6 research outputs found

    Context ontology development for connected maintenance services

    Get PDF
    The opportunity to shift from corrective and preventive to data-driven Predictive Maintenance has received a significant boost with the deeper penetration of Internet of Things (IoT) technologies in industrial environments. Processing IoT generated data nonetheless creates challenges for data management and actionable data processing. One way to handle such complexity is to introduce context information modelling and management, wherein data and service delivery are determined upon resolving the apparent context of a service or data request. In this paper, context information management is considered on the basis of a valid knowledge construct for reliability-oriented maintenance management. The aim is to produce a viable semantic organization of data for maintenance services. It is applied on an industrial case linked to maintenance of a distributed fleet of connected production grade industrial printers. The complexity of translating the data generated by such production assets to actionable information is significant, as the status of a single asset is characterised by several hundreds of failure modes and a multitude of event codes. To assess the viability of the ontology for the targeted application, a qualitative usability evaluation study of the ontology is performed

    Viiteraamistik turvariskide haldamiseks plokiahela abil

    Get PDF
    Turvalise tarkvara loomiseks on olemas erinevad programmid (nt OWASP), ohumudelid (nt STRIDE), turvariskide juhtimise mudelid (nt ISSRM) ja eeskirjad (nt GDPR). Turvaohud aga arenevad pidevalt, sest traditsiooniline tehnoloogiline infrastruktuur ei rakenda turvameetmeid kavandatult. Blockchain nĂ€ib leevendavat traditsiooniliste rakenduste turvaohte. Kuigi plokiahelapĂ”hiseid rakendusi peetakse vĂ€hem haavatavateks, ei saanud need erinevate turvaohtude eest kaitsmise hĂ”bekuuliks. Lisaks areneb plokiahela domeen pidevalt, pakkudes uusi tehnikaid ja sageli vahetatavaid disainikontseptsioone, mille tulemuseks on kontseptuaalne ebaselgus ja segadus turvaohtude tĂ”husal kĂ€sitlemisel. Üldiselt kĂ€sitleme traditsiooniliste rakenduste TJ-e probleemi, kasutades vastumeetmena plokiahelat ja plokiahelapĂ”histe rakenduste TJ-t. Alustuseks uurime, kuidas plokiahel leevendab traditsiooniliste rakenduste turvaohte, ja tulemuseks on plokiahelapĂ”hine vĂ”rdlusmudel (PV), mis jĂ€rgib TJ-e domeenimudelit. JĂ€rgmisena esitleme PV-it kontseptualiseerimisega alusontoloogiana kĂ”rgema taseme vĂ”rdlusontoloogiat (ULRO). Pakume ULRO kahte eksemplari. Esimene eksemplar sisaldab Cordat, kui lubatud plokiahelat ja finantsjuhtumit. Teine eksemplar sisaldab lubadeta plokiahelate komponente ja tervishoiu juhtumit. MĂ”lemad ontoloogiaesitlused aitavad traditsiooniliste ja plokiahelapĂ”histe rakenduste TJ-es. Lisaks koostasime veebipĂ”hise ontoloogia parsimise tööriista OwlParser. Kaastööde tulemusel loodi ontoloogiapĂ”hine turberaamistik turvariskide haldamiseks plokiahela abil. Raamistik on dĂŒnaamiline, toetab TJ-e iteratiivset protsessi ja potentsiaalselt vĂ€hendab traditsiooniliste ja plokiahelapĂ”histe rakenduste turbeohte.Various programs (e.g., OWASP), threat models (e.g., STRIDE), security risk management models (e.g., ISSRM), and regulations (e.g., GDPR) exist to communicate and reduce the security threats to build secure software. However, security threats continuously evolve because the traditional technology infrastructure does not implement security measures by design. Blockchain is appearing to mitigate traditional applications’ security threats. Although blockchain-based applications are considered less vulnerable, they did not become the silver bullet for securing against different security threats. Moreover, the blockchain domain is constantly evolving, providing new techniques and often interchangeable design concepts, resulting in conceptual ambiguity and confusion in treating security threats effectively. Overall, we address the problem of traditional applications’ SRM using blockchain as a countermeasure and the SRM of blockchain-based applications. We start by surveying how blockchain mitigates the security threats of traditional applications, and the outcome is a blockchain-based reference model (BbRM) that adheres to the SRM domain model. Next, we present an upper-level reference ontology (ULRO) as a foundation ontology and provide two instantiations of the ULRO. The first instantiation includes Corda as a permissioned blockchain and the financial case. The second instantiation includes the permissionless blockchain components and the healthcare case. Both ontology representations help in the SRM of traditional and blockchain-based applications. Furthermore, we built a web-based ontology parsing tool, OwlParser. Contributions resulted in an ontology-based security reference framework for managing security risks using blockchain. The framework is dynamic, supports the iterative process of SRM, and potentially lessens the security threats of traditional and blockchain-based applications.https://www.ester.ee/record=b551352

    Development of an Ontology-based Framework and Tool for Employer Information Requirements (OntEIR)

