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Abstract

The increase in mobile traffic led to the development of Fifth Generation (5G) mobile network.
5G will provide Ultra Reliable Low Latency Communication (URLLC), Massive Machine Type
Communication (mMTC), enhanced Mobile Broadband (eMBB). Device-to-Device (D2D) commu-
nications will be used as the underlaying technology to offload traffic from 5G Core Network (5GC)
and push content closer to User Equipment (UE). It will be supported by a variety of Network Ser-
vice (NS) such as Content-Centric Networking (CCN) that will provide access to other services and
deliver content-based services. However, this raises new security and delivery challenges. There-
fore, research was conducted to address the security issues in delivering NS in 5G enabled D2D
communications network.

To support D2D communications in 5G, this thesis introduces a Network Services Delivery
(NSD) framework defining an integrated system model. It incorporates Cloud Radio Access Net-
work (C-RAN) architecture, D2D communications, and CCN to support 5G’s objectives in Home
Network (HN), roaming, and proximity scenarios. The research explores the security of 5G enabled
D2D communications by conducting a comprehensive investigation on security threats. It analyses
threats using Dolev Yao (DY) threat model and evaluates security requirements using a systematic
approach based on X.805 security framework. Which aligns security requirements with network
connectivity, service delivery, and sharing between entities.

This analysis highlights the need for security mechanisms to provide security to NSD in an in-
tegrated system, to specify these security mechanisms, a security framework to address the security
challenges at different levels of the system model is introduced. To align suitable security mechan-
isms, the research defines underlying security protocols to provide security at the network, service,
and D2D levels. This research also explores 5G authentication protocols specified by the Third
Generation Partnership Project (3GPP) for securing communication between UE and HN, checks
the security guarantees of two 3GPP specified protocols, 5G-Authentication and Key Agreement
(AKA) and 5G Extensive Authentication Protocol (EAP)-AKA’ that provide primary authentica-
tion at Network Access Security (NAC).

The research addresses Service Level Security (SLS) by proposing Federated Identity Manage-
ment (FIdM) model to integrate federated security in 5G, it also proposes three security protocols
to provide secondary authentication and authorization of UE to Service Provider (SP). It also ad-
dresses D2D Service Security (DDS) by proposing two security protocols that secure the caching
and sharing of services between two UEs in different D2D communications scenarios. All protocols
in this research are verified for functional correctness and security guarantees using a formal method
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approach and semi-automated protocol verifier.

The research conducts security properties and performance evaluation of the protocols for their
effectiveness. It also presents how each proposed protocol provides an interface for an integrated,
comprehensive security solution to secure communications for NSD in a 5G enabled D2D commu-
nications network. The main contributions of this research are the design and formal verification
of security protocols. Performance evaluation is supplementary.
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You’ll Never Walk Alone.

”Are those who have knowledge and those who
have no knowledge alike? Only the men of

understanding are mindful. ” (Quran, 39:9)
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Chapter 1

Introduction

Mobile network technologies have evolved over the years with an immense growth of mobile usage
and wireless data traffic surpassing cellular spectrum capacity. Which was no longer adequate for
future mobile network traffic. This led to the development of the Fifth Generation (5G) mobile
network, to enable new network and service functions to support mission-critical services such as
public safety, eHealth, transport, and industrial automation. 5G will also create new use cases and
connect vertical industries such as tactile intent, Internet of Things (IoT) and Vehicle to Vehicle
(V2V) communication. Additionally, it will improve the Quality of Experience (QoE) for users by
providing very high availability, Ultra-Reliable Low Latency Communications (URLLC), massive
Machine Type Communications (mMTC), and enhanced Mobile Broadband (eMBB) (Liu & Yu
2018).

The development of 5G was intended to solve future constraints of service access using a high
data rate to offload network traffic of Peer to Peer (P2P) links such as Device-to-Device (D2D)
communications. By relying on User Equipment (UE) to offload the traffic burden from Base Sta-
tion (BS) and 5G core network (5GC). With 5G, systems performance and network capacity will
be improved, and mobile applications magnified extensively. D2D communication is one of the
technologies supporting 5G in enabling new applications and service delivery. Initially, D2D com-
munication was intended for allowing mobile communication multi-hop relays then later enhanced
to improve cellular network delay and spectrum efficiency (3GPP 2014). D2D communication was
introduced in Long Term Evolution (LTE) as a service by Third Generation Partnership Project
(3GPP) to allow UEs to communicate to each other, enabling users to easily access Proximity
Services (ProSe) such as streaming, content sharing, and gaming. As the standardization of D2D
communication in 5G is still to be finalized, it has been proposed that D2D communication will
support priority control of Mission Critical Push to Talk (MCPTT), Augmented Reality (AR),
smart city, industry automation, emergency services, V2V, and location-based services. Therefore,
there is a need for integrated service delivery and security frameworks that can support 5G enabled
D2D communications.

1.1 Background

The increase in mobile traffic is due to the high demand of Over the Top (OTT) applications
such as social media, live-streaming, local based advertising, and the popularity of smartphones
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usage. Mobile traffic is anticipated to keep growing gradually, most of the data traffic will be from
mobile devices, Machine to Machine (M2M) communication (Cisco 2017), and core network gateway
systems data such as servers (Wang & Yan 2017). 5G development was inspired by the need for
ultra-low latency and very high-reliability network to support service delivery and demand of quick
access to content data by end users and Mobile Network Operator (MNO). Content distribution and
retrieval will dominate mobile activities, however, delivering such services to the end user efficiently
and securely is a big challenge. Mobile capacity has been affected by the growing demand for
multimedia content, high availability, and better performance by the end users. Whereby network
infrastructures are being overloaded and have become highly inefficient for content distribution.
End users will be involved in content-based operations through D2D communications, which will
also be used as an underlay technology for 5G to offload traffic from the backhaul of 5GC by pushing
content to edge closer to users (Gupta & Jha 2015).

D2D communications can utilize cellular resources and offload network traffic, by communicating
directly without conveying content through a BS, and UE can act as data consumer as well as
playing a role in content distribution and delivery (Chandrasekaran et al. 2018). In 5G, D2D
communications will support new use cases and services, while the delivery of these services to
the end user will be facilitated by Network Services (NS) and context-aware enabled devices. To
be able to distribute and deliver content to the end user, various content delivery models such as
Content Delivery Network (CDN) are used. CDN can be deployed at the edge, BS, and Access
Point (AP) to support cache servers and with D2D communication, UEs can also be used as cache
nodes (Golrezaei et al. 2013). In addition, content caching could also be used to support content
delivery and backhaul traffic offloading, as most of the wireless traffic generated is from downloads
of popular content replicated in multiple locations (Liu et al. 2016). The introduction of CDN
and content caching in a mobile network can be integrated with Information-Centric Networking
(ICN) (Liang 2015), transforming the network from connection-centric to information-centric such
as Content-Centric Networking (CCN) (Jacobson 2009).

With all its benefits, D2D communications in 5G introduces challenges for secure content deliv-
ery, sharing, and traffic offloading. The related work on mobile network has been focussing mainly
on network architectures, caching and D2D content delivery solutions (Chandrasekaran et al. 2018).
Some studies have investigated security in ICN (Tourani et al. 2018), (AbdAllah et al. 2015) and
in D2D communications (Haus et al. 2017), (Gandotra et al. 2017). However, security issues in an
integrated system for NS in D2D communications have not been investigated extensively. Further-
more, related work lacks a systematic and abstracted approach to security evaluation. Moreover,
investigation on CCN security has not been considered in Heterogeneous Networks (HetNets) like
5G. So far, less attention has been given to the security issues faced by an integrated service model
for next generation mobile networks. Therefore, there is a need for a system model that can be used
to develop security frameworks for 5G enabled D2D content-centric model. There is also the lack of
comprehensive investigation into the security threats and requirements of Network Services Delivery
(NSD) in 5G enabled D2D communications. The provision of secure NSD in D2D communications
is paramount to achieving the main objectives of 5G.

