from the camera, its image size varies accordingly. By analyzing

the optical flow between frames, we can perform automatic foreground segmentation

and determine the relative depth changes of moving objects.

All the analysis based on movement, caused by object motion, camera motion or

both, leads to constraints on the scene depth. For certain videos, these constraints

are enough to automatically obtain a scene depth map from which stereo view syn-

thesis is possible. For more complex videos, or videos with little or no movement,

user interaction is only needed in places where depth cues cannot be extracted au-

tomatically. The user interaction only requires sparse scribbles indicating relative

depth (inequality and equality). Combining the prior analysis through motion and

14

the depth ordering by user interaction, my system can generate dense depth maps

that produce visually plausible 3D stereo images for a variety of scenes and shots.

1.4 Innovations

The overall contribution of this thesis is the accomplishment of those multiple-camera

tasks using a single camera, overcoming the limitations of a camera array. It makes

several solid steps towards the goal of allowing the amateur users to build and re-

explore the world in 3D, using a hand-held camera. It provides some new insight into

these challenging research areas.

In addition to the overall contributions to the level of applications, there are a few

technical innovations that can lead to several publications in the related conferences

or journals.

Light Fall-off Stereo I developed a novel way to estimate depth information from

scenes beyond Lambertian reflectance model. I also developed a global optimization-

based method that uses multiple light variations to further improve the accuracy and

robustness. The effectiveness of LFS is demonstrated by a variety of real-world scenes

exhibiting complex reflectance and geometries.

Real-time LFS Camera I developed a novel depth range system that can generate

a VGA (640x480) resolution depth map at 30Hz. In order to toggle between two LED

lights in a fast and accurate way, I designed a dedicated circuit to control the state of

the LED lights and receive synchronization signals to the camera. I also immigrated

15

the whole computation of the depth map to GPU, achieving real-time performance.

In terms of quantitative accuracy, my system compares favorably to other commercial

3D range sensors, particularly in textured areas. In addition, my system is made of

commodity off-the-shelf components, offering an inexpensive solution to real-time,

high-resolution, video-rate range sensing.

Single View Reconstruction of Deformable Model To the best of my knowl-

edge, I present the first method to generate a complete deformable model using a

single depth camera. This is made possible by two main technical contributions: a

global linear method to fuse all deformable meshes into a complete model, and a

volumetric method to refine the 4D model for hole-filling and smoothing. With the

wider availability of depth sensors, I hope that my approach can eventually push the

continued digitalization of our world toward dynamic scenes.

Global mesh deformation and alignment The alignment between surfaces of

the deformable and dynamic object captured at different time needs not only the rigid

transformation [16], but also laplacian surface deformation [17] controlled by feature

points. Laplacian surface deformation ensures that the surface shape is unchanged

as much as possible, while at the same time, the control points continue to coincide

with their destination positions. However, previous mesh deformation techniques

only address the issue of deforming one mesh at a time, which means that we can

only sequentially stitch different pieces of surface to reconstruct a complete 3D model.

In most cases, sequential alignment may lead to misalignment between the first and

16

the last surface, due to accumulative errors. I proposed to modify the traditional

mesh deformation to align all pieces of surfaces globally and simultaneously, so that

a complete model can be obtained. This research work is already published in ICCV

2009 [18].

Motion analysis I developed two novel techniques that automatically estimate

the 3D information from video sequences. Unlike SFM that requires non-axis camera

movement (e.g., dolly, crane), my techniques can work with arbitrary camera/object

movement, such as camera pan or zoom, which are frequently used in both everyday

video and professional shots.

Intuitive user interface I provide a user-friendly interface that requires users to

label depth relationships other than depth value on the images. My UI design benefits

from the already defined 3D cues by the pre-processing of movement, providing users

with a more intuitive and less labor intensive UI environment. In the case that none of

the 3D cues can be inferred in the pre-processing step, my labeling can still simulate

the direct depth labeling under the same amount of manual work.

Quadratic programming formulation I formulate the sparse to dense depth

propagation as a quadratic programming problem, which could elegantly integrate

both relative (such as layer orders) and absolute (such as that from SFM) depth

constraints.

17

1.5 Dissertation Outline

The remainder of my dissertation is organized as follows:

In chapter 2, I will review the related work in detail. I divide the existing methods

of 3D reconstruction into two categories. The first category attempts to recover the

depth/range information from a single view, which is reviewed in section 2.1. The

output of those methods are piecewise surfaces, or 2.5D models. My LFS reconstruc-

tion method falls into this category. The second category builds the complete 3D

models of real objects directly from the 2D images or from the captured piecewise

surfaces. Those methods that fall into the second category are reviewed in section 2.2.

The proposed method of building 4D models for dynamic objects also belongs to this

category. In section 2.3, I will review the previous work on 2D-3D video conversion,

and discuss the advantages and disadvantages of each method.

In chapter 3, I will introduce the LFS reconstruction method. The basic idea

of LFS will be discussed in section 3.1. Since the practical LFS system is based on

the approximation of the ideal case, an error analysis is conducted in section 3.2.

The results of the error analysis provide us with a guidance to build the real-time

depth sensor. Although a minimum of 2 images are enough to estimate scene depth,

multiple images could be used to generate better depth estimation using the global

approach, which is introduced in section 3.3. The issues of building the real-time

depth sensor from the LFS theory is discussed and solved in section 3.4. And some

of the results are shown in section 3.5.

In chapter 4, I will discuss how to remove the matching outliers in section 4.1

18

before getting into the details of the surface alignment algorithm in section 4.2. Most

of the time, the alignment algorithm will not give us a 100% correct and complete

3D model. There are some more issues at hand. For example, the occlusion handling

and missing feature correspondences need inclusion. I will discuss these issues in

section 4.3. The results and conclusion are in section 4.4 and section 4.5, respectively.

I will introduce my 2D-3D video conversion algorithm in chapter 5. The innova-

tions of my work, automatic motion analysis, intuitive user interface and new formu-

lation of depth propagation, are discussed in section 5.1, section 5.2 and section 5.3,

respectively. Some of the results generated by my system are shown in section 5.4.

Since I build a new 2D-3D video conversion system that aims at reducing manual

work, I conducted a user study to rate its success. The results of the user study show

that my system saves much of their time, while also generating comparable results as

previous methods. The methodology and results of the user study are presented in

section 5.5.

Finally, I will conclude my dissertation work and discuss the future directions in

chapter 6.

19

Chapter 2 Background and Related Work

My proposed framework was motivated by the demonstrated success of previous works

on a variety of computer vision and computer graphics topics. In this chapter, I will

set the context of this dissertation and introduce several related previous approaches.

2.1 Shape Recovery

Depth recovery of an unknown scene from a set of images is one of the oldest prob-

lems in computer vision. One major driving application is autonomous robots, which

need to understand the shape of the scene to navigate throughout. Other appli-

cations include surveillance, reverse engineering, and human-computer interactions.

depth recovery has been and continues to be one of the most active research areas in

computer vision; many methods and techniques have been tried and tested. These

methods vary vastly as to the image features used and the underlying scene repre-

sentation. I review several categories of methods, which are the most widely-used

methods and are most relevant to this dissertation.

2.1.1 Stereo Vision Methods

Stereo vision attempts to infer depth information from images. Although a single

image contains a lot of information about an observed scene, it loses the depth infor-

mation. This is due to the nature of the image formation process, which consists of

a projection from a 3D scene onto a 2D image plane.

20

Figure 2.1: A pair of stereo images before and after rectification. The first two
are the original images, while the last two are the rectified images. Note that the
corresponding features are on the same horizontal scan line after rectification.

Figure 2.3 shows this. With a single 2D image, we only know that a 3D point

lies on the ray that connects the camera center and the the pixel of the point on

the image plane; it is impossible to know which point on this ray corresponds to the

image pixel. If two (or more) images are available, then, the intersection of the two

lines of sight can uniquely determine a 3D point. This process is called triangulation.

In order to reconstruct a 3D point, we must know the corresponding image pixels

between the two images, relative positions and orientations of the cameras (extrinsic

camera parameters) and the relation between image pixels and the corresponding

lines of sight (intrinsic camera parameters).

Although there are several techniques for recovering depth with unknown, or par-

tially unknown, camera parameters [7,19–21], I will limit the scope of this dissertation,

as in many existing reconstruction techniques, to calibrated cases. That is, both the

intrinsic and extrinsic camera parameters are known a priori. The central problem

for stereo vision thus becomes finding the correspondences between two images.

The earliest attempt to solve the stereo problem, by Marr and Poggio, dates back

to 1976 [22]. Since then, stereo matching has been one of the most active research

areas in computer vision. Compiling a complete survey of existing correspondence-

21

based stereo methods would be a formidable task. A large number of new methods

are published every year. However, there are a few excellent survey papers collectively

covering the history of stereo vision. There are two very good reviews of early vision;

the first is by Barnard and Fischler [23] and covers the early 70s and 80s. The second

is by Dhond and Aggarwal [24] and covers the late 80s. More recently, Scharstein

and Szeliski [25] updated us on the current state of art. They also introduced a

taxonomy of two-view, or binocular, stereo algorithms that allows the dissection and

comparison of individual algorithm component design decisions. First I will provide

a more rigorous definition of the binocular stereo problem , and then I will use

the taxonomy from Scharstein and Szeliski to review a number of binocular stereo

algorithms. I will further examine several multi-view stereo methods that use more

than two images.

Binocular Stereo Representation

Most binocular stereo correspondence methods compute an univalued disparity func-

tion d(u, v) with respect to one of two reference images. The term disparity was

first introduced in the human vision literature to describe the difference in location

of corresponding features seen by the left and right eyes [26]. For a 2D feature s in

one reference image, say the left image, its corresponding 3D point is constrained to

be on the line of sight. This lines projection in the other image is called the epipolar

line. Thus the corresponding feature s’ in the right image must be on the epipolar

line. This is the important epipolar constraint which reduces the search space of cor-

responding features to one dimension. In computer vision, input images are usually

22

transformed so that the epipolar lines are aligned horizontally. This process is called

rectification [27–30]. A pair of stereo images before and after rectification is shown

in Figure 2.3. For a pair of rectified images, disparity can be treated as synonymous

with inverse depth, i.e., a large disparity value means that the 3D point is close, a

small disparity value means that the 3D point is further away, and a zero disparity

value means that the 3D point is at infinity.

Given a pair of rectified images, let (u, v) be the pixel coordinates in a reference

image chosen from the pair, say the left image. The correspondence between a pixel

(u, v) in a reference image and a pixel (u’, v’) in matching image is then given as

u′ = u+ d(u, v), v′ = v (2.1)

The goal of a stereo algorithm is then to produce a univalued function d(u, v)

that best describes the shape of the surfaces in the scene [25].

A Taxonomy of Stereo Algorithms

Scharstein and Szeliski [25] proposed a taxonomy based on the observation that stereo

algorithms generally perform (subsets of) the following four steps:

• matching cost computation.

• cost aggregation.

• disparity computation / optimization.

• disparity refinement.

23

Matching cost computation A matching cost is a value indicating how likely two

pixels are to correspond to the same scene point. The three most common pixel-based

matching costs include squared intensity differences (SD) [31–33], absolute intensity

differences (AD) [34], and normalized cross-correlation [31, 35, 36]. They all behave

similarly in terms of disambiguating power [25].

Besides the above three, there are many other cost criteria that are designed for

specific needs. Some costs are insensitive to differences in camera gain or bias; these

include, for example, gradient-based measures [37, 38] and non-parametric measures

such as rank and census transforms [39]. More recently, robust measures such as

truncated quadratics and contaminated Gaussians [40–42] have been introduced to

limit the influence of mismatches during cost aggregation (the next step). Other

cost criteria include phase and filter-bank responses and the sample-insensitive cost

measure developed by Birchfield and Tomasi [43].

All these cost measures assume the scene surfaces are Lambertian, i.e., that their

appearance does not vary with viewpoint. This poses a significant restriction on the

type of scenes a stereo algorithm is able to reconstruct. Later in this dissertation, I

will introduce a novel matching cost that is valid for both specular and Lambertian

surfaces.

Matching cost aggregation The matching cost for each pixel is usually ambigu-

ous and noisy. To reduce ambiguity, many stereo algorithms use a local and window-

based approach: matching costs are aggregated by summing or averaging over a

support region. Most stereo algorithms use a 2D support region at a fixed dispar-

24

ity, as in [44–50]. Such approaches favor front-parallel surfaces. By contrast, a 3D

support region in x-y-d space, as in [51,52], does not have this bias, thus supporting

both slanted and front-parallel surfaces.

A different method of aggregation is iterative diffusion, i.e., an aggregation (or

averaging) operation that is implemented by repeatedly adding to each pixels cost

the weighted values of its neighboring pixels costs [42, 53, 54]. The work presented

in this dissertation uses a similar iterative strategy in applying a view-dependent

smoothness constraint.

Disparity computation and optimization There are two broad classes of meth-

ods used at this stage, local methods and global methods. In local methods, the

disparity computation at a given pixel depends only on the intensity values within a

finite window. Computing the final disparities is trivial: one simply chooses for each

pixel, the disparity associated with the minimum cost value. Thus, these methods

perform a local ”winner-take-all” (WTA) optimization for each pixel. A major limi-

tation is that the uniqueness of matches is enforced for only one image (the reference

image), while pixels in the other image might have multiple matches.

Global methods, by contrast, are usually formulated within an energy-minimization

framework [55]. The objective is to find a disparity function d that minimizes the

global energy, such as:

E(d) = Edata(d) + αEsmooth(d) + βEvisibility(d) (2.2)

The data term, Edata(d), measures how well the disparity function d agrees with

25

the input image pair. The smoothness term, Esmooth(d), encodes the smoothness

assumptions made by the algorithm. To make the optimization computationally

tractable, the smoothness term is often restricted to measuring only the differences

between neighboring pixels disparities. The last visibility term is often a bi-valued

termzero if the visibility constraint is satisfied, infinity otherwise.

Once the global energy has been defined, a variety of algorithms can be used to

find a (local) minimum. Traditional approaches associated with regularization and

Markov Random Fields include continuation [56], simulated annealing [57–59], highest

confidence first [60], and mean-field annealing [61]. More recently, max-flow and

graph-cut methods have been proposed to solve a special class of global optimization

problems [62–67]. Each of these methods constructs a graph such that the maximum

flow or minimum cut on the graph also minimizes the energy. These approaches are

more efficient than simulated annealing and have produced good results. Kolmogorov

and Zabih have characterized the energy functions that can be minimized by graph-

cut [68].

Although the optimization of Equation 2.2 can be shown to be NP-hard for com-

mon classes of smoothness functions [65], dynamic programming can be used to find

the global minimum for each scanline independently in polynomial time [45, 69–72].

A major limitation of this approach is the difficulty of enforcing inter-scanline con-

sistency.

Although global methods tends to produce better results than local methods,

they are typically sensitive to the precise definition of the global energy. Usually

these parameters are tuned empirically, and parameters that work well for one data

26

set may not necessarily be good for others. In contrast, local methods typically have

fewer parameters and generate consistent, albeit not optimal, results. Local methods

are also computationally feasible for real-time implementations.

Disparities refinement Most stereo algorithms compute a disparity map using

only integer values. To improve quality, the disparity values can be interpolated for

sub-pixel accuracy. Usually, the profile of matching costs for a pixel is fitted into a

parabolic curve, then the local maximum is found as the refined disparity value [33,

73–76]. This increases the resolution of the disparity map with little computation.

Other types of disparity post-processing are also possible, such as applying a

median filter to remove spurious mismatches or filling holes due to occlusion using

surface fitting or distributing neighboring disparity estimates [43,77].

Multi-view Stereo

Although there has been significant progress on stereo algorithms during the last

two decades, from simplistic but fast local methods to sophisticated global methods

based on energy minimization, the problem of computing depth from two images

has not been entirely solved. Indeed, some even deem it an ill-posed problem in

general [55, 58, 78]. There simply is not enough information to distinguish correct

correspondences from false positives in many practical cases. Various constraints and

assumptions have to be imposed to make the problem tractable.

To ameliorate the above problems, Okutomi and Kanade in 1993 proposed the

use of more than two images in stereo [79]. Using one of the input images as the

27

reference image, the matching costs from all the other images are summed up to a

final matching cost. This new cost is more salient to image noise and false positives.

Since the search for matches is still performed within the disparity space, there is a

major restriction on the camera arrangement: the cameras have to be co-planar or

even co-linear.

In 1996, Collins [80] proposed a plane-sweep algorithm, which projects all images

onto a series of planes in 3D space that correspond to different disparity values.

Matching is performed in 3D space. This allows more flexible camera configurations.

But an important problemocclusionis still not addressed. This is particular important

in the multi-view case, since as more and more cameras are added, it becomes less

and less likely that all the cameras will see the same surface. In the next section, I

will introduce several reconstruction methods based on a volumetric representation

of the scene. These methods can deal elegantly with the multi-view reconstruction

problem.

2.1.2 Shape from X

We have an image formation model, and we have methods for processing images and

extracting structure. We would now like to ”invert” this and use the image properties

that we measure to infer 3D scene properties. In computer vision, this process of

recovering shape are called shape-from-X techniques, where X can be shading, stereo,

motion, texture, etc. since I have introduced stereo matching algorithms in previous

section, I will discuss other approaches that have been explored to infer depth.

28

Shape from Texture

Shape from texture recovers a surface model from a projection of a texture field that

is assumed to lie on that surface. Global methods attempt to recover an entire surface

model, using assumptions about the distribution of texture elements. Appropriate

assumptions are isotropy [81] (the disadvantage of this method is that there are

relatively few natural isotropic textures) or homogeneity [82]. Methods based around

homogeneity assume that texels are the result of a homogeneous Poisson point process

on a plane; the gradient of the density of the texel centers then yields the plane’s

parameters. However, deformation of individual texture elements is not accounted

for.

Figure 2.2: Illustration of shape from texture. Image is from [83].

Local methods recover some differential geometric parameters at a point on a

surface (typically, normal and curvatures). This class of methods, which is due to

Garding [84], has been successfully demonstrated for a variety of surfaces by Malik and

Rosenholtz [85]; a reformulation in terms of wavelets is due to Clerc [86]. The method

29

has a crucial flaw; it is necessary either to know that texture element coordinate

frames form a frame field that is locally parallel around the point in question, or

to know the differential rotation of the frame field. For example, if one were to use

these methods to recover the curvature of a doughnut dipped in chocolate sprinkles,

it would be necessary to ensure that the sprinkles were all parallel on the surface (or

that the field of angles from sprinkle to sprinkle was known). As a result, the method

can be demonstrated to work only on quite a small class of textured surfaces.

Shape from Shading

Shading plays an important role in human perception of surface shape. Researchers in

human vision have attempted to understand and simulate the mechanisms by which

our eyes and brains actually use the shading information to recover the 3-D shapes.

Ramachandran [87] demonstrated that the brain recovers the shape information not

only by the shading, but also by the outlines, elementary features, and the visual

system’s knowledge of objects. The extraction of SFS by visual system is also strongly

affected by stereoscopic processing. Barrow and Tenenbaum discovered that it is

the line drawing of the shading pattern that seems to play a central role in the

interpretation of shaded patterns [88]. Mingolla and Todd’s study of human visual

system based on the perception of solid shape [89] indicated that the traditional

assumptions in SFS-Lambertian reflectance, known light source direction, and local

shape recovery-are not valid from psychology point of view. One can observe from

the above discussion that human visual system uses SFS differently than computer

vision normally does.

30

Recently, Horn, Szeliski and Yuille [90] discovered that some impossibly shaded

images exist, which could not be shading images of any smooth surface under the

assumption of uniform reflectance properties and lighting. For this kind of image,

SFS will not provide a correct solution, so it is necessary to detect impossibly shaded

images.

SFS techniques can be divided into four groups: minimization approaches [91–97],

propagation approaches [98–104], local approaches [105,106] and linear approaches [107,

108]. Minimization approaches obtain the solution by minimizing an energy function.

Propagation approaches propagate the shape information from a set of surface points

(e.g., singular points) to the whole image. Local approaches derive shape based on

the assumption of surface type. Linear approaches compute the solution based on

the linearization of the reflectance map.

Figure 2.3: Illustration of shape from shading. Image is from [109].

Shape from Focus/Defocus

It is well-known that the focus setting that yields the sharpest image is useful not

only to take good photos, but also to infer the depth map of the scene [110, 111]. In

31

commercial cameras, such focus setting is found with relative ease by the autofocus

function. One may then wonder whether the search for the best in focus position

amounts to finding the unique minimum of a smooth and convex curve as shown in

Figure 2.4.

Figure 2.4: Quasiconvexity of shape from focus/defocus.

Favaro [112] extended the analysis to the more general problems of shape from

de-focus [113–115] and image restoration [57, 116, 117]. The analysis is divided into

two parts: one that studies the convexity of shape from focus/defocus and image

restoration, and the other that studies the sensitivity of shape estimation as a function

of the input data. In the first part, to keep the analysis as general as possible,

Favaro [112] analyzed cost functionals that can be written in the form of Bregmans

divergences [118]. In particular, this family of divergences includes two important and

common cases: least-squares and the Kullback-Leibler divergence. The conclusion is

that shape from defocus enjoys strict quasiconvexity (as shown in Figure 2.4), and

therefore simple local methods, such as gradient-flow algorithms, can be used to

find global optima. This conclusion is verified by showing that a simple gradient

descent method and a method based on graph cuts [119] yield approximately the

32

same solution.

Structure from Motion

Structure from motion (SFM) recovers the 3D geometry of the scene points as well

as the camera positions by analyzing the motion of the tracked feature points across

multiple images. To find correspondence between images, features such as corner

points (edges with gradients in multiple directions) need to be tracked from one

image to the next. The feature trajectories over time are then used to reconstruct

their 3D positions and the camera’s motion. The SFM methods fall into two major

categories: sequential method and factorization method.

Sequential Methods Sequential algorithms are the most popular. They work by

incorporating successive views one at a time. As each view is registered, a partial

reconstruction is extended by computing the positions of all 3D points that are visible

in two or more views using triangulation. A suitable initialization is typically obtained

by decomposing the fundamental matrix relating the first two views of the sequence.

There exist several strategies for registering successive views:

• Epipolar constraints. One possibility is to exploit the two-view epipolar ge-

ometry that relates each view to its predecessor. For example, where camera in-

trinsic parameters are known, essential matrices can be used. Essential matrices

are estimated linearly using 8 or more point correspondences and decomposed

to give relative camera orientation and the direction of camera translation. The

magnitude of the translation can be fixed using the image in the new view of a

33

single known 3D point, i.e. a point that has already been reconstructed from

its image in earlier views.

• Resection. An alternative is to determine the pose of each additional view

using already-reconstructed 3D points [120–123]. 6 or more 3D to 2D corre-

spondences allow linear solution for the 12 elements of a projection matrix.

• Merging partial reconstructions. Another alternative is to merge partial re-

constructions using corresponding 3D points [124,125]. Typically, two- or three-

view reconstructions are obtained using adjacent image pairs or triplets; then

they are merged using corresponding 3D points. In [125], longer reconstructions

are built up hierarchically by merging progressively longer subsequences.

Factorization Methods Unlike sequential methods, batch methods work by com-

puting camera pose and scene geometry using all image measurements simultaneously.

One advantage is that reconstruction errors can be distributed meaningfully across

all measurements; thus, gross errors associated with sequence closure can be avoided.

One family of batch structure from motion algorithms are called factorization

methods (after Tomasi and Kanade [7]). Fast and robust linear methods based on

direct SVD factorization of the image point measurements have been developed for

a variety of simplified linear (affine) camera models, e.g. orthographic (Tomasi and

Kanade [7]), weak perspective (Weinshall and Tomasi [126]), and para-perspective

(Poelman and Kanade [127]). Unfortunately, none of these methods is generally

applicable to real-world scenes because real camera lenses are too wide-angle to be

34

approximated as linear.

More recently, a number of researchers have described ”factorization-like” algo-

rithms for perspective cameras too (Sturm and Triggs [128], Heyden [129], Schaffal-

itzky et al. [130]). However, these methods are iterative and there is no guarantee

that they will converge to the optimal solution.

Again, one limitation of all of these algorithms [7, 126–130] is that there exist

degenerate structure and motion configurations for which they will fail. Another is

that they cannot cope with missing data, i.e. every 3D points must be visible in every

view. Hence, they are not applicable to sparse modeling problems (except perhaps

as a means of initializing sequential algorithms like in [130]). Jacobs [131] overcomes

this limitation, but only for affine cameras (and at the expense of the optimality of

the solution).

Non-rigid structure from motion

Non-rigid structure from motion (NRSFM) studies how to extract 3D shape and

motion of dynamic objects from tracked feature points. The motion of non-rigid

moving object can be decomposed into a rigid transformation and a non-rigid de-

formation. Since NRSFM problem is ill-posed, additional assumptions about the

deforming shape are needed to make it solvable. Linear subspace model is used for

handling objects with small deformations such as human faces [9, 132]. Torresani

et al. [10] assume that the object shape variation follows Gaussian distribution and

simultaneously estimate the 3D shapes, the rigid motion, and the parameters of the

Gaussian using an Expectation-Maximization (EM) algorithm. In their later work,

35

a Probabilistic Principal Components Analysis model is used instead of the linear

subspace model [133].

