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Abstract The important new revenue opportunities that multimedia services offer

to network and service providers come with important management challenges. For

providers, it is important to control the video quality that is offered and perceived by

the user, typically known as the Quality of Experience (QoE). Both admission con-

trol and scalable video coding techniques can control the QoE by blocking connections

or adapting the video rate but influence each other’s performance. In this article, we

propose an in-network video rate adaptation mechanism that enables a provider to

define a policy on how the video rate adaptation should be performed to maximize the

provider’s objective (e.g., a maximization of revenue or QoE). We discuss the need for a

close interaction of the video rate adaptation algorithm with a measurement based ad-

mission control system, allowing to effectively orchestrate both algorithms and timely

switch from video rate adaptation to the blocking of connections. We propose two

different rate adaptation decision algorithms that calculate which videos need to be

adapted: an optimal one in terms of the provider’s policy and a heuristic based on the

utility of each connection. Through an extensive performance evaluation, we show the

impact of both algorithms on the rate adaptation, network utilisation and the stability

of the video rate adaptation. We show that both algorithms outperform other configu-

rations with at least 10%. Moreover, we show that the proposed heuristic is about 500

times faster than the optimal algorithm and experiences only a performance drop of

approximately 2%, given the investigated video delivery scenario.

Keywords

adaptive video streaming, multimedia management, IPTV, Pre-Congestion Notifica-

tion
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1 Introduction

With the recent evolution towards higher resolution videos (e.g., Full High Definition

(FullHD) videos), multimedia services are the biggest services in terms of bandwidth

consumption but also the services with one of the highest quality demands. According

to [1], video is already the dominant traffic in the Internet and will reach a share of

50% by the end of 2012. On the other hand, video has very high Quality of Experience

(QoE) requirements: a lack of resources immediately leads to visual artifacts and a

deterioration of the QoE. Protecting existing video services against a loss in available

resources is thus an important aspect of optimizing the video’s QoE.

The challenge of protecting the resources of existing sessions is not a new one.

Several standardisation bodies such as the Intserv framework [2] and TISPAN [3] have

proposed admission control mechanisms for managed network environments. Whenever

a new video session is requested, the request is sent to a Resource Admission Control

(RAC) mechanism, describing the traffic characteristics of the video associated with

the session. This RAC mechanism then checks if every router along the path has enough

resources to support the new video session, after which the RAC mechanism decides

to admit or block the session depending on the state of each router.

While RAC mechanisms have been applied to protect video sessions in the past, tra-

ditional admission control mechanisms under perform for two reasons. First, the com-

plexity of the traffic patterns of videos hinders an accurate description of the required

resources. Video sessions are known to have a bursty bitrate. Therefore, traditional

RAC mechanisms often dimension the required resources on the video’s peak rate. Al-

though this successfully avoids any QoE degradation, this is a gross over-dimensioning

of the network leading to a loss in network utilization and consequently in a loss of rev-

enue for the operator. More recently, measurement based admission control (MBAC)

mechanisms have been proposed that take the admission decision based on local mea-

surements in the network and rely on statistical multiplexing to improve the network

utilisation. An example of such an MBAC mechanism is the Pre-Congestion Notifica-

tion (PCN) mechanism, recently standardized within the IETF [4]. Second, the default

decision of a RAC mechanism, admitting or blocking the session, is not always the best

option when the requested service is a video. Specifically for video services, other reac-

tions to a scarcity of resources are possible such as offering the video at a reduced video

quality. This can be supported by using the Scalable Video Coding (SVC) codec [5],

which is a video compressing standard that encodes video into multiple quality layers:

a video can be reduced in quality by simply dropping a layer. While reducing the video

quality is thus possible, the network provider, managing the network, still needs to

determine when to switch to which quality level. To the authors knowledge, this article

is the first that combines video rate adaptation with an MBAC system to ensure a

smooth video delivery and allows specifying detailed rate adaptation policies.

In this article, we present a joint admission control and video rate adaptation system

for SVC-based Video on Demand sessions. The system features a tight interaction with

an MBAC system and uses policies to steer the video rate adaptation process, which is

responsible for determining which SVC quality layers to drop. Compared to other rate

adaptation algorithms such as the suite of HTTP adaptive streaming protocols (e.g.,

Apple Live Streaming [6], Microsoft Smooth Streaming [7]) the decision on which video

quality level to adapt to is not taken by the clients but is performed distributively in

the network and controlled by policies, which are defined by the network provider. As

such, the video rate adaptation mechanism is particularly useful in a managed IPTV
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Fig. 1: Overview of the dynamic video rate adaptation algorithm. Based on the network

provider’s policy the video rate of existing sessions can be altered as an alternative to

blocking new requests. The decision and scaling is executed in the network elements

(as detailed in Figure 2).

scenario where a network or service provider wants to control the QoE of the services

that are offered to its customers, e.g., to provide QoE guarantees.

Consequently, the contributions of this article are three-fold. First, we integrate an

existing standardized MBAC system with a novel video rate adaptation mechanism. We

argue that a close interaction between the video rate adaptation mechanism and MBAC

mechanism is needed to optimize the QoE. As illustrated in Figure 1, the mechanism

not only blocks new requests but also performs a dynamic graceful degradation of

existing video sessions through the reduction of the video quality, allowing to make

room for new video sessions. Second, we present two different video rate adaptation

algorithms that are both able to steer the rate adaptation decision (i.e., which videos

are adapted) and focus particularly on the maximization of a network provider’s policy

under a changing network load. The first one is based on a Linear Programming (LP)

model that finds the optimal parameters that maximize the policy, while the second

one is a heuristic that calculates, for each connection, the utility of each quality level,

which can be seen as the gain that can be obtained by switching to that quality level,

and then maximizes the overall utility. Third, we investigate the performance of the

approach by evaluating the impact of the algorithm on the obtained QoE, discussing

the integration of the MBAC and video rate adaptation mechanism and evaluating the

scalability of both decision algorithms.

The remainder of this article is structured as follows. Section 2 provides an overview

of traditional admission control mechanisms as well as video rate adaptation mecha-

nisms and their combination. In Section 3, we provide an overview of the video rate

adaptation architecture, combining MBAC and video rate adaptation decision algo-

rithm. Section 4 discusses the used MBAC system and the integration with a rate
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adaptation decision algorithm (in Section 4.3), which is one of the contributions of

this article. In Section 5, two rate adaptation decision algorithms that use the MBAC

information are proposed. The complete video rate adaptation system is evaluated in

Section 6. Finally, Section 7, summarizes the main findings of this article.

2 Related work

2.1 Admission control

In an effort to protect the QoS in the network, network providers often over-provision

the network as a low complexity method to ensure that the available network resources

do not exceed the required resources. While over-provisioning might be an interesting

solution on a short term, it is not always the most cost-effective. In fact, as the pop-

ularity of services increases and technologies and user consumption patterns evolve, it

is likely that the required resources will outgrow those available. Furthermore, over-

provisioning offers little protection against a sudden change in required resources, e.g.,

triggered by a flash crowd causing a rapid increase in service popularity. To avoid over-

provisioning, additional management solutions are required to prevent over-admission

of resources.

Especially in multi-service IP networks, admission control mechanisms have been

investigated and proposed in standardized network architectures. The RACS layer in

the TISPAN architecture [3] foresees a centralized admission control function that al-

lows policing control and resource reservation in access and aggregation networks. In

the TISPAN architecture, the A-RACF functional element, responsible for providing

admission control, receives requests for QoS resources and uses the QoS information

to decide whether or not to block a session. Another centralized admission control ap-

proach is proposed in [8], which introduces the concept of a Bandwidth Broker (BB) in

a Diffserv domain. Similar to the A-RACF function in the TISPAN architecture, the

BB centralizes information concerning network resources and their usage, the topol-

ogy and policies. When the set-up of a new flow is requested, the BB is signalled

out-of-band for an admission decision. Based on the collected information about the

complete management domain, the BB can make an informed decision. The downside

of these centralized approaches is the lack of scalability and the difficulty of maintaining

the knowledge up to date, especially in large and fast changing management environ-

ments. Hierarchical approaches have been suggested to tackle this issue but they have

the disadvantage of an eventual cost in coordination among BBs and fragmentation

of resources [9]. A complete survey of QoS control mechanisms for Next Generation

Networks can be found in [10]

