5,068 research outputs found

    Evaluation of a geometry-based knee joint compared to a planar knee joint

    Get PDF
    peer reviewedToday neuromuscular simulations are used in sev- eral fields, such as diagnostics and planing of surgery, to get a deeper understanding of the musculoskeletal system. Dur- ing the last year, new models and datasets have been pre- sented which can provide us with more in-depth simulations and results. The same kind of development has occurred in the field of studying the human knee joint using complex three dimensional finite element models and simulations. In the field ofmusculoskeletal simulations, no such knee joints can be used. Instead themost common knee joint description is an idealized knee joint with limited accuracy or a planar knee joint which only describes the knee motion in a plane. In this paper, a new knee joint based on both equations and geometry is introduced and compared to a common clinical planar knee joint. The two kinematical models are analyzed using a gait motion, and are evaluated using the muscle ac- tivation and joint reaction forces which are compared to in- vivo measured forces. We show that we are able to predict the lateral, anterior and longitudinal moments, and that we are able to predict better knee and hip joint reaction forces

    Evaluation of a geometry-based knee joint compared toaplanarknee joint

    Get PDF
    Today neuromuscular simulations are used in several fields, such as diagnostics and planing of surgery, to get a deeper understanding of the musculoskeletal system. During the last year, new models and datasets have been presented which can provide us with more in-depth simulations and results. The same kind of development has occurred in the field of studying the human knee joint using complex three dimensional finite element models and simulations. In the field of musculoskeletal simulations, no such knee joints can be used. Instead the most common knee joint description is an idealized knee joint with limited accuracy or a planar knee joint which only describes the knee motion in a plane. In this paper, a new knee joint based on both equations and geometry is introduced and compared to a common clinical planar knee joint. The two kinematical models are analyzed using a gait motion, and are evaluated using the muscle activation and joint reaction forces which are compared to in-vivo measured forces. We show that we are able to predict the lateral, anterior and longitudinal moments, and that we are able to predict better knee and hip joint reaction force

    Personalized hip joint kinetics during deep squatting in young, athletic adults

    Get PDF
    The goal of this study was to report deep squat hip kinetics in young, athletic adults using a personalized numerical model solution based on inverse dynamics. Thirty-five healthy subjects underwent deep squat motion capture acquisitions and MRI scans of the lower extremities. Musculoskeletal models were personalized using each subject's lower limb anatomy. The average peak hip joint reaction force was 274 percent bodyweight. Average peak hip and knee flexion angles were 107 degrees and 112 degrees respectively. These new findings show that deep squatting kinetics in the younger population differ substantially from the previously reported in vivo data in older subjects

    3D printing and high tibial osteotomy

    Get PDF
    High tibial osteotomy (HTO) is a relatively conservative surgical option in the management of medial knee pain. Thus far, the outcomes have been variable, and apparently worse than the arthroplasty alternatives when judged using conventional metrics, owing in large part to uncer - tainty around the extent of the correction planned and achieved. This review paper introduces the concept of detailed 3D planning of the procedure, and describes the 3D printing technology that enables the plan to be performed. The different ways that the osteotomy can be undertaken, and the varying guide designs that enable accurate regis - tration are discussed and described. The system accuracy is reported. In keeping with other assistive technologies, 3D printing enables the surgeon to achieve a preoperative plan with a degree of accuracy that is not possible using conventional instruments. With the advent of low dose CT, it has been possible to confirm that the procedure has been under - taken accurately too. HTO is the ‘ultimate’ personal intervention: the amount of correction needed for optimal offloading is not yet com - pletely understood. For the athletic person with early medial joint line over - load who still runs and enjoys life, HTO using 3D printing is an attractive option. The clinical effectiveness remains unproven

    Personalized musculoskeletal modeling:Bone morphing, knee joint modeling, and applications

    Get PDF

    Development of a planar multi-body model of the human knee joint

    Get PDF
    The aim of this work is to develop a dynamic model for the biological human knee joint. The model is formulated in the framework of multibody systems methodologies, as a system of two bodies, the femur and the tibia. For the purpose of describing the formulation, the relative motion of the tibia with respect to the femur is considered. Due to their higher stiffness compared to that of the articular cartilages, the femur and tibia are considered as rigid bodies. The femur and tibia cartilages are considered to be deformable structures with specific material characteristics. The rotation and gliding motions of the tibia relative to the femur can not be modeled with any conventional kinematic joint, but rather in terms of the action of the knee ligaments and potential contact between the bones. Based on medical imaging techniques, the femur and tibia profiles in the sagittal plane are extracted and used to define the interface geometric conditions for contact. When a contact is detected, a continuous non-linear contact force law is applied which calculates the contact forces developed at the interface as a function of the relative indentation between the two bodies. The four basic cruciate and collateral ligaments present in the knee are also taken into account in the proposed knee joint model, which are modeled as non-linear elastic springs. The forces produced in the ligaments, together with the contact forces, are introduced into the system’s equations of motion as external forces. In addition, an external force is applied on the center of mass of the tibia, in order to actuate the system mimicking a normal gait motion. Finally, numerical results obtained from computational simulations are used to address the assumptions and procedures adopted in this study.Fundação para a Ciência e a Tecnologia (FCT

    A gyroscope-based system for intraoperative measurement of tibia coronal plane alignment in total knee arthroplasty