Different from existing NRSFM algorithms [10,133], which estimate the 3D posi-

tion and motion of sparse feature points only, the presented algorithm tries to generate

complete 3D model of the dynamic objects. In addition, by assuming the object con-

sists of rigid moving parts and non-rigid moving joints, the presented algorithm can

handle articulated objects with large deformation.

2.2 Shape Completion

Previously introduced methods focus on recovering the depth/range information of a

given scene. The output are dense or sparse depth maps corresponding to the input

images. We call this kind of output 2.5D model. In the following subsections, I will

introduce the existing approaches that build complete 3D models given the image

sequences and the recovered depth maps.

2.2.1 Volumetric Curving

Instead of searching in image space as in stereo algorithms, an alternative approach

to scene reconstruction is based on computations in 3D scene space, in which a vol-

umetric representation of the scene can be inferred from input images. Volumetric

methods usually assume there is a known, bounded volume in which the objects of

interest lie. The most common approach to representing this volume is as a regular

tessellation of cubes, called voxels, in Euclidean 3D space. The task of a reconstruc-

tion algorithm is to decide which voxels belong to the objects of interest and which

36

do not. Most methods also assign a color to each voxel based on its projections into

input images.

Compared to the disparity space representation used in most stereo algorithms, a

volumetric representation is much more flexible and general. In particular, it allows

a much wider range of camera arrangements, and more elegant modeling of visibility

in 3D scene space.

Figure 2.5: Visual hull illustration by 2D examples.

Recently there has been considerable progress in developing techniques that build

volumetric scene models. There are two broad classes of volumetric reconstruction

methods; one uses only silhouette information to compute the visual hull of the origi-

nal shape; while the other uses photo-consistency measures to compute the photo hull

of the original shape. I will review these two classes in the sections that follow. Inter-

37

ested readers are also encouraged to read two recent reviews of different volumetric

scene reconstruction methods by Slabaugh [134] and Dyer [135], respectively.

Visual Hull Reconstruction

An object’s contour (or profile) provides important clues about the object shape.

Suppose a 3D object is viewed by a camera. The object’s silhouette image, which

can be obtained using segmentation algorithms or blue-screen techniques, contains

values that distinguish regions where the object is or is not present. Combined with

calibration information for the camera, each pixel in a silhouette defines a ray in

scene space that intersects the object at some unknown depth. The union of these

visual rays for all pixels in the silhouette defines a generalized cone within which the

3D object must lie in, as showed in Figure 2.5. If we are presented with multiple

views of the object, the intersection of these generalized cones from all views defines

a volume of the scene space that must contain the original object. As the number of

the reference views goes to infinity to include all the views possible from all locations,

the intersection volume converges to the shape known as the object’s visual hull, a

term defined by Laurentini [136]. The visual hull is guaranteed to contain the object.

In 2D, the visual hull is equal to the convex hull of the object. For 3D scenes, the

visual hull is a tighter fit than the convex hull. In a visual hull, hyperbolic regions

are removed, but concavities are not.

In practice, since one has access to only a finite number of views, one can only

construct approximate visual hulls. Given a set of n silhouette images from different

views, the approximate visual hull is the best conservative geometric description one

38

can achieve based on silhouette information alone. From now on, I will use the term

”visual hull” to mean the approximate volume computed from n views.

Central to visual hull reconstruction is the intersection test. If the silhouettes are

described using a polygonal mesh, the visual hull representation can be constructed

using a series of 3D constructive solid geometry (CSG) intersections [137]. But it

is well known that polyhedral CSG operations are very hard to perform in a robust

manner due to numerical inaccuracy [74].

A more common approach is to reconstruct a quantized representation of the

visual hull [136,138–149]. Starting from a bounding volume that is known to enclose

the entire scene, the volume is discretized into voxels. Voxels falling outside of the

back-projected silhouette cone of any given view are eliminated from the volume.

This can be done efficiently by projecting each voxel into 2D images and testing

whether it is contained in every silhouette. In the end, only voxels that are in the

intersections of back-projected silhouette cones from all views are retained.

To make the voxel traversal more efficient, most methods use an oct-tree repre-

sentation and test voxels in a coarse-to-fine hierarchy [143,145,146,150]. The volume

enclosing the entire scene space is initialized to a single voxel. The current voxel

is projected into all the views and tested to determine whether it is inside the sil-

houette in each view. If the projected voxel is outside the silhouette in at least one

view, the voxel is removed (marked transparent). If the projected voxel is inside the

silhouette in every view, the voxel is retained. Otherwise, the voxel intersects both

background and silhouette points in some views, so it is subdivided into octants and

each sub-voxel is processed recursively. This process terminates when no subdivision

39

is necessary or when the size of the subdivided voxels reaches a user-defined threshold.

Photo Hull Reconstruction

Shape-from-silhouettes methods avoid the difficult correspondence problem associ-

ated with stereo vision, and are thus quite robust if the segmented silhouette images

are accurate. However, concavity cannot be preserved by the visual hull presentation.

In practice, image segmentation is not always possible. In addition, the color infor-

mation about the objects is not used in any shape-from-silhouettes method, except

to assign color to a voxel model already reconstructed.

In 1998 Seitz presented a volumetric reconstruction method, voxel coloring, that

makes full use of the photometric information contained in input images [151]. The

basic idea is to reconstruct the 3D scene model that best reproduces the input images

when rendered from the perspectives that correspond to the input images. Starting

from a regular 3D voxel grid that encloses the scene, the goal is to assign colors and

binary transparency values to voxels so as to achieve photo-consistency with a set of

input images (shown in Figure 2.6). That is, rendering the colored voxels from each

input viewpoint should reproduce the original image as closely as possible. Assuming

a Lambertian scene, a voxel on the scene surface is photo-consistent with a set of

images if, for each image in which it is visible, the voxel’s color is equal to the color

of its corresponding image pixel.

Conversely, in order to determine a voxel’s photo-consistency, we can project it

onto un-occluded images and test whether or not the pixels in its projection have equal

color values. In the presence of image noise or quantization effects, we can evaluate

40

the correlation of the pixel colors to measure the likelihood of voxel consistency. Let s

be the standard deviation of the pixel colors. One possibility is to threshold the color

space error. If s is smaller than a user-defined threshold λ, the voxel is considered

to be photoconsistent and is assigned a colorthe mean of the pixel colors. Otherwise,

the voxel is considered to belong to the free space and is marked as transparent.

Alternatively, a statistical measure of voxel consistency can be used [151]. This has

been done using an F test, where a photo-consistency score is computed by the ratio

of the variances of pixels’ colors and the colors of pixels associated with a known

homogeneous surface. A threshold on this score determines the photo-consistency of

the voxel. Experiments using other definitions of photo-consistency have also been

conducted [134,152–154].

Figure 2.6: Volumetric Reconstruction Using Photo Consistency. Image is from [155].

Note that the photo-consistency test should only be applied to these visible pixels.

To avoid a combinational search of all visibility configurations, efficient methods for

41

determining the visibility of each voxel are essential. A voxel y can occlude a voxel x

if and only if y intersects at least one of the line segments connecting x to the optical

centers associated with input views. If there exists a topological sort of voxels in

which occluders must be before the voxels that are being occluded, i.e., if y occurs

before x in the ordering, then the visibility test becomes tractable. We can traverse

voxels in that order and guarantee that when a voxel is visited, all possible occluders

for this voxel have been visited. Seitz pointed out that such an order, which is referred

to as the occlusion-compatible order, does exist whenever no scene point is contained

within the convex hull of the camera centers [151]. For instance, if the cameras and

the scene are separated by a plane, voxels can be sorted by increasing distance from

the plane, resulting in a sequence of voxel planes. We can traverse these planes from

near to far, and only voxels in the previous planes, which have been processed and

labeled, can occlude the voxels in the current plane, enabling a single-pass algorithm.

The voxel coloring algorithm is most closely related to the plane-sweeping algo-

rithm first proposed by Collins [80]. However, with its explicit modeling and handling

of visibility, the voxel coloring algorithm allows more flexible camera configurations

and typically generates superior reconstruction results, especially for highly complex

scenes in which occlusions and dis-occlusions frequently occur.

In 1999, Kutulakos and Seitz [153] extended the voxel color algorithm to allow

even more flexible camera configurations. In essence, all views are partitioned into

subgroups, so that within each subgroup, an occlusion-compatible order exists. The

basic voxel coloring algorithm is applied successively for each subgroup to refine

the voxel model from previous passes. They called this method the Space Carving

42

algorithm.

Culbertson et al. [156] presented another variation of the basic voxel coloring al-

gorithm that also allows more flexible camera placement. At the expense of computer

memory, a visible list of surface voxels for every pixel in every image is maintained.

Thus visibility for a voxel can be quickly determined using all input images without

the need for an occlusion- compatible order.

To deal with practical issues such as inaccurate calibration, Kutulakos [157] de-

fined an Approximate Space Carving algorithm using a weakened photo-consistency

test. Each voxel v is projected onto every input image at p1, . . . , pn, respectively.

If there is a common color for pixels within a small radius of pi in all input images,

that voxel v is declared to be photo-consistent. Although this approach was designed

to recover shapes from images with inaccurate calibration information, it can also be

used to build a series of coarse-to-fine scene models from multiple views.

As always, voxel reconstruction can also be formulated as an energy minimization

problem. Slabaugh et al. [158] used an iterative method, which they presented as a

post-processing step, to add or remove surface voxels until the sum of the squared

differences between the input images and the scene model rendered in each camera

was minimized. Simulated annealing and greedy methods were used for optimiza-

tion. This refinement effectively produces a spatially varying consistency threshold.

More recently, Kolmogorov and Zabih [159] used graph-cut to optimize volume re-

construction directly. In order to make optimization tractable, the visibility test was

approximated in their formulation. Although strong results have been obtained for

a few standard data sets with very small baselines (originally used for stereo), the

43

effectiveness of their method is yet to be evaluated using other multi-view data sets

in which visibility changes are substantial.

2.2.2 Volumetrical Merging

Reconstructing a complete 3D model for an stationary object has been extensively

studied from both computer graphics and computer vision perspectives [160, 161].

These approaches start from 2D depth maps of the object under different view di-

rections and merge them into a single 3D model using volumetric approach. The

2D depth maps can be obtained from either laser scanner [160] or stereo matching

technique [161]. My work, inspired by the method in [160], can be considered as

extending the merging of partial depth/range maps to dynamic scenes.

2.2.3 3D Surface Registration (ICP)

The ICP (originally Iterative Closest Point, though Iterative Corresponding Point is

perhaps a better expansion for the abbreviation) algorithm has become the dominant

method for aligning 3D models based purely on the geometry, and sometimes color, of

the meshes. The algorithm is widely used for registering the outputs of 3D scanners,

which typically only scan an object from one direction at a time. ICP starts with two

meshes and an initial guess for their relative rigid-body transform, and iteratively

refines the transform by repeatedly generating pairs of corresponding points on the

meshes and minimizing an error metric. Generating the initial alignment may be

done by a variety of methods, such as tracking scanner position, identification and

indexing of surface features [162, 163], ”spin-image” surface signatures [164], com-

44

puting principal axes of scans [165]. Since the introduction of ICP by Chen and

Medioni [166] and Besl and McKay [167], many variants have been introduced on the

basic ICP concept. We may classify these variants as affecting one of six stages of

the algorithm:

• Selection of some set of points in one or both meshes.

• Matching these points to samples in the other mesh.

• Weighting the corresponding pairs appropriately.

• Rejecting certain pairs based on looking at each pair individually or considering

the entire set of pairs.

• Assigning an error metric based on the point pairs.

• Minimizing the error metric.

I now examine ICP variants for each of the stages listed above.

Selection of Points

I begin by examining the effect of the selection of point pairs on the convergence of

ICP. The following strategies have been proposed:

• Always using all available points [167].

• Uniform subsampling of the available points [168].

• Random sampling (with a different sample of points at each iteration) [169].

45

• Selection of points with high intensity gradient, in variants that use per-sample

color or intensity to aid in alignment [170].

• Each of the preceding schemes may select points on only one mesh, or select

source points from both meshes [171].

A strategy such as random sampling will often select only a few samples in these

features, which leads to an inability to determine certain components of the correct

rigid-body transformation. Thus, one way to improve the chances that enough con-

straints are present to determine all the components of the transformation is to bucket

the points according to the position of the normals in angular space, then sample as

uniformly as possible across the buckets. Normal-space sampling is therefore a very

simple example of using surface features for alignment; it has lower computational

cost, but lower robustness, than traditional feature-based methods [162–164].

Matching Points

The next stage of ICP that we will examine is correspondence finding. Algorithms

have been proposed that, for each sample point selected:

• Find the closest point in the other mesh [167]. This computation may be

accelerated using a k-d tree [172] and/or closest point caching [173].

• Find the intersection of the ray originating at the source point in the direction

of the source point’s normal with the destination surface [166]. We will refer to

this as ”normal shooting”.

46

• Project the source point onto the destination mesh, from the point of view of the

destination mesh’s range camera [174, 175]. This has also been called ”reverse

calibration”.

• Project the source point onto the destination mesh, then perform a search in the

destination range image. The search might use a metric based on point-to-point

distance [176], point-to-ray distance [177], or compatibility of intensity [170] or

color [178].

• Any of the above methods, restricted to only matching points compatible with

the source point according to a given metric. Compatibility metrics based on

color [171] and angle between normals [179] have been explored.

The first four of these algorithms are accelerated using a k-d tree. For the last

algorithm, the search is actually implemented as a steepest descent neighbor walk in

the destination mesh that attempts to find the closest point.

Weighting of Pairs

I now introduce the effect of assigning different weights to the corresponding point

pairs found by the previous two steps. I consider four different algorithms for assigning

these weights:

• Constant weight

• Assigning lower weights to pairs with greater point-to-point distances. This is

similar in intent to dropping pairs with point-to-point distance greater than a

47

threshold, but avoids the discontinuity of the latter approach.

• Weighting based on compatibility of normals. Weighting on compatibility of

colors has also been used [171], though we do not consider it here.

• Weighting based on the expected effect of scanner noise on the uncertainty in

the error metric. For the point-to-plane error metric, this depends on both

uncertainty in the position of range points and uncertainty in surface normals.

The result for a typical laser range scanner is that the uncertainty is lower,

hence higher weight should be assigned, for surfaces tilted away from the range

camera.

Rejecting Pairs

Closely related to assigning weights to corresponding pairs is rejecting certain pairs

entirely. The purpose of this is usually to eliminate outliers, which may have a large

effect when performing least-squares minimization. The following rejection strategies

have been proposed:

• Rejection of corresponding points more than a given (user-specified) distance

apart.

• Rejection of the worst n% of pairs based on some metric, usually point-to-point

distance. As suggested by [179], they reject 10% of pairs.

• Rejection of pairs whose point-to-point distance is larger than some multiple of

the standard deviation of distances. In [169], they reject pairs with distances

48

more than 2.5 times the standard deviation.

• Rejection of pairs that are not consistent with neighboring pairs, assuming

surfaces move rigidly [177]. This scheme classifies two correspondences (p1, q1)

and (p2, q2) as inconsistent iff

|Dist(p1 − p2)−Dist(q1 − q2)| (2.3)

is greater than some threshold. The algorithm then rejects those correspon-

dences that are inconsistent with most others. Note that the algorithm as

originally presented has running time O(n2) at each iteration of ICP.

• Rejection of pairs containing points on mesh boundaries [168].

The latter strategy, of excluding pairs that include points on mesh boundaries, is

especially useful for avoiding erroneous pairings (that cause a systematic bias in the

estimated transform) in cases when the overlap between scans is not complete. Since

its cost is usually low and in most applications its use has few drawbacks, using this

strategy is recommended by [180].

High-Speed ICP

The ability to have ICP execute in real time (e.g., at video rates) would permit

significant new applications in computer vision and graphics. For example, [181]

describes an inexpensive structured-light range scanning system capable of returning

range images at 60 Hz. If it were possible to align those scans as they are generated,

the user could be presented with an up-to-date model in real time, making it easy to

49

see and fill ”holes” in the model. Allowing the user to be involved in the scanning

process in this way is a powerful alternative to solving the computationally difficult

”next best view” problem [182], at least for small, handheld objects. As described

by [173], another application for real-time ICP is model-based tracking of a rigid

object.

All of the performance measurements presented so far have been made using a

generic ICP implementation that includes all of the variants described. It is, however,

possible to make an optimized implementation of the recommended high-speed algo-

rithm, incorporating only the features of the particular variants used. David Simon,

in his Ph. D. dissertation [173], demonstrated a system capable of aligning meshes

in 100-300 ms. for 256 point pairs. His system used closest-point matching and a

point-to-point error metric, and obtained much of its speed from a closest-point cache

that reduced the number of necessary k-d tree lookups.

Global Registration

An important issue to consider when discussing registration algorithms is the concept

of global registration verses pair-wise registration. As the name suggests, pair-wise

registration techniques involve matching of pairs of images or data sets. However,

global registration techniques perform the registration across multiple images or data

sets simultaneously. A pair-wise technique can be used to solve a global problem.

This can be accomplished by performing the registration of the multiple data sets

two at a time. However, this is not necessarily the most appropriate solution as an

uneven distribution of inaccuracy can result. Although individual pairs may have high

50

registration accuracy, the entire system may not be in the most optimal registered

state. Thus, a truly global system will evenly distribute registration errors throughout

the entire data sets.

Another important issue to consider is the treatment of errors and uncertainty

in the point features of 3D images. There are a number of factors that lead to the

generation of noise in the 3D point sets. These include the inherent noise that is

generated during the imaging process, and also the noise due to the actual feature

extraction methods. If the statistical properties of this noise can be modeled, then it

is beneficial to incorporate this information to improve the registration accuracy.

Many interesting and useful approaches to the global registration problem have

been proposed in the recent past. Chen and Medioni, and Masuda and Yokoya both

incrementally register views against a growing global union of view points [166,183].

Pulli also performs incremental registration against a growing set, but includes a

backtracking step when global error becomes unacceptable [179]. Pennec describes

a method that alternates between computing an average shape for the set of images

and registration of the scans against the mean shape [184]. Bergevin et al. place all

views into a global frame of reference, and then repeatedly select a view and register

it against all others [185]. Blais and Levine use simulated annealing to simultane-

ously minimize a cost metric based on the total distance between all matches in all

views [174]. Stoddart and Hilton find pairwise correspondences between points in all

views, and then iteratively minimize correspondence errors over all views using a de-

scent algorithm [186]. This basic technique is extended using a multiresolution frame-

work, surface normal processing, and boundary point processing by Neugebauer [187]

51

and Eggert et al. [188]. Williams and Bennamoun suggested a further refinement by

including individual covariance weights for each point [189]. Sawhney et al. and Shum

and Szeliski perform the global alignment of 2D mosaics by nonlinear minimization of

distance between point correspondences [190,191]. Benjemaa and Schmitt proposed a

nonlinear solution based on the quaternion representation [192]. Their formulation is

a multiview extension of the pairwise solution proposed by Horn [193] using distance

between pairwise correspondences as the optimization criterion.

When there are large numbers of views, or when information such as odometry is

used in conjunction with point correspondences, the global registration parameters

can be solved as the parameters that minimize error with respect to the estimates

of the relative motion between view pairs. Lu and Milios solve this problem by

linearizing the rotational component [194]. This formulation is useful when the total

rotational error is small. They proposed an analytic method for solving the global

registration parameters using the relative motion between view pairs as the error

criterion [195,196]. This criterion does not require linearization and, therefore, can be

used even when the accumulated rotational error is large. Furthermore, this criterion

does not require point correspondences and can therefore be used together with robot

odometry or any pairwise registration method.

2.2.4 Hole Filling

Hole filling is a common problem in geometric modeling. Many methods have been

developed (e.g. [197–199]). They deal with high-quality laser-scanned models with

relatively small missing part. The problem we try to address is significantly more

52

difficult. My inputs are models acquired by vision methods. They are dynamic and

guaranteed to be at most 50% complete (only one disparity map for each instance t).

2.3 2D-3D Video Conversion

Stereoscopic media augments traditional video technologies with 3D perception, thus

resulting in a more lifelike viewer experience. However, the adoption of such media is

hindered by two main factors: the cumbersome nature of 3D (stereoscopic) displays,

and the extra effort required to produce 3D content.

The production of filmed (as opposed to CG) 3D content requires either the cap-

ture of stereoscopic or multiple camera content, or the conversion of 2D to 3D content

in post-production. The former has several disadvantages including specialized equip-

ment and production pipeline. Conversion technologies, on the other hand, can be

employed to any existing conventional content, inducing the usage of old material.

However, despite the conversion advantages, most 3D content today is created by

specialized cameras, and not by conversion technologies. A notable exception is the

June 2006 release of the movie ”Superman Returns”, which included 20 minutes of

3D images converted from the 2D original digital footage. It was recently declared

that a company called ”In-Three” may convert all six ”Star Wars” movies to 3D, in

a process that seems to be mostly-manual. Other players in the market include DDD

and Philips.

2D to 3D video conversion can boil down to the problem of inferring the relative

or absolute depth for the underlying scene. Some recent work [200–202] proposed

to use machine learning approaches to recover the 3D structure from a single image.

53

Although they have achieved some excellent results given this very difficult problem,

the outcome depends largely on the training data set. Given the complexity and

varieties of everyday videos, it is not clear if this type of data-driven approach can

be made tractable for videos.

Automatic stereoscopic extraction can be achieved by generating dense depth map

for every frame in a monocular video of static scenes [13]. Structure from motion

algorithm is employed to compute the 3D positions of the tracked feature points as

well as the camera poses. With the calculated camera poses, multiple view stereo is

applied on each frame to produce the dense depth maps [203]. [14] and [15] can deal

with dynamic scenes by segmenting rigid objects into layers and SFM [204] is applied

on each layer respectively to reconstruct 3D structure. [205], [206] and [207] avoid the

generation of dense depth map by synthesizing the other view from the other frames

in the input video. Their methods involve less computational resources. However,

they are designed to handle static scenes, and certain assumption has to be made on

the camera paths so there would be an image in the sequence that can be borrowed

for stereo-pair view synthesis. Finally it should be noted that SFM [204] can only

deal with certain camera motions, such as dolly and crane shots [208]. For camera

movement that does not change the center of projection, such as these commonly

used pan/tilt/zoom shots [208], SFM [204] will fail.

In general, full automatic methods do not produce satisfactory results in complex

scenes exhibiting both complex camera movement and non-rigid object motion. Some

semi-automatic approaches resort to the assistance of user interaction. [209] developed

a software (DeepSee Studio) that enables the lasso operation on an image to segment

54

objects from the background. [210] requires the users to specify depth to some sparse

points in certain key frames, followed by the spatial and temporal depth propagation.

The propagation is implemented by classification, where the classifier is trained by

the user input information. The most recent work [2] is similar to [210]. They

also ask the users to assign some absolute depth value, which is color encoded, to a

few key frames by scribbling. The user scribbling is used to train a classifier that

classifies the rest pixels in the image sequence. Only those pixels with high confidence

are assigned a depth value by the classifier. The depth is propagated to the entire

video by a similar approach of colorization [211] that encourages same depth values

for neighboring pixels, except for those edges separated ones. Instead of using a

linear least square formulation as in [2, 211], my depth propagation formulation

is based on quadratic programming since it allows both equality and non-equality

assignment [212] (expressing the fact that one layer is in front of the other).

All these user-scribble based approaches rely solely on the user to provide vital

depth information. The depth cues that can be automatically estimated from motion

are ignored. In my system, I combine motion analysis with user interactions so that

we can get the best of both worlds: motion analysis can provide depth constraints

automatically, reducing the amount of user input required while user interaction can

guarantee the final quality of the synthesized view.

Since I employed optical flow estimation and foreground extraction in the motion

analysis preprocessing. I will review the previous work on these two topics.

55

2.3.1 Optical Flow Estimation

Estimation of optical flow and its derivatives is an important task in the area of

computer vision. [213] studied the role of differential invariants of optical flow with

respect to 3D-interpretation of image sequences. Specific 3D-tasks like obstacle de-

tection ([214]) and computation of bounds for time to collision ([215, 216]) may

be solved based only on 0th and 1st order properties of optical flow. Furthermore,

first-order properties [217,218], can be used as features for the classification of image

patches into regions corresponding to independently moving objects.

[219] proposed an approach to estimate spatiotemporal derivatives of the optical

flow, whereas [220] limited their approach to compute only spatial ones. All of them

use at least second order derivatives of the gray-value pattern in order to capture

the variation of optical flow in the neighborhood of the point under consideration.