One way to alleviate the scalability issues of centralized approaches is investigated

by the Intserv architecture [2] where a distributed admission control mechanism is

proposed that assumes admission control functions in each node. The Intserv approach

requires the use of a traffic descriptor (called traffic specification or TSPEC) to identify

the traffic pattern. Furthermore, the Resource Reservation Protocol (RSVP) [11] is

typically used as a convenient explicit resource set-up mechanism. However, for some

service types, the patterns are hard to define in a traffic descriptor. Video services are

a typical example of such service types. Therefore, the TSPEC often only describes the

video’s peak rate, again leading to an over-dimensioning and loss in network utilization.
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Measurement-based admission control mechanisms (MBAC) do not require such

a detailed traffic descriptor. Instead the admittance decision is taken based on either

active [12] or passive measurements of the current network resources. In both cases, an

MBAC system needs to determine the available bandwidth in order to know whether

connections need to be blocked. The available bandwidth can be defined as the remain-

ing amount of traffic that can still be sent along a path in the network without leading

to congestion [13]. A wide variety of available bandwidth estimation tools have been

proposed in the past (e.g., PatChirp [14], BART [15], Forecaster [16]). Furthermore,

several studies have provided a comparison of the different available tools, showing that

they differ in accuracy and scalability [17,18]. More recently, Thouin et al. [19] proposed

a probabilistic available bandwidth estimation tool that links the maximum available

bandwidth with the probability that the calculated bandwidth can be achieved. A tax-

onomy of common available bandwidth estimation tools has been presented by Strauss

et al. [20]. The calculation of the available bandwidth for admission control purposes

has been applied to a wide variety of environments. For example, Ergin et al. [21] pro-

posed an estimation method, called DCSPT, which is specifically intended for wireless

mesh networks. The DSCPT algorithm allows taking into account interference from

carrier sensing neighbours, leading to more accurate results. More directly linked with

our work, Davy et al. [22] exploited the estimation of the available bandwidth to steer

an admission control system in an IPTV environment. This was later extended by

Meskill et al. [23] to include server selection as well. One of the presented admission

control algorithms in [22], links the admittance of connections with their expected rev-

enue and only blocks connections with the lowest revenue. In contrast, our solution

uses a policy such as the revenue to steer the rate adaptation process, not the admis-

sion control process. However, we use revenue as an example of a policy: other policies

are also possible. Additionally, our work also focuses on video rate adaptation. In that

sense, both solutions are complementary.

The IETF is currently standardizing an MBAC mechanism to protect the resources

of inelastic flows in a Diffserv domain called Pre-Congestion Notification (PCN). In

the PCN architecture [4], packets are marked, as a way of in-band signalling, when the

network load increases. These marked packets are then interpreted at the edges of the

network as a sign of imminent congestion, which allows to timely block connections

or even perform flow termination. The PCN Working Group currently standardized

PCN’s metering and marking behaviour [4] as well as a first encoding scheme for marked

packets [24]. Several encoding alternatives have been defined [25,26] as well as different

possible behaviours at the edge of the PCN domain [27,28]. For more information about

PCN’s performance and a survey of PCN’s algorithms we refer to [29,30]. A general

overview of admission control algorithms is provided in [31]. In our work, we extend the

PCN architecture to protect the QoE of videos in a managed network, including the

differentiation between different video qualities. Specific admission control solutions

for IPTV environments have been studied as well. Often, these solutions are combined

with QoS provisioning [32,33].

2.2 Video rate adaptation

Video services are one of the few services that can adapt their rate to still offer their

service functionality, but at a reduced QoE. This rate adaptation is achieved by vary-

ing the video encoding settings which leads to a varying level of detail in the image.
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Triggered by the increasing heterogeneity in terms of end user devices (i.e., ranging

from small screen smart phones to high resolution TV sets) there is an increasing fo-

cus towards video rate adaptation algorithms that allow degrading the video quality

if needed. Traditionally, the video rate was adapted at intermediary nodes through a

simulcast technique: several versions of the video are sent by the server and on the

adaptation node the adaptation consists simply of selecting the desired version out of

the set of available versions [34].

As a simulcast approach introduces considerable overhead more advanced video

rate adaptation techniques, called HTTP Adaptive Streaming (HAS), are currently

being studied. Recently, several solutions have been proposed that allow changing the

rate of HTTP-based video sessions dynamically. Several companies have introduced

their own HAS solutions, supported by their own video client software, e.g., Microsoft’s

Silverlight Smooth Streaming [7], Apple’s HTTP Live Streaming [6] and Adobe’s HTTP

Dynamic Streaming [35]. Furthermore, the Moving Pictures Expert Group (MPEG)

is standardizing a similar technique called Dynamic Adaptive Streaming over HTTP

(DASH) [36]. All these solutions allow splitting an existing video into smaller segments,

each having several video quality levels available. The decision on which quality level is

chosen is taken by the video client software and is typically based on QoS metrics such

as the average throughput. The downside of this approach is that the service provider

has less control over the QoE that is offered to its clients. While a HAS approach

might target the QoE maximization of each individual video client, from a provider’s

perspective, other factors are of importance as well. The approach presented in this

article focuses on a global control of the QoE levels offered to the clients, in which

the network provider can steer the video rate adaptation decision. Compared to HAS

techniques, our solution is more suitable in managed network environment, whereas

traditional HAS techniques have their merits in an over the top environment.

Recently, the Joint Video Team of the ITU-T VCEG and MPEG has standardized

an extension to the widely used video coding standard H.264/AVC called Scalable

Video Coding (SVC) [5]. In SVC, the video is encoded in multiple layers and the video’s

QoE can be adapted on-the fly by dropping enhancement layers from the stream. The

SVC standard only specifies how an SVC video can be encoded and decoded but does

not make any recommendations on its integration into a video streaming scenario

over a network. The authors of [37] discuss the integration in SVC in a real-time

streaming environment and present an overview of use cases for applying SVC on a

network environment; one use case is the graceful degradation of videos as the network

load increases. Moreover, an overview is given of how SVC can be packetized into

RTP streams. The authors also argue the need for Media Aware Network Elements

(MANEs) that are capable of adapting the SVC stream based on network providers

policies. However, they do not present any algorithmic contribution to implement such

a MANE. A similar approach can be found in [38] where the integration of SVC into

the MPEG-21 Digital Item Adaptation (DIA) framework is discussed. The MPEG-

21 DIA framework provides the tools to enable quality adaptation through, amongst

others, XML-driven meta data description and the integration onto typical multimedia

network devices such as Set-Top Boxes. Similarly, it describes the tools available for

performing the actual quality layer adaptation in SVC, but does not discuss how a

network provider can decide to which quality layers it should adapt. The algorithm

proposed in this article provides an implementation of such a MANE or adaptation

node but also discusses the need for combining it with an admission control system. An

initial prototype of such a MANE was proposed in [39]. However, in [39] the authors
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assume the adaptation for a single connection and that the adaptation decision depends

only on an end-to-end bandwidth estimation, which needs to be signalled. Our approach

is distributed amongst the several access nodes and provides more flexibility in defining

the adaptation policy. Furthermore, our rate adaptation decision algorithm focuses on

the adaptation process of multiple clients. As there are multiple ways to come to the

same adaptation configuration with the same QoS as output, the problem we investigate

has more degrees of freedom and is thus more complex.

While our approach focuses on application layer measures, SVC has been applied

on the MAC-layer as well. There, the use of SVC is optimized to specific network

environments such as wireless networks [40,41]. The goal of their adaptation is to

achieve the highest possible quality that still achieves the best possible QoS levels (i.e.,

no packet loss, limited delay). As such, the metrics that are taken into account are more

fine grained such as the Round Trip Time of a connection. The techniques discussed in

this article are complementary as they focus more on the network provider’s policy: as

such, it may be possible that a lower quality is streamed because the network provider

favours additional connections instead of a higher video quality.

2.3 Combination of admission control and rate adaptation

Combining admission control with a rate adaptation system that controls the through-

put at which a connection is allowed to transmit data has mainly been investigated for

wireless networks but not applied to video rate adaptation. For example, in [42], Klein

et al., present a combination of call admission control and bandwidth adaptation for

heterogenous wireless networks. Similarly to our work, they target the maximization

of the network utilisation. However, as they do not focus on video sessions, their main

focus is on keeping the blocking and dropping rates at acceptably low levels. Similar

combinations have also been applied to other multimedia services besides video. Li et

al. [43] discuss the design of a quality aware voice streaming framework for wireless

sensor networks. Similar to our work, they argue that an interaction is needed between

admission control and voice adaptation. However, as they focus on voice services, their

adaptation consists of voice compression and data duplication at the edge of the net-

work over a lossy networkAs such, the approach taken is different as it is targeted for

a different network environment and therefore reacts to other stimuli (i.e., packet loss

instead of an increased network load). Additionally, in [35], the focus is on optimizing

the voice quality of each individual user. While this is supported in our solution, we

take a more broader approach: the network provider can define its own policy on how

the rate adaptation should occur. The maximization of quality can be such a policy,

but others may apply as well. As we have shown in [44], the use of video sessions for

an MBAC has important consequences for the configuration and algorithmic design.