The research efforts on NS so far have been mainly on how they can be expanded and delivered
to end user. Even though the expansion of mobile NS enriches the telecommunications ecosystem
and improves QoS and QoE but also brings different requirements and challenges to mobile network
security. Therefore, there is a need for a security framework to secure the delivery of NS.
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1.2 The Objectives and Scope of the Research

1.2.1 Research Objectives

The research aim is to develop an integrated hybrid security solution that is host and information-
centric for NSD in 5G enabled D2D communications network to provide secure communication,
protection of entities, and information. The research studied NSD, 5G, and D2D communications
security points of view. The objectives and the scope are as follows:

� Explore UE communication and content delivery in D2D communications and CCN in 5G.

� Investigate the security issues affecting NSD in 5G enabled D2D communications extensively.

� Examine the security threats and requirements of NS such as content delivery and sharing
between D2D devices in proximity, in coverage, out-of-coverage, and roaming state scenarios.

� Evaluate the security requirements of 5G enabled D2D communications network.

� Propose security mechanisms, design security protocols to address the security concerns for
NSD in 5G enabled D2D communications.

� Specify and verify the designed security protocols using analytical and formal analysis.

� Evaluate the security properties and performance of the proposed security protocols.

The main purpose of this research is to introduce a security framework, develop security mech-
anisms and protocols to address security and privacy issues of NSD in 5G enabled D2D communic-
ations network. This research will prove that the proposed security framework can be applied in
the provisioning of security and privacy in 5G enabled D2D network.

1.2.2 The Scope of the Thesis

The main concern of the research in this thesis is proposing security mechanisms that specifically
consider the security of NSD in 5G enabled D2D communications network. It is not concerned
with the application-level security, the focus is on infrastructure and service level security as ex-
plained in security evaluation of the system model in chapter 4. In addition, it led to the designing
and analysing of security mechanisms using an integrated security framework. The work in this
research also focuses on secondary authentication and service authorization methods on the service
level as the primary authentication has been studied extensively. However, we adopt the network
level’s primary authentication methods i.e., 5G-Authentication and Key Agreement (AKA) and 5G
Extensible Authentication Protocol (EAP)-AKA’ protocols which are introduced and formally ana-
lysed to evaluate their security properties as specified by 3GPP. The author believes that primary
authentication vulnerabilities could compromise secondary authentication protocols hence the need
for formal verification. The security solutions proposed in this thesis address security and privacy in
5G enabled D2D communications, the author also believes that the proposed security mechanisms
could be used in the next generation mobile network. Formal methods and automated protocol
verifier tool are used to verify 3GPP specified protocols and our proposed security protocols to de-
velop and test these protocols. The verification tool only considers the protocol as a process within
a system as per the definition in the protocol description. Attacks found because of implementation
environment are not considered as discussed in chapter 3.
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The experimental implementation is not the focus of this thesis, though security properties ana-
lysis and performance evaluation of the protocols are conducted to show the effectiveness of the
protocols’ overall performance. Future work includes the implementation of the proposed security
protocols in other systems, by converting the protocol code from Objective Caml to a native pro-
gramming language like C or Java. In addition, the extension of the security framework to cover
handover and network slicing in mobile network.

1.3 Problem Definition

NSD in 5G enabled D2D communications network faces new and old security challenges. The secur-
ity of NS such as CCN in mobile network has not been investigated and their secure provisioning is
essential to 5G’s main objectives. As 5G promises to push content closer to the end user and while
MNOs want to offload backhaul traffic to the edge (Gupta & Jha 2015), D2D communications will
be used for this purpose (Chandrasekaran et al. 2018), (Golrezaei et al. 2013).

In addition, UE will have to access NS securely, but since 5G standardization is not finalized
yet, there is a lack of an enhanced and integrated security approach to address the security con-
cerns in 5G enabled D2D Communications. The security for such a network is complicated as
it comprises multi-layered architecture, multiple wireless access, and services provided by MNO
and third-party Service Providers (SP). Due to the characteristics of 5G, the mobile network is no
longer monolithic and a one-suits-all type of security solution will be insufficient (5GPPP 2017).
Not only the communication channels and network entities but also data and services security must
be addressed. That is the same to the user’s data which must be protected from any form of attack
or exposure. Any privacy solution should protect the UE’s Subscriber Permanent Identifier (SUPI)
against active attacks. Some basic security mechanisms will apply by design, but a new security
framework is required to adapt to the new challenges.

The integration of CCN with mobile network turns the network model into both host and
information-centric networking (Chandrasekaran et al. 2018). Whereby D2D communication is
used as the underlaying communication and CCN as content delivery mechanism (Ravindran 2019),
(Zhang et al. 2019). Therefore, the use of information-centric in a mobile network arises some
conflicts such as domain and layer security, host verification, service validity, content identification,
trust establishment, UE data caching, and Access Control List (ACL)s. Due to the nature of our
model, the security focus is on host to host and the content itself. To address the security concerns
on both infrastructure and service levels, a hybrid security approach using both host-centric and
information techniques is needed. The research also must consider service-driven limitations on
the security architecture which require the optional use of other security measures such as extra
security entities.

3GPP addresses security issues on UE, SUPI privacy, integrity protection, radio interface, and
network slicing security (3GPP 2020f), (5GPPP 2017). However, there is a need to put in place
security measures to protect the UE while accessing NS, this could be addressed through a multi-
level security framework. Furthermore, D2D will need to be able to share data content securely
without the need to involve a central authority such as HN or Data Network (DN). Most existing
literature addresses security per layer and a few with multi-level solutions (Lichtman et al. 2018).
Therefore, an integrated hybrid security framework will be used to address security in our system
model using a modular architecture. These security issues are discussed in detail in section 4.3.
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1.3.1 Research Question

The research in this thesis explores 5G security and investigates the security in 5G enabled D2D
communications network. This research aims to address the security challenges in NSD and content
sharing between UEs, this led to the main question that needed to be answered.
’How to provide secure communications for use cases in 5G enabled D2D communica-
tions network?’ The solution to the above-mentioned issues required a new security architecture,
development of security mechanisms and protocols. In addition, the examination of security design
and functions of legacy generations to help in the investigation of threats and vulnerabilities in 5G
and NS to support services delivery to the end user. While the evaluation of the security require-
ments and design of security protocols enables us to achieve the research’s main objectives. The
main research question was formulated into the following questions:
’How to deliver NS in 5G enabled D2D communications network?’
This required the development of a system model and the introduction of a service framework to
illustrate the delivery services to UE.
’What are the threats and vulnerabilities faced by a UE when accessing and delivering
services in a 5G enabled D2D communications network?’
A specific security framework was required to answer this question to show the security vulnerab-
ilities of 5G enabled D2D communications network.
’How to provide a secure communication for NSD in 5G enabled D2D communica-
tions?’
The answer to the question was the designing of new security protocols to provide a robust security
solution that addresses the security and privacy of 5G enabled D2D communications.
How the proposed security protocols can interface to an integrated security mechan-
ism to provide robust security for 5G enabled D2D communications network?’
The proposed approach intends to protect the hosts, data, and network from any attacks, making
sure that NSD is secure at all levels, this is achieved by creating an interface between the proposed
security protocols.