These differential approaches are to be distinguished from ’neighborhood-sampling’

approaches which use the actual values of the gray-value gradient at every point

of the observed neighborhood like [221, 222]. Regarding the above mentioned ap-

proaches to estimate optical flow and its derivatives, [223] built a common framework

to derive all local differential methods based on the brightness change constraint and

to present a method which combines differential with neighborhood-sampling tech-

niques. Furthermore, within this framework [223] show that if one refers strictly to

the assumptions of [220], it will turn out that their approach is equal to the optical

flow estimation technique presented by [224].

Optical flow is defined as the apparent velocity of gray-value structures. Assuming

56

temporal constancy of a moving gray-value structure g(x, y, t) results in the well

known Optical Flow Constraint Equation (OFCE) postulated by [225]:

d

dt
g(x, y, t) = ∇gTu = gxu1 + gyu2 + gt = 0 (2.4)

with u = (u1, u2, 1)T . This equation does only allow to estimate a linear combi-

nation of the components u1 and u2 of the optical flow. It has to be supplemented,

therefore, by additional assumptions.

[226–228] estimate the gray-value gradient with a set of spatiotemporal filters

to obtain two or more constraint equations. Unfortunately, this kind of estimating

optical flow must fail the more, the better the estimated partial derivatives approxi-

mate the real derivatives, because in this case, the equations tends to become linearly

dependent.

[229–231] use a generalized form of the OFCE by assuming intensity changes due

to shading or due to changes of the surface orientation with respect to light sources.

[232] argue that different biological visual systems do compute different optical flows.

In biological visual systems it suffices to comply with the qualitative properties of the

motion field as good candidates for subsequent analyzing cells. In this connection it

must be allowed to define different ”optical flows”, since they have to be considered

as an approximation of the true displacement rate field.

Most publications presenting an optical flow estimator discuss their results only

qualitatively. A remarkably broad comparison has been presented by [233], who im-

plemented various optical flow estimation techniques and tested them quantitatively

57

on several synthetic and quasi-synthetic (i.e. one real image with simulated camera

motion) image sequences. Their comparison with real image sequences as input data

has been limited to a qualitative judgement, since the true displacement rate fields

of their image sequences are unknown.

2.3.2 Foreground Extraction

As digital cameras become ubiquitous to capture our real world, how to distill useful

information from the vast image collection becomes a problem that is of not only

intellectual curiosity but also urgent utility. Among many aspects of image under-

standing, the automatic identification and segmentation of a frequently recurring

object is a fundamental topic that serves as the foundations for high-level tasks such

as data compression, pattern recognition, and visual information retrieval. Recent

techniques from data mining have been introduced to automatically detect frequent

visual patterns from a large collection of images [234] [235]. In these cases, the au-

thors develop algorithms that take advantage of the repeated occurrences of visual

patterns and automatically identify these patterns without any training data set or

user interaction.

Interactive image segmentation brings human’s prior knowledge of the location,

size, colors and/or boundaries to segment a target object from an image, for example

via user-provided bounding box [236] [237] and strokes [238] [239]. Cui [240] proposed

to first manually label one image and then propagate the segmentation labels to

other related images. Liu [241] developed a semantic-level segmentation algorithm to

transfer the segmentation labels from a user-annotated image database using SIFT

58

flow [242]. However, manual labeling is often a labor intensive task. Even simple

tasks such as the selection of a bounding box may be daunting when dealing with

large sets of images. Therefore fully automatic segmentation remains one of the most

active topics in computer vision.

By providing just one additional image, co-segmentation aims to simultaneously

segment the similar objects embedded in a pair of images with different backgrounds.

Co-segmentation typically utilizes a global appearance model for the foreground ob-

ject, such as appearance (color and/or filter bank) histograms [243] [244] [245]. It

is further extended to incorporate human interaction in [246] and handle more than

two images in [247].

Another related line of research is object recognition which focuses on detecting,

classifying and even segmenting objects in images. The idea of concurrently recog-

nizing and segmenting objects has been exploited in [248] [249] [250] [251] [252] [253]

[254]. Most object recognition algorithms need a relatively large training dataset and

require that the object constitutes a dominant portion of the input image, which

often implicitly brings the need for pre-segmentation.

Video segmentation is another active research topic in computer vision, which

includes but not limited to interactive segmentation [255], background subtraction

from a stationary camera [256] and extracting moving objects taken by a camera

with free motion [257].

59

2.4 Discussion

After a thorough review of the existing 3D recovery/reconstruction methods, it is

not surprising to find that none of them meets the requirements for my goal set in

section 1.1. This is the reason I dedicated my Ph.D. work in this topic, in hope of

making tomorrow’s 3D capture and display as simple as today’s photo shooting.

The LFS is a new concept that falls into the category of shape from X. While

existing shape from X approaches rely on intensity matching, shading, or focusing

information, my approach uses a completely different cue: the light fall-off property.

The derived algorithm makes no assumption about the surfaces in the scene and can

handle surfaces beyond lambertian reflectance properties and textures. Due to the

low computational cost of LFS, it is very easy to perform the depth reconstruction

process in real-time, thus the real-time depth sensor based on LFS.

As can be seen, when we talk about building the 3D model from a single camera,

structure from motion only deals with static scenes. Although it has been extended

to non-rigid Structure from Motion (SFM), it can only handle small deformation or

viewpoint changes. Hole filling is also known as a common problem in the geometric

modeling community. Typically, they are focused on high-quality static models that

are acquired using laser range scanner with relatively small missing parts. The prob-

lem I am trying to solve here is significantly more challenging. I allow 3D models

acquired by depth sensors as my input, since a laser range scanner can hardly capture

dynamic scenes. Compared with those from range scanners, depth sensors contain

more noise, and they are only 50% complete at most (one depth map for each instance

60

t).

The most relevant work is by Pekelny and Gotsman [258]. They assume the

deformation is articulated and piecewise rigid, and estimate each rigid transformation

component and use them to merge partial surfaces over time using the Iterative

Closest Point (ICP) method. My method is intended to deal with both rigid and

non-rigid smooth deformations and does not require manual segmentation of different

components. To the best of my knowledge, I present the first method to generate a

complete deformable model using a single depth camera.

Converting 2D videos into 3D has attracted more and more attention from the

research community when the 3D displays get more popular. Although there exists

commercial software that automatically turns images into stereo ones, there still exists

large space to improve the 3D effect. Understandably, converting a single image or a

monocular video into stereo requires knowing the depth information for every pixel

in the scene. Recovering 3D range from a single 2D image is an ill-posed problem,

a universal approach that requires no user interaction will be extremely difficult, if

not impossible, to achieve. Therefore, the most popular and reliable approaches still

mainly rely on the user interaction to provide vital depth information. The depth

cues that can be automatically estimated from motion are ignored. In my system, I

combine motion analysis with user interactions so that we can get the best of both

worlds: motion analysis can provide depth constraints automatically, reducing the

amount of user input required while user interaction can guarantee the final quality

of the synthesized view.

61

Chapter 3 Light Fall-off Stereo Depth Camera

In this chapter, I will present my novel depth recovery method, light fall-off stereo

and a real-time depth sensor based on this theory. LFS estimates depth from scenes

beyond lambertian reflectance and texture. LFS takes a number of images from a

stationary camera as the illumination source moves away from the scene. Based on

the inverse square law for light intensity, the ratio images are directly related to

scene depth from the perspective of the light source. Using this as the invariant, I

developed both local and global methods for depth recovery. Compared to previous

reconstruction methods for non-lamebrain scenes, LFS needs as few as two images,

does not require calibrated camera or light sources, or reference objects in the scene.

I demonstrated the effectiveness of LFS with a variety of real-world scenes.

The real-time depth sensor contains two co-axial point light sources (LEDs) syn-

chronized with a video camera. The video camera captures the scene under these two

LEDs in complementary states (e.g., one on, one off). Based on the inverse square

law for light intensity, the depth can be directly solved using the pixel ratio from two

consecutive frames. I demonstrate the effectiveness of my approach with a number of

real world scenes. Quantitative evaluation shows that my system compares favorably

to other commercial real-time 3D range sensors, particularly in textured areas. I be-

lieve my system offers a low-cost high-resolution alternative for depth sensing under

controlled lighting.

62

3.1 Method

In this section I first present the radiometric model used in LFS and show how it can

be used to provide depth estimate. I discuss the assumptions made and the associated

issues in designing a practical range sensor system.

3.1.1 Depth Recovery for a Pivot Point

Here we define pivot point as the intersection between the line connecting the two

lighting positions and the surface in the scene. We first discuss how to recover depth

for the pivot point. Let us recall the image formation process. As shown in Figure 3.1

(left), the scene is illuminated by a single point light source L. The irradiance of the

pivot point p in the scene is

E(p) = W
cos(ωL)

r2
p

(3.1)

where W is the light radiance, rp is the distance between point p and the light, and

ωL is the incident angle. p will reflect light toward the observation camera C. The

reflected radiance value is defined as

L(p) = R(p, ωL, ωC)E(p), (3.2)

where ωC is the viewing direction, and R(p, ωL, ωC) is the spatially varying bidirec-

tional reflectance function (a.k.a., bidirectional texture function–BTF). It takes into

consideration of surface albedo variations. Finally, the imaging system measures the

irradiance value on the camera’s sensor, which is

I(p) = ρL(p) (3.3)

63

where ρ is a constant parameter determined by the imaging optics (details can be

found in [259]). For the scope of this thesis, we assume that the camera has a linear

response, in other word, the camera is measuring relative irradiance directly. To deal

with cameras with non-linear responses, standard radiometric calibration procedures

(e.g. [260,261]) should be applied to correct the pixel values.

p

N
C L

C
L

pr
C L

pr

Figure 3.1: The pivot point illuminated by a point light source at the first (left) and
the second (right) positions.

Combing equations 3.1, 3.2 and 3.3, we get

I(p) = ρW
cos(ωL)

r2
p

R(p, ωL, ωC). (3.4)

This is how equation 1.1 is derived.

As shown in Figure 3.1 (right), With both camera position and light intensity

fixed, we move the point light along the direction of ωL to a new position. In this

process, every parameter in equation 3.4 remains the same except the distance to the

64

light changes to r′p. The new observed intensity I ′(p) measured by the camera is:

I ′(p) = ρW
cos(ωL)

r′2p
R(p, ωL, ωC) (3.5)

Computing the ratio of I ′(p) and I(p) cancels out all the terms but the distance

to the light source, that is

I ′(p)

I(p)
=
r2
p

r′2p
(3.6)

With ∆r = r′p − rp measured using a ruler, we can compute rp as

rp =
∆r√

I(p)/I ′(p)− 1
(3.7)

It should be noted that the depth is actually from the perspective of the light source,

not from that of the camera.

In the above LFS formulation, the camera position is fixed, both the BTF term

and the light intensity term are canceled out. Therefore, the depth measured by this

method is invariant to lighting intensity and surface property.

3.1.2 Estimate a Depth Map for the Whole Scene

The above process can be extended for recovering depth for other points in the scene

as well. As shown in Figure 3.2, the depth of all points in the scene are measured with

respect to a depth reference plane, which passes through the first lighting position S

and is perpendicular to the lighting direction for the pivot point p. For an arbitrary

point q in the scene, here we use I(q) to denote the observed intensity of the point

under the lighting position S. It is worthy noting that I(p) and I(q) can be measured

at same time as long as both points p and q are within the camera’s field of view.

65

rq

rpp

q r

S T

T 'Depth
reference

plane
Second

lighting plane

Figure 3.2: The setup for recovering a depth map for the whole scene.

In order to maintain the same incident lighting direction, when capture the inten-

sity of point q under the second lighting position, we need to move the light along the

ray qS. Here we place the light at location T ′, the intersection between ray qS and

the second lighting plane, and refer the new observed intensity as I ′(q). According

to the lighting distances shown in the figure, we have:

I ′(q)

I(q)
=

(rq/ cos θ)2

((rq + ∆r)/ cos θ)2
(3.8)

After simplification, we get:

rq =
∆r√

I(q)/I ′(q)− 1
(3.9)

Comparison between equation 3.7 and 3.9 suggests that, once the light is posi-

tioned at proper locations on the second lighting plane, the same equation can be

used to estimate the depth of different points in the scene.

Calibrating the light position for different points in the scene can be a tedious task.

Fortunately, we can simplify the problem by placing an optical occluder along the

depth reference plane such that light can only go through a small hole at location S.

66

Hence, when the light is positioned at the second lighting plane, only a small portion

of the scene is illuminated and the incident lighting direction for this small portion is

the same as the case when light is placed at location S. Multiple images of the scene

can be captured either by moving the light along the second light plane or by building

a light array at the second light plane and turning on one light at a time. Through

finding the maximum intensity at each pixel location from multiple captured images,

we can effectively extract the illuminated portions of the scene and merge them into a

single image. The resulting image, referred as Multi-Lighting-Direction-Image, shows

the appearance of the scene under different lighting directions for different portions

and guarantees that the incident light direction on every surface point remains the

same. As a result, it can be used to recover the depth of the entire scene using

equation 3.9.

3.1.3 Practical Approximation

Although the approach discussed in above subsection gives more accurate depth esti-

mation results in theory, the experiments show that reasonable good estimations can

be obtained through a much simplified procedure. By assuming the observed intensity

difference of point q under lighting position T and T ′ is negligible, we simply capture

a single image of the scene under lighting position T and use it to approximate the

required Multi-Lighting-Direction-Image. In fact, this is similar as assuming that

the incident lighting directions for different points in the scene are parallel. When

the object size is relatively small compared to the distance to the light, such an ap-

proximation is valid and has been used in almost all photometric stereo and shape-

67

from-shading algorithms.

3.2 Error Analysis

I try to analyze the error introduced by the approximation on the Lambertian surface

and use the analysis results to guide us setting up the real-time system.

Figure 3.3: Estimation error introduced by incident lighting direction changes for
surface point q, whose distance to line ST (offcenterness) is x and normal is N .

As shown in Figure 3.3, a 3D point q is illuminated by a near light and a far light.

Without loss of generality, we assume the normal at q is parallel to line ST . Under

the two lighting conditions, the observed intensities of q are:

Iq = ρ
L(θ1)

(rq/ cos θ1)2
·R(q, θ1, λ)

I ′q = ρ
L(θ2)

(rq + ∆r)/ cos θ2)2
·R(q, θ2, λ) (3.10)

68

Based on the assumption that the variation in incident lighting direction can be

ignored, i.e., θ1 ≈ θ2, we have L(θ1)R(q, θ1, λ) cos2 θ1 ≈ L(θ2)R(q, θ2, λ) cos2 θ2. The

depth estimated accordingly, r̃q, can then be calculated using:

r̃q =
∆r√

Iq/I ′q − 1
(3.11)

To evaluate the accuracy of the above estimation, we now model the error caused

by incident lighting direction changes using an error term e. That is L(θ1)R(q, θ1, λ) cos2 θ1 =

e · L(θ2)R(q, θ2, λ) cos2 θ2. As a result, the following equation holds:

Iq
I ′q

=
(rq + ∆r)2

r2
q

e (3.12)

Substituting Equation 3.12 into Equation 3.11 gives us:

r̃q =
∆r

rq+∆r

rq

√
e− 1

=
r∆r

(
√
e− 1)r +

√
e∆r

(3.13)

Consequently, the relative range error E of an estimation r̃ can then be expressed

as:

E = |r − r̃| /r

=

∣∣∣∣1− ∆r

(
√
e− 1)r +

√
e∆r

∣∣∣∣
=

∣∣∣∣ (
√
e− 1)(r + ∆r)

(
√
e− 1)r +

√
e∆r

∣∣∣∣ (3.14)

69

In Figure 3.4 we plot E with respect to different ∆r under a fixed near lighting

distance (r). Note that the unit of r is not important since we are dealing with relative

errors only. From the plot, we can observe that: 1) the overall estimation error (E)

is zero when there is no incident direction error (e = 1), but increases quickly when e

departs from 1; and 2) under the same amount of incident direction error, the smaller

the lighting distance change (∆r), the larger the estimation error.

It is noteworthy that the second observation does not contradict the fact that,

with a small ∆r, the change in the incident direction is also small. Instead it suggests

that, when ∆r is smaller, the estimation result is more sensitive to incident direction

changes. We conclude that, this is because, with a small difference in the observed

scene radiance, the denominator in Equation 3.11 is close to zero, so any perturbation

in the incident direction can be “magnified”.

Figure 3.4: Estimation error under different e and ∆r settings. r is set to 100. In
general the larger ∆r, the smaller estimation error E is.

The above analysis over a generic surface model tells us that the depth estimation

is error-prone when ∆r is small, but it cannot help us to select the optimal setting

since the incident direction error (e) is also a function of ∆r. The relation between

70

e and ∆r depends on the following factors: the light radiance function (L(θ)), the

surface BTF (R(q, θ, λ)), as well as the offcenterness (x) and the normal (N) of the

surface point q. It is therefore very difficult, if not impossible, to do a mathematical

analysis for generic surface models. To address this problem, I perform the analysis

through simulation.

A simulator is designed for estimating the depth of a 3D point under the setting

shown in Figure 3.3. For simplicity, the light radiance function is assumed to be

uniform over different directions and the surface BTF is assumed to be Lambertian.

The surface normal is assumed to be uniformly distributed and, for each setting,

the estimation is repeated 10000 times with a random forward facing surface normal

assigned to point q each time. The mean relative estimation errors under different

∆r and x values are calculated and plotted in Figure 3.5.

Figure 3.5: Estimation errors under different ∆r and x settings. r is fixed at 100.

Figure 3.5 suggests that, under the Lambertian model and when r is large enough,

adjusting ∆r has little effect on the estimation error. This suggests that, while

increasing ∆r increases the incident lighting direction difference between the two

71

lighting conditions, it also makes the estimation less sensitive to lighting direction

changes (as shown in previous mathematical analysis). In the end, the two effects

cancel out.

Figure 3.6: Estimation errors under differen r and x settings. ∆r is fixed at 100.

In the second simulation, ∆r and the estimation error are fixed as a function of r

and x (shown in Figure 3.6). This time, the estimation error decreases quickly as r

increases. The result shows that, when r > 10 × x, the estimation error is less than

5%. As a result, the setup of the LFS system needs to ensure the lighting distance is

larger than 10 times of the object size.

Finally, the third simulation studies the effect of surface normal on estimation

error. Here the angle between surface normal N and Z-axis is referred as α. In the

simulation, both ∆r and r are fixed and the estimation errors under different α values

are plotted in Figure 3.7. As expected, the error is small when the surface is facing

the light and is larger otherwise. This suggests that the LFS algorithm performs well

for front-facing surfaces (−60 < α < 60), but not as good for surfaces facing the sides.

A possible solution to this problem is to use additional pairs of lights to illuminate

72

Figure 3.7: Estimation errors under different α and x settings. Both r and ∆r are
set to 100.

these surfaces.

3.3 Global Method

So far I have shown that a depth map can be generated using two images of the

scene illuminated by a point light source positioned at two different locations. The

derived local LFS method is both efficient and simple to implement. However since

the image acquisition process can be corrupted with noise, the depth maps obtained

using local approach are sometimes noisy. In this section I re-formulate the LFS

problem under an energy minimization framework. The derived global optimization-

based method can produce smooth and accurate depth maps since: 1) it can make use

of images captured under more than two lighting configurations; and 2) it enforces

spatial consistency among adjacent pixels in the depth map.

73

3.3.1 Formulation under Energy Minimization

As illustrated in Figure 3.8, the scene is illuminated by a point light source located

at different positions. A sequence of images of the scene, referred as I, I1, . . . IN , are

thereby acquired. Please note that the point light source is again carefully positioned

so that, for a pivot point p in the scene, the incident light direction does not change. I

also assume that the lighting direction changes for the remaining points on the scene

are negligible.

Figure 3.8: Images are captured under multiple lighting conditions. The light move-
ment is carefully controlled to minimize the change of incident directions on the scene
surface.

Now if we set the depth reference plane at the first light position, according to

equation 3.6, the following holds regardless of surface BTF and light intensity.

√
Ix,yrx,y =

√
I1
x,y(rx,y + ∆r1) = . . . =

√
INx,y(rx,y + ∆rN) (3.15)

where Ix,y is the intensity of pixel (x, y) in the captured image I. rx,y is value of pixel

(x, y) in the estimated depth map, i.e., the distance between the depth reference plane

and the corresponding 3D point of pixel (x, y).

74

Due to the noise in the image acquisition process, when more than two images

are used, for a given pixel (x, y), we may not be able to find a value rx,y that satisfies

the above equation. Our objective is therefore to find a depth value that minimizes

the variance among different terms. Here we use K0,...,N to represent the value of the

above terms:

K0 =
√
Ix,yrx,y

Ki =
√
I ix,y(rx,y + ∆ri), 1 ≤ i ≤ N (3.16)

The energy minimization objective function can then be defined accordingly using

the following equation:

E = (1− λ)
∑
x,y

N∑
i=0

(Ki −K)2 + λ
∑
x,y

(u2
x,y + v2

x,y) (3.17)

where u, v, defined in equation 3.18, are the symmetric second finite differences of the

variables rx,y and K is the mean of all K’s. The second term is used to enforce the

smoothness of the solution. λ (0 ≤ λ ≤ 1) represents a user defined parameter that

adjusts the relative importance between the error term and the smoothness term.

ux,y = rx+1,y − 2rx,y + rx−1,y

vx,y = rx,y+1 − 2rx,y + rx,y−1 (3.18)

3.3.2 Optimization Approach

Our goal is to find a depth map that satisfies the inverse-square law at all pixel

locations and in all captured images. When there is no noise, it is equivalent to

finding a surface that incurs zero measurement error. However in the real world

75

where sensor measurement is almost always corrupted with noise, we approximate

the objective surface by finding a smooth surface that minimizes our cost function

defined in equation 3.17.

The global LFS method implements the standard Conjugate Gradient (CG) algo-

rithm together with the line search algorithm DBRENT as an iterative minimization

tool [262]. Given the objective function expressed in equation 3.17, this minimization

process simply requires the construction of two functions: one that computes the

objective cost value E and the other calculates the gradient of E with respect to the

vector ~r. We also impose boundary conditions by defining the gradient to be zero

at boundary pixels. Although we cannot guarantee that the solution converges to

the exact correct surface, experiment shows that the recovered depth map is indeed

smooth and incurs small measurement error.

3.4 Prototype System Setup

Figure 3.9: experimental setup.

I now describe the prototype system implementation. It consists of two 3W LED

76

light sources and a video camera on a linear translation stage. The LEDs and video

cameras are co-axial. The LEDs occlude a small part of the scene in the camera

image, for which I mask out. The camera can capture 640 × 480 gray-scale images

at 60Hz with progressive scan. Although the camera can produce pixels at 12 bits

per pixel, I have found that the 8-bit image has a much higher signal to noise ratio.

Therefore I always operate with 8-bit images. The camera responds linearly to light

intensity.

The two LEDs are synchronized with the camera’s shutter. The camera generates

a TTL signal when it opens its shutter. With each shutter pulse, the LEDs toggle their

on/off state. LEDs can be switched on or off in the order of 100 nanoseconds. The

LEDs heat up when powered. During the “start-up” process, the device’s temperature

rapidly increases, and the LED’s forward current decreases until it reaches a steady

state, at which point I start the capture. I have verified that the light output is very

stable once the LED reaches its steady state.

Although an LED is an excellent point light source, its spatial distribution of

radiance is not uniform. As a result, I must radiometrically calibrate the two LEDs.

The procedure is straightforward. Before running the system, I turn on the two

lights in turn to illuminate a piece of white paper covering the entire field of view

of the camera. The calibration object is captured by the camera under the two

lighting conditions. From the two images In and If , we measure the ratio (Q) of the

corresponding pixel values, that is

Q(x, y) = Ln(θ)/Lf (θ) = (dn/df)
2 ∗ In(x, y)/If (x, y), (3.19)

77

where x, y are the pixel coordinates,θ is the incident angle at (x, y), dn, df are dis-

tance between calibration object and the near and far light respectively. Referring

to equation 3.4, under my assumption that the incident lighting direction change is

small enough, intensity variation that cannot be explained by the inverse square law

is attributed to the light radiance distribution.

Run-time algorithm The run-time system consists of two parallel threads, one is

for image capture and the other is for depth computation and display.

The capture thread waits for camera images transferred via the IEEE1394 bus

and alternatively stores them into the near and the far image buffers.

In the depth computation thread, image (If) from far light is first corrected by

calibration ratio Q,

Ic(x, y) = If (x, y) ∗Q(x, y), (3.20)

where Ic is corrected image. Then we plug Ix,y = In(x, y) and I ′x,y = Ic(x, y) into

equation 3.7 to compute the depth of pixel (x, y).

Before the computation, I exclude those pixels that will potentially give bad re-

sults. Those pixels include saturated ones in either the near image or the far image.

