23 research outputs found

    An Evaluation of Page Token in OpenID Single Sign on (SSO) to Thwart Phishing Attack

    Get PDF
    Single Sign-on (SSO) was introduced to overcome the issue of password memorability among users as researches have shown that users struggle to cope with too many sets of password as number of account increases. This is due to SSO relies on the usage of single authentication that allows users to access to multiple websites or services. As much as it has managed to solve the memorability issue to certain extend, users were found to have skeptical in its adoption due to security concerns. Among common issues of SSO is that it is prone to several attacks like spam, link manipulation, session hacking and particularly phishing. Despite of many efforts been placed to overcome phishing attack with regards to SSO, the effectiveness of the proposed solutions are yet to be proven by conducting extensive evaluation. Thus, this study intends to conduct an evaluation on a particular solution of phishing attack call page token. Page token was proposed recently which was claimed to be able to mitigate the issue of phishing attack with regards to SSO application. The evaluation involved a control laboratory experiment with participants being recruited to experience the usage of page token as a protection mechanism against phishing attack. The results showed are promising along with several suggestions given for further enhancement

    An evaluation of page token in OpenID Single Sign on (SSO) to thwart phishing attack

    Get PDF
    Single Sign-on (SSO) was introduced to overcome the issue of password memorability among users as researches have shown that users struggle to cope with too many sets of password as number of account increases. This is due to SSO relies on the usage of single authentication that allows users to access to multiple websites or services. As much as it has managed to solve the memorability issue to certain extend, users were found to have skeptical in its adoption due to security concerns. Among common issues of SSO is that it is prone to several attacks like spam, link manipulation, session hacking and particularly phishing. Despite of many efforts been placed to overcome phishing attack with regards to SSO, the effectiveness of the proposed solutions are yet to be proven by conducting extensive evaluation. Thus, this study intends to conduct an evaluation on a particular solution of phishing attack call page token. Page token was proposed recently which was claimed to be able to mitigate the issue of phishing attack with regards to SSO application. The evaluation involved a control laboratory experiment with participants being recruited to experience the usage of page token as a protection mechanism against phishing attack. The results showed are promising along with several suggestions given for further enhancement

    A Blockchain-Based Multi-Factor Authentication Model for a Cloud-Enabled Internet of Vehicles.

    Full text link
    Continuous and emerging advances in Information and Communication Technology (ICT) have enabled Internet-of-Things (IoT)-to-Cloud applications to be induced by data pipelines and Edge Intelligence-based architectures. Advanced vehicular networks greatly benefit from these architectures due to the implicit functionalities that are focused on realizing the Internet of Vehicle (IoV) vision. However, IoV is susceptible to attacks, where adversaries can easily exploit existing vulnerabilities. Several attacks may succeed due to inadequate or ineffective authentication techniques. Hence, there is a timely need for hardening the authentication process through cutting-edge access control mechanisms. This paper proposes a Blockchain-based Multi-Factor authentication model that uses an embedded Digital Signature (MFBC_eDS) for vehicular clouds and Cloud-enabled IoV. Our proposed MFBC_eDS model consists of a scheme that integrates the Security Assertion Mark-up Language (SAML) to the Single Sign-On (SSO) capabilities for a connected edge to cloud ecosystem. MFBC_eDS draws an essential comparison with the baseline authentication scheme suggested by Karla and Sood. Based on the foundations of Karla and Sood's scheme, an embedded Probabilistic Polynomial-Time Algorithm (ePPTA) and an additional Hash function for the Pi generated during Karla and Sood's authentication were proposed and discussed. The preliminary analysis of the proposition shows that the approach is more suitable to counter major adversarial attacks in an IoV-centered environment based on the Dolev-Yao adversarial model while satisfying aspects of the Confidentiality, Integrity, and Availability (CIA) triad