1.4 Research Methodology

The approach and methods for this study were proposed after identifying the constraints in different
studied areas of this research. The literature review has explores related works to date, to enable
the evaluation of the existing problems and limitations to present suitable solutions to address
the defined problems with an intention of improving the systems’ security. Based on the research
objectives, the methodology is outlined in different phases. By analysing and concluding each phase,
it gives motivation for the next phase, briefly explained as follows:

1. Phase one will present the related work literature view, by providing a solid background on
5G and D2D communications. The focus is to understand the architecture, security and pri-
vacy in mobile networks. The approach will start with exploring the security and privacy in
both Fourth Generation (4G) and 5G. Analysing threats and vulnerabilities in D2D commu-
nications and evaluate existing security mechanisms. Investigating if the security threats and
countermeasures in legacy systems can be inherited in 5G.

2. Phase two will study D2D communications and CCN. This part of the research is to study
and understand the proposed NS concepts and how they can be applied in 5G. Investigating
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NS like content delivery and sharing between D2D devices, in coverage, out-of-coverage, and
roaming state.

3. Phase three will provide a threat model and evaluates the security requirements of NSD in 5G
enabled D2D communications using the X.805 security framework. The information gathered
in phases one and two will be used to investigate threats and vulnerabilities associated with
the security and privacy of the system model. Then explore possible countermeasures by
investigating the current solutions, attempting to address these security issues and find a gap
in the study.

4. Phase four will propose security solutions, the information gathered from the literature re-
view and security analysis will be used to develop protocols to provide security and privacy
protection in 5G enabled D2D communications network.

5. Phase five will analyse and verify the developed security mechanisms and protocols, using
formal methods and an automated tool. It will evaluate the security properties and perform-
ance of the protocols using simulation and analytical modelling techniques.

6. Phase six will make recommendations, reach conclusions, write research papers for publication,
and then write the thesis.

Detailed methods and approaches used in this research are presented in chapter 3.

1.5 Main Contributions

In this thesis, security for NSD in 5G enabled D2D communications has been investigated by
critically reviewing 5G system, security, and the related work. The research introduced a NS
abstraction of 5G enabled D2D communications to align the NSs with the 5G protocol stack and
internet protocol. This research lead to the introduction of a NSD framework, which can be
used to retrieve and share services in 5G enabled D2D communications network. It provided a
comprehensive, systematic, and modular approach of investigating security and privacy of NS using
X.805 security framework (Zeltsan 2005) that identified security threats and vulnerabilities in 5G
enabled D2D communications.

In order to address those security challenges, a novel approach was proposed that introduced a
Network Service Security (NSS) framework with an integrated system model for a next generation
mobile network. The security framework consisted of a network, service D2D levels, and underlying
security mechanisms that provided authentication, authorization, and federated security at those
levels. In order to provide a comprehensive security solution, 3GPP specified 5G-AKA and 5G-
EAP’-AKA protocols were formally verified and analysed for security guarantees and effectiveness
at the network-level.

The research introduced security mechanisms to address security at the service level, proposing
a Federated Identity Management (FIdM) model for supporting the integration of federated secur-
ity in 5G. Proposed Secondary Authentication Protocol (SAP)-AKA protocol to provide secondary
authentication, Network Service Federated Identity (NS-FId) protocol to provide federated authen-
tication and authorization of UE to SP, and Data Caching and Data Sharing Security (DCSS)
protocol to authorize the UE to cache and share data. Furthermore, to addresses security at the
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D2D level, D2D Sharing Security (DDSec) and D2D Attributes and Capabilities (DDACap) proto-
cols are proposed to secure the caching and sharing of services between two UEs in network assisted
and non-network assisted D2D communications scenarios, respectively.

All protocols in this research are verified for functional correctness and security guarantees
using a formal methods approach and semi-automated protocol verifier tool and applied pi calculus
(Blanchet et al. 2020). The research conducted security properties analysis based on two taxonomies
(Lowe 1997), (Menezes et al. 2018). It also conducted performance evaluation of the protocols
using analytical and simulation modelling for their effectiveness based on the Markov chain model
(Stewart 1994) and network simulator (Nsnam 2021), respectively. In order to provide an integrated
security solution for secure delivery of NSs in 5G enabled D2D communications, all protocols in
this thesis interface with each other as they address the security requirements from one level to
another.

1.6 Originality of the Intended Work

Different research studies have been carried out to solve the security problems in 5G enabled D2D
communications by proposing various security solutions. Others tried to propose solutions for
services delivery and integration of 5G and CCN to solve the problem of the high demand for
multimedia content by end users through their UEs.

The problem is that their efforts lacked a systematic solution approach to the problems. We
believe that addressing security in D2D communications requires an abstracted and layered solu-
tion to provide multi-level security. Not providing security on one level, might compromise security
on another secure level, hence the need to address security on the network and service levels.
The characteristics of 5G enabled D2D communications network make these efforts inadequate to
solve the mentioned problem, we believe that HetNets like 5G requires an integrated solution that
solves the host-centric and information-centric security problems with the same security mechan-
isms. Since 5G security standardization is still in progress, a robust security framework that can
easily be implemented to future next generation architecture using seamless unified authentication
and authorization procedures, supporting multiple SPs in different security domains is required.
The author believes that 5G enabled D2D communications security framework requires another
security level that deals with authentication and authorization procedures for service access and
sharing between D2D users. This should be complemented by implementing federated authorization
mechanisms.

Therefore, the research in this thesis addresses the inadequateness of the other works by propos-
ing a novel solution approach that is integrated and multi-layered. It provides security and privacy
to both data and the participating entities such as the UE, HN, and SPs at service and infrastruc-
ture levels. The framework provides security for the host and data being transmitted from the point
where the connection is initiated to the point of accessing and sharing the data with other UEs.
It addresses security at the network, service, and D2D levels. Furthermore, it provides a federated
service authorization and Single Sign On (SSO). This was achieved by proposing security protocols
that were verified and formalized using formal methods and an automated protocol verifier.

With security mechanisms deployed at different levels and integrated with a multi-layered se-
curity framework, this provides a unified, secured, and integrated solution for service delivery in a
5G enabled D2D communications network.

7



1.7 The Outline of the Thesis Structure

The thesis is structured as follows:

� Chapter 2: Studies the literature relevant to our research questions, by describing the related
work on 5G system, security architecture, D2D communications, CCN, and general security
concepts. It also explains the integration of CCN and mobile network.

� Chapter 3: Discusses the proposed approaches and methods used to address the research
questions. This includes the threat, formal and analytical modelling approaches.

� Chapter 4: Introduces a service delivery framework for NS in 5G enabled D2D communica-
tions network. It also provides a security analysis of NSD using the X.805 security framework.

� Chapter 5: Introduces the NSS framework and the proposed security model used to develop
the underlying security protocols.

� Chapter 6: Analyses the primary authentication methods used for authenticating the UE
and the HN for network access. It evaluates 5G-AKA and 5G EAP-AKA’ protocols, formally
analyses and verifies these protocols.

� Chapter 7: Develops the SAP-AKA for authenticating UE and SP. It introduces the FIdM
model, then develops a NS-FId protocol for service access authentication and authorization
of the UE. It also develops a DCSS protocol for authorizing data caching and sharing to the
UE.

� Chapter 8: Develops DDSec and DDACap protocols responsible for D2D secure caching and
sharing of data in network assisted and non-network assisted D2D communications, respect-
ively.

� Chapter 9: Evaluates the performance of the security protocols using Markov chain stochastic
process and network simulator. Investigates the possible integration of the proposed security
mechanisms.