We derived several guidelines for configuring the PCN MBAC system for protecting

video services. In contrast to [44], this paper focuses on the video rate adaptation algo-

rithms and their performance study. The combination of admission control and video

rate adaptation is a less studied field. In [45], Fallah et al. combine admission control

with a link adaptation scheme for SVC videos in wireless networks. They show that,

for wireless networks, a gain can be achieved before dropping SVC quality layers by

adjusting the link adaptation mechanism. Although we focus on access networks, when

applied to wireless networks, our work is complementary to theirs.
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Our work specifically uses policies to control the video rate adaptation process and

admission control system. The merits of policies and their architectural integration in

the described standardized admission control systems are discussed in [46]. They argue

that policies are needed to decouple the configuration of a particular system, tailored to

the network provider, from the actual business logic of the system. The policies we use

in our work are mainly focused on the video rate adaptation process but can similarly

be integrated. In [47], Argririou et al., provide similar policies to control the admission

and rate adaptation of connections in a shared bandwidth channel. Similar to our

work, they allow defining policies that control the rate adaptation process. However,

our work differs from [47] in two ways: first, the policies discussed in [47] focus on QoS

optimization, while our policies are more flexible in the sense that other parameters

such as revenue and quality parameters can be taken into account as well. Second, their

rate adaptation process does not focus on video services but controls the throughput

of connections on a shared channel. Therefore the modeled problem is considerably

different and the approach in [47] cannot immediately be mapped to the problem of

SVC-based video rate adaptation.

This article builds further upon previous work. In [48], we evaluated the perfor-

mance of different metering algorithms for the PCN admission control system. Addi-

tionally, we also presented a static video quality differentiation algorithm, which was

able to decide which quality version of a video to admit. Compared to the dynamic

rate adaptation algorithm presented in this article, the static video quality differenti-

ation algorithm could only change the quality at time of admittance. In contrast, in

this article, the rate adaptation is dynamic and existing videos can be dynamically

and gracefully degraded if the network load increases. As such, both algorithms differ

significantly as the latter needs to re-evaluate all existing connections as well. Also, the

notion of different policies that control the rate adaptation process is novel in contrast

to previous work. In [44], several enhancing components were presented for deploying

PCN for protecting video services. Although the main focus of these components was

on the optimization of network utilization, one component that was briefly discussed

was a dynamic video rate adaptation system, which used so-called utility functions to

control the rate adaptation. In this article, we present two novel and more powerful

video rate adaptation algorithms. In contrast to the utility function based approach

presented in [44], where the policies needed to be defined through mathematical func-

tions with many degrees of freedom, the two algorithms in this article allow defining

an operator’s policy more straightforward through a single maximization function. As

such, both the integration of the MBAC system with a video rate adaptation algorithm

and the two video rate adaptation decision functions are novel compared to previous

work.

In summary, compared to other work, our work is novel for three main reasons.

First, we explicitly combine the video rate adaptation system with an MBAC approach:

this ensures that both system’s decisions are aligned. Second, we focus on assessing the

rate for multiple video connections at once. Third, we believe that there is no overall

optimal rate adaptation configuration and that the operator must have a way to control

the decision. Through our policy-based approach, this is ensured.
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Fig. 2: Overview of the integration of the video rate adaptation algorithm in PCN’s

architecture.

3 Video Rate Adaptation Architecture

The goal of the video rate adaptation architecture is to dynamically adapt the video

quality of existing SVC videos inside distributed MBAC nodes. In our system, we use

PCN as MBAC mechanism as it has recently been standardized by the IETF.

Figure 2 illustrates the video rate adaptation architecture and how it is integrated

into the original PCN architecture. The video rate adaptation system is deployed on

every distributed PCN node. It receives a set of SVC connections as input and dynami-

cally adapts the rate of the existing videos by potentially dropping one or more quality

layers (i.e., as part of the video rate adaptation algorithm) and/or marking packets as

a sign of a high network load (i.e., as part of the PCN system). The combined video

rate adaptation and PCN system works as follows: when a request for a new SVC video

arrives, the PCN system is responsible for handling this request. The PCN system can

decide to either admit or deny the new SVC connection. When the connection is ad-

mitted, this triggers the video rate adaptation decision algorithm. The admittance of a

new connection has an impact on the overall network load. The video rate adaptation

algorithm can decide to drop one or more quality layers of existing SVC videos or the

newly admitted connection. Similarly, when a connection is finished, the video rate

adaptation decision algorithm is also triggered. Typically, the video rate adaptation

decision algorithm should drop more quality layers as the network load increases. By

dropping quality layers, resources become available again and potential new connec-

tions can be blocked. An operator typically has many degrees of freedom in tuning

the video rate adaptation algorithm including when to perform which quality drop.

In our architecture, this is controlled by policies, which is explained in more detail in

Section 5.

Similar to the PCN system, the video rate adaptation is distributed amongst the

PCN nodes. Every node makes a local assumption of the network status and locally

decides whether or not to drop quality layers from an SVC video. As such, it can happen
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that a single quality layer is dropped on one node and a second reduction of quality

layers occurs further down the path. Each node will drop quality layers to ensure that

it can resolve the potential local bottleneck that it experiences. The admission control

process is also distributed: each node signals congestion warnings through the marking

of packets. However, the admission decision occurs at the edge of the network (i.e., at

the ingress node).

As shown in Figure 2, the video rate adaptation algorithm augments PCN’s me-

tering and marking functions. In the video rate adaptation process, only when the rate

adaptation algorithm decides to stop dropping quality layers, the PCN system should

start blocking connections. As such, the rate adaptation algorithm must be aware of

the threshold that denotes when the PCN system will start blocking connections. This

is calculated in the network capacity characterisation component. We discuss how this

threshold can be obtained in Section 4.3, which forms the integration contribution of

this article. The calculated threshold is then provided to both the original PCN mark-

ing function, responsible for marking packets as an in-band congestion signal, and the

actual video rate adaptation algorithm. As the video rate adaptation occurs locally, the

rate adaptation algorithm does not require any signalling to other nodes and thus does

not require any changes to PCN’s marking function. We discuss both components, the

integration of the PCN system and the video rate adaptation decision component, in

Section 4.3 and Section 5, respectively.

4 Measurement Based Admission Control: The Pre Congestion

Notification Mechanism

In this section, we discuss the details of the MBAC mechanism we use in our archi-

tecture, being the PCN mechanism, in more detail. Moreover, we detail how the PCN

system is integrated into the joint video rate adaptation and PCN system. We discuss

only the most important PCN functions, relevant to the video rate adaptation system.

For a more extensive discussion on PCN, we refer to [30,27,28].

4.1 Original PCN architecture

The goal of the PCN admission control system is to protect the QoS of inelastic flows

in a Diffserv domain. Figure 3 provides an overview of the PCN architecture, as stan-

dardized in [4]. As illustrated, the PCN architecture defines three node types: a PCN

ingress node, a PCN interior node and a PCN egress node. All traffic enters a PCN do-

main through a PCN ingress node and leaves the domain through PCN egress nodes.

Inside a PCN domain (at the PCN interior nodes) and at the PCN ingress nodes,

packets are subject to metering and marking. This metering and marking performs

a congestion assessment: if the traffic rate is higher than a configured threshold, the

incoming packets are marked. When leaving the PCN domain, the PCN egress nodes

investigate the amount of marked packets to make an assessment of the congestion.

This congestion assessment is then forwarded to the admission control decision point,

which may be collocated with the PCN ingress node as illustrated in Figure 3. The de-

cision point calculates a congestion level estimation (CLE) based on the marked traffic

rate, reported by the PCN egress nodes. If the CLE is above a configurable threshold,
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Fig. 3: Original PCN architecture as standardized in [4]. The PCN architecture defines

a PCN ingress, interior and egress node

the decision point decides to block all future connections, until new PCN egress reports

signal a drop in the CLE value.

The metering and marking function is deployed on the ingress and interior nodes.