    Web-based Secure Application Control

    Get PDF
    The world wide web today serves as a distributed application platform. Its origins, however, go back to a simple delivery network for static hypertexts. The legacy from these days can still be observed in the communication protocol used by increasingly sophisticated clients and applications. This thesis identifies the actual security requirements of modern web applications and shows that HTTP does not fit them: user and application authentication, message integrity and confidentiality, control-flow integrity, and application-to-application authorization. We explore the other protocols in the web stack and work out why they can not fill the gap. Our analysis shows that the underlying problem is the connectionless property of HTTP. However, history shows that a fresh start with web communication is far from realistic. As a consequence, we come up with approaches that contribute to meet the identified requirements. We first present impersonation attack vectors that begin before the actual user authentication, i.e. when secure web interaction and authentication seem to be unnecessary. Session fixation attacks exploit a responsibility mismatch between the web developer and the used web application framework. We describe and compare three countermeasures on different implementation levels: on the source code level, on the framework level, and on the network level as a reverse proxy. Then, we explain how the authentication credentials that are transmitted for the user login, i.e. the password, and for session tracking, i.e. the session cookie, can be complemented by browser-stored and user-based secrets respectively. This way, an attacker can not hijack user accounts only by phishing the user's password because an additional browser-based secret is required for login. Also, the class of well-known session hijacking attacks is mitigated because a secret only known by the user must be provided in order to perform critical actions. In the next step, we explore alternative approaches to static authentication credentials. Our approach implements a trusted UI and a mutually authenticated session using signatures as a means to authenticate requests. This way, it establishes a trusted path between the user and the web application without exchanging reusable authentication credentials. As a downside, this approach requires support on the client side and on the server side in order to provide maximum protection. Another approach avoids client-side support but can not implement a trusted UI and is thus susceptible to phishing and clickjacking attacks. Our approaches described so far increase the security level of all web communication at all time. This is why we investigate adaptive security policies that fit the actual risk instead of permanently restricting all kinds of communication including non-critical requests. We develop a smart browser extension that detects when the user is authenticated on a website meaning that she can be impersonated because all requests carry her identity proof. Uncritical communication, however, is released from restrictions to enable all intended web features. Finally, we focus on attacks targeting a web application's control-flow integrity. We explain them thoroughly, check whether current web application frameworks provide means for protection, and implement two approaches to protect web applications: The first approach is an extension for a web application framework and provides protection based on its configuration by checking all requests for policy conformity. The second approach generates its own policies ad hoc based on the observed web traffic and assuming that regular users only click on links and buttons and fill forms but do not craft requests to protected resources.Das heutige World Wide Web ist eine verteilte Plattform für Anwendungen aller Art: von einfachen Webseiten über Online Banking, E-Mail, multimediale Unterhaltung bis hin zu intelligenten vernetzten Häusern und Städten. Seine Ursprünge liegen allerdings in einem einfachen Netzwerk zur Übermittlung statischer Inhalte auf der Basis von Hypertexten. Diese Ursprünge lassen sich noch immer im verwendeten Kommunikationsprotokoll HTTP identifizieren. In dieser Arbeit untersuchen wir die Sicherheitsanforderungen moderner Web-Anwendungen und zeigen, dass HTTP diese Anforderungen nicht erfüllen kann. Zu diesen Anforderungen gehören die Authentifikation von Benutzern und Anwendungen, die Integrität und Vertraulichkeit von Nachrichten, Kontrollflussintegrität und die gegenseitige Autorisierung von Anwendungen. Wir untersuchen die Web-Protokolle auf den unteren Netzwerk-Schichten und zeigen, dass auch sie nicht die Sicherheitsanforderungen erfüllen können. Unsere Analyse zeigt, dass das grundlegende Problem in der Verbindungslosigkeit von HTTP zu finden ist. Allerdings hat die Geschichte gezeigt, dass ein Neustart mit einem verbesserten Protokoll keine Option für ein gewachsenes System wie das World Wide Web ist. Aus diesem Grund beschäftigt sich diese Arbeit mit unseren Beiträgen zu sicherer Web-Kommunikation auf der Basis des existierenden verbindungslosen HTTP. Wir beginnen mit der Beschreibung von Session Fixation-Angriffen, die bereits vor der eigentlichen Anmeldung des Benutzers an der Web-Anwendung beginnen und im Erfolgsfall die temporäre Übernahme des Benutzerkontos erlauben. Wir präsentieren drei Gegenmaßnahmen, die je nach Eingriffsmöglichkeiten in die Web-Anwendung umgesetzt werden können. Als nächstes gehen wir auf das Problem ein, dass Zugangsdaten im WWW sowohl zwischen den Teilnehmern zu Authentifikationszwecken kommuniziert werden als auch für jeden, der Kenntnis dieser Daten erlangt, wiederverwendbar sind. Unsere Ansätze binden das Benutzerpasswort an ein im Browser gespeichertes Authentifikationsmerkmal und das sog. Session-Cookie an ein Geheimnis, das nur dem Benutzer und der Web-Anwendung bekannt ist. Auf diese Weise kann ein Angreifer weder ein gestohlenes Passwort noch ein Session-Cookie allein zum Zugriff auf das Benutzerkonto verwenden. Darauffolgend beschreiben wir ein Authentifikationsprotokoll, das vollständig auf die Übermittlung geheimer Zugangsdaten verzichtet. Unser Ansatz implementiert eine vertrauenswürdige Benutzeroberfläche und wirkt so gegen die Manipulation derselben in herkömmlichen Browsern. Während die bisherigen Ansätze die Sicherheit jeglicher Web-Kommunikation erhöhen, widmen wir uns der Frage, inwiefern ein intelligenter Browser den Benutzer - wenn nötig - vor Angriffen bewahren kann und - wenn möglich - eine ungehinderte Kommunikation ermöglichen kann. Damit trägt unser Ansatz zur Akzeptanz von Sicherheitslösungen bei, die ansonsten regelmäßig als lästige Einschränkungen empfunden werden. Schließlich legen wir den Fokus auf die Kontrollflussintegrität von Web-Anwendungen. Bösartige Benutzer können den Zustand von Anwendungen durch speziell präparierte Folgen von Anfragen in ihrem Sinne manipulieren. Unsere Ansätze filtern Benutzeranfragen, die von der Anwendung nicht erwartet wurden, und lassen nur solche Anfragen passieren, die von der Anwendung ordnungsgemäß verarbeitet werden können