� Chapter 10: Concludes the thesis by summarising this research’s main contributions and
future work direction.
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Chapter 2

Overview of 5G and D2D
Communications Networks

2.1 Introduction

5G is intended to connect end users faster, ubiquitously, and be more reliable than legacy systems.
MNOs are adopting new technologies to provide service anywhere, reduce operational costs, improve
spectral efficiency, maintain optimal performance by applying more advanced self-organizing func-
tions. Additionally, 5G will be supported by cloud services to facilitate computational operations
and virtualization implementation. To address the end user requirements, 5G will use technologies
such as D2D communications, ultra-dense network, and CCN to improve edge services. Moreover,
technologies such as the Multi-in Multi-out (MIMO) and beamforming techniques have been ad-
opted to enable Millimetre Wave (mmWave) spectrum access to support ultra-dense high-capacity
provisioning (Bogale & Le 2016). It will manage multiple cells and users together, deploy networks
with multi-Radio Access Network (RAN) technologies to coexist with HetNets. It will also support
new services such as Virtual Reality (VR), massive sensor communication as well as reducing sig-
nalling overhead and energy consumption to improve end user experience (Sharma et al. 2019). 5G
promises to support faster transmission with ultra-low delay, connect more devices, manage huge
volume of traffic, and support fast mobility of UEs (Parvez et al. 2018). Its objective is to provide
higher data rates, higher availability, lower latency, better energy efficiency, and security than the
legacy networks.

This is supported by various technologies and concepts, so this chapter gives an overview of
the 5G system, security architectures, concepts, NS, D2D communications, and CCN. Some of the
work in this chapter is also presented in (Edris et al. 2019).

2.2 Overview of 5G Network Architecture

2.2.1 Network Architecture

5G adopts the Cloud Radio Access Network (C-RAN) architecture (Checko et al. 2015), that
centralizes the baseband resources to a single virtualized Baseband Unit (BBU) pool, connecting to
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Figure 2.1: 5G System Architecture

radio transceiver units called Remote Radio Head (RRH) which are connected by optical fronthaul
links. In addition, virtualization is enabled to facilitate network infrastructure sharing and the
circuit interface between BBU and RRH has been changed to packet fronthaul. The BBU is divided
into a distributed unit responsible for the physical layer and medium access control layer process
and a centralized unit responsible for upper layer computations process (Zhang et al. 2019).

The mobile network still comprises three main entities:

� UE: A Mobile Equipment (ME) containing the USIM with cryptographic capabilities such as
algorithms, symmetric and asymmetric encryptions, Message Authentication Code (MAC).
It also stores SUPI, HN public key, long-term key K, and Sequence Number (SQN) counter.

� Home Network (HN): It houses the database, other security functions, generates Authentica-
tion Vector (AV), and stores user’s subscription data. It also shares security context such as
UE ID and long-term key K with the UE.

� Serving Network (SN): The access network to which the UE connects to. The SN and the
HN are managed by different MNOs, usually connected over a secure channel using Internet
Protocol Security (IPsec) or Transport Layer Security (TLS).

The UE will connect to New Generation Radio Access Network (ng-RAN) or Access and Mobility
Access Function (AMF) to access the network. The 5GC consists of Network Function (NF) such
as Session Management Function (SMF), User Plane Function (UPF), Policy Control Function
(PCF) and Application Function (AF) as shown in Fig. 2.1 and N1.2.3.4... are reference points
that show the entities interaction with each other (3GPP 2016). The system architecture entities
are responsible for connectivity and access procedures in 5G.

� ng-RAN: A RAN that supports new and old radio extensions that it connects to 5GC.

� SMF: Deals with session establishment, modification, and release.

� AMF: Deals signaling, access authentication, and authorization.

� UPF: Handles the user data and is the anchor point for intra- and inter-Radio Access Techno-
logy (RAT) mobility. It is the external Protocol Data Unit (PDU) session point to interconnect
DN and it also handles packet routing and forwarding.

� PCF: In 5G it deals with policy rules.
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Figure 2.2: 5G enabled D2D Architecture

� AF: Provides services such as application influence on traffic routing, access to the Network
Exposure Function (NEF), and interaction with the policy framework.

� DN: It identifies SP services, Internet access, or 3rd party services.

Since D2D communications and ProSe functionality for 5G have not been defined yet, this
research uses D2D communications architecture discussed in chapter 4 as shown in Fig. 2.2 and
leverages CCN and 5G NFs. The integration of CCN with mobile network enables content-aware
operations such as content resolution at the edge which is within 3GPP standardization. The
Network Function Virtualization (NFV) (Liang & Yu 2015) allows the sharing of infrastructure
resources and content between SPs and the delivery of content to users through network slicing.
CCN in 5G can be implemented using NFV and Software Defined Network (SDN) where CCN are
inherently integrated into the mobile network infrastructure (Ravindran 2019).

2.2.2 Network Services and Functions of 5G Core Network

NFs are used to facilitate the enablement of services and elements of 5GC, most of them turned
into software-based functions. The modularity of NFs also enables network slicing, allowing mul-
tiple logical segments to run on a shared infrastructure. A NF can provide multiple NF services,
consisting of operations based on a request-response or a subscribe-notify model between a SP and
a consumer (3GPP 2020g). As a converged network, 5G will offer support for new network deploy-
ments and use cases seamlessly. The International Telecommunication Union (ITU) classified 5G
NS as eMBB, mMTC, and URLLC. The eMBB intends to support users’ digital lifestyle and provide
high bandwidth services, such as High Definition (HD) video, VR, and AR. The mMTC intends to
support tactile internet and governments’ digitalized society by providing high-density connections,
such as intelligent transportation, smart grid, and intelligent manufacturing. The URLLC intends
to support the market and enterprises’ requirements of digitalized industries, and by focusing on
latency sensitive services, such as automated and assisted driving, and remote control.

The heterogeneous service requirements have been recognised, whereby the benefits of CCN in
5G such as name-based networking, in-network storage, edge computing, security, and user mobility
have been explored (Ravindran et al. 2017). Normally CDN framework enables subscribers to access
content from remote BS or 5GC provided by MNO through a backhaul but with NFV, a subscriber
can get the content from a BS or UE through D2D communications (Wang et al. 2017). Moreover,
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adding network service delivering functionality to the infrastructure can make the distribution
of other services to the end users seamless (ETSI 2014). NS can be classified and mapped into
abstraction levels, discussed in detail in section 2.5.

2.3 Overview of 5G Security Architecture

Traditionally, network security focuses on providing protection to network edges, preventing ex-
ternal threats from gaining access to the network resources, while attackers try to find vulnerabilit-
ies in the network and applications to exploit. This includes old threats inherited from 4G and new
threats in 5G that can attack the radio interfaces, signalling plane, user plane, data plane privacy,
and service-based interfaces, which require integrated security mechanisms. Since 5GC is based on
a Service-Based Architecture (SBA), which did not exist in earlier generations, it should also be
protected. The main objectives of designing a security architecture are confidentiality, integrity,
availability with interoperability, usability, Quality of Service (QoS) and cost-effectiveness.

The legacy mobile networks’ security architectures are now inadequate for addressing security in
5G. This is due to the introduction of new business models, threat environment, management, trust
model, and network softwarization. Different services with specific requirements will be from both
physical and Virtualized Network Functions (VFN) operating on the underlying infrastructure in 5G
with many actors providing services, NF, and resources. The information technology environment
and consequently 5G exhibit more advanced threats to NF and NS, which mission-critical services
will rely on.