This function requires the specification of a rate threshold for flow admission and flow

termination. For flow admission, an admissible rate AR(l) on each link l of the PCN

domain is defined. For flow termination, a sustainable aggregate rate SAR(l) is defined

on each link l. By comparing the traffic rate inside the ingress or interior node with

these thresholds, the traffic is metered and marked. If the traffic rate exceeds one or

both of these thresholds the packets are marked. The marking of packets is done by

setting bits in the ECN field of the packet’s header. For more information about the

PCN encoding options, we refer to [26].

4.2 Modifications to the original PCN metering algorithm: adaptive PCN rate

configuration algorithm

The mechanism we use exhibits important modifications to the original PCN metering

algorithm, which are necessary to better protect the QoE of video services. In [44], we

showed that the bursty nature of video services introduces another important compli-

cation with regards to the configuration of PCN’s original metering algorithm. The

configuration of PCN’s configured rate, AR or SAR, does not act as an upper limit

on the admitted aggregate bandwidth. Instead, the PCN system will continue to ad-

mit connections until all PCN measurements are above this rate threshold. For bursty

traffic, PCN’s configured rate should be set to a value that allows a certain amount of

headroom that is proportional to the variability of the traffic aggregate.

As this traffic aggregate’s variability is hard to characterise offline, we use an adap-

tive rate configuration algorithm, originally presented in previous work in [48], which

continuously monitors the variability and sets PCN’s configured rate (AR or SAR)

accordingly. This adaptive configured rate algorithm has an important impact on the
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admittance of connections and video rate adaptation process. The adaptive configured

rate corresponds with the threshold at which the PCN system starts blocking con-

nections. These modifications are needed to support the integration with a video rate

adaptation algorithm.

4.3 Integration of the PCN system with a video rate adaptation algorithm

In this section, we discuss the novel modifications performed to the PCN system to

support the integration with a video rate adaptation algorithm. The proposed rate

adaptation algorithm modifies the allowed quality levels as new connections arrive and

the load increases. For this, it requires an accurate characterisation of the threshold

at which a PCN system starts blocking connections. Therefore, the algorithm uses the

output of the PCN metering function (i.e., PCN’s configured rate parameter that is

continuously adapted). This tight interaction is needed to ensure that both systems

are accurately aligned with each other. In other words: that the videos are only be-

ing blocked once the video rate adaptation algorithm has lowered the videos to the

lowest allowed quality levels. For the algorithm described in Section 4.2, the resulting

threshold, denoted by CR, which can correspond with either AR or SAR depending

on PCN’s configuration, provides a timely but fluctuating assessment of the current

threshold limit. In order to ensure a stable output of the video rate adaptation, we

first smooth this value by transforming it to a Limit value at time n as illustrated in

Equation 1.

Limitn ≡ w × Limitn−1 + (1− w)× CRn × θ (1)

This smoothing function has two parameters. First, the Limit value is smoothed

through an exponentially weighted moving average with weight w to ensure that small

oscillations in the configured rate cannot lead to fluctuations in the video rate adapta-

tion decision function. Hence, unlike the CRn value, the calculated Limit value should

be more regarded as an estimation of PCN’s threshold on a longer term.

Second, the CRn value is multiplied by a parameter θ, where θ ∈ [0, 1]. This

θ parameter controls the pro-activeness of the video rate adaptation: if θ is small,

CRn × θ will be small as well and the Limit value will result in a more pessimistic

assumption of the network’s capacity and consequently leading to a quicker adaptation

of the video rate. We derive suitable values for both w and θ and show why they are

required for the smoothing of the output in Section 6.

The PCN specification [27,28] does not encourage the implementation of other ad-

mittance decision algorithms besides either blocking or admitting all connections. How-

ever, other MBAC systems may apply more gradual admittance decision algorithms in

which only a subset of the future connections is blocked, depending on the network load

or because of other parameters such as the expected revenue as proposed by Davy et

al [22]. In this case, the integration of the video can follow the same principle: based

on the integrated MBAC system, the threshold needs to be found that defines when

the MBAC system starts blocking the connections (partially). If the MBAC system

initially blocks connections partially, the θ factor can be configured higher as both

system (i.e., the blocking of connections and the rate adaptation of connections) will

coincide with each other.



13

Table 1: Variables used for the rate adaptation decision function on node n.

Variable Description
L The number of outgoing links on node n
l A specific link on node n

Limit(l) The network’s capacity as calculated by Equation 1
T The number of video types supported by the system.
t A specific video type

QL(t) The number of quality levels for type t
qt A specific quality level

Cin(l, qt) The current number of connections of quality level qt
B(qt) The expected bitrate of quality level qt
Q(qt) The expected QoE score of quality level qt
R(qt) The expected revenue of quality level qt
Cout(l, qt) The newly calculated number of connections of quality level qt
S(l, qt) The maximum allowed share of quality level qt on link l.

5 Video rate adaptation decision function

5.1 Definition of variables

We first define the problem of the rate adaptation decision on a PCN ingress or interior

node n formally. Table 1 summarizes the symbols used for this problem definition.

Assume that node n has L outgoing links, let l = 1, ...,L denote an arbitrary link on

node n. For each link l, there is a calculated limit value Limit(l). Assume there are T
video types present in the network. We define a video type t = 1, ..., T as a group of

videos that can be scaled to the same video quality. Differences in the video types may

arise due to differences in encoding settings of the SVC encoder or because the content

was delivered by multiple parties. For example, it is possible that there are two video

types in the network: one which adapts to two quality levels (e.g., Full HD and SD),

and another that allows adapting to three quality levels (e.g., Full HD, HD Ready and

SD). Typical VoD providers such as Vudu and Apple often have a handful of video

types offered to their customers. Following this definition, each video type t has QL(t)

quality levels. Let qt = 1, ...,QL(t) denote an arbitrary quality level of type t. Each

quality level will have a dynamic number of active connections (Cin(l, qt)), a static

expected mean bitrate (B(qt)), a QoE score (Q(qt)) measured through a visual quality

metric and a revenue R(qt) for offering that particular quality level qt to the customer.

Note that we define the number of active connections of a quality level Cin(l, qt) as

the number of connections that can be served at that quality level, regardless of the

previous decision of the video rate adaptation. This means that if the quality level of a

particular connection has been changed in the past from q1 to q2 by dropping a layer

on node n, that connection will still be counted as being part of quality level q1 because

at any given time, the decision function may decide to offer the connection again at

quality level q1 by stopping the dropping of SVC layers of that connection.

The rate adaptation decision function must calculate, for each outgoing link l of

every node n and quality level qt, the number of connections that belong to that

particular quality level, denoted by Cout(l, qt). This is a distributed process and no

interaction between the entities is required: a rate adaptation decision function will

make the decision independently of other outgoing links or other nodes besides its

own. As such, the decision is taken merely based on the information obtained by PCN’s

local metering function. If multiple bottlenecks occur on the same path, the different
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distributed rate adaptation decision functions will each decide to lower the quality of

the connections (e.g., potentially deciding to decrease the quality of an already adapted

connection). In the remainder of this section, we propose two algorithms for the rate

adaptation decision function: both algorithms require a network provider’s policy to

tune the rate adaptation process. We discuss how this policy can be integrated and

modified if desired.

5.2 Linear Programming Formulation

To solve the rate adaptation decision function, a linear programming (LP) model can be

defined which finds an optimal solution that maximizes the LP’s objective. We abbre-

viate this algorithm as IVRALP , which stands for In-Network Video Rate Adaptation

based on an LP Model.

5.2.1 Decision variables

The model defines S(l, qt) as the decision variables, which denote the maximum allowed

share of quality level qt on link l. Once the shares S(l, qt) are calculated the actual video

rate adaptation, i.e. the calculation of Cout(l, qt), is straightforward. Each connection

is assigned its highest possible quality level until the share of that quality level is

completely saturated. If this is the case, the connection is adapted to the next possible

quality level and so on.

Note that not all connections need to be adapted after the calculation of the shares

S(l, qt). Typically, the calculated S(l, qt) at a given point in time will only slightly

differ from the previous calculation. As such, only a subset of the connections need to

be adapted in the quality. This can be achieved by intelligently mapping the S(l, qt)

values to the connections in a way that minimizes the number of required adaptations

per iteration. For example, suppose we have 9 connections of which 5 of them have

been assigned the highest quality and 4 a lower quality. Furthermore, suppose by the

next calculation of S(l, qt) the total number of connections is 10 and the corresponding

S(l, qt) values are 40% and 60% for the higher and lower quality, respectively. Then,

it is straightforward to (i) adapt only a single high quality to a lower quality and (ii)

assign the new connection the lower quality. As such, only 2 out of 10 connections are

adapted.