Saturated pixels (especially highlight areas) are usually not real measurements of

light intensity; they are likely to result in inaccurate depth estimates. The pixels

with intensities below a certain threshold are also excluded, because these pixels are

either background or reside in shadow areas. Furthermore, low intensity values are

more sensitive to noise. For those bad pixels, I simply set them to black in the depth

map. This is why black holes are occasionally present in the depth map, likely the

78

results of surface highlights and shadows. Finally, the depth map is smoothed by a

mean filter.

Since graphics cards are excellent for parallel image processing, the entire depth

computation pipeline is implemented on the graphics processing unit (GPU). In this

case, the captured images are directly transferred to two textures on the graphics

board. To further improve speed, the mean filter is implemented by a two-pass

process. One pass is averaging on a horizontal line, and the other is averaging on a

vertical line.

System Issues One problem introduced by using two sources is that they do not

have the same power spectrum. With a different power spectrum in the illumination

source, the reflected radiance of objects with a wave-length dependent BTF, after

converted to gray-scale by the camera, cannot be canceled out even under identical

incident lighting direction with the proper radiometric correction term (Q). To solve

this problem, I add a narrow band (green) filter in front of the camera lens, which

limits the camera to measure only a single wavelength light. This is preferred over

the alternative solution to use color LEDs at a single wavelength (instead of white

ones), since the power spectrum varies from one LED to another.

A better optic design could use some beam-splitters, with which the light/camera

occlusion problem can be avoided. I do not use this design in my current proto-

type because the light emitted from the LED is not bright enough when transmitted

through multiple beam-splitters. It is not easy to achieve a fairly uniform radiance

distribution with multiple LEDs, while keeping them as a point light source. I also

tried to use two commodity projectors, but they have a significant amount of leaked

79

light that biases the depth estimation.

3.5 Experiments and Results

I show some of the results here. Figure 3.10 and 3.11 show the depth map and the 3D

rendering result for two Lambertian objects. Most of the fine details are recovered.

Figure 3.12 and Figure 3.13 show the depth maps of two scenes. Since my method

does not deal with areas in shadow, these areas are masked out in the resulting depth

map. Figure 3.14 illustrates the global approach presented in section 4. The scene

consists of two very specular objects: a glossy book cover and a piece of silk. Note

that this kind of specular surfaces is very sensitive to the light’s incident angle. As

shown in the lower row, my global method demonstrates significantly improvement

for this challenging scene.

Figure 3.10: Left 2 images: images taken with light at two positions. 3rd image is the
depth map, and 4th image is a view of the recovered 3D model.

Quantitative evaluation I also evaluate the quality performance of my system by

comparing it with two other commercially available live range sensors. The first one is

Canesta range sensor which is able to generate low resolution (64×64) range maps at

80

Figure 3.11: A toy house with very fine details. I show its depth in 3D view.

Figure 3.12: left image is a simple scene with plastic leaves and an apple in it. Right
image is its depth map. Both the leaves and the apple are non-lambertian.

video frame rate. The other is the Z-mini from 3DV Systems, Ltd. that can provide

high resolution (maximum 640× 480) live range maps.

As shown in figure 3.15 (first row) the target object in the first experiment is a

piece of white paper glued onto a planar surface. This paper can be regarded as a

perfect Lambertian reflector with constant surface albedo. In the second experiment

the white paper is replaced by a piece of paper containing rich textures. The object

81

Figure 3.13: A more complex scene. There are wood, metal,plastic in this scene.
Since I don’t deal with shadow areas, I ignore the pixels below a certain threshold.

Figure 3.14: Comparison between local method and global method. Left image: there
are two objects in the scene at different depth. The surface of these two objects are
very specular making the result quite sensitive to incident angle change. Middle
image: depth map obtained by per-pixel calculation from two shaded images only.
Right image: depth map processed by global method from six shaded images. (The
parameter λ is set to 0.15 in the experiment)

is carefully placed so that the principle axis of these sensors are perpendicular to the

plane and go though the plane’s geometric center.

One thing worth noting is that these three sensors have different fields of view,

resolutions and their recovered range maps are not within the same coordinate system.

These limitations make a metric comparison with ground truth very difficult. To

warrant a fair evaluation, I first normalize their output depth values to a uniform

space. It is done by calculating a scale factor so that the sample mean of the depth

values is normalized to 0.5. After this step I apply a plane fitting algorithm to each

82

sample data and compute their mean square deviation. Clearly smaller variance

implies better reconstruction quality.

The recovered 3D shapes and error rates of these sensors are presented in Fig-

ure 3.15 and Table 3.1 respectively. The raw range map is processed with a 5 × 5

smoothing filter to reduce high frequency noise resulting primarily from the CCD

camera. In general, when the sample target is textureless, all three sensors yield

satisfactory results (the Canesta senor returns a single-colored depth map). How-

ever, when the target contains non-uniform surface albedo, my system outperforms

the other two. It is not surprising given the fact that my depth values are recovered

from the ratio of two images, effectively cancel out the surface albedo’s influence.

Conversely, the reconstruction model adopted by SLP sensors suffers from bias as a

function of object intensity [263].

Canesta Z-mini LFS
newspaper 0.0741 0.0260 0.0101

white paper 0 0.0166 0.0021

Table 3.1: Mean square deviation of depth recovered by different range sensors.

I also reconstructed depth maps of the white paper under different orientations.

The error is listed in Table 3.2, in which degree 0 means frontal parallel (the ideal

case). As the paper turns away from the camera, the error grows larger, which concurs

with the prediction in Figure 3.7. Nevertheless, it is still superior than the Z-mini

sensor which has the same resolution.

Live system Figure 3.16 shows some live images from my system. Note that since

my algorithm does not handle shadow areas, those regions are automatically detected

83

Figure 3.15: Depth recovered by different sensors. (first row) two sample scenes;
(second row) 3D plots of the recovered white paper, from left to right, showing results
from Canesta, Z-mini and LFS; (third row) 3D plots of the recovered news paper.
The mean depth is normalized to 0.5.

0◦ 10◦ 20◦ 30◦ 40◦ 50◦

0.0021 0.0022 0.0024 0.0028 0.0034 0.0039

Table 3.2: Mean square deviation becomes larger when angle between incident light
and surface normal increases.

and masked out during the depth map computation process. The first scene (top

two images) contains objects with different shapes and reflectance properties. The

resulted depth map is fairly accurate despite the slightly non-Lambertian surface

reflectance. In the second scene (bottom two images), the depths map of two, more

challenging, metal objects are computed.

My camera captures at 60fps and the off-line depth computation can achieve

84

60fps on a Geforce 8800 graphics card from NVIDIA. But given that two images are

required to generate one depth map, my system’s overall speed performance is 30fps.

Figure 3.16: Some snapshots of my real-time system results. The insets show the
depth maps.

Discussions Based on the analysis and experimental results, I believe my system

generates superior results than existing 3D commercial sensors based on shuttered

light-pulse. Common to these approaches is that they do not require matching and

can measure a 2D depth map at once. However, my system has a smaller field of

view than the other sensors because it has to maintain the approximately incident

lighting direction invariance.

One may notice that the scenes in the live experiments show a lack of high contrast

texture. Small motion between two consecutive frames will introduce large error to

the image ratio computation, especially on pixels around texture boundaries. The

85

motion problem is common to many real-time sensors, both the Z-mini and Canesta

sensor take at least two measurements of the scene. It can be solved by better

engineering, e.g., high-speed cameras. I believe this is also an interesting venue for

future research. I can probably compute the optical flow field between even (or odd)

frames and interpolate the middle images.

3.6 Conclusion

In this chapter I presented a novel system that can generate real-time depth maps.

My system, based on the theory of LFS, takes two images under different lighting

conditions to estimate the range for each pixel, without the need for matching. Com-

pared to commercial 3D range sensors, it is more robust to textured areas (when the

object remains static or the object motion between two frames is smaller than one

pixel). My prototype is made from off-the-shelf, low cost components with a simple

computation model. It can be used in low-cost embedded systems. I believe my

system provides a viable alternative for 3D range sensing under controlled lighting.

86

Chapter 4 Modeling Dynamic and Deformable Object

Given the LFS real-time depth camera as well as other commercial depth cameras, I

can turn my focus from depth recovery to 3D model building and completion. To be

clear, Although I use a SwissRanger 3000 depth camera here, I do not have to stick

to a certain kind of depth sensor, as long as it outputs synchronized color and depth

image sequences.

In this chapter, I present a novel approach to reconstruct complete 3D deformable

models over time by a single depth camera, provided that most parts of the models

are observed by the camera at least once. The core of this algorithm is based on the

assumption that the deformation is continuous and predictable in a short temporal

interval. While the camera can only capture part of a whole surface at any time

instance, partial surfaces from different time instants are assembled together to form

a complete 3D surface for each time instance, even when the shape is under severe

deformation. Since Iterative Closest Point (ICP) algorithm does not work for de-

formable surfaces, I employ a two-step algorithm to align the partial surfaces. In the

first step, the dominating rigid transformations between neighboring frames are esti-

mated and accumulated to approximate the transformation between arbitrary pairs

of frames. All the captured partial surfaces are therefore transformed into the coor-

dinate of the destination frame. In the second step, a global mesh warping algorithm

based on linear mesh deformation is used to stitch all the piecewise surfaces together.

The alignment in both steps are guided by vertex correspondences derived from the

87

feature tracking on the corresponding images. A volumetric method is then used to

combine partial surfaces, fix missing holes, and smooth alignment errors. The exper-

iment shows that this approach is able to reconstruct visually plausible 3D surface

deformation results with a single depth camera.

This work focuses on how to assemble surface patches captured at different time

instants for the same dynamic object into a complete 4D space-time model. I assume

that the individual surface patches have already been acquired using existing vision

techniques [264,265] or any commercial video-rate depth cameras.

Figure 5.4 shows the major steps of my algorithm. The inputs to my system are

multiple color-depth image pairs captured at different time instants. In the initial-

ization step, correspondences among salient features extracted from different frames

are established by any tracking algorithms, typically SIFT in the experiment. In ad-

dition, the depth maps are triangulated into 3D meshes. The second step estimates

a rigid transformation for each frame to map surface patches from all frames into a

reference global coordinate, where they roughly align with each other. A linear mesh

deformation method is then applied in the next step to warp one mesh to another,

while preserving local details, which is the core of my algorithm. I break down the

presentation into several subsections, first introducing the basics for pairwise warp-

ing, then extending it to a global alignment scheme. The issue of severe occlusion is

also discussed. Finally in the smoothing and refinement step, meshes are merged into

a single dynamic 3D model by volumetric methods, with temporal coherence among

models from different frames enforced.

88

Mesh Gen. &
Tracking

Initial
Alignment

Global
Warping

Smoothing &
Refinement

Depth Maps 4D Models

Figure 4.1: The flow chart of my overall algorithm.

4.1 Matching Outlier Removal

Since both the initial alignment and global warping are guided by feature correspon-

dences, the surface alignment tends to collapse if the incorrect correspondences are

not excluded from the computation. For example in figure 4.2, if the incorrect match-

ing is used as anchor point in the mesh deformation step, the corresponding surface

point will be pulled towards a false position, causing large distortion. Therefore,

those feature mis-matchings that could cause large distortion should be detected and

removed in the first place.

My matching outlier detection algorithm is based on the assumption that the

feature points in one frame should be close to their matching points in another frame

after a dominating rigid transformation. This assumption is actually consistent with

the one I made for the whole thesis, that is, the deformation is continuous and

predictable in a short temporal interval.

Thus, the basic idea of outlier detection is to transform the feature points with the

dominating rigid transformation, and classify them by the distance to their matching

points. The mean and variance are computed for the resulting distance values and

those points that have extremely large deviation will be taken as outliers. Note that

89

Figure 4.2: Illustration of feature mismatching. Green lines show the correct featuring
matching and red line is the mismatching. The feature matchings are mapped to
vertex matchings on the partial surfaces.

the mean and variance may suffer from the masking effect [266] if we include the

distance of the outliers in the computation. In other words, the outlier may skew the

mean and variance toward it, making its deviation small. To avoid the masking effect,

I adopt the modified Z-score suggested by [267] to compute the mean and variance

values and measure the deviation.

Mi =
0.6745|xi − x̃|

MAD
(4.1)

x̃ is the median value and MAD denotes the median absolute deviation:

MAD = median(|xi − x̃|) (4.2)

In my experiments, if the Z-score is larger than 10, its corresponding point is

marked as outliers.

90

One issue of estimating the dominating transformation from all of the matching

pairs is that the estimated transformation may suffer from the masking effect. To

address this issue, a strategy similar to RANSAC [268] is employed to sample 5 pairs

of points from the feature matchings. The dominating transformation is estimated

from the sampled 5 pairs and applied on all the pairs of matching points. Since the

number of outliers is small compared to the total number of matchings, the 5 sampled

pairs are unlikely to include any outliers, meaning that the estimated transformation

is close to the true one. After the transformation, the feature points should be close

to their correspondences except for the outliers. Statistically, if we repeat this process

multiple times, the outliers will be identified most of the times, even though some

times certain non-outlier might be identified as outlier by swamping effect [266].

4.2 Surface Alignment

In this section, I will talk about how to align all the piecewise surfaces together. I

will first introduce the alignment between 2 neighboring surfaces, and it is followed

by the global alignment of all the surfaces. Prior to these, an initial rigid alignment

is applied to compensate for the large rotation introduced by the camera movement.

4.2.1 Initial Alignment

Here I decompose the motion of a deformable object into a rigid part and non-rigid

part. The goal is to separate a potentially large rigid translation and rotation from

a relatively small surface deformation, preventing the later deformation estimation

process being biased by the large rigid motion.

91

Since we do not need to precisely align the surface patches into the reference

frame, and all the detailed warping will be handled by the next global alignment

step, a rough rigid transformation is enough. The feature correspondences between

frames are mapped to 3D point correspondences which could be used to estimate a

rigid transformation by absolute orientation ([269]). Although absolute orientation

is used to estimate the transformation of a rigidly moving object, it can still give

a rough estimate of the dominating rigid motion of the object when combined with

RANSAC [268]. The transformation between two non-overlapping frames will be

estimated by accumulating the pairwise ones between consecutive frames.

Minimum Number of Points The transformation between two Cartesian coor-

dinate systems can be thought of as the result of a rigid-body motion and can thus be

decomposed into a rotation and a translation. In stereo photogrammetry, in addition,

the scale may not be known. There are obviously three degrees of freedom to trans-

lation. Rotation has another three (direction of the axis about which the rotation

takes place plus the angle of rotation about this axis). Scaling adds one more degree

of freedom. Three points known in both coordinate systems provide nine constraints

(three coordinates each), more than enough to permit determination of the seven

unknowns.By discarding two of the constraints, seven equations in seven unknowns

can be developed that allow one to recover the parameters. Two points clearly do

not provide enough constraint.

92

Sum of Squares of Errors In practice, measurements are not exact, and so greater

accuracy in determining the transformation parameters will be sought for by using

more than three points. We no longer expect to be able to find a transformation that

maps the measured coordinates of points in one system exactly into the measured

coordinates of these points in the other. Instead, we minimize the sum of squares

of residual errors. Finding the best set of transformation parameters is not easy. In

practice, various empirical, graphical, and numerical procedures are in use. These

are iterative in nature. That is, given an approximate solution, such a method leads

to a better, but still imperfect, answer. The iterative method is applied repeatedly

until the remaining error is negligible.

At times, information is available that permits one to obtain so good an initial

guess of the transformation parameters that a single step of the iteration brings one

close enough to the true solution of the least-squares problem to eliminate the need

for further iteration in a practical situation.

As we shall see, the translation and the scale factor are easy to determine once

the rotation is known. The difficult part of the problem is finding the rotation. Given

three non-collinear points, we can easily construct a useful triad in each of the left

and the right coordinate systems (figure 4.3). Let the origin be at the first point.

Take the line from the first to the second point to be the direction of the new x axis.

Place the new y axis at right angles to the new x axis in the plane formed by the

three points. The new 2 axis is then made to be orthogonal to the x and y axes,

with orientation chosen to satisfy the right-hand rule. This construction is carried

out in both left and right systems. The rotation that takes one of these constructed

93

Figure 4.3: Three points define a triad.

triads into the other is also the rotation that relates the two underlying Cartesian

coordinate systems. This rotation is easy to find, as I show below.

Selective Discarding Constraints Let the coordinates of the three points in each

of the two coordinate systems rl,1, rl,2, rl,3 and rr,1, rr,2, rr,3 respectively. Construct

xl = rl,2 − rl,1 (4.3)

Then

x̂l = xl/ ‖xl‖ (4.4)

is a unit vector in the direction of the new x axis in the lefthand system. Now let

yl = (rl,3 − rl,1)− [(rl,3 − rl,1) · x̂l] x̂l (4.5)

be the component of rl,3 − rl,1 perpendicular to x. The unit vector

94

ŷl = yl/ ‖yl‖ (4.6)

is in the direction of the new y axis in the left-hand system. To complete the

triad, we use the cross product

ẑl = x̂l × ŷl (4.7)

This construction is now repeated in the right-hand system to obtain x̂r, ŷr and

ẑr. The rotation that we are looking for takes x̂l into x̂r, ŷl into ŷr, and ẑl into ẑr.

Now adjoin column vectors to form the matrices Ml and Mr as follows:

Ml = |x̂lŷlẑl| , Mr = |x̂rŷrẑr| (4.8)

Given a vector rl in the left coordinate system, we see that

MT
l rl (4.9)

gives us the components of the vector rl along the axes of the constructed triad.

Multiplication by Mr then maps these into the right-hand coordinate system, so

rr = MrM
T
l rl (4.10)

The sought-after rotation is given by

R = MrM
T
l (4.11)

95

The result is orthonormal since Mr and Ml are orthonormal, by construction. The

above constitutes a closed-form solution for finding the rotation, given three points.

Note that it uses the information from the three points selectively. Indeed, if we

renumber the points, we get a different rotation matrix, unless the data happen to

be perfect. Also note that the method cannot be extended to deal with more than

three points.

Even with just three points we should really attack this problem by using a least-

squares method, since there are more constraints than unknown parameters.

Finding the Translation Let there be n points. The measured coordinates in the

left and right coordinate system will be denoted by

{rl,i} and {rr,i} (4.12)

respectively, where i ranges from 1 to n. We are looking for a transformation of

the form

rr = sR(rl) + r0 (4.13)

from the left to the right coordinate system. Here s is a scale factor, r0 is the

translational offset, and R(rl) denotes the rotated version of the vector rl. We do

not, for the moment, use any particular notation for rotation. We use only the facts

that rotation is a linear operation and that it preserves lengths so that

‖R(rl)‖2 = ‖rl‖2 (4.14)

96

where ‖r‖ = r · r is the square of the length of the vector r.

Unless the data are perfect, we will not be able to find a scale factor, a translation,

and a rotation such that the transformation equation above is satisfied for each point.

Instead there will be a residual error

ei = rr,i − sR(rl,i)− r0 (4.15)

We will minimize the sum of squares of these errors

n∑
i=1

‖ei‖2 (4.16)

We consider the variation of the total error first with translation, then with scale,

and finally with respect to rotation.

Centroids of the Sets of Measurements It turns out to be useful to refer all

measurements to the centroids defined by

r̄l =
1

n

n∑
i=1

rl,i r̄r = 1
n

n∑
i=1

rr,i (4.17)

Let us denote the new coordinates by

r′l,i = rl,i − r̄l r′r,i = rr,i − r̄r (4.18)

Note that

n∑
i=1

r′l,i = 0
n∑
i=1

r′r,i = 0 (4.19)

97

Now the error term can be rewritten as

ei = r′r,i − sR(r′l,i)− r′0 (4.20)

where

r′0 = r0 − r̄r + sR(r̄l) (4.21)

The sum of squares of errors becomes

n∑
i=1

∥∥r′r,i − sR(r′l,i)− r′0
∥∥2

(4.22)

or

n∑
i=1

∥∥r′r,i − sR(r′l,i)
∥∥2 − 2r′0 ·

n∑
i=1

[
r′r,i − sR(r′l,i)

]
+ n ‖r′0‖

2
(4.23)

Now the sum in the middle of this expression is zero since the measurements are

referred to the centroid. So we are left with the first and third terms. The first

does not depend on r′0, and the last cannot be negative. The total error is obviously

minimized with r′0 = 0 or

r0 = r̄r − sR(r̄l) (4.24)

That is, the translation is just the difference of the right centroid and the scaled

and rotated left centroid. We return to this equation to find the translational offset

once we have found the scale and rotation.

98

This method, based on all available information, is to be preferred to one that

uses only measurements of one or a few selected points to estimate the translation.

At this point we note that the error term can be written as

ei = r′r,i − sR(r′l,i) (4.25)

since r′0 = 0. So the total error to be minimized is just

n∑
i=1

∥∥r′r,i − sR(r′l,i)
∥∥2

(4.26)

Finding the Scale Although in my cases, we do not need to estimate the scale

factor, I include it here just for algorithm integration.

Expanding the total error and noting that

∥∥R(r′l,i)
∥∥2

=
∥∥r′l,i∥∥2

(4.27)

which can be written in the form

Sr − 2sD + s2Sl (4.28)

where Sr and Sl are the sums of the squares of the measurement vectors (relative to

their centroids), while D is the sum of the dot products of corresponding coordinates

in the right system with the rotated coordinates in the left system. Completing the

square in s, we get

(s
√
Sl −D/

√
Sl)

2 + (SrSl −D2)/Sl (4.29)

99

This is minimized with respect to scale s when the first term is zero or s = D/Sl,

that is,

s =
n∑
i=1

r′r,i ·R(r′l,i)/
n∑
i=1

∥∥r′l,i∥∥2
(4.30)

Symmetry in Scale If, instead of finding the best fit to the transformation,

rr = sR(rl) + r0 (4.31)

we try to find the best fit to the inverse transformation,

rl = s̄R̄(rr) + r̄0 (4.32)

we might hope to get the exact inverse:

s̄ = 1/s, r̄0 = −1
s
R−1(r0) R̄ = R−1 (4.33)

This does not happen with the above formulation. By exchanging left and right,

we find instead that s̄ = D̄/Sr or

s̄ =
n∑
i=1

r′l,i · R̄(r′r,i)/
n∑
i=1

∥∥r′r,i∥∥2
(4.34)

which in general will not equal 1/s, as determined above.

One of the two asymmetrical results shown above may be appropriate when the

coordinates in one of the two systems are known with much greater precision than

100

those in the other. If the errors in both sets of measurements are similar, it is more

reasonable to use a symmetrical expression for the error term:

ei =
1√
s
r′r,i −

√
sR(r′l,i) (4.35)

Then the total error becomes

1

s

n∑
i=1

∥∥r′r,i∥∥2 − 2
n∑
i=1

r′r,i ·R(r′l,i) + s

n∑
i=1

∥∥r′l,i∥∥2
(4.36)

or

1

s
Sr + 2D + sSl (4.37)

Completing the square in s, we get

(√
sSl −

1√
s
Sr

)2

+ 2(SlSr −D) (4.38)

This is minimized with respect to scale s when the first term is zero or s = Sr/Sl,

that is,

s =

(
n∑
i=1

∥∥r′r,i∥∥2
/

n∑
i=1

∥∥r′l,i∥∥2

)1/2

(4.39)

One advantage of this symmetrical result is that it allows one to determine the

scale without the need to know the rotation. Importantly, the determination of the

rotation is not affected by the choice of one of the three values of the scale factor. In

each case the remaining error is minimized when D is as large as possible. That is,

we have to choose the rotation that makes

101

n∑
i=1

r′r,i ·R(r′l,i) (4.40)

as large as possible.

Representation of Rotation There are many ways to represent rotation, includ-

ing the following: Euler angles, Gibbs vector, Cayley-Klein parameters, Pauli spin

matrices, axis and angle, orthonormal matrices, and Hamilton’s quaternions [270,271].

Of these representations, orthonormal matrices have been used most often in pho-

togrammetry and robotics. There are a number of advantages, however, to the unit-

quaternion notation. One of these is that it is much simpler to enforce the constraint

that a quaternion have unit magnitude than it is to ensure that a matrix is orthonor-

mal. Also, unit quaternions are closely allied to the geometrically intuitive axis and

angle notation.

Here I solve the problem of finding the rotation that maximizes

n∑
i=1

r′r,i ·R(r′l,i) (4.41)

by using unit quaternions. If desired, an orthonormal matrix can be constructed

from the components of the resulting unit quaternion.

4.2.2 Warping Between Two Consecutive Frames

Different from constraining the problem by traditional epipolar geometry as in [272],

we assume the object is under an arbitrary, non-linear deformation in long term, but

linearly continuous locally in a short time. Therefore, surface patches can be warped

102

to shapes in neighboring frames using linear mesh deformation, given sufficient feature

point correspondences.

Let M be a polygon mesh defined by a pair (V,K) of vertices V = {~v1, ..., ~vn}

and edges K, the 1-ring neighborhood of a vertex ~vi is the set of its adjacent vertices

Ni = {j|(i, j) ∈ K} and the degree di denotes the number of vertices in Ni.