    Get PDF
    Coronal plane alignment in total knee arthroplasty (TKA) is an important predictor of clinical outcomes including patient satisfaction and device longevity. Radiography and computer assisted navigation are the two primary technologies currently available to surgeons for intraoperative assessment of alignment; however, neither is particularly well-suited for use in this increasingly high volume procedure. Herein we propose a novel gyroscope-based instrument for intraoperative validation of tibia coronal plane alignment, and provide initial analytical and experimental performance assessments. The gyroscope-based alignment estimate is derived from simplified joint geometry and verified experimentally using a custom tibial trial insert containing a consumer-grade inertial measurement unit (IMU). Average accuracy of the gyroscope-based tibia coronal angle estimate was found to be within ±1° in mechanical leg jig and cadaver testing. These results indicate that the proposed gyroscope-based method shows promise for low cost, accurate intraoperative validation of limb alignment in TKA patients. Integrating IMU technology into the TKA surgical workflow via low-cost instrumentation will enable surgeons to easily validate implant alignment in real time, thereby reducing cost, operating room time, and future revision burden

    Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis

    Get PDF
    Kinematic models of lower limb joints have several potential applications in musculoskeletal modelling of the locomotion apparatus, including the reproduction of the natural joint motion. These models have recently revealed their value also for in vivo motion analysis experiments, where the soft-tissue artefact is a critical known problem. This arises at the interface between the skin markers and the underlying bone, and can be reduced by defining multibody kinematic models of the lower limb and by running optimization processes aimed at obtaining estimates of position and orientation of relevant bones. With respect to standard methods based on the separate optimization of each single body segment, this technique makes it also possible to respect joint kinematic constraints. Whereas the hip joint is traditionally assumed as a 3 degrees of freedom ball and socket articulation, many previous studies have proposed a number of different kinematic models for the knee and ankle joints. Some of these are rigid, while others have compliant elements. Some models have clear anatomical correspondences and include real joint constraints; other models are more kinematically oriented, these being mainly aimed at reproducing joint kinematics. This paper provides a critical review of the kinematic models reported in literature for the major lower limb joints and used for the reduction of soft-tissue artefact. Advantages and disadvantages of these models are discussed, considering their anatomical significance, accuracy of predictions, computational costs, feasibility of personalization, and other features. Their use in the optimization process is also addressed, both in normal and pathological subjects

    Quantification of knee extensor muscle forces: a multimodality approach

    Get PDF
    Given the growing interest of using musculoskeletal (MSK) models in a large number of clinical applications for quantifying the internal loading of the human MSK system, verification and validation of the model’s predictions, especially at the knee joint, have remained as one of the biggest challenges in the use of the models as clinical tools. This thesis proposes a methodology for more accurate quantification of knee extensor forces by exploring different experimental and modelling techniques that can be used to enhance the process of verification and validation of the knee joint model within the MSK models for transforming the models to a viable clinical tool. In this methodology, an experimental protocol was developed for simultaneous measurement of the knee joint motion, torques, external forces and muscular activation during an isolated knee extension exercise. This experimental protocol was tested on a cohort of 11 male subjects and the measurements were used to quantify knee extensor forces using two different MSK models representing a simplified model of the knee extensor mechanism and a previously-developed three-dimensional MSK model of the lower limb. The quantified knee extensor forces from the MSK models were then compared to evaluate the performance of the models for quantifying knee extensor forces. The MSK models were also used to investigate the sensitivity of the calculated knee extensor forces to key modelling parameters of the knee including the method of quantifying the knee centre of rotation and the effect of joint translation during motion. In addition, the feasibility of an emerging ultrasound-based imaging technique (shear wave elastography) for direct quantification of the physiologically-relevant musculotendon forces was investigated. The results in this thesis showed that a simplified model of the knee can be reliably used during a controlled planar activity as a computationally-fast and effective tool for hierarchical verification of the knee joint model in optimisation-based large-scale MSK models to provide more confidence in the outputs of the models. Furthermore, the calculation of knee extensor muscle forces has been found to be sensitive to knee joint translation (moving centre of rotation of the knee), highlighting the importance of this modelling parameter for quantifying physiologically-realistic knee muscle forces in the MSK models. It was also demonstrated how the movement of the knee axis of rotation during motion can be used as an intuitive tool for understanding the functional anatomy of the knee joint. Moreover, the findings in this thesis indicated that the shear wave elastography technique can be potentially used as a novel method for direct quantification of the physiologically-relevant musculotendon forces for independent validation of the predictions of musculotendon forces from the MSK models.Open Acces

    Quantitative Analysis of Three-Dimensional Cone-Beam Computed Tomography Using Image Quality Phantoms

    Get PDF
    In the clinical setting, weight-bearing static 2D radiographic imaging and supine 3D radiographic imaging modalities are used to evaluate radiographic changes such as, joint space narrowing, subchondral sclerosis, and osteophyte formation. These respective imaging modalities cannot distinguish between tissues with similar densities (2D imaging), and do not accurately represent functional joint loading (supine 3D imaging). Recent advances in cone-beam CT (CBCT) have allowed for scanner designs that can obtain weight-bearing 3D volumetric scans. The purpose of this thesis was to analyze, design, and implement advanced imaging techniques to quantify image quality parameters of reconstructed image volumes generated by a commercially-available CBCT scanner, and a novel ceiling-mounted CBCT scanner. In addition, imperfections during rotation of the novel ceiling-mounted CBCT scanner were characterized using a 3D printed calibration object with a modification to the single marker bead method, and prospective geometric calibration matrices
    • …
    corecore