5.2.2 Objective

The LP’s objective corresponds to the network provider’s policy and multiple variations

are possible based on the details of the policy. An example of a network provider’s policy

can be to maximize the total revenue of the currently set of offered connections. In this

case, the LP’s objective is the following:

max

T∑
t=1

QL(t)∑
q=1

S(l, q)×R(q) (2)
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Alternatively, if the network provider’s policy is to focus more on the maximization

of the QoE, the corresponding LP’s objective is the following:

max

T∑
t=1

QL(t)∑
q=1

S(l, q)×Q(q) (3)

Note that the maximization of the LP’s policy only controls the rate adaptation

process and not the MBAC system, which is revenue-agnostic. In our approach, the

admission control system is only triggered as a last resort mechanism, i.e. when all

connections have been adapted to the lowest allowed quality and the only way of pro-

tecting the network from congestion is blocking new connections. In this case, all new

connections need to be blocked until resources become available again. For other ad-

mission control algorithms, which block only a subset of the connections, the admission

control algorithm can also be linked with the notion of revenue. This is out of the scope

of this paper.

Any policy of which its violation can be quantified as a cost, can be modeled using

this approach. As such, more complex policies can be defined as well. For example,

a service provider can make a model that represents the quality drop that a client

observes as a cost. This quality drop can take into account the subscription level (e.g.,

gold users require a higher quality than silver users and the cost for a quality drop of

a gold user will thus be higher) and device characteristics (e.g., an adaptation to the

lowest quality will be less severe for a handheld device compared to a large resolution

television screen). Using a weighted combination of these costs, a new policy can be

constructed.

Another example of a more complex policy is the differentiation between classes

of service. For example, a service provider may choose to map the video streaming

of some connections to a best effort service class. A possible policy is then to state

that the best effort service class is not allowed to occupy more than X% of the total

bandwidth. A violation of this policy (i.e., exceeding the share of bandwidth of the best

effort service class by X%) can then be modeled as a cost that increases as the share

of bandwidth increases (and is zero if the share is lower than X%). A combination of

other policies, focusing on other aspects of the rate adaptation, is possible by making

a weighted combination.

5.2.3 Constraints

The constraints of the LP model are the following. First, the total bitrate that is

achieved by the video rate adaptation decision must not lead to congestion, hence:

T∑
t=1

QL(t)∑
q=1

B(l, q)× S(l, q) ≤ Limit(l) (4)

Note that we use the mean bitrate B(l, q) for characterizing the required resources of

a quality level and not the peak bitrate. On a long timeframe, the mean bitrate is the

best indicator for the required resources. On a shorter timeframe, the required resources

may be burstier, but due to the statistical multiplexing of the different connections we

can assume that peaks caused by one connection are cancelled out by silent periods

of other connections. If, for some pathological cases, an unexpected peak in bitrate
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occurs, we can handle this peak for two reasons. First, in Equation 4, we compare with

the approximated Limit value and not with the admissible rate. This is an important

aspect of the approach: by comparing with the smoothed Limit threshold we are able

to (1) cancel out the required headroom of the variability of the connections and (2)

guarantee a level of pro-activeness as defined by the θ parameter to ensure that the

video rate adaptation process starts before blocking connections. Second, if the peak

in bitrate is so high that the buffer created by the Limit parameter is not sufficient,

the MBAC system will still avoid congestion by blocking new requests. As the MBAC

system measures the traffic aggregate instead of making assumptions on the required

resources of every individual connection it is capable of detecting an expected peak in

the traffic aggregate.

The second constraint states that all admitted connections need to be taken into

account, or in other words, that the total share of connections should be 1:

T∑
t=1

QL(t)∑
q=1

S(l, q) = 1 (5)

The third set of constraints concerns the differentiation between video types. As it is

not possible to adapt the rate between video types, we must ensure that for all video

types, the total number of shares that is calculated corresponds with the share of that

video type in the total number of connections.

∀t ∈ T :

QL(t)∑
q=1

S(l, q) =

∑QL(t)
q=1 C(l, q)∑T

t=1

∑QL(t)
q=1 C(l, q)

(6)

Finally, the paradigm of SVC determines that the admitted quality level of a connection

can only be the same or lower than the original as the video rate adaptation process

works by dropping layers. As such, the last set of constraints states that, for each

quality level qt, the sum of shares of quality level qt and lower must be lower than the

sum of the current share of connections of quality level qt and lower:

∀t ∈ T , ∀q ∈ QL(t) :

q∑
i=1

S(l, i) ≤
∑q

i=1 C(l, i)∑T
t=1

∑QL(t)
q=1 C(l, q)

(7)

5.2.4 LP Solution

An optimal solution, which maximizes the objective of the LP, can be computed for

the above LP problem using the ILOG CPLEX [49] software package, with the simplex

and interior point methods [50]. Note that the above problem is not an Integer Linear

Programming (ILP) model as the decision variables S(l, q) are real-valued. LP models

can be solved in polynomial time, while ILP models are NP-complete. If the Cout(l, qt)
parameters were used as decision variables, this problem would be transformed to an

ILP and thus NP-complete problem.

5.3 IVRAUBH : Utility-Based Heuristic

In this section, we present a heuristic that serves as an alternative to the optimal

IVRALP . While the IVRALP approach guarantees optimality in the defined objective,
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the model can become large (i.e., more than 1,000 constraints and decision variables)

for large scale problems. In such a case, a heuristic is preferred as it can solve the

problem more quickly with a limited drop in optimality. Hence, the IVRALP approach

should thus be seen as a benchmark to assess the performance of the heuristic.

To steer the video rate decision process, the heuristic calculates a utility and cost

for every connection and every possible video rate adaptation it can take on that con-

nection. We abbreviate this heuristic as IVRAUBH , which stands for In-Network Video

Rate Adaptation using an Utility-Based Heuristic. IVRAUBH adapts each connections

to the quality level that maximises the difference between the calculated utility and

cost across the different quality levels. The calculation of utility depends again on the

provider’s policy. Following the examples of the previous section, if the policy is to

maximize the revenue, the corresponding utility of assigning connection c to quality

level q can be calculated as the normalisation of possible revenue values:

∀t ∈ T , ∀q ∈ QL(t) utility(c, q) =
R(q)−mini∈QL(t)(R(i))

maxi∈QL(t)(R(i))−mini∈QL(t)(R(i))
(8)

Similarly, if the network provider’s policy is targeting QoE maximization, the cor-

responding utility is:

∀t ∈ T , ∀q ∈ QL(t) utility(c, q) =
Q(q)−mini∈QL(t)(Q(i))

maxi∈QL(t)(Q(i))−mini∈QL(t)(Q(i))
(9)

The above policies have a similar form as those of IV RALP . Hence, IV RAUBH sup-

ports the same complexity of policies as described in Section 5.2.2.

Note that, similar to the IV RALP algorithm, the above policies relate to the rate

adaptation process. We calculate the cost by approximating the average of bitrate cost

cb and cost of consecutive switches cs. Preference can be given to the bitrate cost cb

or switching cost cs through the weight value w. Hence, the cost cost(c, q) of assigning

connection c to quality level q is:

cost(c, q) = w × cb(c, q) + (1− w)× cs(c, q) (10)

The bitrate cost cb is calculated by approximating the negative normalised difference

between the connection’s bitrate and a value AvailBW , which is an estimation of

the bitrate available to each connection assuming that all to be adapted connections

will receive an equal share of bitrate. This AvailBW will be continuously updated

depending on the previous video rate adaptation decisions. If serving the connection

at a quality level q where B(q) ≤ AvailBW this cost will be zero.

cb(c, q) = max(0,
B(q)− availBW )

availBW
) (11)

The switching cost cs is a cost that takes into account previous switching decisions by

calculating the number of recent quality switches through an exponentially weighted

moving average. If the connection has suffered from various quality switches in the

past, this cost will be high. Hence:

cs(c, q)t = w × cs(c, q)t−1 + (1− w)× S (12)

Here, S is 1 if the connection was not adapted to quality level q at time t − 1. As

we want to take into account a limited history window, we set this weight value to 0.9.
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Based on these definitions of utility and cost, IVRAUBH is illustrated in Algorithm 1.

As shown, IVRAUBH calculates for each connection the utility and cost and selects the

quality level that maximises the difference between the calculated utility and cost. Af-

terwards, the AvailBW parameter is updated to reflect the new situation of bandwidth

available for the connections that still need a decision. This update involves subtracting

the AvailBW with the bitrate that the new connection will consume. If this is higher

than AvailBW , the next connections will have less bitrate at their disposal and vice

versa.