Given ~ui on M0 and ~vi on M1 be a correspondence pair representing the same

feature point over a deforming object, the warping process on mesh M1 from t1 to t0

changes ~vi to ~v′i, which should be close to ~ui, implying that M0 and M1 will represent

part of the same object. On the other hand, the warping process should minimize

the mesh deformation as much as possible in order to maintain shape details. This

can also be considered as a constraint to calculate warping over uncontrolled vertices

in M1.

In the mesh deformation community, surface shapes are usually described locally

by Laplacian coordinates for vertices. The Laplacian coordinate L(~vi) for vertex ~vi

is defined by applying the Laplacian-Beltrami operator over the vertex coordinate:

L(~vi) =
1∑

j∈Ni

wij

∑
j∈Ni

wij(~vi − ~vj) (4.42)

wij = 1
2
(cotαij + cot βij) (4.43)

in which αij and βij are two angles opposing to the edge (i, j) as in [273]. When the

mesh is regular and nearly uniformly defined, Equation 4.42 can be simplified as:

L(vi) = ~vi −
1

di

∑
j∈Ni

~vj (4.44)

Since the goal of a warping procedure is to move specified control points closer to

their target positions and still maintain the mesh shape as much as possible, mathe-

103

matically, this can formulated as a quadratic energy functional minimization problem

as in [274]:

E(V ′) =
∑
i∈V

‖L(~vi)− L(~v′i)‖
2

+
∑
i∈F

‖~v′i − ~ui‖
2

(4.45)

in which V ′ is the vertex position after warping, and F is the correspondence subset

(F ⊆ V). The first sum measures the shape similarity before and after warping using

Laplacian coordinates, whose least square solution is a linear system:

MLV
′=L, V ′=


~v′1
~v′2
...
~v′V

 , L=


L(~v1)
L(~v2)
...

L(~vV)

 (4.46)

ML is the laplacian matrix of the mesh. The second term gives the sum of squared

differences over all control points, whose solution is given by:

MIV
′=U, U =


ui0
ui1
...
...

 (4.47)

Similar to an identity matrix, MI is a non-square matrix composed of zeros and ones,

in which a row stands for a control vertex and a column stands for a mesh vertex.

Each row has exactly one non-zero entry if and only if that control vertex is the

corresponding mesh vertex.

Stacking ML and MI together, we obtain an over-determined linear system in

order to find the overall least square solution to Equation 4.45:[
ML

MI

]
V ′=

[
L
U

]
(4.48)

Since X, Y and Z coordinates are independent in Equation 4.45, they can either be

solved separately in three matrix systems, or simultaneously as a single system, in

which case the matrix system will be three times larger.

104

Equation 4.48 produces plausible applaudable results when the deformation is

small, but if the shape undergoes large rotation or scaling, the Laplacian coordinate

is not a good descriptor since it is well known as affine-variant. The Laplacian coor-

dinate of a vertex is actually a vector in 3D space that originates from the centroid

of its neighbors and ends at the vertex. For example, if a mesh performs rotation,

the Laplacian coordinates of its vertices should also rotate with the same angle along

the same axis. Unfortunately, this cannot be properly handled by Laplacian coor-

dinates in Equation 4.45. In order to address this issue, we apply an explicit affine

transformation together with the warping procedure to account for any large affine

transformation; thus the first term in Equation 4.45 becomes:

∑
i∈V

‖TiL(~vi)− L(~v′i)‖
2

(4.49)

in which Ti is an estimated local affine transformation for ~vi. Since the Laplacian

coordinate is determined by the 1-ring neighborhood of ~v′i, Ti can be calculated from

the 1-ring neighborhood as well. By describing Ti as a function of V ′, the estimation

of Ti can be implicitly contained into a single system with V ′ as the only unknowns.

Unfortunately, this becomes a non-linear optimization problem since Ti is nonlinearly

determined by V ′, which is known to be difficult to solve. Instead of using an exact

solution, we adopted the method proposed in [274] to simply approximate Ti as a

linear function of V ′ if the rotation angle is small. Specifically, we first define Ti in

the homogeneous coordinates:

Ti =


s −h3 h2 tx
h3 s −h1 ty
−h2 h1 s tz

0 0 0 1

 (4.50)

105

By definition, an optimal Ti should minimize the following functional:

∑
k∈{i}∪Ni

‖Ti~vk − ~v′k‖
2

(4.51)

Let ti = (s, h1, h2, h3, tx, ty, tz)
T be the vector of the unknowns in Ti, Equation 4.51

can be rewritten as:

‖Aiti − VNi
‖2 (4.52)

in which

Ai =


vkx 0 vkz −vky 1 0 0
vky −vkz 0 vkx 0 1 0
vkz vky −vkx 0 0 0 1

...

 (4.53)

and

VNi
=


v′kx
v′ky
v′kz
...

 (4.54)

is a vertex vector of ~v′ and its neighborhood. ti can then be calculated from VNi
:

ti = (ATi Ai)
−1ATi VNi

(4.55)

By creating a new matrix ∆i using the coordinates in L(vi) as follows:

∆i =

 Lx(~vi) 0 Lz(~vi) −Ly(~vi) 1 0 0
Ly(~vi) −Lz(~vi) 0 Lx(~vi) 0 1 0
Lz(~vi) Ly(~vi) −Lx(~vi) 0 0 0 1

 (4.56)

we can then calculate TiL(~vi) as:

TiL(~vi) = ∆iti = ∆i(A
T
i Ai)

−1ATi VNi
(4.57)

Di = ∆i(A
T
i Ai)

−1ATi is solely defined on V , so it can be computed in advance,

meaning that TiL(~vi) is linear function of VNi
. By stacking all TiL(~vi) together into a

106

large vector TL, a large sparse matrix MT can be constructed using submatrices {Di}

such that:

TL = MTV
′ (4.58)

Replace the right hand side of equation 4.46 with TL:

MLV
′ = MTV

′ (4.59)

or,

(ML −MT)V ′ = 0 (4.60)

Replacing the corresponding part in equation 4.48 with equation 4.61, we get the

linear equation that can stitch two pieces of mesh with rotation and scaling between

them. [
(ML −MT)

MI

]
V ′ =

[
0
U

]
(4.61)

4.2.3 Warping All Frames Simultaneously

A naive approach to obtain a complete 3D shape is to simply assemble two surface

patches each time. For example, in order to create the shape surface at frame i,

the surface patch at frame 1 is first combined with frame 2 into a new surface 1− 2

which is combined with frame 3, so on and so forth. By keeping doing so we combine

all surface patches together into the desired shape at frame i. Since local temporal

correspondences between two adjacent frames determine the warping procedure in

each step, errors can be easily accumulated from frame to frame, causing misalignment

between surface patches.

107

Another reason we need a global method is that sequential warping cannot deal

with occlusion. I will discuss this in detail in the occlusion handling section.

I develop a global warping algorithm in order to warp surface patches in all frames

altogether to the destination frame in a single step. This gives a single linear system

with unknowns as the final positions of vertices in the destination frame. As an

extension from the local warping algorithm, a global warping matrix system lists all

Laplacian constraints as Diagonal sub-matrices as shown in Equation 4.62.

Q1

Q2

. . .

Qd−1

Qd+1

. . .

Qn





V ′1
V ′2
...

V ′d−1

V ′d+1
...
V ′n


= 0

(4.62)

in which Q = ML −MT is the Laplacian constraint, n is the number of frames, and

d is the destination frame index. Feature correspondence constraints are imposed by

adding more rows into equation 4.62. For example, if a correspondence exists from

frame i to frame d, the following row will be added to the matrix system in equation

4.62 as a correspondence constraint:

[
0 . . . 0 1 0 . . . 0

]
kth

(4.63)

k is the index of the vertex into the vector of unknowns in equation 4.62. Accordingly,

the position of the corresponding vertex in frame d should be added to the end of

the vector on the right hand side of equation 4.62. If frame i has a correspondence

point in frame j, which is also unknown, a different row will need to be added to the

108

matrix: [
0 . . . 1 . . . −1 . . . 0

]
kth hth

(4.64)

Here, k and h indicate the matching vertices’ position in the vector of unknowns, and

a 0 should be added to the end of the right hand side vector ensuring that these two

vertices be at the same 3D position after warping.

This global method is in spirit similar to bundle adjustment. However my formula-

tion is linear while typical bundle adjustment is formulated as non-linear optimization

that requires iterative methods.

4.3 Exception Handling

Most of the time, the above discussed method will not give us 100% correct and

complete 3D models. There are some more issues we need to take care of. For

example, the occlusion handling, missing feature correspondences. I will discuss these

issues in the following subsections and introduce my solutions.

4.3.1 Occlusion Handling

Since both the camera viewpoint is moving and the object is deforming, the least

square doesn’t necessarily yield the correct position. As illustrated in figure 5.7, to

complete the 3D model of frame 17, the occluded leg needs to be recovered with

the information from its neighboring frames 16 and 18. One possibility is that this

leg is topologically connected to the visible surfaces, and will be pulled to a certain

position under the laplacian constraint. This approach will result in incorrect warping

109

Figure 4.4: The need for occluded feature interpolation: 1st row from left to right:
frame 16, 17 and 18 of a walking giraffe toy. Note that one leg is completely occluded
in frame 17. 2nd row shows the reconstructed results of frame 17 without and with
the occlusion handling. As can be seen in the left image, the occluded leg is largely
distorted. After features are interpolated, it is corrected in the right image.

(figure 5.7) when the leg itself is moving during these frames.

A more sophisticated approach is to use the tracked features to predict their

occluded positions. The features are first extracted and stored for each frame. In

the next step, I establish a global feature pool by searching the feature set of each

frame for those that are visible in multiple frames. The global features are recorded

along with their frame numbers and corresponding 3D positions. With those globally

tracked features, the occluded part can be interpolated or extrapolated under the

continuous motion assumption. Figure 5.7 shows the correct result by this method.

110

Figure 4.5: Mis-alignment is shown in the leftmost image. I manually add some fea-
ture correspondences on the mis-aligned region in the corresponding images (middle
2 images). The rightmost image shows that the surfaces are well aligned with the
additional feature matchings.

4.3.2 User Interaction

Since the alignment of the non-rigid deforming surfaces completely relies on the guid-

ance of vertex correspondences, it could happen that a certain region of object cannot

be stitched together due to the lack of correspondences. As shown in figure 4.5, two

neighboring surfaces are well aligned except for the left arm, because the automatic

feature tracking algorithm fails to find feature matching in this area. In this case,

I manually add some matchings between the corresponding images (figure 4.5 mid-

dle two images). The added feature matchings will be appended to those existing

matchings, and the global warping algorithm will be initiated again to incorporate

the additional matchings. The deformed surfaces output from the global warping are

inspected for mis-alignment in other frames/regions, which need to be fixed by some

more manual input of feature matchings. This procedure is repeated until satisfactory

alignment is achieved.

111

4.3.3 Smoothing and Refinement

After the warping procedure, surface patches are aligned together to cover the shape

of an object at the same time instance. In this section, they will be merged to-

gether to form a single surface. Instead of manipulating meshes directly, I choose

to use an Eulerian approach by volumetric representation for several major reasons.

First of all, a volumetric representation can easily handle topological changes among

different meshes. Secondly, a volumetric representation can fix missing holes and

misalignments, which are often caused by image noise, correspondence errors, occlu-

sions or other errors. Last but not least, an Eulerian approach is straightforward to

implement and it does not require the complicated re-meshing process.

We first define a distance function d(~x), which gives the minimum absolute dis-

tance from ~x to any surface patches. Let φ be a signed distance function representing

the final steady shape we would like to achieve, the level set formulation is:

∂φ
∂t

=
(
∇d · ∇φ|∇φ| + d∇ · ∇φ|∇φ|

)
|∇φ| (4.65)

Intuitively, φ will first be smoothed by a mean curvature flow. Once it gets close to

surface patches d, the smoothing effect will be gradually reduced and it will cover all

surface patches. As an example, in Figure 4.8, the holes by invisibility are filled up

with this method. Details of this technique can be found in [275].

4.4 Experiments and Results

I have tested my algorithms on both synthetic data and real data. The synthetic

data is generated with the 4D models shared by [12]. As in figure 4.7, for each frame,

112

the renderer outputs the depth map and tracked 3D points specified in advance. 400

out of 20000 vertices are specified as tracking points, which are uniformly distributed

on the object surface. Since this data set has no color features to track, we generate

correspondences directly.

Figure 4.7 shows results with correct correspondences. The complete 3D model

is recovered. I further evaluated the performance of my algorithms under imperfect

tracking by perturbing the original matching by some amount. Specifically, 1-pixel

perturbation means matching a pixel to one that is randomly selected from the 1-ring

neighbor pixels of its true correspondence. 3-pixel, 5-pixel, and 10-pixel perturbations

are performed in the similar way. One pixel distance is approximately 10mm in the

real world. So, 1-pixel perturbation is roughly a 1% perturbation in the real 3D space.

Figure 4.6 shows the reconstructed results under the perturbations. It can be seen

that when the amount of perturbation increases, the fine details are lost, nevertheless

the overall shape is always well recovered. Table 4.1 shows the errors between the

reconstructed model of frame 1 and the ground truth.

DimX DimY DimZ Max Dist Avg Dist
1-p 844.4 1273.7 1814.0 13.60 1.927
3-p 844.4 1273.7 1814.0 14.78 2.278
5-p 844.4 1273.7 1814.0 16.95 2.646
10-p 844.4 1273.7 1814.0 20.02 3.487

Table 4.1: The errors between reconstructed model of frame 1 and the ground truth.
From row 2 to row 5: 1-pixel, 3-pixel, 5-pixel and 10-pixel perturbation. DimX,
DimY, and DimZ are the size of the model in x,y,z dimensions. Max Dist and Avg
Dist are the maximum and average distance between the result and ground truth.
Details are lost when noise increases.

The real data is captured by a SwissRanger depth camera combined with a point

113

1‐pixel 3‐pixel

l 10 i l5‐pixel 10‐pixel

Figure 4.6: The comparison of results from different perturbations. As perturbation
amount increases, details are lost.

grey flea color camera that provides texture information. The depth camera can

produce 176× 144 depth map at video rate. However, the quality of the depth map

drops quite significantly for dynamic scenes. So I manually animate the toy giraffe

and use temporal averaging to improve the signal-to-noise ratio of the depth map.

SIFT features are extracted for each frame and features are tracked across different

frames by searching in the pool of the extracted ones. The depth camera and color

camera are almost coaxial so the mapping between their images can be approximated

by a homography. There are about 200 features that are reliably tracked. Results in

figure 4.8 show that the occlusion can be well handled by my algorithms. Figure 4.9 is

a comparison of the models from frame 5 before and after hole-filling and smoothing.

Figure 4.10 shows the reconstruction of a T-shirt worn by a person who turned around

360 degrees in front of the capture device, while moving his hands up and down.

114

Figure 4.7: Six frames (frame 1, 10, 17, 24, 29 and 35 out of all 38 frames) are shown
in this figure. 1st row shows the rendered models. The black dots indicate the tracked
features. 2nd row is the partial meshes constructed from depth maps. The 3rd row
shows the reconstructed 3D models by my algorithm. And the 4th row shows different
views of the 3D model of frame 24.

4.5 Conclusion

I have developed a novel approach to reconstruct complete 3D surface deformation

over time by a single camera. The deformable surface patches are stitched together

by mesh deformation in a global manner, and merged into a complete model by a

volumetric method. Test on both synthetic and real data demonstrated that my

approach works well with even large deformation. I believe my approach will help to

simplify the difficult task of creating time-varying models for dynamic objects.

115

Figure 4.8: Frame 3, 5, 7, 11 and 17 out of total 18 frames are shown as an example
here. 1st row shows the color images. 2nd row are the captured depth maps. The 3rd

row shows the partial meshes constructed from depth maps. The 4th row shows the
reconstructed 3D models by my algorithm. And the 5th row shows different views of
the 3D model of frame 5.

116

Figure 4.9: Three different views of the reconstructed model from frame 5 of the real
data. The watertight model after smoothing is shown on the 2nd row.

Figure 4.10: 1st and 2nd rows, from left to right: Frame 5, 7, 14 out of total 14 frames
of a deforming shirt. 3rd row shows 3 different views of the 3D model of frame 5.

117

Chapter 5 2D-3D Video Conversion

The above chapter presents the possibility with the existing depth cameras. However,

if we only have a regular camcorder instead of a depth camera, which means we are

given a video sequence without any depth information. Can we still explore 3D with

the input video? The answer is yes. In this chapter, I explore the possibilities to turn

it into stereoscopic video pairs, enabling 3D perception and lifelike viewer experiences.

In particular, I present a semi-automatic system that converts conventional videos

into stereoscopic videos by combining motion analysis with user interaction, aiming

to transfer as much as possible labeling work from the user to the computer. In

addition to the widely-used structure from motion (SFM) techniques, I develop two

new methods that analyze the optical flow to provide additional qualitative depth

constraints. They remove the camera movement restriction imposed by SFM so that

general motions can be used in scene depth estimation C the central problem in mono-

to-stereo conversion. With these algorithms, the user’s labeling task is significantly

simplified. I further developed a quadratic programming approach to incorporate

both quantitative depth and qualitative depth (such as these from user scribbling)

to recover dense depth maps for all frames, from which stereoscopic view can be

synthesized. In addition to visual results, I present user study results showing that

my approach is more intuitive and less labor intensive, while producing 3D effect

comparable to that from current state-of-the-art interactive algorithms.

118

Figure 5.1: The pipeline of my system.

5.1 Automatic Pre-Processing

Figure 5.1 shows the pipelines of my system. In the pre-processing step, the input

image sequence is first passed through three individual automatic modules: structure-

from-motion (SFM), moving object segmentation (MOS), and perspective depth cor-

rection (PDC). The SFM algorithm is applied to the input image sequence with

dominant rigidly moving objects to recover a sparse set of 3D points. The MOS

module is used to automatically segment the foreground, it is particularly effective

in a follow shot in which the foreground is relatively static and the background is

rapidly changing. Finally, the PDC module inspects the size change of an object’s

image to estimate relative depth changes between frames. After automatic process-

ing, the users are presented with images showing area with known depth (from SFM

and MOS). If there are still undefined regions, the users need to label them in some

key frames by simple scribbling. The user’s input as well as all the automatically

calculated depth cues will be integrated in a quadratic programming framework to

generate dense depth maps for all frames.

Finally the novel view is generated via shifting every pixel horizontally by a certain

amount base on the depth maps, simulating the perspective from the other eye.

Since in my cases, the baseline between the synthesized view and the input view is

119

small, I use a simple technique to deal with the gaps in the synthesized view due

to disocclusion. I simply fill the uncolored region with neighboring pixels of larger

depth values. I found this method worked well in practice. View synthesis is not the

emphasis here, therefore I will not discuss it further.

5.1.1 Structure from Motion and Optical Flow Estimation

The structure from motion algorithm is conventionally employed to recover the 3D

positions of the feature points and the positions of the camera in a sequence of static

scene. After the positions of the camera track are computed, a dense depth map for

each frame can be obtained by multiple view stereo [13].

My system does not make any assumption on the input image sequences. The

scene may be captured by a camera with fixed viewpoint or may contain non-rigid

motion and hence, the SFM algorithm does not always work. However, in most of

the moving camera shots, SFM can automatically track sparse features on the static

background, leaving only the moving foreground objects to be labeled by the users.

Both spacial and temporal depth variations for these feature points can be accurately

computed in my approach. By contrast, Guttmann et al.’s approach [2] requires users

to careful label the depths at different potions of the background, as well as how the

depth changes across different frames, which can be both cumbersome and imprecise

for scenes with complex background.

The depth information extract by SFM are incorporated into the final solution

through equality constraint. Basically, for each feature point p in frame t with as-

signed depth Dt
SFM(p), I add the following constraint to the final linear equation:

120

dt(p) = Dt
SFM(p) (5.1)

where dt(p) is the depth value of pixel p at frame t.

I also estimate the optical flow between adjacent frames. Similar to [276], the

optical flow is estimated by solving an optimization problem defined on region-tree by

dynamic programming. The region-trees of over-segmented regions are constructed

from the input images. The optical flow will be used in both perspective depth

correction and moving object extraction.

5.1.2 Moving Object Extraction

In follow shots, where the camera tracks the moving foreground objects, it is often

than not that the tracked (foreground) objects are visually consistent in the video

sequence, whereas the appearance of the backdrops varies. Based on this observation,

we can achieve the automatic segmentation by counting the statistical coherence of

appearance variation at each pixel, followed by making a per-pixel decision whether

it is foreground or not.

Given a sequence of video frames {I1, I2, · · · Im}, my goal is to segment the fore-

ground object O =
⋂m
i=1 Ii. However, segmenting all frames simultaneously needs to

solve a large number of unknowns. Instead, I focus on segmenting one frame at each

time, but with additional information propagated from other frames. I first estab-

lish dense correspondence maps between any pair of frames Ii and Ij by traversing

through a connected path from Ii to Ij related by optical flows.

121

Frame i

Frame 1

…

pi

p1q1

p2

q2

pm(qm)

Frame 2 Frame m

ci (pi)=Var()…
pi q1 q2 qm…

Figure 5.2: An illustration to compute the color variance ci(pi) at pixel pi in frame
Ii. Suppose pixel pi finds its correspondences p1 in frame I1, p2 in frame I2, and up
to pm in frame Im as shown by the orange arrows, and p1’s neighboring pixel q1 has
the smallest color difference with pi and so on and so forth; then the cost ci(pi) is
the variance of the color values from pi,q1,q2 · · ·qm.

In the next step, I will compute a color variance map Ci for frame Ii, where

each element ci(pi) corresponds to the color variance of the series consisting of pixel

pi in frame Ii and its correspondent pixels in other frames. Suppose we find pi’s

correspondences p1 in frame I1, p2 in frame I2, and up to pm in frame Im; we can

simply compute ci(pi) as the color variance of the series:

ci(pi) = Var (θi(pi), θ1(p1), θ2(p2), · · · θm(pm)) , (5.2)

where θj(pj)1≤j≤m is the color of the pixel pj in frame Ij. However, to be more

robust to image noise and alignment offsets, I use the approximate matching strategy

to compute Ci, that is instead of selecting pi’s exact matched pixel pj in frame Ij,

I search the pj’s neighboring pixel qj, where color θj(qj) is closest to the reference

color θi(pi), and efficiently compute the color variance in a greedy manner as:

122

qj = arg min
qj∈N(pj)

|θj(qj)− θi(pi)| , j 6= i, (5.3)

ci(pi) = Var (θi(pi), θ1(q1), θ2(q2), · · · θm(qm)) , (5.4)

where N(pj) represents a search window centered at pixel pj in frame Ij with

the size of w, and in the experiments, I typically set w = 7 × 7. This procedure is

illustrated in Figure 5.2.

Figure 5.3: An intermediate result of the moving object extraction. Given one frame
Ii (upper left image), we can first compute its variance map Ci (upper right image).
Based on Ci, we can mask out the high-variance (bright in the variance map) parts
using graph-cut algorithm to get the initial segmentation (lower left image). Fur-
thermore, a user can provide only a few color seeds, e.g., the green color in the grass
and gray in the ground, to remove the unexpected extracted parts and get the final
segmentation result (lower right image).

Finally, I formulate the variance map Ci as an additional data term V in the

binary labeling Markov Random Field (MRF) energy minimization framework for

image segmentation. V is defined in equation 5.5:

123

V (p) =

{
exp(−ci(p)/αf) if p ∈ Background,
1− exp(−ci(p)/αb) if p ∈ Foreground,

(5.5)

where αf = 7 × vf , αb = 0.5 × vb; vf is set to the 0.1 percentile in Ci and vb

is set to the 99th percentile in Ci. The explanation of equation 5.5 is that if the

color variance ci(p) is small, which implies that the pixel p in frame Ii finds visually

consistent matches in the rest of frames, the pixel should be considered as foreground,

i.e., the cost of assigning it to background is high. On the contrary, a large color

variance ci(p) indicates pixel p should be labeled as background. Combining the

other widely used visual cues, such as color and edge information [238, 239], I adopt

the graph-cut approach to solve the minimization problem using the min-cut/max-

flow algorithm [238] and eventually extract the moving foreground objects from the

video sequence. Figure 5.3 shows the segmentation result for one frame in a follow

shot.

When the foreground and background are separated, they will be treated as two

different depth layers. However, not the entire background region is marked as further

than the foreground, but only the areas that is above and to the both sides of the

foreground object, which I call defined background. This is under the observation that

most follow shots are following objects on the ground, so that the ground below the

object is actually closer and should not be regarded as behind the object. Let p and

q be arbitrary pixels that lie on the foreground and defined background respectively.

The following constraints are plugged into the final formulation:

124

d(p)− d(q) ≥ ∆d (5.6)

where ∆d is a predefined threshold that denotes the minimum depth difference be-

tween two layers.