    Automated Security Testing for Identity Management of Large-scale Digital Infrastructures

    Get PDF
    Ensuring the security of an organization's digital assets against cyber threats is critical in today's technology-driven world. Regular security testing is one of the measures that can help assess the effectiveness of security controls, identify vulnerabilities, and strengthen the overall cybersecurity posture. Identity Management (IdM) protocols such as Security Assertion Markup Language 2.0, OpenID Connect, and OAuth 2.0 play a crucial role in protecting against identity theft, fraud, and security breaches. Also, following the Best Current Practices introduced by the standards to enhance the security of IdM protocols is essential to minimize the risk of unauthorized access, data breaches, and other security threats and to maintain compliance with regulatory requirements, and build trust with users and stakeholders. However, deploying these protocols can be challenging due to the complexity in designing, developing and implementing cryptographic mechanisms. The implementation of IdM protocols encounters three significant obstacles: fragmented security information, rapidly evolving threat environment, and the need for a controlled testing environment. Security testers must stay up-to-date with emerging threats and establish an appropriate testing infrastructure to guarantee the security and robustness of IdM implementations, while also minimizing the possibility of security incidents that could adversely affect operations. Automated security testing plays a crucial role in addressing security concerns, particularly as the intricate functional aspects of IdM solutions contribute to their complexity. It is essential to prioritize automation to bridge the cybersecurity skills gap among IT professionals. In this thesis, we propose Micro-Id-Gym (MIG), a framework that offers (i) an easy way to configure and reproduce the IdM production environment in a sandbox, allowing hands-on experiences with potentially impactful security tests that may winder availability of services and (ii) automatic security testing of IdM implementations together with suggestions for mitigations to avoid identified vulnerabilities. MIG provides a set of security testing tools for creating, executing, and analyzing security test cases through MIG-L, a declarative test specification language. We have evaluated the effectiveness of MIG by conducting experiments to assess the accuracy in supporting detection of relevant vulnerabilities in the implementation of IdM protocols. We utilized MIG to conduct security analyses across various corporate scenarios and projects, identifying vulnerabilities and responsibly disclosing them through bug bounty programs. Our findings were recognized by the providers, who awarded us both monetary compensation and public recognition. Overall, MIG can help organizations establish a robust and agile security testing strategy, supported by suitable infrastructure and testing procedures, that can ensure the security and resilience of their IdM implementations