Algorithm 1 Algorithmic description of IVRAUBH

1: Set conn to total number active connections
2: AvailBW ← Limit(l)

conn
3: for all t ∈ T
4: for all q ∈ QL(t)
5: for all c ∈ C〉\(l, qt)
6: maxUtility ← 0
7: levelToScale← φ
8: for all i ≤ q
9: Calculate utility(c, i) and cost(c, i)

10: if utility(c, i)− cost(c, i) ≥ maxUtility then
11: maxUtility ← utility(c, q)− cost(c, q)
12: levelToScale← i
13: end if
14: end for
15: Cout(l, levelToScale)← Cout(l, levelToScale) ∪ c
16: conn← conn− 1

17: AvailBW ← AvailBW×(conn+1)−B(levelToScale)
conn

18: end for
19: end for
20: end for

6 Performance evaluation results

6.1 Experimental setup

We evaluated the performance of both IVRALP and IVRAUBH and investigated their

interaction with the PCN admission control system. We focused on the maximization

of revenues as network provider’s policy as described in the previous section, unless

stated otherwise.

A VoD scenario was modeled by using an NS-2 based simulator, which is capable

of simulating the transmission of real video sequences [51]. As illustrated in Figure 4, a

tree-based topology, representing a typical multimedia access network, was used where

a video server streams SVC videos to a set of clients. The setup contains one bottleneck

where the link capacity decreases from 2 Gbps to 1Gbps. The PCN admission control

system was deployed onto this multimedia access network in order to use the network

characterization of PCN’s metering function. To be more suited for protecting video

services the standardized PCN system was adapted with the dynamic rate adaptation

algorithm as discussed in Section 4.2. The used PCN implementation uses the single

marking mode [28], supporting only flow admission and including the CLE report
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Fig. 4: Used network topology, modeling a typical multimedia access network that

offers a VoD service. The video rate adaptation algorithm is deployed on the service

aggregator, which forms the bottleneck in the topology.

suppression option with the T-maxsuppress timer set to 4.5 seconds and the CLE-

reporting-threshold set to 0.5. In the IVRAUBH algorithm, no priorities were defined

between the switching cost cs and bitrate cost cb, hence, the weight w was set to 0.5.

For the experiments, we focus on the PCN interior node that forms the bottleneck in

the network topology. On this PCN interior node, the goal rate was set to 1 Gbps, thus

corresponding with the capacity of the outgoing link. Note that the actual configured

rate (AR) is varied by the dynamic PCN rate adaptation algorithm. The video rate

adaptation algorithms were also deployed on this PCN interior node.

We focused on a scenario with two video types, each with three quality levels: a

Full HD video level, an HD ready video level and a Standard Definition video level.

Each video item had a length of 90 minutes. Table 2 shows the prices that were used

as revenue for each quality level (and both types) together with the mean bit rate

and QoE score of each level. A dynamic pricing scheme was used for the evaluated

VoD system: users are charged based on the actual quality they receive. Hence, if the

quality is adapted to a lower quality, they are charged less and the revenue for the

service provider is consequently less was well. Such a dynamic pricing scheme is not

yet used in traditional VoD systems. However, there already Content Deliver Network

(CDN) provider who charge their customers (i.e., service providers) based on their

on-demand consumption (e.g., Amazon’s Cloudfront CDN 1 solution). Given the fact

that adaptive streaming solutions have only recently been introduced in managed VoD

systems, we believe that this is a realistic future pricing scheme.

The experimental setup assumes that it is not possible to switch between qualities

of different types: which type was requested was randomly chosen with a uniform dis-

tribution. The QoE score denotes the video quality and was characterized using the

Structural Similarity Score (SSIM) [52] as video quality metric. The SSIM score is an

objective Full-Reference quality metric based upon the assumption that the Human Vi-

sual System is more specialized in the extraction of structural information from scenes.

The SSIM model takes the original and the distorted signal as input and produces a

score between 0 and 1, where 1 stands for perfect quality. The SSIM scores should be

interpreted as follows: a video with a SSIM score above 0.9 is indistinguishable from

the original, a SSIM score between 0.8 and 0.9 corresponds with a moderate quality

while a SSIM score of 0.7 and lower results in a video which is barely watchable. As

the SSIM score provides a single value per video frame, we used the mean SSIM score

per video as a characterization of the video’s QoE. The used prices and bitrates of each

1 http://aws.amazon.com/cloudfront/pricing/
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Table 2: Used quality levels with their corresponding price, average bitrate and QoE

score, estimated through the Structural Similarity.

Quality Level Resolution Price ($) Bitrate (Mbps) SSIM Score
Full HD 1080p 6.00 9.5 0.98

HD Ready 720p 5.00 4.5 0.95
SD 480p 4.00 2.0 0.91

quality level are based on the price models that are currently being used by major VoD

providers such as Vudu [53] and Apple [54].

In order to compare IVRALP and IVRAUBH , we performed a one-way ANOVA

analysis or t-test on all experiments. An ANOVA analysis is a statistical test that allows

determining whether or not the means of two groups of samples is statistically different

or if the difference is due to random noise. For our evaluation, ANOVA tests the null

hypothesis that the samples obtained through the various metrics extracted from run-

ning IVRALP and IVRAUBH are drawn from the same population. ANOVA provides

a decision to reject (i.e., meaning a significant difference between the groups) or ac-

cept (i.e., meaning no significant difference) the null hypothesis, given a preconfigured

confidence interval.

To model the requests for the SVC videos, we used a production trace of the

VoD service of a leading European telecom operator. The simulation time was set to

1 hour and during this timeframe, 1171 videos were requested. The highest request

rate observed was 5 requests per second for all clients together. Each experiment was

repeated 20 times, the variations between experiments are due to differences in the

encoding settings of the videos: various experiments were conducted, each with an

alternate encoding of the video content ranging from a set of constant bit rate videos to

a set of constant quality videos. We present the average values as well as the calculated

confidence intervals, given a confidence level of 99%. In the corresponding figures, the

confidence intervals are represented as error bars.

In the remainder of this section, we highlight the need for interacting with a PCN

system to measure the network limit and characterize the effect the video rate adap-

tation functions have on the obtained quality levels. Next, we illustrate the gain of the

algorithm by comparing it with a standard PCN system and a video rate adaptation

system without integration with PCN. Then, we compare both video rate decision algo-

rithms (IVRALP and IVRAUBH) with each other in terms of the obtained quality level

share and the optimality of the algorithms. Furthermore, we investigate the impact of

the θ and w parameters of both algorithms. Finally, we investigate the scalability of

both algorithms.

6.2 Impact of a fixed configured rate

In this section, we motivate the need for a close interaction between a PCN mechanism

and the video rate adaptation algorithm. For this experiment, we fixed the Limit value

parameter, which denotes the upper bandwidth limit that can be used for adapting

the video rate. Normally, this Limit value is continuously calculated as explained in

Section 4.3. As this value is now fixed, the integration between the PCN mechanism

and the video rate adaptation is broken in this experiment.
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Fig. 5: Impact of a fixed rate configuration, without any interaction with a PCN system,

on the number of admitted sessions and SSIM score.

Figure 5 illustrates the impact of varying the Limit value on the number of admit-

ted sessions (Figure 5a) and average QoE score (Figure 5b) for IVRALP . IVRAUBH

provides similar results. As explained above, we investigated different levels of video

variability to vary the network experiments; we show the effect for two distinct cases:

the median case and the 75th percentile. Figure 5 shows how increasing the Limit value

has a decreasing effect on the number of admitted sessions and an increasing effect on

the SSIM score. This observation can be explained as follows: as the Limit value is

increased, the video rate adaptation algorithm makes a too optimistic estimation of

the maximum network capacity. While the theoretical network capacity might be 1

Gbps, in practice the network load measurements will be much lower caused by the

burstiness of the videos. Therefore, without any interaction between the PCN system

and the rate adaptation decision function, the video rate adaptation algorithm fails

to timely respond to a near congestion scenario and hence keeps all admitted videos

at the highest quality level. A too high Limit value thus leads to the disabling of the

video rate adaptation process.