    Get PDF
    The identification of proper requirements is a key factor for a successful construction project. Many attempts in the form of frameworks, models, and tools have been put forward to assist in identifying those requirements. In projects using Building Information Modelling (BIM), the Employer Information Requirements (EIR) is a fundamental ingredient in achieving a successful BIM project.As of April 2016, Building Information Modelling (BIM) was mandated for all UK government projects, as part of the Government Construction Strategy. This means that all central Government departments must only tender with suppliers that demonstrate their capability on working with the Level-2 BIM.One of the fundamental ingredients of achieving the BIM Level-2 is the provision of full and clear Employer Information Requirements (EIR). As defined by PAS 1192-2, EIR is a “pre- tender document that sets out the information to be delivered and the standards and processes to be adopted by the suppler as part of the project delivery process”. it also notes that “EIR should be incorporated into tender documentation to enable suppliers to produce an initial BIM Execution Plan (BEP)”.Effective definition of EIRs can contribute to better productivity; within the budget and time limit set and improve the quality of the built facility. Also, EIR contribute to the information clients get at the end of the project, which will enable the effective management and operation of the asset at less cost, in an industry, where typically 60% of the cost go towards maintenance and operation.The aim of this research is to develop a better approach, for producing a full and complete set of EIRs, which ensures that the clients information needs for the final model delivered by BIM be clearly defined from the very beginning of the BIM process. It also manages the collaboration between the different stakeholders of the project, which allows them to communicate and deliver to the client’s requirements. In other words, an EIR that manages the whole BIM process and the information delivered throughout its lifecycle, and the standards to be adopted by the suppliers as an essential ingredient for the success of a BIM project. For the research to be able to achieve the aims set and the formulated objectives, firstly a detailed and critical review on related work and issues was conducted. Then the initial design of the OntEIR Framework, which introduced the new categorisation system of the information requirements and the elicitation of requirements from high-level needs using ontology was presented. A research prototype of an online tool was developed as a proof-of- concept to implement and operationalise the research framework.The evaluation of the framework and prototype tool via interviews and questionnaires was conducted with both industry experts and inexperienced stakeholders. The findings indicateivthat the adoption of the framework and tool, in addition to the new categorisation system, could contribute towards effective and efficient development of EIRs that provide a better understanding of the information requirements as requested by BIM, and support the production of a complete BIM Execution Plan (BEP) and a Master Information Delivery Plan (MIDP)

    Development of a context-aware internet of things framework for remote monitoring services

    Get PDF
    Asset management is concerned with the management practices necessary to maximise the value delivered by physical engineering assets. Internet of Things (IoT)-generated data are increasingly considered as an asset and the data asset value needs to be maximised too. However, asset-generated data in practice are often collected in non-actionable form. Moreover, IoT data create challenges for data management and processing. One way to handle challenges is to introduce context information management, wherein data and service delivery are determined through resolving the context of a service or data request. This research was aimed at developing a context awareness framework and implementing it in an architecture integrating IoT with cloud computing for industrial monitoring services. The overall aim was achieved through a methodological investigation consisting of four phases: establish the research baseline, define experimentation materials and methods, framework design and development, as well as case study validation and expert judgment. The framework comprises three layers: the edge, context information management, and application. Moreover, a maintenance context ontology for the framework has developed focused on modelling failure analysis of mechanical components, so as to drive monitoring services adaptation. The developed context-awareness architecture is expressed business, usage, functional and implementation viewpoints to frame concerns of relevant stakeholders. The developed framework was validated through a case study and expert judgement that provided supporting evidence for its validity and applicability in industrial contexts. The outcomes of the work can be used in other industrially-relevant application scenarios to drive maintenance service adaptation. Context adaptive services can help manufacturing companies in better managing the value of their assets, while ensuring that they continue to function properly over their lifecycle.Manufacturin

    Evaluation of an Application Ontology

    No full text
    The work presented in this paper demonstrates an evaluation procedure for a real-life application ontology, coming from the avionics domain. The focus of the evaluation has specifically been on three ontology quality features, namely usability, correctness and applicability. In the paper, the properties of the three features are explained in the context of the application domain, the methods and tools used for the evaluation of the features are presented, and the evaluation results are presented and discussed. The results indicate that the three quality features are significant in the evaluation of our application ontology, that the proposed methods and tools allow for the evaluation of the three quality features and that the inherent quality of the application ontology can be confirmed

    An ontology for modelling user’ profiles and activities in gamified education

    No full text
    Gamification studies in the educational domain usually focus on motivating students to increase their learning performance by enhancing their motivation. Classifications of behavioural profiles are often used for this (referred to as “gamer” or “user types”), which support the personalization of students’ experiences. These classifications consider these profiles from gamers’ or non-gamers’ points of view. However, within education research, it is necessary to broadly inspect these behavioural profiles to create an instructional design based on learners’ intrinsic drivers and motivations. The relationship between these concepts is subjective, complex, and difficult to categorize, demanding research to bridge this gap. Therefore, in this article we present the design and evaluation of an application ontology that seeks to represent relationships between Jung’s archetypes (e.g., the Hero, the Outlaw and others) adapted for educational purposes, creating a new approach for modelling user profiles, a taxonomy of game elements specific for use in educational contexts, and Bloom’s revised taxonomy to classify learning activities types. This ontology enables personalized and instructional designs directly related to the learning activity type for students. We demonstrate that the proposed ontology can help create better gamification designs to support learning, and we envision it to be used both to create unplugged gamification strategies and personalized gamified educational systems
    corecore