    Security, Trust and Privacy (STP) Model for Federated Identity and Access Management (FIAM) Systems

    Get PDF
    The federated identity and access management systems facilitate the home domain organization users to access multiple resources (services) in the foreign domain organization by web single sign-on facility. In federated environment the user’s authentication is performed in the beginning of an authentication session and allowed to access multiple resources (services) until the current session is active. In current federated identity and access management systems the main security concerns are: (1) In home domain organization machine platforms bidirectional integrity measurement is not exist, (2) Integrated authentication (i.e., username/password and home domain machine platforms mutual attestation) is not present and (3) The resource (service) authorization in the foreign domain organization is not via the home domain machine platforms bidirectional attestation

    The Applications of Blockchain To Cybersecurity

    Get PDF
    A blockchain is a decentralized public ledger facilitating secure transactions between untrusted network nodes. It has garnered significant recognition for its pivotal role in cryptocurrency systems, where it ensures secure and decentralized transaction records. Over the past decade, blockchain has attracted considerable attention from various industries, as it holds the potential to revolutionize multiple sectors, including cybersecurity. However, this field of study is relatively new, and numerous questions remain unanswered regarding the effectiveness of blockchain in cybersecurity. This research adopted a qualitative research design to investigate the current implementations of blockchain-based security and their applicability in the current cybersecurity context. Additionally, this work explored the mechanisms employed by blockchain to uphold the security triad. Findings indicate that blockchain exhibits substantial potential in addressing existing challenges in cybersecurity, particularly those related to the Internet of Things, data integrity and ownership, and network security. Nonetheless, widespread adoption faces limitations due to technological immaturity, high-cost complexity, and regulatory hurdles. Therefore, utilizing blockchain-based solutions in cybersecurity necessitates a thorough analysis of their applicability to an organization\u27s specific needs, a clear definition of implementation goals, and careful navigation of challenges

    Towards Lightweight Secure User-Transparent And Privacy-Preserving Web Metering

    Get PDF
    Privacy is an issue today as more people are actively connecting and participating in the Internet. Problems arise when such concerning issue is coupled with security requirements of online applications. The web metering problem is the problem of counting the number of visits done by users to a webserver, additionally capturing data about these visits. There are trade-o s between designing secure web metering solutions and preserving users' privacy. There is also a dilemma between privacy preserving solutions versus accuracy of results. The problem becomes more difficult when the main interacting party, the user, is not inherently interested to participate and operations need to be carried out transparently. This thesis addresses the web metering problem in a hostile environment and proposes different web metering solutions. The web metering solutions operate in an environment where webservers or attackers are capable of invading users' privacy or modifying the web metering result. Threats in such environment are identified, using a well established threat model with certain assumptions, which are then used to derive privacy, security and functional requirements. Those requirements are used to show shortcomings in previous web metering schemes, which are then addressed by our proposed solutions. The central theme of this thesis is user's privacy by user-transparent solutions. Preserving users' privacy and designing secure web metering solutions that operate transparently to the user are two main goals of this research. Achieving the two goals can conflict with other requirements and such exploration was missed by former solutions in the literature. Privacy issues in this problem are the result of the dilemma of convincing interested parties of web metering results with sufficient details and non-repudiation evidence that can still preserve users' privacy. Relevant privacy guidelines are used to discuss and analyse privacy concerns in the context of the problem and consequently privacy-preserving solutions are proposed. Also, improving the usability through \securely" redesigning already used solutions will help into wider acceptance and universal deployment of the new solutions. Consequently, secure and privacy-preserving web metering solutions are proposed that operate transparently to the visitor. This thesis describes existing web metering solutions and analyses them with respect to different requirements and desiderata. It also describes and analyses new solutions which use existing security and authentication protocols, hardware devices and analytic codes. The proposed solutions provide a reasonable trade-o among privacy, security, accuracy and transparency. The first proposed solution, transparently to the user, reuses Identity Management Systems and hash functions for web metering purposes. The second hardware-based solution securely and transparently uses hardware devices and existing protocols in a privacy-preserving manner. The third proposed solution transparently collects different "unique" users' data and analyses fingerprints using privacy-preserving codes