At the other hand, it is also important to keep the Limit value as high as possible,

without disabling the video rate adapation. Although a low Limit value will effectively

perform the video rate adaptation, it will make a too pessimistic assumption of the

actual network limit and thus drop video layers too soon. This is explained in more

detail in Section 6.5.1. There is thus an optimum in selecting the Limit value: the

algorithm should use the highest Limit value possible that still performs the actual

video rate adaptation and thus has the highest number of admitted sessions. When

comparing the median and 75th percentile with each other, we observe that this optimal

value changes depending on the variability of the videos: a higher variability (75th

percentile) will require a lower Limit value (in this case 650 Mbps) than the median

case (where the optimal is 750 Mbps) as the increased burstiness of the video requires a

more pessimistic assumption of the actual network limit, and vice versa. These results

illustrate an important aspect of the algorithm: without a good estimation of the Limit

value no optimal rate decision algorithm can be built. Therefore, an integration between

the PCN system and video rate adaptation as proposed is thus required.
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Table 3: Gain of the algorithm in terms of revenue (instantaneous revenue and aggre-

gated revenue) for various configurations. Our algorithm outperforms all other algo-

rithms and is able to achieve a 10% increase in revenue compared to the second best,

corresponding with a not integrated solution.

Revenue/min Revenue/min Revenue/min Aggregate
after 10 min ($) after 20 min ($) after 60 min ($) revenue ($)

No Adapt HD 4.07 5.87 5.87 259.95
No Adapt SD 3.34 5.68 17.73 455.41

Fixed Adapt (LP) 4.07 7.98 14.32 462.36
Fixed Adapt (UBH) 4.07 7.98 14.32 459.62

IVRALP 4.07 8.25 17.73 510.64
IVRAUBH 4.07 8.25 17.73 500.75

6.3 Gain of the algorithms

Table 3 illustrates the gain of IVRALP and IVRAUBH compared to four other con-

figurations: (1) a configuration with only PCN and no video rate adaptation in which

all videos are streamed at Full HD quality (which we call ’No Adapt HD’), (2) a

similar case but with all videos streamed at SD quality (which we label ’No Adapt

SD’) and (3) two cases with video rate adaptation enabled (using both the LP model

and utility-based heuristic) but without integration between the PCN system and the

video rate adaptation mechanism, as investigated in the previous section. As we use

the maximization of revenue as a policy to steer the video rate adaptation system,

we focus on the obtained revenue as performance metric. We distinguish between two

revenue-based metrics: the instantaneous revenue per minute, which indicates the rev-

enue that is generated at that point in time (i.e., by making a weighted combination

of the number of admitted connections per quality level) and the aggregated revenue

obtained after 1 hour, which can be obtained by summing up the 60 instantaneous

revenue values.

We discuss the performance of all six configurations. The ’No Adapt HD’ config-

uration in which all videos are admitted at HD achieves the lowest revenue of only

$ 269.95. Indeed, without any video rate adaptation only 88 videos can be admitted

and the revenue per video is not high enough to justify the maintaining of every video

at the highest possible quality level. However, during the first 10 minutes of the exper-

iment the limited number of active connections allow the ’No Adapt HD’ configuration

to maximize the revenue. A big aggregated revenue increase can be obtained when

all videos are admitted only at SD quality. The aggregated revenue now increases to

$ 455.41. Hence, there is a rationale for dropping quality layers to increase the revenue.

However, as we can see in the 2nd and 3rd column, without any video rate adaptation

we severely lose revenue in the first minutes of simulation as the few connections that

are admitted at that time could easily have been admitted at a higher quality. In the

first 10 minutes of the experiment we see that the instantaneous revenue of the ’No

Adapt SD’ configuration ($ 3.34) is considerably lower than that of the other configu-

rations ($ 4.07). Enabling the video rate adaptation (i.e., the last four configurations)

allows solving this issue: as the videos are dynamically adapted they can first be ad-

mitted at Full HD (thus maximizing the revenue by favoring the highest quality in the

first 10 minutes) and later adapted to SD (now maximizing the revenue by favoring a

high number of connections).
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When comparing the ’Fixed Adapt’ configurations and the proposed IVRALP and

IVRAUBH algorithms, we see the need for integrating a PCN and video rate adaptation

mechanism in terms of revenue as well. In the ’Fixed Adapt’ configurations, the videos

were too quickly adapted to lower qualities. This can be seen in the instantaneous

revenue values after 20 minutes: an increase in revenue can be obtained compared to the

’No Adapt’ configurations but with integration the increase in revenue is considerably

higher. Additionally, without integration less connections are admitted at the end of

the experiment as not all connections were successfully downgraded to SD. Therefore,

the instantaneous revenue values at the end of the experiment (after 60 minutes) are

lower as well. By enabling the integration, a considerable increase can be obtained.

Our proposed system outperforms all other configurations in all situations and is able

to achieve a 10.44% increase in revenue compared to the ’Fixed Adapt’ configurations,

which does not have the proposed integration.

When comparing both rate adaptation decision algorithms, we see that the opti-

mal IVRALP algorithm obviously outperforms the IVRAUBH heuristic but that the

differences are limited. In the three instantaneous snapshots taken at 10 minutes, 20

minutes and 60 minutes, there is no difference in terms of revenue between IVRALP

and IVRAUBH . In terms of total aggregate IVRALP achieves only a 1.98% higher

revenue. Hence, there are situations where both algorithms exhibit different behaviour

but this does not occur all the time. This is discussed in more detail in the next section.

6.4 Comparison of IVRALP and IVRAUBH

6.4.1 Impact on the quality level share

In order to investigate how IVRALP and IVRAUBH perform the rate adaptation and

to compare their operation with each other, we have characterized the share of each

quality level over time for an increasing network load as new requests arrive. Figure 6

illustrates this both for IVRALP (Figure 6a) and IVRAUBH 6b. Both algorithms

are configured with θ = 0.7 and w = 0.95. As shown, both algorithms are able to

perform a graceful video degradation as the network load increases. Starting out with

a non-congested network, all new connections are first admitted at the highest possible

quality (i.e., Full HD). As more connections arrive and the network load increases, both

existing and new connections are adapted to lower quality levels. Ultimately, the PCN

admission control system starts blocking requests for new connections, as all options

of video rate adaptation are exhausted.

When comparing both algorithms with each other, we observe that they have sim-

ilar performance. While there are small differences in when the actual video rate adap-

tations take place, the share of quality levels they allow at a given time follows a similar

behaviour. Especially around the 23 minutes mark and 40 minutes mark we can see

some important differences between IVRALP and IVRAUBH : IVRAUBH switches

sooner and more drastically to the SD connections than the IVRALP , which features

a more smoother transition between HD ready and SD.

6.4.2 Optimality of IVRALP and IVRAUBH

In this experiment, we compare how optimal both algorithms are in maximizing the

specified policy. As IVRALP is based on an LP model, we know that it will select
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Fig. 6: Impact of both video rate adaptation algorithms (IVRALP and IVRAUBH)

over time. As the network load increases and more requests arrive, both algorithms

successfully drop to lower quality videos.
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Fig. 7: Impact of both video rate adaptation algorithms (IVRALP and IVRAUBH)

over time on the policy they aim to maximize. Regardless of the policy, IVRALP

outperforms IVRAUBH but the difference is limited.

the video rate configuration that optimizes the policy. IVRALP is thus by definition

optimal in maximizing the configured policy. Therefore, we are particularly interested

in the difference in optimality with the IVRAUBH heuristic.

In these experiments, two different optimization policies were configured both for

IVRALP and IVRAUBH . The impact of the algorithms on the configured optimization

policies was characterized over time. Figure 7 illustrates this impact for a maximization

of revenue policy (Figure 7a) and maximization of QoE policy (Figure 7b), respectively.

As shown, both policy configurations have similar results. IVRALP is able to maintain

the highest value in revenue or QoE throughout the complete experiment, depending

on the configured policy. IVRAUBH often matches the performance of IVRALP and

only experiences a limited performance drop compared to the optimal IVRALP a

few times. Figure 7a shows a performance drop around the 23 minutes mark and 40

minutes mark, which corresponds with the difference in behaviour that was observed
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in the quality level share as shown in Figure 6. Similar performance drops can be seen

for the maximization of QoE policy as illustrated in Figure 7b. While there are clearly

performance drops in the IVRAUBH case, we see that these drops are limited and

infrequent. As discussed in Section 6.3, throughout the whole experiment, IVRALP

outperforms IVRAUBH only with 1.98% when the maximization of revenue policy is

used. Similarly, the maximization of QoE policy results in a better overall performance

of IVRALP but only with 2.02%.

6.5 Integration of PCN with video rate adaptation

In this section, we investigate the impact of the two parameters, the weight w and θ,

that control the integration between the PCN system and the video rate adaptation

algorithm.

