36,023 research outputs found

    Joint in-network video rate adaptation and measurement-based admission control: algorithm design and evaluation

    Get PDF
    The important new revenue opportunities that multimedia services offer to network and service providers come with important management challenges. For providers, it is important to control the video quality that is offered and perceived by the user, typically known as the quality of experience (QoE). Both admission control and scalable video coding techniques can control the QoE by blocking connections or adapting the video rate but influence each other's performance. In this article, we propose an in-network video rate adaptation mechanism that enables a provider to define a policy on how the video rate adaptation should be performed to maximize the provider's objective (e.g., a maximization of revenue or QoE). We discuss the need for a close interaction of the video rate adaptation algorithm with a measurement based admission control system, allowing to effectively orchestrate both algorithms and timely switch from video rate adaptation to the blocking of connections. We propose two different rate adaptation decision algorithms that calculate which videos need to be adapted: an optimal one in terms of the provider's policy and a heuristic based on the utility of each connection. Through an extensive performance evaluation, we show the impact of both algorithms on the rate adaptation, network utilisation and the stability of the video rate adaptation. We show that both algorithms outperform other configurations with at least 10 %. Moreover, we show that the proposed heuristic is about 500 times faster than the optimal algorithm and experiences only a performance drop of approximately 2 %, given the investigated video delivery scenario

    Large scale probabilistic available bandwidth estimation

    Full text link
    The common utilization-based definition of available bandwidth and many of the existing tools to estimate it suffer from several important weaknesses: i) most tools report a point estimate of average available bandwidth over a measurement interval and do not provide a confidence interval; ii) the commonly adopted models used to relate the available bandwidth metric to the measured data are invalid in almost all practical scenarios; iii) existing tools do not scale well and are not suited to the task of multi-path estimation in large-scale networks; iv) almost all tools use ad-hoc techniques to address measurement noise; and v) tools do not provide enough flexibility in terms of accuracy, overhead, latency and reliability to adapt to the requirements of various applications. In this paper we propose a new definition for available bandwidth and a novel framework that addresses these issues. We define probabilistic available bandwidth (PAB) as the largest input rate at which we can send a traffic flow along a path while achieving, with specified probability, an output rate that is almost as large as the input rate. PAB is expressed directly in terms of the measurable output rate and includes adjustable parameters that allow the user to adapt to different application requirements. Our probabilistic framework to estimate network-wide probabilistic available bandwidth is based on packet trains, Bayesian inference, factor graphs and active sampling. We deploy our tool on the PlanetLab network and our results show that we can obtain accurate estimates with a much smaller measurement overhead compared to existing approaches.Comment: Submitted to Computer Network

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication

    Evaluation of BART for measuring available bandwidth in an industrial application

    Get PDF
    We report results from a field study using the BART method for measuring available bandwidth in a local IP-network for use in train cars. The test was performed on physical hardware in a laboratory environment for a set of two cars. Test results indicate that BART measurement is viable

    MR-BART: Multi-Rate Available Bandwidth Estimation in Real-Time

    Full text link
    In this paper, we propose Multi-Rate Bandwidth Available in Real Time (MR-BART) to estimate the end-to-end Available Bandwidth (AB) of a network path. The proposed scheme is an extension of the Bandwidth Available in Real Time (BART) which employs multi-rate (MR) probe packet sequences with Kalman filtering. Comparing to BART, we show that the proposed method is more robust and converges faster than that of BART and achieves a more AB accurate estimation. Furthermore, we analyze the estimation error in MR-BART and obtain analytical formula and empirical expression for the AB estimation error based on the system parameters.Comment: 12 Pages (Two columns), 14 Figures, 4 Tables

    Control technology overview in CSI

    Get PDF
    A brief control technology overview is given in Control Structures Interaction (CSI) by illustrating that many future NASA mission present significant challenges as represented by missions having a significantly increased number of important system states which may require control and by identifying key CSI technology needs. The JPL CSI related technology developments are discussed to illustrate that some of the identified control needs are being pursued. Since experimental confirmation of the assumptions inherent in the CSI technology is critically important to establishing its readiness for space program applications, the areas of ground and flight validation require high priority

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels
    corecore