    Security for network services delivery of 5G enabled device-to-device communications mobile network

    Get PDF
    The increase in mobile traffic led to the development of Fifth Generation (5G) mobile network. 5G will provide Ultra Reliable Low Latency Communication (URLLC), Massive Machine Type Communication (mMTC), enhanced Mobile Broadband (eMBB). Device-to-Device (D2D) communications will be used as the underlaying technology to offload traffic from 5G Core Network (5GC) and push content closer to User Equipment (UE). It will be supported by a variety of Network Service (NS) such as Content-Centric Networking (CCN) that will provide access to other services and deliver content-based services. However, this raises new security and delivery challenges. Therefore, research was conducted to address the security issues in delivering NS in 5G enabled D2D communications network. To support D2D communications in 5G, this thesis introduces a Network Services Delivery (NSD) framework defining an integrated system model. It incorporates Cloud Radio Access Network (C-RAN) architecture, D2D communications, and CCN to support 5G’s objectives in Home Network (HN), roaming, and proximity scenarios. The research explores the security of 5G enabled D2D communications by conducting a comprehensive investigation on security threats. It analyses threats using Dolev Yao (DY) threat model and evaluates security requirements using a systematic approach based on X.805 security framework. Which aligns security requirements with network connectivity, service delivery, and sharing between entities. This analysis highlights the need for security mechanisms to provide security to NSD in an integrated system, to specify these security mechanisms, a security framework to address the security challenges at different levels of the system model is introduced. To align suitable security mechanisms, the research defines underlying security protocols to provide security at the network, service, and D2D levels. This research also explores 5G authentication protocols specified by the Third Generation Partnership Project (3GPP) for securing communication between UE and HN, checks the security guarantees of two 3GPP specified protocols, 5G-Authentication and Key Agreement (AKA) and 5G Extensive Authentication Protocol (EAP)-AKA’ that provide primary authentication at Network Access Security (NAC). The research addresses Service Level Security (SLS) by proposing Federated Identity Management (FIdM) model to integrate federated security in 5G, it also proposes three security protocols to provide secondary authentication and authorization of UE to Service Provider (SP). It also addresses D2D Service Security (DDS) by proposing two security protocols that secure the caching and sharing of services between two UEs in different D2D communications scenarios. All protocols in this research are verified for functional correctness and security guarantees using a formal method approach and semi-automated protocol verifier. The research conducts security properties and performance evaluation of the protocols for their effectiveness. It also presents how each proposed protocol provides an interface for an integrated, comprehensive security solution to secure communications for NSD in a 5G enabled D2D communications network. The main contributions of this research are the design and formal verification of security protocols. Performance evaluation is supplementary

    Security and Privacy in Unified Communication

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The use of unified communication; video conferencing, audio conferencing, and instant messaging has skyrocketed during the COVID-19 pandemic. However, security and privacy considerations have often been neglected. This paper provides a comprehensive survey of security and privacy in Unified Communication (UC). We systematically analyze security and privacy threats and mitigations in a generic UC scenario. Based on this, we analyze security and privacy features of the major UC market leaders and we draw conclusions on the overall UC landscape. While confidentiality in communication channels is generally well protected through encryption, other privacy properties are mostly lacking on UC platforms
    corecore