6.5.1 Impact of the θ parameter

Figure 8 illustrates the impact of an increasing θ parameter on the number of admitted

sessions and the underutilisation volume. The underutilisation volume characterizes

the average bitrate per second that is not used and is calculated by subtracting the

maximum link capacity with the measured throughput as follows:

UnderUtilisation =

∑n
i=1

Limit−BW (i)
mw

s

where n is the number of measurements, BW (i) denotes the ith measurement, mw

is the time window, Limit is the link capacity and s is the simulation time. Two

factors contribute to a non-zero underutilisation volume. First, the burstiness of the

aggregate will result in a level of underutilisation: it is therefore not possible to admit

connections until the network is completely saturated. Second, specifically for the video

rate adaptation algorithm, it is possible that the algorithm decides to lower the video

quality too soon. This will result in lower bitrates and thus a higher underutilisation.

While the first factor is due to the inherent nature of bursty video, the impact of the

second factor can be reduced by tuning the pro-activeness of the algorithm.

As shown in Figure 8, an increased θ value leads to a lower underutilisation volume.

This can be explained as follows: the θ parameter controls the pro-activeness of the

video rate adaptation. A low θ value will cause the rate adaptation to make a pessimistic

estimate of the available network limit and thus results in a lot of connections being

lowered in quality too soon, consequently resulting in a higher underutilisation value.

Increasing θ thus lowers the underutilisation. There is however a trade-off in increasing

θ: as explained before, if θ is too high the bandwidth measurements will never reach the

actual calculated limit. This causes the video rate adaptation algorithm to keep most of

the videos at the highest quality level, and thus disabling the rate adaptation. Looking

at Figure 8, the optimal θ value is the value that still decreases the underutilisation

without significantly affecting the number of admitted sessions. In this case, this is

0.7. Across different samples, caused by the streaming of different videos with different

encoding settings, the results appear to be stable as well. This is illustrated through the

calculated confidence intervals. As shown, the confidence intervals for both the number

of admitted sessions and average under utilisation volume are small compared to the

observed mean. When comparing IVRALP and IVRAUBH , ANOVA tests showed no

significant differences between the two algorithms with a confidence interval of 99.9%.
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Fig. 8: Impact of an increasing θ on the number of admitted sessions and underutili-

sation volume.

6.5.2 Impact of the weight value

In the previous sections, we showed how IVRALP and IVRAUBH are able to perform

the desired graceful video quality degradation. Another important requirement for a

well performing video rate adaptation algorithm is its stability: a video rate adaptation

algorithm should avoid switching back and forth between video quality levels as much as

possible. Such oscillations are known to be clearly visible and annoying to the consumer

of video services and hence have a destructive effect on the QoE.

Figure 9 illustrates the impact of the weight value on the stability of IVRALP

and IVRAUBH . It shows the number of unnecessary quality switches for an increasing

weight value. As shown, an increasing weight results in an important reduction of the

number of unnecessary quality switches. Figure 9 clearly shows that a weight value

of 0.95 or higher is required to avoid instability of the algorithm. This is because the

weight value allows smoothing the limit value obtained by the measurement function.

When comparing the stability between various values of θ, only a θ configuration of

1.0 does not result in instability. However, in this particular case, the algorithm is

stable because there are only a limited amount of video rate adaptations performed as

illustrated in Figure 10, which does not reflect the desired behaviour as discussed in

the previous section. The confidence intervals show that there is some limited variation

across samples, especially when the average number of quality switches is large. How-

ever, despite this variation, the confidence intervals are still small enough to obtain

stable results, indicating accurate statistical results.

When comparing between IVRALP and IVRAUBH , we see that IVRAUBH has

a slightly lower number of unnecessary quality switches than IVRALP . Although

IVRAUBH is not optimal in the maximization of the policy, its cost function explic-

itly takes into account consecutive quality switches. This distinguishing effect is also
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justified by an ANOVA analysis: ANOVA tests showed a significant difference between

two algorithms for weight values lower than 0.9, with a confidence interval of 99.9%.

While the impact of the weight value on the stability is significant, the weight does

not particularly influence the number of admitted sessions. This is shown in Figure 10

which illustrates the impact of an increasing weight value on the number of admitted

sessions for three distinct θ configurations. Both algorithms admit approximately the

same number of admitted sessions, irrelevant of the weight value. Hence, although the
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same number of sessions are admitted, there will be more quality switches to come

to this configuration (as illustrated in Figure 9). As shown, the confidence intervals

are small and do not change depending on the weight value as well. When comparing

both algorithms. an ANOVA analysis showed no significant difference between the two

algorithms with a confidence interval of 99.9%.

6.6 Scalability of the algorithms

In this final set of experiments, we investigate the scalability of IVRALP and IVRAUBH

by increasing the problem’s complexity. This is done by increasing the number of video

types or by increasing the number of quality levels per video type. To evaluate the

scalability of both algorithms we characterize the time required to calculate the shares

in both algorithms (denoted as the decision time). All experiments were performed on

a 1.8GHz Intel Core i7 machine with 4GB of RAM and repeated 1,000 times.

Figure 11 shows the impact of an increasing complexity for both algorithms. As

shown, there is a significant difference between both algorithms: IVRAUBH runs much

faster than IVRALP . IVRALP clearly scales polynomially as the number of quality

levels per type increases up to decision times which are in the order of tens of millisec-

onds. This is an issue for high request rates as the rate adaptation function needs to

be calculated for each request of a new video and termination of an existing one: if

the rate adaptation time is 20 msec or more, the rate adaptation decision alone can

only support 50 requests or terminations per second, which might not suffice if a flash

crowd occurs.

Figure 12 zooms in on the decision times of IVRAUBH . As shown, this algorithm

scales linearly with an increasing problem complexity. Moreover, the obtained decision

times are in the order of tens of microseconds and thus a 1,000 times smaller than that of
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IVRALP . This is an important distinguishing factor between the two algorithms: while

the previous results showed no significant difference between IVRALP and IVRAUBH ,

these results show that IVRAUBH scales considerably better (i.e., 500 times faster),

while being still very close in performance in terms of number of admitted sessions,

stability and network utilisation to the optimal solution, as calculated by IVRALP .

Regarding the statistical accuracy of the results, the obtained confidence intervals,

given a confidence level of 99%, are clearly small. This shows that we can have a high

confidence in the accuracy of the scalability results. As such, we can conclude there is

a clear and significant difference between the scalability of IVRALP and IVRAUBH .

7 Conclusions

In this article, we proposed a joint MBAC and video rate adaptation algorithm for

SVC videos in a VoD environment. The recently standardized IETF PCN admission

control system was used as MBAC system. The algorithm allows a network provider

to specify policies on how existing videos need to be adapted as a function of the net-

work load. These policies therefore allow controlling the overall video rate adaptation

process in the network. We discussed two distinct type of policies: the maximization

of revenue and the maximization of QoE. However, the algorithm is generic and a net-

work provider can choose to specify its own policies. The system allows a controlled

and graceful video degradation before starting to block connections. We argue that the

combination and interaction of both mechanisms is required to form an integrated sys-

tem that allows protecting the QoE of videos in which the two management actions are

aligned with each other.Furthermore, we focused on the video rate adaptation decision

function that calculates the assignment of connections to quality levels by potentially

dropping layers. We presented two algorithms for the rate adaptation decision func-
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tion: one LP-based model (IVRALP ) that maximizes the provider’s policy and one

heuristic (IVRAUBH) that makes an approximation by estimating the utility of each

video adaptation decision. Comparing both approaches with each other, the IVRAUBH

heuristic can be seen as a more scalable solution than the optimal IVRALP algorithm

for large scale problems, while IVRALP serves as a benchmark to characterize how

close to optimal the heuristic is able to achieve. Both algorithms allow a provider to

change the policy that controls the decision process. Through an extensive simulation-

based performance evaluation, we showed that both algorithms are able to accurately

control the video rate decision process and are also sufficiently stable in their decision.

For example, we showed that the joint PCN and video rate adaptation mechanism is

able to outperform a non-integrated combination of PCN and video rate adaptation

with 10%, given the investigated network model. Furthermore, in comparing the two

algorithms, we showed that the heuristic achieves a good approximation of IVRALP ,

but has the advantage of an increased scalability. We showed that IVRAUBH scales

linearly and consequently requires a factor 500 less computation time for large scale

problems compared to IVRALP . In our investigated network model, the increased scal-

ability of the heuristic IVRAUBH comes with a limited cost of 2% compared to the

optimal IVRALP algorithm.
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