There is no complete trust model for earlier generations, however, this does not imply that they
were insecure, but it does create an issue in 5G. Thus, a need to have a security architecture in
which trust is considered in the security design of the network. Additionally, the security man-
agement domain was not part of legacy systems, it was operator dependent. 5G technologies will
be integrated, hence the need for a unified management view for continuous interworking between
NS and NF, enabling delegation of management responsibilities between HN and SP while provid-
ing specific services (5GPPP 2017). The existing trust model is not in line with 5G business and
technology capabilities; however, it does not mean that security needs redesigning completely. The
limitations in the architecture are due to trust in the network as edge and terminals are less trusted.
The new trust model must be more flexible to include endpoints, cloud, and fog managed by HN

(a) 4G Trust (b) 5G Trust

Figure 2.3: Service Trust Model
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Figure 2.4: Strata and Domains (3GPP, 2018)

and SP as shown in Fig. 2.3. Moreover, there was only minimum protection of subscription/UE
Identity (ID) and subscription authentication between the UE and third-party SP. The current IDs
and attributes repositories also will not scale well due to the expected increase in the number of
IDs in 5G, hence a need for FIdM.

In 5G, domain and stratum concepts in the core of the architecture are revised and expanded.
The domains and reference points provide different viewpoints of the network as well as the model
entities. Some domains consist of subdomains for entities’ fine-grained grouping as shown in Fig.
2.4. For instance, the UE domain consists of the ME domain and Universal Subscriber Identity
Module (USIM) domain (5GPPP 2017).

In addition, security mechanisms are categorised by defining security feature groups under TS
33.102 (3GPP 2020a) and TS 33.401 (3GPP 2020c) as (I) network access, (II) network domain,
(III) user domain, (IV) application domain, and (V) visibility and configurability of security as
shown in Fig. 2.5. Also, the architecture defines the security realms which are used to compli-
ment the domain and the strata. To address the security requirements of a stratum or domain in
5G, security realms were introduced to capture their security needs in the form of access network,
application, management, UE and infrastructure, and virtualization. Security enablers also try
to address key security concerns such as authentication, authorization, availability, trust, security

Figure 2.5: 5G Feature Groups (3GPP, 2018)
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monitoring, privacy, and virtualization isolation, mapped with physical and functional viewpoints.
Whereby Security Control Classes (SCC) are introduced to describe the security aspect for 5G
system, which in most cases is neglected by existing security models. SCC is a collection of security
functions mechanism mapped with security aspects, inspired by ITU-Telecommunication Standard-
ization Sector (ITU-T)’s X.805 eight security dimensions (Zeltsan 2005), SCC are authentication,
ID and access management, non-repudiation, confidentiality, integrity, availability, privacy, audit,
compliance, trust, and assurance (5GPPP 2017).

2.3.1 Security Architecture

As explained earlier, the legacy security standards were not adequate for 5G, a new security ar-
chitecture (3GPP 2020f) was introduced to enforce trust between new actors and other entities in
the network. The new security techniques have been introduced like encrypting SUPI into Sub-
scriber Concealing Identifier (SUCI). In addition, new security entities have been introduced in
5G security architecture (3GPP 2020f) such as SEcurity Anchor Function (SEAF), Authentication
Server Function (AUSF), Authentication Credential Repository (ARPF), Subscriber Identity De-
concealing Function (SIDF) for decrypting SUCI back to SUPI, and Security Edge Protection Proxy
(SEPP) for interconnecting one Public Land Mobile Network (PLMN) to another. The security
architecture will have to consider NFV and SDN to achieve the overarching objectives of 5G. These
security entities are responsible for UE and HN mutual authentication and service authorization,
discussed in detail in chapter 5.

2.3.2 Trust Model

The trust model in 5G also has been modified but still, the UE has two trust domains, the Universal
Integrated Circuit Card (UICC) which is tamper-proof on which the USIM resides as trust anchor,
and network side trust model is for roaming and non-roaming cases with multiple layers trust
models. The ng-RAN is separated into distributed and centralized units which make up the new
generation 5G Node (gNB) node of BS. The distributed unit has no access to subscriber’s data in
transit due possibility of being deployed in insecure locations. The Access Stratum (AS) security
will be terminated at a centralized unit and the non-3GPP interworking function will have restricted
access whereas the AMF serves as the termination point for No-Access Stratum (NAS) security.
The AMF is housed together with SEAF will hold the anchor key for the Visited Network (VN). 5G
security design enables the separation between the security and mobility functions. Furthermore,
the roaming architecture, HN, and VN are connected through SEPP for the control plane of the
internetwork inter-connectivity.

2.3.3 Cryptography

To secure 5G communication, Elliptic Curve Integrated Encryption Scheme (ECIES) cryptography
(Shoup 2001) is applied as one of the security measures to provide authentication, integrity, and con-
fidentiality. The techniques applied include symmetric and asymmetric encryption, hash functions,
MAC, SQN, eXclusiveOR (XOR), digital signature, and other techniques are explained next.
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Public Key Infrastructure

Public key infrastructure (PKI) is a system of policies, procedures, and services that support the
use of asymmetric encryption to obtain secure communication, developed by ITU-T under X.509
standard (ITU-T 2019). The security measures are implemented utilising key pairs among users, the
message is encrypted by the sender with the receiver’s public key and decrypted with the receiver’s
corresponding private key. An X.509 standard also defines the digital certificate format that binds
the ID of the key holder to the holder’s public key. For more trust authority, certification authority
was introduced as the trusted party responsible for verifying and signing the certificates. Whereby
node A signs the message with its private key and encrypts it with node B’s public key, node B
decrypts the message with its private key and the signature is verified with node A’s public key.

Identity Based Cryptography (IBC) scheme (Shamir 1985) also uses asymmetric encryption and
Trusted Key Generation (TKG) centres. In IBC, each node chooses its identifier such as Internet
Protocol (IP) address or name as a public key, TKG generates the corresponding private key and
distributes it to the node securely. With this scheme, the users can communicate and verify each
other’s signatures securely without exchanging keys. In 5G, this can be combined with other
information such as timestamps, random nonces to UE identifiers when generating their public
keys, ensuring a periodic update. However, it requires all users to have the most recent public key
for that specific node. Additionally, ID-Based Encryption (IBE) can be used with Elliptic Curve
Cryptography (ECC) primitives in constrained environments (Fanian et al. 2010), combined with
Elliptic Curve Diffie-Hellman (ECDH) for key exchange to establish a session key (Qin et al. 2017).
Hence, that is why 5G adopted ECIES which complements all its security objectives.

Elliptic Curve Integrated Encryption Scheme

ECC is a public cryptographic scheme that provides high-security performance with lower com-
putational costs, making it suitable for low computational capabilities and constrained resources
systems, such as mobile devices and RFID as it uses the point multiplication operations. Procedures
such encryption and decryption of data, digital signatures, and key exchange can use ECC with the
following applications:

� ECDH uses Diffie-Hellman technique with elliptic curves for generic key exchange.

� Elliptic Curve Digital Signature Algorithm (ECDSA), is the elliptic curve variant of the Digital
Signature Algorithm (DSA), uses Rivest–Shamir–Adleman (RSA) and DSA algorithm.

� ECIES, an extended encryption and decryption scheme.

ECIES’s encryption function is symmetric but the encryption key is generated with the ECC
public/private keys of the entities communicating, defined under standards for efficient crypto-
graphy (SECG 2009). ECIES cryptosystem is based on elliptic curves that uses Elliptic Curve
Discrete Logarithm Problem (ECDLP) (Smart 1999) for security guarantees. ECIES is an integ-
rated encryption scheme with the following functions:

� Key generation and key agreement: Functions for generating a shared secret of two entities.

� Key derivation: Generates a set of keys from keying material and other optional parameters.

� Encryption: Symmetric encryption algorithm.
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Figure 2.6: UE ECIES Encryption (3GPP, 2020)

� MAC: Message authenticating data.

� Hash: A digest function, applied with key derivation and MAC functions.