5.1.3 Perspective Depth Correction

Another useful vision cue is that, under perspective projection with fixed focal length,

a rigid object gets bigger when it moves closer to the camera and appears smaller

when it moves away. As shown in figure 5.4, the size change of the object shows up

on the estimated optical flow as local flow expansion or shrinking. Here I use this cue

to automatically infer depth changes of moving objects. It is noteworthy that this

observation is based on the assumption of local rigidity, i.e., the local structure of

the objects in the scene undergoes rigid motion in short time intervals even though

deformable objects are allowed in the video.

The optical flow of an object does not show up as pure expansion or shrinking

unless it is at the center of the image and is moving along the optical axis of the

camera. In general cases, the optical flow of the object is a combination of the

motion along the depth direction and the one parallel to the camera plane. To extract

the portion of the flow caused by depth change, here I first apply Helmholtz-Hodge

decomposition to decompose the 2D optical flow into a divergence-free vector field

and a divergence field. The divergence-free field is ignored and the divergence field

undergos the following test to see if it is caused by the depth change of a rigid object.

125

Figure 5.4: The illustration of the expanding optical flow.

The test is performed based on a local structure consisting of a pixel and its 4

spatial neighbors, which I refer as a unit structure. The 5 pixels in the unit structure

are traced into the next frame by the pre-computed optical flow.

Figure 5.5 shows four of the possible shapes the unit structure could take in the

next frame under the rigidity assumption. 1) If the unit structure is scaled evenly in

all the directions, it suggests that the corresponding 3D points of the unit structure

pixels are at the same depth and move toward (or away from) the camera. 2) If

the unit structure is evenly scaled and rotated, the motion of the corresponding

3D structure is exactly the same as in the first case except that there is also in-

image-plane rotation. 3) If the unit structure is unevenly scaled, it could result from

the depth variation among the structure’s points, causing different points moving at

different observed velocities. 4) If the unit structure is skewed, it may caused by the

126

Figure 5.5: The unit structure in frame t could be transformed into the 4 shapes in
frame t+1 illustrated on the right hand side. I only make use of the first two cases
to infer the depth change.

off-image-plane rotation. Other shapes of the unit structure are possible, which may

caused by either the combination of the above rigid motions or non-rigid motion.

Here, I only look for the occurrences of the first two cases, and use them to perform

depth correction.

In both cases that we consider, the unit structure is evenly scaling along all

direction and the scaling factor can be calculated using the average length of the 4

edges. Figure 5.6 explains the relation between scaling factor and depth change using

a single line segment. As line segment L moves closer to the camera, its projection size

on the image plane changes from l1 to l2. Assuming that the unknown line segment’s

depth changes from d1 to d2, we have:

l1 =
f

d1

L

l2 =
f

d2

L

 =⇒ s =
l2
l1

=
d1

d2

(5.7)

where f is the focal length, s is the scaling factor of the line segment’s image.

127

d
Image Plane

L

l1

d1

l2

Camera
Center

’

f
d2

L’

f

Figure 5.6: The length of the image of a line segment changes when it moves closer
to the camera. The ratio of the image length l1

l2
is inverse proportional the ratio of

the depth d1
d2

.

Equation 5.7 tells us that the length of the line segment’s projection is inversely

proportional to the depth of the line segment’s position. Therefore, by calculating

the scaling factor of the line segment, we find out its relative depth change without

knowing the absolute depth value.

The same property holds for the unit structure. Let dt(p) be the depth of the

center pixel p of the unit structure in frame t, dt+1(p′) be the depth of the corre-

sponding pixel p′ in the next frame, and s be the scaling factor of the unit structure,

the following perspective depth correction constraint is included in the final quadratic

programming formulation:

dt(p)− s · dt+1(p′) = 0 (5.8)

128

Figure 5.7: The segmented results (row 1, left image) is input in the user interface
and treated as predefined depth difference constraints (row 1, middle image). The
users need to use depth difference brush to indicate the depth variation in the rest
part of the image (row 1, right image). Generally, cyan regions are closer than red
regions and dark color scribblings are from segmentation while light color scribblings
are from user interaction. The reconstructed 3D points are marked as yellow (row 2,
left image) in the user interface, and the users need to assign the computed depth
value to undefined regions (row 2, right image).

5.2 User Interaction

All those automatically computed output will be presented in the user interface and

be marked as defined regions. The reconstructed 3D feature points will be highlighted

in yellow on the input image frames (figure 5.7, row 2, left image). The segmented

foreground/background objects will be marked as at distinct depth (figure 5.7, row 1,

middle image). The effect of the perspective depth correction will not show up in the

user interface, but directly input into the final quadratic programming formulation.

With the assistance of defined regions, the users need to do some labeling work that

points out the depth in the undefined regions.

I introduce two types of brushes: the depth difference brush and depth equivalence

129

brush. The former one is mainly intended to distinguish the surfaces that lie on

different depth (figure 5.7, row 1, right image). And the latter one is employed to

assign the recovered depth value to undefined regions (figure 5.7, row 2, right image).

Both types of user inputs are are incorporated into the final solution through equality

constraints. Let pn and pf be two pixels covered by the depth different brush, where

pn is inside the front area and pf is inside the back area. Also assume that pixels pi

and pj are two arbitrary pixels covered by the depth equivalence brush. The following

equations will be added to the linear equations to constraint the depth of these pixels

based on the user’s input:

d(pn)− d(pf) ≥ ∆d
d(pi)− d(pj) = 0

(5.9)

5.3 Depth Propagation

To avoid solving an extremely large problem, we down-sample the input image se-

quences by a factor of 4 in both dimension, and up-sample with the joint bilateral

technique [277].

The propagation is based on the smoothness assumption that spatial and temporal

neighboring pixels should have the same depth value if they share the same color.

For each pixel p in the image sequence, we have

d(p)−
∑
q∈Np

wpqd(q) = 0 (5.10)

where d(p) is the depth value of pixel p and wpq is the normalized weight between

130

pixel p and q, which is inversely proportional to the color difference of these two pixels.

Np is a set consisting of p’s 8 spatial neighbors in the current frame and 1 temporal

neighbor in the next frame, which is located using optical flow. The equation 5.10 for

each pixel is stacked as a large sparse linear equation Ax = 0. where A is the weight

matrix and x is the depth vector defined on every pixel.

The equality constraints from the SFM (equation 5.7), perspective depth correc-

tion (equation 5.8) and user’s depth equivalence brush (equation 5.9) are stacked as

a linear equation Cx = d.

And the inequality constraints from the moving object extraction (equation 5.6)

and user’s depth different brush (equation 5.9) are stacked as a linear inequality

equation Ex ≥ f .

Therefore, the propagation is formulated as the following optimization problem:

min
x
‖Ax‖2

2 s.t. Cx = d,Ex ≥ f (5.11)

It is equivalent to solve

min
x

(xTATAx) s.t. Cx = d,Ex ≥ f (5.12)

This is a standard quadratic programming formulation. The solution can be

found using the MOSEK optimization toolbox, which can deal with sparse large-

scale problems.

131

Figure 5.8: The results obtained by equal brush labeling along with the assistance
from SFM. The 1st row shows the user labeling on the first and last frames. The 2nd

row shows some frames from the generated stereo video. The 3rd row are correspond-
ing depth maps.

5.4 Results

I tested my system on a variety of video shots under different camera motions. I

first demonstrate that the output from the three automatic preprocessing algorithms

(SFM, moving object extraction and perspective depth correction) do help the users

in the labeling step.

In the case of figure 5.8, the background scene is reconstructed by SFM, and the

only undefined object/area is the moving person. By observing that the person is

standing upon the rail, the user can simply assign the depth of the rail to the person

by applying equal brush on the first and last frames. The depth value is propagated

to in-between frames by temporal smoothness constraints.

Figure 5.11 shows the results of moving object extraction. This is a typical follow

shot in which the subjects are followed by a panning camera. In this case, SFM fails

due to the lack of parallax. However, the moving object extraction algorithm can

132

Figure 5.9: The effectiveness of perspective depth correction algorithm. The two
images on the 1st row are the first and last frame from a video. The left image on
the 2nd row is the depth map of the first frame and the middle and right images
are depth maps of the last frame without and with the perspective depth correction
respectively.

easily segment out the cars from the constantly changing background audiences and

foreground lawns. The results are input to the user interface as the depth difference

constraints. In particular, we regard the segmented object to be in front of the

area above and to the both sides of it, under observation that most follow shots are

following objects on the ground. The remaining work to the users is differentiating

the depth between the foreground lawn and the cars (figure 5.11, row 3).

Figure 5.9 shows the effectiveness of perspective depth correction. If the algorithm

is not applied on the input video, the depth value will be propagated from the first

frame to the last frame under the smoothness constraints defined on spatial and

temporal neighbors. Thus, the same depth value on the truck in the first frame is

passed onto the last frame, which is obviously invalid. Whereas, the perspective depth

correction algorithm captures the depth change and produces correct depth value in

the last frame.

133

My system mainly relies on motion to produce additional information that facil-

itates the user interaction. However, if the three automatic subsystems cannot do

anything in the first place, the two brushes: depth difference brush and depth equal-

ity brush can still produce similar 3D effect as does the Guttmann’s method. For

example in figure 5.10, the scene, consisting of nearly static subjects, is captured by

a stationary camera. Guttmann’s method directly assigns different depth to different

layers of the scene. My method can accomplish the same effect by applying the depth

difference brush a couple of times, in order to point out pairwise layers that lie on

different depth.

All the shown stereo footage in this section as well as in previous sections can be

found in the accompanied video. Please wear a pair of red/cyan 3D glasses to watch

them.

5.5 User Study

To further compare the my system with the one proposed by Guttmann et al. [2], two

user studies are conducted. In the first study, the users are asked to convert videos

to 3D using both systems. The qualities of the 3D videos generated by these users

are evaluated in the second user study. Based on the design goal of my system, I

hypothesize the following:

H1: Participants using my system will be able to complete the tasks quicker than

using the Guttmann’s method.

H2: Participants will find it easier to label the relative depths of different objects

than labeling the disparity values.

134

Figure 5.10: The scene of stationary camera and static objects will fail the three
algorithms in the preprocessing. However, the two labeling brushes: depth difference
brush and depth equivalence brush can still produce similar visual 3D effect as does
Guttmann’s method. Guttmann’s method (left column) assigns different depth (color
coded) to different layers of the scene. My method (right column) achieves the same
effect by applying the depth difference brush twice. The dark red&cyan scribbling
pair indicate the depth difference of the old lady and the young man. And the light
red&cyan pair point out the difference between the young man and the background.
The results from both methods are visually comparable.

Figure 5.11: The moving object extraction results and its integration into the user
interface. The 1st and 2nd rows show the original images and segmented result. the 3rd

row shows the look of the user interaction. The dark red&cyan pairs are automatically
generated from the segmentation results and the light red&cyan pairs are marked by
user. The 4th row shows the stereo images from the video.

135

H3: When given a choice of which system to use for future label tasks, participants

will prefer my system.

H4: The improvement of my system over Guttmann’s method is more noticeable

when the input videos contain more motion.

5.5.1 System Usability Study

This user study is conducted in a controlled setting using a 2× 4 (system × labeling

task) between-subjects design. Each participant performs each of the four labeling

tasks only once, two of which using my system and the other two using Guttmann’s

method. To further alleviate potential learning effects, a Graeco-Latin square was

used to vary the order of exposure to the interface and the order of the task assign-

ment. Prior to performing any of the tasks, participants were given a chance to play

with both systems.

For each task, measurements of time to task completion and subjective user opin-

ion were made. Pre-study questionnaires were administered to determine prior expe-

rience with computer and image/video editing. Post-study questionnaires measures

perceived usefulness and ease-of-use, along with an indication of preference.

Participant Demographics

Twenty individuals were recruited from the CS graduate student population at two

universities to participate in this study. Their response to the pre-study question-

naires shows that all of them are familiar with image/video editing, but do not have

prior knowledge about 3D video conversion.

136

Ours Guttmann09

skateboard

Ours Guttmann09

matrix fight

skateboard

Ours Guttmann09

gossip girl

matrix fight

skateboard

Ours Guttmann09

old lady

gossip girl

matrix fight

skateboard

Ours Guttmann09

0 100 200 300 400 500 600

old lady

gossip girl

matrix fight

skateboard

k l ()

Ours Guttmann09

0 100 200 300 400 500 600

old lady

gossip girl

matrix fight

skateboard

Task completion time (seconds)

Ours Guttmann09

0 100 200 300 400 500 600

old lady

gossip girl

matrix fight

skateboard

Task completion time (seconds)

Ours Guttmann09

Figure 5.12: The average time that the users took under different systems.

Time to Task Completion

The average time required to complete the four labeling tasks with the two system are

illustrated in Figure 5.12. It shows that, for all four datesets, the users took less time

when using my system to label the scene for 3D conversion. ANOVA tests preformed

on these measurements confirm that the timing differences are statistical significant

(F(1,72) = 8.83,p < 0.01). This finding confirms the first hypothesis (H1).

Subjective Reactions

In the post-study questionnaires, participants were asked to indicate their degree of

agreement to statements related to the usability of the two systems (using a five-

point Likert scale). As shown in Table 5.1, users generally find it difficult to label the

depth directly, which is required by Guttmann et al.’s method. Majority users find

labeling the relative depth easy and almost all users find my interface makes the 3D

conversion task easier (H2). In addition, when asked “which UI would you prefer for

future labeling tasks?”, all participants selected my UI (H3).

137

Table 5.1: Users’ response to the post-study questionnaires, where UIA refers to
Guttmann et al.’s method and UIB refers to my approach

Statements Strongly
disagree

disagree neutral agree strongly
agree

It’s easy to label
the depth values di-
rectly using UIA

3 10 3 4 0

It’s easy to label the
depth ordering us-
ing UIB

1 0 0 8 11

The labeling task
using UIB is easier
than using UIA

1 0 1 6 12

5.5.2 Result Quality Study

To remove the bias that a user may have toward a given system, the result quality

evaluation is performed in a separate user study. In this step, all 3D videos generated

in the previous study are shuffled and shown to the users. The users are asked to

assign a score to each 3D video, without knowing who converted the video and which

system was used for the conversion. The score ranges from 0 to 4, with ‘0’ being the

poorest and ‘4’ being the best.

The average scores for the 3D videos generated for each dataset using each system

are illustrated in Figure 5.13. It shows that, for “skateboard”, “matrix fight”, and

“gossip girl” datesets, the users find the results generated by my system to be much

better than the ones generated by Guttmann’s method. ANOVA tests confirm that

the differences are statistical significant for all three datasets (F(1,254) = 114,p < 0.01

for “skateboard”; F(1,254) = 211,p < 0.01 for “fight”; and F(1,254) = 8.74,p < 0.01

for “gossip girl”). the “old lady” dataset, the average score for the video generated

using the Guttmann’s method is slightly higher, but the difference is statistically

138

Ours Guttmann09

skateboard

Ours Guttmann09

matrix fight

skateboard

Ours Guttmann09

gossip girl

matrix fight

skateboard

Ours Guttmann09

old lady

gossip girl

matrix fight

skateboard

Ours Guttmann09

1 1.5 2 2.5 3 3.5 4 4.5 5

old lady

gossip girl

matrix fight

skateboard

Average user score

Ours Guttmann09

1 1.5 2 2.5 3 3.5 4 4.5 5

old lady

gossip girl

matrix fight

skateboard

Average user score

Ours Guttmann09

1 1.5 2 2.5 3 3.5 4 4.5 5

old lady

gossip girl

matrix fight

skateboard

Average user score

Ours Guttmann09

Figure 5.13: The average score that the users gave to videos generated by different
systems.

insignificant in (F(1,254) = 0.155,p > 0.5). This suggests that, when the scene

contains little motion, the result qualities of both systems rely solely on the users’ in-

put. However, when the scene contains complex motion, the depth labels provided by

the users become imprecise and the advantages of automatic pre-processing processes

start to emerge (H4).

5.6 Conclusion

This chapter presented a hybrid framework to semi-automatically convert conven-

tional videos to stereoscopic videos. My system tries to make full use of the available

motion information so that less user interaction is required. Compared to the previ-

ous methods [2], the major novelty of my framework lies in the utilization of motion

prior analysis, such as automatic moving object extraction and perspective depth

correction, to deal with arbitrary camera/object movement. In addition, I also de-

veloped a new user interface that requires users to specify relative depth orders with

the help of pre-computed 3D visual cues, instead of labeling the depth value directly.

139

Finally, the depth information automatically extracted by computer algorithms and

the interactively labeled by users are propagated to the whole video sequence through

solving a quadratic programming problem. As demonstrated in the results and con-

firmed by the user study, my system is more user-friendly, as well as produces better

quality of stereo videos for scenes with complex motions.

Looking into the future, I am planning to automatically cut a video into multiple

shots and try to utilize coherence among non-adjacent shots for the same scene.

Moreover, I am interested in automatically categorizing the video sequences so that

the computer can decide which visual cues can be utilized. How to explore other

visual cues for automating the video conversion process is also worth investigating.

140

Chapter 6 Conclusion and Future Work

I explore the possibilities of accomplishing traditional computer vision tasks with a

single camera. I explored how to recover 3D information from a single view, in order

to enable the 3D re-experiencing of recorded scenes. My work consists of three parts:

• Light fall-off stereo depth camera

• 3D Modeling of dynamic and deformable objects

• 2D-3D video conversion

For the 3D modeling, the range data can be either obtained by a stereo camera

pair or by a general depth sensor. I actually designed and developed a depth cam-

era based on a novel technique called light falloff stereo (LFS). LFS depth camera

produces color+depth images sequences and achieves 30 fps, which is necessary for

capturing dynamic scenes. The complete 3D model is reconstructed by aligning sur-

faces captured at different times. The alignment involves mesh deformation guided

by feature correspondences.

For video conversion, I developed a semi-automatic system that converts con-

ventional videos into stereoscopic videos by combining motion analysis with user

interaction, aiming to transfer as much as possible labeling work from the user to

the computer. I further developed a quadratic programming approach to incorporate

both quantitative depth and qualitative depth (such as those from user scribbling),

141

in order to recover dense depth maps for all frames, from which a stereoscopic view

can be synthesized.

6.1 Innovations

The general contribution of the presented research is simplifying the data acquisition

process for those computer vision tasks by using only a single camera. Modeling

deformable and dynamic objects is usually achieved by using an array of synchronized

cameras that can see different sides of an object simultaneously. Single view modeling

saves people from the tedious synchronization and calibration processes, while still

producing plausible results. On the other hand, the view synthesis framework can

turn a traditional 2D movie into a 3D movie with limited user interaction. The

technical contributions are listed as follows:

The theory of Light Fall-off Stereo I developed a novel way to estimate depth

information from scenes beyond Lambertian reflectance model. I also developed a

global optimization-based method that uses multiple light variations to further im-

prove the accuracy and robustness. The effectiveness of LFS is demonstrated with a

variety of real-world scenes exhibiting complex reflectance and geometries.

The Design of Real-time LFS Camera I developed a novel depth range system

that can generate a VGA (640x480) resolution depth map at 30Hz. In order to

toggle between two LED lights in a fast and accurate way, I designed a dedicated

circuit to control the state of the LED lights and receive synchronization signals

142

with the camera. I also immigrated the whole computation of the depth map to

GPU, achieving real-time performance. In terms of quantitative accuracy, my system

compares favorably to other commercial 3D range sensors, particularly in textured

areas. In addition, my system is made of commodity off-the-shelf components, offering

an inexpensive solution to real-time, high-resolution, video-rate range sensing.

The Alignment of Deformable Surfaces The alignment between surfaces of

deformable and dynamic objects captured at different times need not only the rigid

transformation [16], but also the laplacian surface deformation [17] controlled by

feature points. Laplacian surface deformation ensures that the surface shape is un-

changed as much as possible, while at the same time, the control points continue to

coincide with their destination positions. However, previous mesh deformation tech-

niques only address the issue of deforming one mesh at a time, which means that we

can only sequentially stitch different pieces of surface to reconstruct a complete 3D

model. In most cases, sequential alignment may lead to misalignment between the

first and the last surface, due to accumulative errors. I modified the traditional mesh

deformation in order to align all pieces of surfaces globally and simultaneously, so

that a complete model can be obtained. This research work is already published in

ICCV 2009 [18].

Motion Analysis for 2D-3D Video Conversion I developed two novel tech-

niques that automatically estimate the 3D information from video sequences. Unlike

SFM that requires non-axis camera movement (e.g., dolly, crane), my techniques can

143

work with arbitrary camera/object movement, such as camera pan or zoom, which

are frequently used in both everyday video and professional shots.

Intuitive User Interface I provided a user-friendly interface that requires users to

label depth relationship rather than depth value on the images. My UI design benefits

from the already defined 3D cues by the pre-processing of movement, providing users

with a more intuitive and less labor intensive UI environment. In the case that none of

the 3D cues can be inferred in the pre-processing step, my labeling can still simulate

the direct depth labeling with the same amount of manual work.

Quadratic Programming Formulation for Depth Propagation I formulate

the sparse to dense depth propagation as a quadratic programming problem, that

could elegantly integrate both relative (such as layer orders) and absolute (such as

that from SFM) depth constraints.

6.2 Future Work

As I stated before, the ultimate goal of my dissertation work is to make tomorrow’s 3D

building as easy as today’s photo shooting. My work is two steps towards this goal,

even if many more efforts are needed to really reach it. Of course, my attempts here

are not the unique ways to this goal. I believe there are various possible directions

that are worth exploration. Here are some visions for the future.

More Reliable Depth Camera Existing depth cameras are mainly designed for

indoor environments. Because most of them rely on active light to detect scene depth,

144

it fails at capturing the complex lighting conditions in the outdoor environment. For

instance, my LFS depth sensor cannot work in outdoor environments because it

cannot deal with the ambient light.

Another reason that current depth cameras are not suitable for outdoor capture is

that they have fixed focal length. In other words, they have a fixed working distance.

For example, some depth cameras are designed to capture human size objects. So it

is impossible to use them to capture smaller or bigger objects, such as a miniature

car model or a true building. It is very interesting to mak depth cameras work like

regular zoom lens cameras, so that they can capture objects within a certain scale

range.

The final thing that prevents depth cameras from becoming popular is that the

output of the depth cameras is not standardized. Some depth cameras output depth

maps and color images, while some of them output text files that record the depth

information. I believe there will be more and more demands in the future to create

output from the depth cameras that is unified and displayable, just as the images

output by a regular camera.

In order to make my proposed 4D reconstruction method more practical, a more

common and reliable depth camera is a must.

Textured Models Currently, the reconstructed 3D models are not textured. Al-

though a color image is aligned with each captured piecewise surface, it is not easy

to stitch together the texture in the images. This is due to the misalignment between

the surfaces. A small amount of misalignment between surfaces will cause the loss of

145

details of the surface shape. Since I am using volumetric method to fuse the aligned

surfaces, the final extracted surface will be visually acceptable even if it is distorted

by a small amount of misalignment.

However, it is not the case for texture. The misalignment between two surfaces

will also cause the misalignment of the texture on the common part between these

two surfaces. And the misalignment of the texture will blur out the final result.

Compared to the other parts, the blurring of the texture on the shared parts is quite

obvious; therefore I have decided not to present the texture on the reconstructed

model.

In order the re-explore the captured scenes in interactive 3D, texture has to be

added back onto the reconstructed models. Maybe another option is to add the

texture at the image level, and then put it onto the complete 3D model, like dressing

it up with cloth.

More Sophisticated Global Method Currently the global alignment is formu-

lated as a big linear equation. Although it looks simple and intuitive, it is not easy to

solve numerically when the equation becomes too big. For example, if we are dealing

with 20 surfaces, each of which has about 5000 vertices, the final linear system is

about 100,000 x 100,000. In some cases, I will have to deal with many more surfaces

and vertices. When the matrix gets bigger, the condition number is likely to get

bigger. Plus, it is not always easy to directly solve linear equations at this scale, even

using the most sophisticated linear algebra library. This big of a matrix will also

cause memory issues, even though we are dealing with a sparse matrix. An iterative

146

approach might be a solution to this problem, but most of time this cannot guarantee

a quick convergence.

Therefore, it will be worth trying a more sophisticated global method, in order

to avoid solving big linear equations. Though I am dealing with deformable surfaces

in this project, the core idea of distributing the alignment errors evenly across all

surfaces is the same as that for rigid surfaces. So, it is interesting to explore those

global methods introduced in section 2.2.3 of chapter 2.

This could also be tried for the the depth propagation in the 2D-3D conversion

formulation. Because the quadratic programming is turned into linear equations,

ultimately, we are still facing the problem of solving big linear equations.

Automatic Detection of Different Shots In the 2D-3D video conversion project,

the success of my automatic processing modules depends on the camera/object mo-

tion. For example, with a dolly shot, SFM will work very well; on the other hand, in

a pan or follow-shot in sport video, the automatic segmentation method is effective.

How to automatically detect these shot/motion types and apply the appropriate mo-

tion analysis tool is an interesting topic in its own right. For the scope of this thesis,

I let the user decide which tool to use.