To encrypt the messages using ECIES, two communicating parties Alice(A)-Bob(B), A and B
have ephemeral public keys U and V with responding private keys u and v, respectively. With ECC,
private keys are elements of the finite field, are either GF(p) or GF(2m), while public keys are points
that belong to the elliptic curve and are calculated from the private key and generator G of the
elliptic curve (SECG 2009).

ECIES-based Protection Scheme in 5G

The use of ECIES in 5G is to encrypt and decrypt SUPI which is defined in (3GPP 2020f) and shall
follow the specifications in (SECG 2009) and (SECG 2010). It includes SUPI of type International
Mobile Subscriber Identity (IMSI) with Mobile Subscription Identification Number (MSIN) and
SUPI of type network specific identifier. Encryption on the UE side, computing a fresh SUCI, the
UE uses the HN public key with new generated ECC ephemeral public/private keys from ECIES
parameters provided by HN and based on the encryption operation defined in (SECG 2009) with
few changes as in defined in (3GPP 2020f) as shown in Fig. 2.6. This output should be the ECC
ephemeral public key, the ciphertext value, the MAC tag value, and ”any other parameters”. With
”any other parameter” it allows certain cases, e.g., point compression, it enables the sender to
send additional sign indications. Decryption on the HN side, the decrypting of a SUCI by HN, the
received ECC ephemeral public key of the UE, and the private key of the HN are used, based on
the decryption operation defined in (SECG 2009), (3GPP 2020f) as shown in Fig. 2.7. There is no
need for HN to generate new ephemeral key pair for each decryption.

2.3.4 Analysis

This section presented the security architecture overview of 5G, the related work to security mech-
anisms in this research such as authentication and authorization methods. It also discussed crypto-
graphy schemes and techniques specified in 5G standards such as the UE’s cryptographic communic-
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Figure 2.7: HN ECIES Decryption (3GPP, 2020)

ation capabilities and ECC scheme. The next section presents an overview of D2D communications
and the related work. It aligns 5G enabled D2D communications with NS.

2.4 Overview of D2D Communications Network

D2D communication was defined in (3GPP 2014) for two devices in proximity to communicate
directly without the BS routing assistance. It was introduced as underlay technology for cellular
network to develop timing synchronization, peer discovery, and link management (Wu et al. 2013).
D2D communication was intended to improve spectral efficiency, allow multi-hop relays in a cellular
network, increase throughput and End-to-End (E2E) performance delay. The architectures of D2D
communications, Mobile Ad Hoc Network (MANET) and cognitive radio networks are similar, but
D2D communication is controlled by the BS for connection and synchronization. Some of the
D2D use cases and applications are multicasting, video dissemination, cellular offloading, P2P, and
M2M communications (Pratas & Popovski 2013), with 5G D2D applications shown in Fig. 2.8.
The ProSe in LTE based on D2D communications and its architecture were explored by 3GPP, to

Figure 2.8: 5G enabled D2D and V2V Communications
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Figure 2.9: D2D Communications Modes

provide D2D users with exceptional connectivity. This was also a business opportunity for SP to
provide new services to users such as location-based and context-aware services for local connectivity
and content sharing. Hence, offloading traffic from BS and core network, leading to overcoming
delay, and timing issues in D2D applications (Fodor et al. 2012). They also wanted to use D2D
Communications for emergency communication in case of a disaster.

In LTE Advanced (LTE-A), LTE direct and D2D communications included ProSe and V2V com-
munications to improve Vehicle Ad Hoc Network (VANET), while with IEEE 802.11 protocol Wi-Fi
direct technology, devices could automatically act as both AP and client in D2D communications.
Proximity-based data sharing services will also be supported in 5G enabled D2D communications.
D2D communications transpire on a cellular licensed spectrum or unlicensed spectrum using the
inband and outband modes. With inband mode, D2D and cellular users use the same licenced
spectrum, sharing resources or D2D users get dedicated cellular resources, underlay, or overlay
inband, respectively. The outband mode, allows the use of unlicensed spectrum by D2D users in
controlled or autonomous mode, the radio interface direction is controlled by cellular network, and
D2D communication is controlled by D2D users, respectively as shown in Fig. 2.9.

The D2D communications establishment uses the following techniques:

� Peer Discovery: Open discovery allows a device in proximity to be discovered by another
device, while restricted discovery does not allow the discovery of a device without the BS’s
permission. Additionally, D2D users can identify each other using network discovery methods
by sending beacon signals with identification and channel state information for pair grouping.
It can be a network and device-centric based discovery.

� Synchronization: To get time and frequency and synchronization, periodic broadcasts are sent
by BS and can be used by D2D devices from the same BS to synchronize. The right time slot
and frequency are used by D2D users for discovery, communications, and energy efficiency.

� Mode Selection: During D2D communications, two devices can choose cellular communication,
if direct communication is noisy or has more interference to get low latency and spectral
efficiency.

� D2D Connectivity: Two devices to connect, the transport condition must be satisfactory, one
device must check the request from the BS if direct communication throughput is higher than
the cellular communication and the other device in range. A D2D radio bearer is chosen by
the BS, one of the devices initiates connection and checks if traffic between devices has passed
through gateway tunnels. Even though the BS is not involved in the direct communication,
it still controls the radio resources.

18



� Resource Allocation: It dedicates the creation and maintenance of D2D direct links, only
resource blocks that are not in use by the cellular devices are used. The industrial, scientific,
and medical bands resources are not used in outband mode as they might be allocated to
other D2D users in the proximity. There are some challenges to D2D communications that
are brought by architectural changes and security requirements such as MIMO, physical layer,
macro cell, and device tiers security (Agiwal et al. 2016).

2.4.1 Overview of Security and Privacy in D2D Communications

UE security is paramount to D2D communications security as the UE connects to the network
through a ng-RAN, participates in D2D services, and uses supporting technologies, increasing the
attack vector which can lead to compromising the security of the network and the UE (Haus et al.
2017). In D2D communications, the UEs manage auditing and logging activities usually managed by
a centralized entity, a security mechanism should be in place to protect these activities. Additionally,
the UE uses device discovery for detecting its peers, by broadcasting messages over wireless channels,
which could also lead to location and privacy attacks (Gandotra et al. 2017). However, not relying
on the BS for communication, the single point of data leakage is prevented, but D2D users still
need to be protected from unauthorized access to UE data. Due to the self-management of D2D
users, implementing security and privacy is difficult and it is going to be even more challenging in
5G, due to 5G’s heterogeneous nature.

Moreover, ProSe are vulnerable to privacy invasion, which is a key concern in 5G and D2D
communications. So, attacks like location tracking, data leakage, and unauthorized access to user’s
sensitive data need to be addressed. To meet the security requirements of 5G enabled D2D commu-
nications, authentication and authorization mechanisms must be implemented to secure the com-
munication together with availability and dependability to guarantee QoS and QoE. The threats
and security requirements analysis are presented in chapter 4. D2D applications require a con-
cise abstraction in relation to the network architecture and service provisioning. The next section
discusses NS abstraction.

2.5 Network Service Abstraction of D2D Applications

2.5.1 Mapping of Existing Related Works

Some applications from legacy systems will be used to support the next generation mobile network.
The author believes that to link the applications to mobile network architecture, there should be a
well-defined classification and mapping of D2D applications in terms of which part of the network
architecture they are linked to. Therefore, abstracting NS at different network levels to enable full
utilization of security and network applications should be in synch with the multi-level architecture
and as discussed in this thesis. The European Telecommunications Standards Institute (ETSI)
defines a NS as a group of NFs specifying E2E function to support network infrastructure to deliver
customized services to end users (ETSI 2014). D2D communication and CCN are also classified as
NS since they are used for specific connectivity services to the user.

The classification and mapping of the D2D communications network in legacy systems and
5G can be grouped into applications, infrastructure services, and network connectivity abstraction
levels.
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Application Level

This level is composed of the following OTT applications: live gaming, user requests, multimedia,
social networking, local advertising for the UE. It contributes to the efficiency of secure content
delivery and access by the UEs. D2D communications require high QoE, high resource efficiency,
resource management. With an optimal rate allocation and description distribution performance
can be improved between D2D users and the BS (Vo et al. 2018).

Infrastructure Service Level

This level is composed of the following NSs: ProSe, service discovery, resource allocation, content
sharing, and delivery to UEs. Network capacity can be managed through resource utilization,
content sharing, caching, and distribution. The use of incentives to persuade devices to cache
content for others. Additionally, D2D transmission and caching policies can be used to implement
mobile content caching and distribution efficiencies. UE helpers can be used to utilize context
information for content distribution and dissemination to facilitate service delivery (Chandrasekaran
et al. 2018).

Table 2.1: Network Service Abstraction with Modular Framework

OSI Services Abstraction 5G

Model Level Protocol

Stack

Application OTT Applications APP

Presentation applications

Session

Layers

Transport CCN Infrastructure TCP

Layer Services UDP

Network Internet - Infrastructure IP

Layer CCN Services NAS

RRC

SDAP

Data Link Connectivity - Network PDCP

Layer D2D Connectivity RLC

Mac

Physical Connectivity - Network PHY

Layer Radio Access Connectivity
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Network Connectivity

This level is composed of the following connectivity and communication applications: network
routing, spectrum sharing, radio access, peer, and network discovery, mmWave, V2V, and D2D
communications. With auto-mobile industry, vehicular connectivity, intelligent transport system
benefiting from 5G enabled D2D communications network connectivity (Zhou et al. 2018) such
as cooperative vehicular networks using Global Positioning System (GPS) and geographic system
data.

2.5.2 Network Services Abstraction in Relations with 5G Protocol Stack

The development of D2D applications for 5G can benefit from the proposed NS abstraction, by
using abstraction, the applications can be mapped to one or more abstracted levels. The three levels
enable the meticulous development for connectivity and security solutions that are interoperable
and easily integrated on different levels. The proposed abstraction levels can be used with X.805
security framework (Zeltsan 2005) to evaluate security in D2D communications network presented
in chapter 4, aligning it with modular architectures and systematic analysis. As shown in Table 2.1,
NS abstraction levels are mapped with Open System Interconnection (OSI) reference model, 5G
protocol stack, network layers, and NSs. These include Applications (APP), Transmission Control
Protocol (TCP), IP, User Datagram Protocol (UDP), NAS, Radio Resource Control (RRC), Service
Data Adaptation Protocol (SDAP) Packet Data Convergence Protocol (PDCP), Radio Link (RLC),
Medium Access Control Layer (Mac), and Physical Layer (PHY). This enables the development of
abstracted solutions at multi levels of the network architecture supporting multiple connectivities,
service delivery, and an integrated security framework as proposed in this research.

2.6 Content-Centric Networking (CCN)

In 5G, end users will be able to access and share content faster at the edge due to efficient content
distribution and retrieval processes. They will participate in content delivery while on the move
with their UEs in cellular or D2D mode. Content sharing, delivery, and distribution in D2D
communications can be achieved efficiently by using CCN delivery techniques. CCN addresses some
of the 5G requirements that are difficult to satisfy with current IP networking. CCN architecture
(Jacobson 2009) can be used as a single protocol that is capable of handling mobility, security, unify
layer interfaces and integrate wired interfaces with wireless APs. It combines computing, storage,
and networking into one paradigm hence enabling ubiquitous virtualized service logic and caching
functions. Inherently its security enables the authentication of user’s request and response messages,
while the content caching is location independent. Moreover, flat architecture is applicable without
the use of specific gateway, connectivity of applications and devices implemented via C-RAN,
enabling services’ deliverance of high bandwidth and low latency requirements (Ravindran 2019).

However, ICN architectures such as CCN have their security challenges as it is vulnerable to
attacks like Denial of Services (DoS), interest flooding, signature key retrieval and cache pollution,
(Ahlgren et al. 2012), (AbdAllah et al. 2015). Privacy is also an issue in CCN whereby ID authen-
tication and management are the core blocks in designing a secure network. ACL and encryption
mechanisms can be deployed to address some of these issues (Tourani et al. 2018), (Nunes & Tsudik
2018). In addition, evaluation of the security requirements for a concise security approach is a good
starting point as demonstrated in chapter 4.
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This research focuses on CCN (Jacobson 2009) as it is one of the popular and efficient ICN
architectures proposed for mobile content delivery. CCN characteristics are hierarchical naming,
content caching, and named data object routing. The content provider’s name is used in the
routing made possible by the hierarchical naming principle. Moreover, CCN is a content-oriented
communication model driven by content interests and data objects whereby the content requests
and replies are identified by data/object name which is a Uniform Resource Identifier (URI) like a
string of variable length name segment, that can be the provider’s domain name and content folder,
for example, (sp.domain.com/videostreams). The requests are routed directly towards the provider
and replies towards the requester using the same route while the data is being cached along the
way (Jacobson 2009). The cached content can identify requests and reply with the requested data
if it is matched, otherwise it forwards the requests. A content requester asks for content by sending
their interest to all connected nodes, any node with that data can receive the interest message can
reply with a data object packet message. With the interest and data identifying content by name,
the nodes interested in the same content can participate by sharing the transmission.

Additionally, a node in CCN can forward an interest packet from a consumer in a hop-by-hop
manner using its data name. The CCN separates the identifier and locator role, each data object is
identified by Named Data Object (NDO). In this research, the NDO is referred to as content or data
interchangeably, NDOs are published at nodes with routing protocols helping in the distribution of
data (Loo & Aiash 2015). The request message is routed based on a data name instead of hostname
and the architecture uses a transport protocol called CCNx for content delivery (Jacobson 2009).
A CCN protocol is embedded in the nodes which consist of functionality such as the Forwarding
Information Base (FIB) for guiding interest messages towards data for specific stored content,
Pending Interest Table (PIT) stores data about the forwarded interest which are not satisfied yet
by content object and Content Store (CS) stores the replicated cached content object which can be
reused (Ahlgren et al. 2012).

Generally, in a mobile network, the communication channel is protected by using security pro-
tocols, which require entities to trust each other to deliver correct data over the channel. However,
ICN architectures provide data integrity and origin verification, independent of the data source, en-
abling ubiquitous caching with integrity and authenticity (Ahlgren et al. 2012). These approaches
are primarily applicable to any accessible content that does not require access authorization or
delivery of encrypted content. However, ACL mechanisms are needed in CCN to deal with author-
ization.

2.6.1 Integration of CCN with Mobile Cellular Network

As mentioned in chapter 1, to solve the problem of increasing traffic in 5GC, besides D2D Commu-
nications, the integration of CCN into the mobile network can support offloading of traffic, access,
and sharing of content efficiently. It can also reduce data latency in C-RAN and improve QoS and
QoE. Moreover, the cache store and content server can also save costs of inter operators’ communic-
ation, content provisioning, and consumer usage fee. Even where the content producer is different
from MNO or SP, they can pro-actively push and cache popular content to the cache-enabled in-
termediate proxy devices or the UEs in advance, then the UE can get the content from the ideal
device via D2D communications (Yang et al. 2015). 5G entities including the UE can be integrated
with CCN functionalities to enable CCN content dissemination and allow UE to request and access
the content.

Integrating CCN with a mobile network is intended to turn the network infrastructure into being
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content-aware. Since the NDO and its payload consist of routing and security functionalities fields,
they can improve network routing and security. CCN can also perform intelligent content-based
operations such as popular content sharing, in-network content caching, and cache space utilization
of forwarding nodes (Ahlgren et al. 2012) hence supporting efficient traffic offloading and content
delivery.