Looking to the future, it would be very useful to automatically cut a video into

multiple shots and try to utilize coherence among non-adjacent shots for the same

scene. Moreover, I am also interested in automatically categorizing the video se-

quences so that the computer can decide which visual cues can be utilized. How to

explore other visual cues for automating the video conversion process is also worth

147

investigating.

Quantitative Evaluations In this thesis, both the 4D reconstruction and the 2D-

3D video conversion only require the results to be visually reasonable, not physically

correct. Because both of them are ill-posed problems, and they are based on heuris-

tics. However, it may be quite interesting to quantitatively evaluate my results by

comparing it to ground truth.

For the 4D reconstruction project, we could use multiple surrounding cameras to

capture the ground truth, and then use the output of one of the cameras to build 3D

models. For the 2D-3D video conversion project, we could use a stereo camcorder,

such as the Fujifilm FinePix Real 3D camera, to capture a 3D video clip. Then we

could input the clip from one view into the system to see the results.

148

Bibliography

[1] J. J. Koenderink, A. J. van Doorn, A. M. Kappers, and J. T. Todd. Ambiguity
and the ’mental eye’ in pictorial relief. In Perception, 2001.

[2] Moshe Guttmann, Lior Wolf, and Daniel Cohen-Or. Semi-automatic stereo
extraction from video footage. In ICCV, 2009.

[3] M. Pollefeys, R. Koch, and L. Van Gool. Self-Calibration and Metric Recon-
struction in spite of Varying and Unknown Internal Camera Parameters. In
ICCV, pages 90–95, 1998.

[4] Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, and Steven M.
Seitz. Multi-view stereo for community photo collections. In Proceedings of
ICCV, 2007.

[5] T. Kanade, P. Rander, S. Vedula, and H. Saito. Virtualized reality: Digitizing
a 3d time-varying event as is and in real time. In Yuichi Ohta and Hideyuki
Tamura, editors, Mixed Reality, Merging Real and Virtual Worlds, pages 41–57.
Springer-Verlag, 1999.

[6] C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, Simon Winder,
and Richard Szeliski. High-quality video view interpolation using a layered
representation. ACM Transactions on Graphics,, 23(3):600–608, 2004.

[7] C. Tomasi and T. Kanade. Shape and Motion from Image Streams under
Orthography: A Factorization Approach. IJCV, 9(2):137–154, 1992.

[8] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

[9] Christoph Bregler, Aaron Hertzmann, and Henning Biermann. Recovering non-
rigid 3d shape from image streams. In Proceedings of CVPR, pages 690–696,
2000.

[10] Lorenzo Torresani, Aaron Hertzmann, and Chris Bregler. Learning non-rigid
3d shape from 2d motion. In In proceedings of NIPS, 2003.

[11] Mario Botsch and Olga Sorkine. On linear variational surface deformation
methods. In Transaction on visualization and Computer Graphics. IEEE, 2008.

[12] Edilson de Aguiar, Carsten Stoll, Christian Theobalt, Naveed Ahmed, Hans-
Peter Seidel, and Sebastian Thrun. Performance capture from sparse multi-view
video. In Siggraph. ACM, 2008.

[13] Guofeng Zhang, Jiaya Jia, Tien-Tsin Wong, and Hujun Bao. Consistent depth
maps recovery from a video sequence. Transactions on Pattern Analysis and
Machine Intelligence, 31(6), 2009.

149

[14] Sotiris Diplaris, Nikos Grammalidis, Dimitris Tzovaras, and Michael G.
Strintzis. Generation of stereoscopic image sequences using structure and rigid
motion estimation by extended kalman filters. ICME, 2, 2002.

[15] Konstantinos Moustakas, Dimitrios Tzovaras, and Michael G. Strintzis. Stereo-
scopic video generation based on efficient layered structure and motion estima-
tion from a monoscopic image sequence. Transactions on Circuits and Systems
for Video Technology, 15(8), 2005.

[16] B. K. Horn. Colosed-form solution of absolute orientation using unit quater-
nions. In Journal of the Optical Society of America, 1987.

[17] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, and H.-P. Seidel.
Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIG-
GRAPH symposium on Geometry processing, 2004.

[18] Miao Liao, Qing Zhang, Huamin Wang, Ruigang Yang, and Minglun Gong.
Modeling deformable objects from a single depth camera. In International
Conference on Computer Vision, 2009.

[19] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and ren-
dering architecture fromphotographs: A hybrid geometry- and image-based ap-
proach. ACM Transactions on Graphics (Proc. SIGGRAPH), pages 11–20,
1996.

[20] M. Pollefeys and L. Van Gool. A Stratified Approach to Self-calibration. In Pro-
ceedings of Conference on Computer Vision and Pattern Recognition (CVPR),
pages 407–412. IEEE Computer Society Press, 1997.

[21] David Liebowitz and Andrew Zisserman. Combining Scene and Auto-
Calibration Constraints. In Proceedings of International Conference on Com-
puter Vision (ICCV), pages 293–300, 1999.

[22] D. Marr and T. Poggio. Cooperative Computation of Stereo Disparity. Science,
194:283–287, 1976.

[23] S.T. Barnard and M.A. Fischler. Computational Stereo. Computer Surveys,
14(4):553–572, 1982.

[24] U. Dhond and J. Aggrawal. Structure from stereo: a review. IEEE Transactions
on Systems, Man, and Cybernetics, 19(6):1489–1510, 1989.

[25] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense Two-Frame
Stereo Correspondence Algorithms. IJCV, 47(1):7–42, May 2002.

[26] D. Marr. Vision. W. H. Freeman and Company, 1982.

[27] N. Ayache and C. Hansen. Rectification of Images for Binocular and Trinocular
Stereovision. In Proceedings of International Conference on Pattern Recogni-
tion, pages 11–16, 1988.

150

[28] D. Papadimitriou and T. Dennis. Epipolar line estimation and rectification
for stereo image pairs. IEEE Transactions on Image Processing, 5(4):672–676,
1996.

[29] C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vi-
sion. In Proceedings of Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 125–131, 1999.

[30] M. Pollefeys, R. Koch, and L. Van Gool. A Simple and Efficient Rectification
Method for General Motion. In Proceedings of International Conference on
Computer Vision (ICCV), pages 496–501, Corfu, Greece, 1999.

[31] M. J. Hannah. Computer Matching of Areas in Stereo Images. PhD thesis,
Stanford University, 1974.

[32] P. Anandan. A Computational Framework and an Algorithm for the Measure-
ment of Visual Motion. International Journal of Computer Vision (IJCV),
2(3):283–310, 1989.

[33] L. Matthies, R. Szeliski, and T. Kanade. Kalman Filter-based Algorithms for
Estimating Depth from Image Sequences. International Journal of Computer
Vision (IJCV), 3:209–236, 1989.

[34] T. Kanade. Development of a Video-rate Stereo Machine. In DARPA Image
Understanding Workshop, page 549C557, Monterey, CA, 1994. Morgan Kauf-
mann Publishers.

[35] T. W. Ryan, R. T. Gray, and B. R. Hunt. Prediction of Correlation Errors in
Stereo-pair Images. Optical Engineering, 19(3):312–322, 1980.

[36] R. C. Bolles, H. H. Baker, and M. J. Hannah. The JISCT Stereo Evaluation.
In DARPA Image Understanding Workshop, pages 263–274, 1993.

[37] P. Seitz. Using Local Orientation Information as Image Primitive for Robust
Object Recognition. SPIE Visual Communications and Image Processing IV,
1199:1630C1639, 1989.

[38] D. Scharstein. Matching Images by Comparing Their Gradient Fields. In Pro-
ceedings of International Conference on Pattern Recognition (ICPR), volume 1,
pages 572–575, 1994.

[39] R. Zabih and J. Woodfill. Non-parametric Local Transforms for Computing
Visual Correspondence. In Proceedings of European Conference on Computer
Vision (ECCV), page 151C158, 1994.

[40] M. J. Black and P. Anandan. A Framework for the Robust Estimation of
Optical Flow. In Proceedings of International Conference on Computer Vision
(ICCV), pages 231–236, 1993.

151

[41] M. J. Black and A. Rangarajan. On the Unification of Line Processes, Outlier
Rejection, and Robust Statistics with Applications in Early Vision. Interna-
tional Journal of Computer Vision (IJCV), 19(1):57–91, 1996.

[42] D. Scharstein and R. Szeliski. Stereo Matching with Nonlinear Diffusion. In-
ternational Journal of Computer Vision (IJCV), 28(2):155–174, 1998.

[43] S. Birchfield and C. Tomasi. A Pixel Dissimilarity Measure That Is Insensi-
tive to Image Sampling. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 20(4):401–406, 1998.

[44] R. D. Arnold. Automated Stereo Perception. Technical Report AIM-351, Ar-
tificial Intelligence Laboratory, Stanford University, 1983.

[45] A. F. Bobick and S. S. Intille. Large occlusion stereo. International Journal of
Computer Vision (IJCV), 33(3):181–200, 1999.

[46] M. Okutomi and T. Kanade. A Locally Adaptive Window for Signal Matching.
International Journal of Computer Vision (IJCV), 7(2):143–162, 1992.

[47] T. Kanade and M. Okutomi. A Stereo Matching Algorithm with an Adaptive
Window: Theory and Experiment. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(9):920 – 932, September 1994.

[48] S. B. Kang, R. Szeliski, and J. Chai. Handling Occlusions in Dense Multi-
view Stereo. In Proceedings of Conference on Computer Vision and Pattern
Recognition (CVPR), 2001.

[49] O.Veksler. Stereo Matching by Compact Windows via Minimum Ratio Cycle.
In Proceedings of International Conference on Computer Vision (ICCV), pages
540–547, 2001.

[50] Y. Boykov, O. Veksler, and R. Zabih. A Variable Window Approach to Early Vi-
sion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12),
December 1998.

[51] K. Prazdny. Detection of Binocular Disparities. Biological Cybernetics,
52(2):93–99, 1985.

[52] W. E. L. Grimson. Computational experiments with a feature based stereo
algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 7(1):17–34, 1985.

[53] R. Szeliski and G. Hinton. Solving Random-dot Stereograms Using the Heat
Equation. In Proceedings of Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 284–288, 1985.

[54] J. Shah. A Nonlinear Diffusion Model for Discontinuous Disparity and Half-
occlusion in Stereo. In Proceedings of Conference on Computer Vision and
Pattern Recognition (CVPR), pages 34–40, 1993.

152

[55] Tomaso Poggio, Vincent Torre, and Christof Koch. Computational Vision and
Regularization Theory. Nature, 317(314-319), 1985.

[56] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, 1987.

[57] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distribution, and the
Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 6(6):721–741, 1984.

[58] J. Marroquin, S. Mitter, and T. Poggio. Probabilistic Solution of Ill-posed Prob-
lems in Computational Vision. Journal of the American Statistical Association,
82(397):76–89, 1987.

[59] S. T. Barnard. Stochastic Stereo Matching over Scale. International Journal
of Computer Vision (IJCV), 3(1):17–32, 1989.

[60] P. B. Chou and C. M. Brown. The Theory and Practice of Bayesian Image
Labeling. International Journal of Computer Vision (IJCV), 4(3):185–210,
1990.

[61] D. Geiger and F. Girosi. Parallel and Deterministic Algorithms for MRF’s:
Surface Reconstruction. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 6(6):721–741, 1984.

[62] S. Roy and I. J. Cox. A Maximum-flow Formulation of the N-camera Stereo
Correspondence Problem. In Proceedings of International Conference on Com-
puter Vision (ICCV), pages 492–499, 1998.

[63] H. Ishikawa and D. Geiger. Occlusions, Discontinuities, and Epipolar Lines in
Stereo. In Proceedings of European Conference on Computer Vision (ECCV),
pages 232–248, 1998.

[64] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 23(11):1222–1239, 2001.

[65] O. Veksler. Efficient Graph-based Energy Minimization Methods in Computer
Vision. PhD thesis, Cornell University, 1999.

[66] V. Kolmogorov and R. Zabih. Computing Visual Correspondence with Occlu-
sions Using Graph Cuts. In Proceedings of International Conference on Com-
puter Vision (ICCV), pages 508–515, 2001.

[67] C. Buehler, S. J. Gortler, M. Cohen, and L. McMillan. Minimal Surfaces for
Stereo Vision. In Proceedings of European Conference on Computer Vision
(ECCV), pages 885–899, 2002.

[68] Vladimir Kolmogorov and Ramin Zabih. What Energy Functions Can Be Min-
imized via Graph Cuts? In Proceedings of European Conference on Computer
Vision (ECCV), pages 65–81, 2002.

153

[69] P. N. Belhumeur. A Bayesian Approach to Binocular Stereopsis. International
Journal of Computer Vision (IJCV), 19(3):237–260, 1996.

[70] P. N. Belhumeur and D. Mumford. A Bayesian Treatment of the Stereo Corre-
spondence Problem Using Half-occluded Regions. In Proceedings of Conference
on Computer Vision and Pattern Recognition (CVPR), pages 506–512, 1992.

[71] D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and Binocular Stereo. In
Proceedings of European Conference on Computer Vision (ECCV), pages 425–
433, 1992.

[72] I. J. Cox, S. L. Hingorani, S. B. Rao, and B. M. Maggs. A Maximum Likeli-
hood Stereo Algorithm. Computer Vision and Image Understanding (CVIU),
63(3):542–567, 1996.

[73] Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique
with an Application to Stereo Vision. In Proceedings of International Joint
Conference on Artificial Intelligence, pages 674–679, 1981.

[74] D. Laidlaw, W. Trumbore, and John F. Hughes. Constructive solid geometry
for polyhedral objects. ACM Computer Graphics (SIGGRAPH), 20(4):161–170,
1986.

[75] T. Kanade and M. Okutomi. A Stereo Matching Algorithm with an Adaptive
Window: Theory and Experiment. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 16(9):920–932, 1994.

[76] J. Mulligan, V. Isler, and K. Daniilidis. Trinocular Stereo: A New Algorithm
and its Evaluation. International Journal of Computer Vision (IJCV), Special
Issue on Stereo and Multi-baseline Vision, 47:51–61, 2002.

[77] D. Scharstein. View Synthesis Using Stereo Vision. Lecture Notes in Computer
Science (LNCS), 1583, 1999.

[78] Ronen Basri. On the uniqueness of correspondence under orthographic and
perspective projections. In Proceeding of Image Understanding Workshop, pages
875–884, 1992.

[79] M. Okutomi and T. Kanade. A Multiple-baseline Stereo. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 15(4):353–363, 1993.

[80] R. Collins. A Space-Sweep Approach to True Multi-Image Matching. In Pro-
ceedings of Conference on Computer Vision and Pattern Recognition, pages
358–363, June 1996.

[81] Andrew P. Witkin. Recovering surface shape and orientation from texture.
Artificial Intelligence, 17(1-3):17 – 45, 1981.

[82] A. Blake and C. Marinos. Shape from texture: Estimation, isotropy and mo-
ments. 45(3):323–380, October 1990.

154

[83] D.A. Forsyth. Shape from texture without boundaries. In In Proc. ECCV,
pages 225–239, 2002.

[84] Jonas Garding. Shape from texture for smooth curved surfaces in perspective
projection. Journal of Mathematical Imaging and Vision, 2:630–638, 1992.

[85] Jitendra Malik and Ruth Rosenholtz. Computing local surface orientation and
shape from texture for curved surfaces, 1997.

[86] Maureen Clerc and Stphane Mallat. Shape from texture through deformations.
In In Proc. 7th Int. Conf. on Computer Vision, pages 405–410, 1999.

[87] Vilayanur S. Ramachandran. Perceiving shape from shading, 1988.

[88] Harry G. Barrow and J. M. Tenenbaum. Retrospective on ”interpreting line
drawings as three-dimensional surfaces”, pages 71–80. MIT Press, Cambridge,
MA, USA, 1994.

[89] E Mingolla and J T Todd. Perception of solid shape from shading. Biol. Cybern.,
53:137–152, January 1986.

[90] Berthold K. P. Horn, Richard S. Szeliski, and Alan L. Yuille. Impossible shaded
images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(2):15–2, 1993.

[91] Katsushi Ikeuchi and Berthold K. P. Horn. Numerical shape from shading and
occluding boundaries, 1981.

[92] B.K.P. Horn and M.J. Brooks. Shape and source from shading. In International
Joint Conference on Artificial Intelligence, pages 932–936, 1985.

[93] Robert T. Frankot, Rama Chellappa, and Senior Member. A method for en-
forcing integrability in shape from shading algorithms. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 10:439–451, 1988.

[94] B.K.P. Horn. Height and gradient from shading. IJCV, 5(1):37–76, 1990.

[95] Richard Szeliski. Fast shape from shading. Computer Vision Graphics and
Image Processing: Image Underst., 53(2):129–153, 1991.

[96] Omar E. Vaga and Yee-Hong Yang. Shading logic: A heuristic approach to
recover shape from shading. IEEE Trans. Pattern Anal. Mach. Intell.

[97] Q. Zheng and R. Chellappa. Estimation of illuminant direction, albedo, and
shape from shading. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 13(680-702):1222–1239, 1991.

[98] B. K.P. Horn. Shape from shading: A method for obtaining the shape of a
smooth opaque object from one view. Technical report, Cambridge, MA, USA,
1970.

155

[99] Elisabeth Rouy and Agnès Tourin. A viscosity solutions approach to shape-
from-shading. SIAM J. Numer. Anal., 29:867–884, June 1992.

[100] J. Oliensis. Shape from shading as a partially well-constrained problem.
CVGIP: Image Underst., 54:163–183, July 1991.

[101] J. Oliensis and P. Dupuis. A global algorithm for shape from shading. In
International Conference on Computer Vision, 1993.

[102] John Oliensis and Paul Dupuis. Shape recovery. chapter Direct method for
reconstructing shape from shading, pages 17–28. Jones and Bartlett Publishers,
Inc., , USA, 1992.

[103] M. Bichsel and A. P. Pentland. A simple algorithm for shape from shading.
pages 459–465, 1992.

[104] R. Kimmel and A. M. Bruckstein. Shape from shading via level sets. In Israel
Institute of Technology, CIS Report 9209, 1992.

[105] Alex P. Pentland. Shape from shading. chapter Local shading analysis, pages
443–487. MIT Press, Cambridge, MA, USA, 1989.

[106] Chia-Hoang Lee and Azriel Rosenfeld. Shape from shading. chapter Improved
methods of estimating shape from shading using the light source coordinate
system, pages 323–347. MIT Press, Cambridge, MA, USA, 1989.

[107] A. Pentland. Shape information from shading: A theory about human per-
ception. In Computer Vision., Second International Conference on, pages 404
–413, dec 1988.

[108] Ping sing Tsai and Mubarak Shah. Shape from shading using linear approxi-
mation. Image and Vision Computing, 12:487–498.

[109] Emmanuel Prados and Stefano Soatto. Fast marching method for generic shape
from shading. In In VLSM05, pages 320–331, 2005.

[110] E. Krotkov. Focusing. IJCV, 1(3):223–237, 1987.

[111] S. K. Nayar and Y. Nakagawa. Shape from focus. IEEE Trans. Pattern Anal.
Mach. Intell., 16:824–831, August 1994.

[112] P. Favaro. Shape from focus and defocus: Convexity, quasiconvexity and
defocus-invariant textures, 2007.

[113] M. Subbarao and G. Surya. Depth from defocus: A spatial domain approach.
IJCV, 13(3):271–294, 1994.

[114] John Ens and Peter Lawrence. An investigation of methods for determining
depth from focus. IEEE Trans. Pattern Anal. Mach. Intell., 15:97–108, Febru-
ary 1993.

156

[115] A.P. Pentland. A new sense for depth of field. PAMI, 9(4):523–531, 1987.

[116] Aggelos Konstantinos Katsaggelos. Digital Image Restoration. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1991.

[117] A. N. Rajagopalan and Subhasis Chaudhuri. Simultaneous depth recovery and
image restoration from defocused images. In CVPR’99, pages 1348–1353, 1999.

[118] L. M. Bregman. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming.
USSR Computational Mathematics and Mathematical Physics, 7(3):200 – 217,
1967.

[119] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pat-
tern Anal. Mach. Intell., 26:1124–1137, September 2004.

[120] Paul Beardsley, Paul Beardsley, Phil Torr, Phil Torr, Andrew Zisserman, and
Andrew Zisserman. 3d model acquisition from extended image sequences. pages
683–695. Springer-Verlag, 1996.

[121] P. A. Beardsley, A. Zisserman, and D. W. Murray. Sequential updating of
projective and affine structure from motion. Int. J. Comput. Vision, 23:235–
259, June 1997.

[122] Richard I. Hartley. Estimation of relative camera positions for uncalibrated
cameras. In Proceedings of the Second European Conference on Computer Vi-
sion, ECCV ’92, pages 579–587, London, UK, 1992. Springer-Verlag.

[123] M. Pollefeys, R. Koch, M. Vergauwen, and L. Van Gool. Hand-held acquisition
of 3d models with a video camera. In IEEE PROCEEDINGS OF 2 ND . INT.
CONF. ON 3D DIGITAL IMAGING AND MODELING (3DIM99), pages 14–
23. Society Press, 1999.

[124] Olivier Faugeras, Luc Robert, Stphane Laveau, Gabriella Csurka, Cyril Zeller,
Cyrille Gauclin, and Imed Zoghlami. 3-d reconstruction of urban scenes from
image sequences, 1997.

[125] Andrew W. Fitzgibbon and Andrew Zisserman. Automatic camera recovery for
closed or open image sequences. In Proceedings of the 5th European Conference
on Computer Vision-Volume I - Volume I, ECCV ’98, pages 311–326, London,
UK, 1998. Springer-Verlag.

[126] Daphna Weinshall and Carlo Tomasi. Linear and incremental acquisition of in-
variant shape models from image sequences. IEEE Trans. Pattern Anal. Mach.
Intell., 17:512–517, May 1995.

[127] Conrad J. Poelman and Takeo Kanade. A paraperspective factorization method
for shape and motion recovery. IEEE Trans. Pattern Anal. Mach. Intell.,
19:206–218, March 1997.

157

[128] Peter Sturm and Bill Triggs. A factorization based algorithm for multi-image
projective structure and motion, 1996.

[129] Anders Heyden. Projective structure and motion from image sequences using
subspace methods. In IN SCIA97, pages 963–968, 1997.

[130] F. Schaffalitzky, A. Zisserman, R. I. Hartley, and P. H. S. Torr. A six point
solution for structure and motion, 2000.

[131] David Jacobs. Linear fitting with missing data: Applications to structure-
from-motion and to characterizing intensity images. In Proceedings of the 1997
Conference on Computer Vision and Pattern Recognition (CVPR ’97), CVPR
’97, pages 206–, Washington, DC, USA, 1997. IEEE Computer Society.

[132] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces. In
Proceedings of SIGGRAPH, pages 187–194, 1999.

[133] Lorenzo Torresani, Aaron Hertzmann, and Christoph Bregler. Non-rigid
structure-from-motion: Estimating shape and motion with hierarchical priors.
PAMI, 2008.

[134] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafer. A Survey of
Methods for Volumetric Scene Reconstruction from Photographs. 1, Center for
Signal and Image Processing, Georgia Institute of Technology, 2001.

[135] C. R. Dyer. Volumetric scene reconstruction from multiple views. In L. S. Davis,
editor, Foundations of Image Understanding, pages 469–489. Kluwer, 2001.

[136] A. Laurentini. The Visual Hull Concept for Silhouette Based Image Under-
standing. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(2):150–162, February 1994.

[137] F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction.
Springer-Verlag, 1985.

[138] A. Laurentini. How Far 3D shapes Can be Understood from 2D Silhouettes?
IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2):188–
195, 1995.

[139] A. Laurentini. How Many 2D Silhouettes Does It Take to Reconstruct a 3D
Object? Computer Vision and Image Understanding, 67(1):81–87, 1997.

[140] N. Ahuja and J. Veenstra. Generating Octrees from Object Silhouettes in
Orthographic Views. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(2):137–149, 1989.

[141] W. N. Martin and J. K. Aggarwal. Volumetric Description of Objects from Mul-
tiple Views. IEEE Trans. Pattern Analysis and Machine Intelligence, 5(2):150–
158, 1983.

158

[142] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan. Image-Based
Visual Hulls. In Proceedings of SIGGRAPH 2000, pages 369–374, New Orleans,
August 2000.

[143] M. Potmesil. Generating Octree Models of 3D Objects from their Silhouettes
in a Sequence of Images. Computer Vision, Graphics and Image Processing,
40:1–20, 1987.

[144] W. Niem. Error analysis for silhouette-based 3D shape estimation from multiple
views. In Proc. Int. Workshop on Synthetic-Natural Hybrid Coding and Three-
Dimensional Imaging, 1997.

[145] S. K. Srivastava and N. Ahuja. Octree Generation from Object Silhouettes in
Perspective Views. Computer Vision, Graphics and Image Processing, 49(1):68–
74, 1990.

[146] R. Szeliski. Rapid Octree Construction from Image Sequences. Computer Vi-
sion, Graphics and Image Processing, 58(1):23–32, 1993.

[147] S. Moezzi, D.Y. Kuramura, and R. Jain. Reality Modeling and Visualization
from Multiple Video Sequences. IEEE Computer Graphics and Applications,
16(6):58–63, 1996.

[148] G.K.M. Cheung, T. Kanade, J.-Y. Bouguet, and M. Holler. A real time system
for robust 3d voxel reconstruction of human motions. In In Proceedings of IEEE
Conf. Computer Vision and Pattern Recognition, page 714720, 2000.

[149] D. Snow, P. Viola, and R. Zabih. Exact Voxel Occupancy with Graph Cuts. In
Proceedings of Conference on Computer Vision and Pattern Recognition, pages
345–352, 2000.

[150] C.H. Chien and J.K. Aggarwal. Volume surface octrees for the presentation
of 3d objects. Computer Vision, Graphics and Image Processing, 36:100–113,
1986.

[151] S. M. Seitz and C. R. Dyer. Photorealistic Scene Reconstruction by Voxel
Coloring. International Journal of Computer Vision (IJCV),, 35(2):151–173,
1999.

[152] Adrian Broadhurst and Roberto Cipolla. A Statistical Consistency Check for
the Space Carving Algorithm. In Proceedings of 11th British Machine Vision
Conference, pages 282–291, 2000.

[153] K. Kutulakos and S. M. Seitz. A Theory of Shape by Space Carving. Interna-
tional Journal of Computer Vision (IJCV),, 38(3):199–218, 2000.

[154] Vikram Chhabra. Reconstructing specular objects with image based rendering
using color caching. Master’s thesis, Worcester Polytechnic Institute, 2001.

159

[155] Ruigang Yang. View-Dependent Pixel Coloring – A Physically-Based Approach
for 2D View Synthesis. PhD thesis, Depart of Computer Science, University of
North Carolina at Chapel Hill, 2003.

[156] B. Culbertson, T. Malzbender, and G. Slabaugh. Generalized Voxel Coloring,
volume 1883 of Lecture Notes in Computer Science, pages 100–115. Springer-
Verlag, 1999.

[157] K. N. Kutulakos. Approximate N-view Stereo. In Proceedings of European
Conference on Computer Vision (ECCV), pages 67–83, 2000.

[158] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafer. Improved Voxel
Coloring via Volumetric Optimization. Technical Report 3, Center for Signal
and Image Processing, Georgia Institute of Technology, 2000.

[159] Vladimir Kolmogorov and Ramin Zabih. Multi-camera Scene Reconstruction
via Graph Cuts. In Proceedings of European Conference on Computer Vision
(ECCV), pages 82–96, 2002.

[160] Brian Curless and Marc Levoy. A volumetric method for building complex
models from range images. In Proceedings of SIGGRAPH, 1996.

[161] M. Goesele, B. Curless, and S. Seitz. Multi-view stereo revisited. In Proceedings
of CVPR, 2006.

[162] O D Faugeras and M Hebert. The representation, recognition, and locating of
3-d objects. Int. J. Rob. Res., 5:27–52, September 1986.

[163] F. Stein and G. Medioni. Structural indexing: efficient 3-d object recognition.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 14(2):125
–145, feb 1992.

[164] Andrew Edie Johnson and Martial Hebert. Surface registration by matching
oriented points. pages 121–128, 1997.

[165] C. Dorai, J. Weng, and A.K. Jain. Optimal registration of object views using
range data. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
19(10):1131 –1138, oct 1997.

[166] Yang Chen and Gérard Medioni. Object modeling by registration of multiple
range images. Image Vision Comput., 10:145–155, April 1992.

[167] Paul J. Besl and Neil D. McKay. A method for registration of 3-d shapes. IEEE
Trans. Pattern Anal. Mach. Intell., 14:239–256, February 1992.

[168] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In
Proceedings of the 21st annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’94, pages 311–318, New York, NY, USA, 1994. ACM.

160

[169] T. Masuda, K. Sakaue, and N. Yokoya. Registration and integration of multiple
range images for 3-d model construction. In Proceedings of the 1996 Interna-
tional Conference on Pattern Recognition (ICPR ’96) Volume I - Volume 7270,
ICPR ’96, pages 879–, Washington, DC, USA, 1996. IEEE Computer Society.

[170] S. Weik. Registration of 3-d partial surface models using luminance and depth
information. In In Proc. Int. Conf. on Recent Advances in 3-D Digital Imaging
and Modeling, pages 93–100, 1997.

[171] Guy Godin, Marc Rioux, and Réjean Baribeau. Three-dimensional registration
using range and intensity information. In Sabry F. El-Hakim, editor, Pro-
ceedings of the SPIE: Videometrics III, volume 2350, pages 279–290, Boston,
Massachusetts, USA, November 1994. SPIE.

[172] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm
for finding best matches in logarithmic expected time. ACM Trans. Math.
Softw., 3:209–226, September 1977.

[173] Michael Erdmann, Eric Grimson Mit, David A. Simon, and David A. Simon.
Fast and accurate shape-based registration. Technical report, 1996.

[174] Grard Blais, Martin D. Levine, and Martin D. Levine. Registering multiview
range data to create 3d computer objects. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 17:820–824, 1993.

[175] P. J. Neugebauer. Geometrical cloning of 3d objects via simultaneous registra-
tion of multiple range images. In Proceedings of the 1997 International Confer-
ence on Shape Modeling and Applications (SMA ’97), pages 130–, Washington,
DC, USA, 1997. IEEE Computer Society.

[176] Raouf Benjemaa and Francis Schmitt. Fast global registration of 3d sampled
surfaces using a multi-z-buffer technique. In Image and Vision Computing,
pages 113–120, 1997.

[177] Chitra Dorai, Gang Wang, Anil K. Jain, and Carolyn Mercer. Registration and
integration of multiple object views for 3d model construction. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 20:83–89, 1998.

[178] Kari Pulli. Surface reconstruction and display from range and color data, 1997.

[179] Kari Pulli. Multiview registration for large data sets. In SECOND INTERNA-
TIONAL CONFERENCE ON 3D DIGITAL IMAGING AND MODELING,
pages 160–168, 1999.

[180] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm.
In INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND
MODELING, 2001.

161

[181] O. Hall-Holt and S. Rusinkiewicz. Stripe boundary codes for real-time
structured-light range scanning of moving objects. In Computer Vision, 2001.
ICCV 2001. Proceedings. Eighth IEEE International Conference on, volume 2,
pages 359 –366 vol.2, 2001.

[182] J. Maver and R. Bajcsy. Occlusions as a guide for planning the next view.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 15(5):417
–433, may 1993.

[183] T. Masuda and N. Yokoya. A robust method for registration and segmentation
of multiple range images. In CAD-Based Vision Workshop, 1994., Proceedings
of the 1994 Second, pages 106 –113, feb 1994.

[184] Xavier Pennec. Multiple registration and mean rigid shapes - application to the
3d case. In In 16th Leeds Annual Statistical Workshop, pages 178–185, 1996.

[185] R. Bergevin, M. Soucy, H. Gagnon, and D. Laurendeau. Towards a general
multi-view registration technique. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 18(5):540 –547, may 1996.

[186] A. J. Stoddart and A. Hilton. Registration of multiple point sets. In Proc. 13
th Int. Conf. on Pattern Recognition, pages 40–44, 1996.

[187] Peter J. Neugebauer. Reconstruction of real-world objects via simultaneous
registration and robust combination of multiple range images. International
Journal of Shape Modeling, 3, 1997.

[188] David W. Eggert, Andrew W. Fitzgibbon, and Robert B. Fisher. Simultaneous
registration of multiple range views for use in reverse engineering of cad models,
1996.

[189] John Williams and Mohammed Bennamoun. A multiple view 3d registration
algorithm with statistical error modeling, 2000.

[190] Harpreet S. Sawhney, Steve Hsu, and R. Kumar. Robust video mosaicing
through topology inference and local to global alignment. In In Proc. Euro-
pean Conference on Computer Vision, pages 103–119, 1998.

[191] Heung-Yeung Shum and Richard Szeliski. Systems and experiment paper: Con-
struction of panoramic image mosaics with global and local alignment. Int. J.
Comput. Vision, 36:101–130, February 2000.

[192] Raouf Benjemaa and Francis Schmitt. A solution for the registration of multiple
3d point sets using unit quaternions. In European Conference on Computer
Vision, pages 34–50, 1998.

[193] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America A, 4(4):629–642, 1987.

162

[194] F. Lu and E. Milios. Globally consistent range scan alignment for environment
mapping. Autonomous Robots, 4:333–349, 1997.

[195] Gregory C. Sharp, Sang W. Lee, and David K. Wehe. Toward multiview regis-
tration in frame space. In In IEEE International Conference on Robotics and
Automation, 2001.

[196] G.C. Sharp, S.W. Lee, and D.K. Wehe. Multiview registration of 3d scenes by
minimizing error between coordinate frames. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 26(8):1037 –1050, aug. 2004.

[197] A. Sharf, M. Alexa, and D. Cohen-Or. Context-based surface completion. ACM
Transactions on Graphics, 23(2):878–887, 2004.

[198] Tao Ju. Robust repair of polygonal models. ACM Transactions on Graphics,
23(3):888–895, 2004.

[199] S. Park, X. Guo, H. Shin, and H. Qin. Shape and appearance repair for incom-
plete point surfaces. In Proceedings of ICCV, pages 1260–1267, 2005.

[200] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Geometric context from a
single image. In International Conference on Computer Vision. IEEE, 2005.

[201] Ashutosh Saxena, Min Sun, and Andrew Y. Ng. Learning 3-d scene structure
from a single still image. In International Conference on Computer Vision,
2007.

[202] Ashutosh Saxena, Sung H. Chung, and Andrew Y. Ng. Learning depth from
single monocular images. In NIPS, 2006.

[203] Guofeng Zhang, Zilong Dong, Jiaya Jia, Liang Wan, Tien-Tsin Wong, and
Hujun Bao. Refilming with depth-inferred videos. IEEE Transactions on Vi-
sualization and Computer Graphics (TVCG), 15(5):828–840, 2009.

[204] Carlo Tomasi. Shape and motion from image streams under orthography: a
factorization method. International Journal of Computer Vision, 9:137–154,
1992.

[205] S. Knorr and T. Sikora. An image-based rendering (ibr) approach for realistic
stereo view synthesis of tv broadcast based on structure from motion. In ICIP,
2007.

[206] E. Rotem, K. Wolowelsky, and D. Pelz. Automatic video to stereoscopic video
conversion. In SPIE, 2005.

[207] Guofeng Zhang, Wei Hua, Xueying Qin, Tien-Tsin Wong, and Hujun Bao.
Stereoscopic video synthesis from a monocular video. Transactions on Visual-
ization and Computer Graphics, 13(4), 2007.

163

[208] Steve Katz. Film Directing Shot by Shot: Visualizing from Concept to Screen.
Michael Wiese, 1991.

[209] P. Harman. Home based 3d entertainment: An overview. In ICIP, pages Vol I:
1–4, 2000.

[210] Phil Harman, Julien Flack, Simon Fox, and Mark Dowley. Rapid 2d to 3d
conversion. In in Stereoscopic Displays and Virtual Reality Systems IX, Andrew,
pages 78–86, 2002.

[211] Anat Levin Dani, Dani Lischinski, and Yair Weiss. Colorization using optimiza-
tion. ACM Transactions on Graphics, 23:689–694, 2004.

[212] Daniel Skora, David Sedlacek, Sun Jinchao, John Dingliana, and Steven Collins.
Adding depth to cartoons using sparse depth (in)equalities. Eurographics, 2010.

[213] J. J. Koenderink and Van Doorn Aj. Local structure of movement parallax of
the plane. Journal of The Optical Society of America, 66, 1976.

[214] Muralidhara Subbarao. Bounds on time-to-collision and rotational component
from first-order derivatives of image flow. Graphical Models /graphical Mod-
els and Image Processing /computer Vision, Graphics, and Image Processing,
50:329–341, 1990.

[215] R.C. Nelson. Using flow field divergence for obstacle avoidance: Towards quali-
tative vision. In Computer Vision., Second International Conference on, pages
188 –196, dec 1988.

[216] Roberto Cipolla and Andrew Blake. Surface orientation and time to contact
from image divergence and deformation. In Proceedings of the Second European
Conference on Computer Vision, ECCV ’92, pages 187–202, London, UK, 1992.
Springer-Verlag.

[217] F. Girosi, A. Verri, and V. Torre. Constraints for the computation of optical
flow. In Visual Motion, 1989.,Proceedings. Workshop on, pages 116 –124, mar
1989.

[218] S. Negahdaripour and S. Lee. Motion recovery from image sequences using
first-order optical flow information. In Visual Motion, 1991., Proceedings of the
IEEE Workshop on, pages 132 –139, oct 1991.

[219] H. H. Nagel. Direct estimation of optical flow and its derivatives. In Artificial
and Biological Vision Systems, pages 193–224, 1992.

[220] P. Werkhoven and J. J. Koenderink. Extraction of motion parallax structure
in the visual system i. Biological Cybernetics, 63:185–191, 1990.

164

[221] Joseph K. Kearney, William B. Thompson, and Daniel L. Boley. Optical flow
estimation: An error analysis of gradient-based methods with local optimiza-
tion. Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-
9(2):229 –244, march 1987.

[222] M. Campani and A. Verri. Computing optical flow from an overconstrained
system of linear algebraic equations. In Computer Vision, 1990. Proceedings,
Third International Conference on, pages 22 –26, dec 1990.

[223] M. Otte and H.-H. Nagel. Optical flow estimation: advances and comparisons.
In Proceedings of the third European conference on Computer vision (vol. 1),
ECCV ’94, pages 51–60, Secaucus, NJ, USA, 1994. Springer-Verlag New York,
Inc.

[224] H.-H. Nagel. On the estimation of optical flow: relations between different
approaches and some new results. Artif. Intell., 33:298–324, November 1987.

[225] Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. ARTI-
FICIAL INTELLIGENCE, 17:185–203, 1981.

[226] M. V. Srinivasan. Generalized gradient schemes for the measurement of two-
dimensional image motion. Biol. Cybern., 63:421–431, September 1990.

[227] H.-J. Chen, Y. Shirai, and M. Asada. Obtaining optical flow with multi-
orientation filters. In Computer Vision and Pattern Recognition, 1993. Pro-
ceedings CVPR ’93., 1993 IEEE Computer Society Conference on, pages 736
–737, jun 1993.

[228] Joseph Weber and Jitendra Malik. Robust computation of optic flow in a
multiscale differential framework. International Journal of Computer Vision,
pages 67–81, 1995.

[229] B. G. Schunk. The motion constraint equation for optical flow. In International
Conference on Pattern Recognition, 1984.

[230] J. Aisbett. Optical flow with an intensity-weighted smoothing. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 11(5):512 –522, may 1989.

[231] S. Negahdaripour and C.-H. Yu. A generalized brightness change model for
computing optical flow. In Computer Vision, 1993. Proceedings., Fourth Inter-
national Conference on, pages 2 –11, may 1993.

[232] Alessandro Verri, Ro Verri, and Tomaso Poggio. Motion field and optical flow:
Qualitative properties. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11:490–498, 1989.

[233] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical flow
techniques. INTERNATIONAL JOURNAL OF COMPUTER VISION, 12:43–
77, 1994.

165

[234] J. Gao, Y. Hu, J. Liu, and R. Yang. Unsupervised learning of high-order
structural semantics from images. ICCV, 2009.

[235] J. Yuan, Y. Wu, and M. Yang. From frequent itemsets to semantically mean-
ingful visual patterns. SIGKDD, 2007.

[236] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground
extraction using iterated graph cuts. SIGGRAPH, 2004.

[237] V. Lempitsky, P. Kohli, C. Rother, and T. Sharp. Image segmentation with a
bounding box prior. ICCV, 2009.

[238] Y. Boykov and M.P. Jolly. Interactive graph cuts for optimal boundary and
region segmentation of objects in ND images. IJCV, 2001.

[239] Y. Li, J. Sun, C.K. Tang, and H.Y. Shum. Lazy snapping. SIGGRAPH, 2004.

[240] J. Cui, Q. Yang, F. Wen, Q. Wu, C. Zhang, L. Van Gool, and X. Tang. Trans-
ductive object cutout. CVPR, 2008.

[241] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing: Label transfer
via dense scene alignment. CVPR, 2009.

[242] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. Freeman. SIFT flow: dense
correspondence across different scenes. ECCV, 2008.

[243] C. Rother, V. Kolmogorov, T. Minka, and A. Blake. Cosegmentation of im-
age pairs by histogram matching-incorporating a global constraint into MRFs.
CVPR, 2004.

[244] D.S. Hochbaum and V. Singh. An efficient algorithm for Co-segmentation.
ICCV, 2009.

[245] Sara Vicente, Vladimir Kolmogorov, and Carsten Rother. Cosegmentation re-
visited: models and optimization. ECCV, 2010.

[246] Dhruv Batra, Adarsh Kowdle, Devi Parikh, Jiebo Luo, and Tsuhan Chen.
icoseg: Interactive co-segmentation with intelligent scribble guidance. CVPR,
2010.

[247] Armand Joulin, Francis Bach, and Jean Ponce. Discriminative clustering for
image co-segmentation. CVPR, 2010.

[248] L. Cao and L. Fei-Fei. Spatially coherent latent topic model for concurrent
object segmentation and classification. ICCV, 2007.

[249] J. Winn and N. Jojic. Locus: Learning object classes with unsupervised seg-
mentation. ICCV, 2005.

[250] C. Gu, J. Lim, P. Arbeláez, and J. Malik. Recognition using regions. CVPR,
2009.

166

[251] S. Todorovic and N. Ahuja. Extracting subimages of an unknown category from
a set of images. CVPR, 2006.

[252] Bryan C. Russell, William T. Freeman, Alexei A. Efros, Josef Sivic, and Andrew
Zisserman. Using multiple segmentations to discover objects and their extent
in image collections. CVPR, 2006.

[253] Yong Jae Lee and Kristen Grauman. Collect-cut: Segmentation with top-down
cues discovered in multi-object images. CVPR, 2010.

[254] B. Alexe, T. Deselaers, and V. Ferrari. Classcut for unsupervised class segmen-
tation. ECCV, 2010.

[255] X. Bai, J. Wang, D. Simons, and G. Sapiro. Video SnapCut: robust video
object cutout using localized classifiers. SIGGRAPH, 2009.

[256] Yaser Sheikh and Mubarak Shah. Bayesian modeling of dynamic scenes for
object detection. PAMI, 2005.

[257] Y. Sheikh, O. Javed, and T. Kanade. Background Subtraction for Freely Moving
Cameras. ICCV, 2009.

[258] Yuri Pekelny and Craig Gotsman. Articulated object reconstruction and mark-
erless motion capture from depth video. In Eurographics, 2008.

[259] B.K.P. Horn. Robot Vision. MIT Press, 1986.

[260] T. Mitsunaga and S. K. Nayar. Radiometric Self Calibration. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), volume 1, pages
380–387, 1999.

[261] P. E. Debevec and J. Malik. Recovering High Dynamic Range Radiance Maps
from Photographs. Proceedings of ACM Siggraph, pages 369–378, 1997.

[262] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical
Recipes in C. Cambridge Univ. Press, New York, 1988.

[263] J. Davis and H. Gonzalez-Banos. Enhanced shape recovery with shuttered
pulses of light. Proceedings of IEEE International Workshop on Projector-
Camera Systems, 2003.

[264] L. Zhang, N. Snavely, B. Curless, and S. M. Seitz. spacetime faces: High
resolution capture for modeling and animation. In Transaction on Graphics.
ACM, 2004.

[265] P. Fong and F. Buron. Sensing deforming and moving objects with commercial
off the shelf hardware. In Computer Vision and Pattern Recognition. IEEE,
2005.

167

[266] Edgar Acuna and Caroline Rodriguez. A meta analysis study of outlier detec-
tion methods in classification. Technical paper, Department of Mathematics,
University of Puerto Rico at Mayaguez, 2004.

[267] Boris Iglewicz and David Hoaglin. How to detect and handle outliers. The
ASQC Basic References in Quality Control: Statistical Techniques, Edward F.
Mykytka, Ph.D., Editor., 16, 1993.

[268] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and automated
cartography. In Comm. of the ACM, 1981.

[269] Berthold K.P. Horn. Colosed-form solution of absolute orientation using unit
quaternions. In Journal of the Optical Society of America, 1987.

[270] G. A. Korn and T. M. Korn. Mathematical handbook for scientists and engi-
neers. Mathematics of Computation, 15, 1961.

[271] John Stuelpnagel. On the parametrization of the three-dimensional rotation
group. Siam Review, 6, 1964.

[272] Carlo Tomasi and Takeo Kanade. Shape and motion from image streams: a
factorization method. In Technical Report CMU-CS-91-105 Carnegie Mellon
University, 1991.

[273] Desbrun M., Meyer M., Schroder P., and Barra. H. Implicit Fairing of Irregular
Mesher Using Diffusion and Curvature Flow. In In Proceedings of Siggraph,
pages 317–324, 1999.

[274] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rossl,
and Han-Peter Seidel. Laplacian surface editing. In Proceedings of the 2004
Eurographics/ACM SIGGRAPH symposium on Geometry processing, 2004.

[275] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit
Surfaces. Springer-Verlag, 2002.

[276] C. Lei and Y. H. Yang. Optical flow estimation on coarse-to-fine region-trees
using discrete optimization. In ICCV, 2009.

[277] Johannes Kopf, Michael Cohen, Dani Lischinski, and Matt Uyttendaele. Joint
bilateral upsampling. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2007), 26(3):to appear, 2007.

168

Vita

Miao Liao was born in Huayang, Chengdu, Sichuan, China, on October 4, 1982, the
son of Yongcheng Liao and Xianjun Zhao. After completing his degree at Shuan-
gliu Middle School, Shuangliu, Chengdu, Sichuan, in 2001, he entered the Tsinghua
University at Beijing, China, receiving the degree of Bachelor of Engineer in May,
2005. He entered The Graduate School in the Department of Computer Science at
the University of Kentucky at Lexington, Kentucky in August, 2005. During his stay
at the University, he has published 15 conference and journal papers in the field of
computer vision and computer graphics. he served as the president of the Chinese
Student and Scholar Association from 2007-2008. He is now a senior researcher in
Sharp Labs of America at Camas, Washington.

169

	Single View Modeling and View Synthesis
	Recommended Citation

	Abstract
	Title Page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Goals
	1.2 A Brief Historical Note
	1.3 Single View Modeling and View Synthesis
	1.3.1 Light Fall-off Stereo Depth Camera
	1.3.2 Modeling Dynamic and Deformable Objects
	1.3.3 2D-3D Video Conversion

	1.4 Innovations
	1.5 Dissertation Outline

	2 Background and Related Work
	2.1 Shape Recovery
	2.1.1 Stereo Vision Methods
	2.1.2 Shape from X

	2.2 Shape Completion
	2.2.1 Volumetric Curving
	2.2.2 Volumetrical Merging
	2.2.3 3D Surface Registration (ICP)
	2.2.4 Hole Filling

	2.3 2D-3D Video Conversion
	2.3.1 Optical Flow Estimation
	2.3.2 Foreground Extraction

	2.4 Discussion

	3 Light Fall-off Stereo Depth Camera
	3.1 Method
	3.1.1 Depth Recovery for a Pivot Point
	3.1.2 Estimate a Depth Map for the Whole Scene
	3.1.3 Practical Approximation

	3.2 Error Analysis
	3.3 Global Method
	3.3.1 Formulation under Energy Minimization
	3.3.2 Optimization Approach

	3.4 Prototype System Setup
	3.5 Experiments and Results
	3.6 Conclusion

	4 Modeling Dynamic and Deformable Object
	4.1 Matching Outlier Removal
	4.2 Surface Alignment
	4.2.1 Initial Alignment
	4.2.2 Warping Between Two Consecutive Frames
	4.2.3 Warping All Frames Simultaneously

	4.3 Exception Handling
	4.3.1 Occlusion Handling
	4.3.2 User Interaction
	4.3.3 Smoothing and Refinement

	4.4 Experiments and Results
	4.5 Conclusion

	5 2D-3D Video Conversion
	5.1 Automatic Pre-Processing
	5.1.1 Structure from Motion and Optical Flow Estimation
	5.1.2 Moving Object Extraction
	5.1.3 Perspective Depth Correction

	5.2 User Interaction
	5.3 Depth Propagation
	5.4 Results
	5.5 User Study
	5.5.1 System Usability Study
	5.5.2 Result Quality Study

	5.6 Conclusion

	6 Conclusion and Future Work
	6.1 Innovations
	6.2 Future Work

	Bibliography
	Vita