With CCN, 5G can improve content dissemination and management. This is achieved by embed-
ding the CCN protocol into the UE, BBU pools, edge routers, and 5GC entities (Chandrasekaran
et al. 2018), (Zhang et al. 2019) or integrated as a NS or NF (Ravindran 2019), (Ravindran et al.
2017) to enable CCN functionality. The caching, content management, and CCN/IP protocol con-
versation is managed by BBU Pool. The IP-based entities embedded with the CCN protocol help
in protocol translation to enable continuous communication in the network and during E2E com-
munication between entities. Also, CCN integration in mobile network (Kim et al. 2017), will allow
5G to rely on its elasticity, enhancing user and control plane functions. The extension of NFs to
include CCN as a function can enable the implementation of CCN PDU sessions thus providing
CCN application and network slice as a service, part of CCN enablement in 5G (Ravindran 2019).
Based on the CCN functionalities, there are two types of messages used in content dissemination
and they are as follows:

� Interest Message: Sent by a consumer with an interest in the content, it can be satisfied by
the content provider or cache hit node in the BBU pool or the D2D device.

� Data object message: Sent back by the content provider or cache node replying to interest
message in NDO chunks (Jacobson 2009). This cycle relies on the functionality of FIB, PIT,
and CS.

The participating entities include the following:

� UE: The end user device requesting the content and delivering the content to other UEs.

� RRH: Connects the UE to the BS and forwards the interest packet to BBU Pool.

� gNB: Is responsible for secure connection of the UE to the network.

� BBU Pool: Connects the 5GC and ng-RAN.

� 5GC: Generates data and administers security within the network. The edge routers, gate-
ways, content, and security servers reside in the 5GC. It might also store the original content.

� Content Producer: Publishes the content under namespaces and could be the MNO/SP.

ICN functionalities in a mobile network are also discussed in (Ravindran 2019), (Chandrasekaran
et al. 2018), (Zhang et al. 2019), the CS in BBU pool is tasked with content registration, recording
all the cached content of the UE, the content owner in coverage, and maintain the metadata of
each NDO. When a recorded data matches a request, the BBU pool establishes a D2D link between
a content requester and content owner, then the content owner can reply to the request from the
content requester through cellular or D2D communications. The CS can be virtualized for cache size
allocation management as well as content caching optimisation and provide efficient UE distribution
and delivery. The CS in UE stores cached content after the initial access of the content.

The UE generates content requests initiated by the application layer while the CCN layer pro-
duces interest packets. The RRH establishes a physical connection with the UE, demodulates the
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radio frequency signal, and extracts the baseband signal. The RRH is not involved in any CCN
functionality as it is not designed to deal with higher-layer data processing. The BBU pool forwards
the inbound packets from external networks to the relevant RRH. It is also tasked with extracting
the requested data object name and other information, which are used in matching the cached
content as well as looking for forwarding routes. So, if the request cannot be satisfied at the BBU
pool, it is then forwarded to 5GC or DN for the content provider to satisfy. The BBU pool is also
capable of performing other duties such as processing the content request of another CCN-based
packet or an IP-based packet accordingly.

Furthermore, 5GC is configured to operate the CCN protocol, since the MNO is responsible for
generating data in the network, content servers are usually located in the 5GC as MNO/SP services
and DN as third-party SP services. For functionality purposes, the 5G protocol stack is aligned
with CCN and IP protocol , with non-content dissemination services such as IP-based services still
processed in the normal way. Embedding the CCN protocol and functions in UE, BBU pool, and
5GC enables the extraction and resolution of data-name as well as matching and forwarding UE
requests. The author believes integrating 5G enabled D2D communications with CCN will enable
the offloading traffic from 5GC and push content to end users. Therefore, this research considered
proposing security mechanisms that address both entities and data security.

2.6.2 Analysis

Sections 2.5, 2.4, 2.6 presented an overview on D2D communications, security, and privacy and
discussed network services in 5G. It also gave an overview of the CCN and the significance of
its integration with D2D communications. Since D2D communications network is defined as a
network service and underlay technology for 5G, it is vital to explore its functionality, security, and
integration with CCN to achieve 5G objectives.

2.7 Summary and Overall Evaluation

D2D communications will benefit 5G as the underlay technology, but with 5G standardization yet
to be finalized, the security of 5G enabled D2D communications requires an extensive investigation
to address security concerns. The abstraction and mapping of network services can be applied with
different frameworks to assist in addressing service and security issues in 5G efficiently.

As discussed in this chapter the related work attempt to address the security of 5G enabled D2D
communications, however, the security of NSD is still not addressed fully. With 5G enabling new
use cases and using D2D communications to offload traffic and push content to end users, it is a big
challenge. For this research to provide resilient and an integrated security solution for NSD in 5G
enabled D2D communications, it benefited from related work such as 3GPP 5G standard (3GPP
2020f), C-RAN architecture (Checko et al. 2015), the concept of integrating ICN in 5G (Ravindran
2019) and mobile network (Chandrasekaran et al. 2018), (Zhang et al. 2019). The full integration
of the mobile network with virtualization has broadened the spectrum of 5G but also increased its
attack vector which requires multi-level security techniques to provide robust security solutions.
The research also benefited from a multi-level security approach in (Aiash et al. 2014).

But the study in this research is different from that of related work in many ways. We considered
an integrated system model that aligns with the 5G objectives, end users’ content access, and D2D
communications. The related works tackled security of 5G supporting technologies separately,
our research considered an integrated solution. The research also proposes a host-centric and
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information-centric hybrid solution that addresses the entities and data security. Unlike the related
work, this research conducted a comprehensive security evaluation of the system model using X.805
security framework (Zeltsan 2005) while protocol security properties analysed using two security
taxonomies (Lowe 1997), (Menezes et al. 2018). Moreover, the proposed security protocols are
analysed using ProVerif and applied pi calculus (Blanchet et al. 2020) and performance evaluation
is based on Markovian method (Stewart 1994) and network simulation (Nsnam 2021).

The next chapter 3 discusses the approaches and methods used in this research to address the
security issues and how the proposed solutions were developed.
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Chapter 3

Research Approaches and Methods

3.1 Introduction

The related work to date has been explored in the literature review chapter 2 to enable the evaluation
of existing problems and limitations to present suitable solutions to address the defined problems
with an intention of improving 5G’s security. This chapter presents methods and approaches used to
introduce the system and threat models for identifying threats and proposing security solutions for
5G enabled D2D communications system. It starts by recalling the research question and proposed
work in section 3.2. Section 3.3 presents the methodology followed to address the research question.
Section 3.3.5 validates the verification methods and tools. The security properties taxonomies are
explained in section 3.3.8. Section 3.3.9 discusses the performance evaluation methods. The chapter
is summarised in section 3.4.

3.2 Proposed Work

We propose to investigate the security and privacy of NSD in 5G enabled D2D communications,
evaluate security requirements and develop novel approaches to support the secure service delivery
in D2D communications. We introduce a service delivery framework to compliment the security
framework and mechanisms proposed in this research.

3.3 Methodology

This section explains the methodology followed to answer the research question to achieve the ob-
jectives of this study. Like any other computer system, 5G communication is complex with a variety
of requirements as discussed in the chapters 2 and 4. To meet these requirements, specification,
design, verification, and evaluation have a vital role in the development and analysis of 5G security
process. With this type of research, there are different approaches that can be followed to meet
those requirements and achieve the research objectives.

The commonly used approaches are real experiment, simulation, and analytical modelling or a
combination, which all require testing, validation, and analysis. Firstly, a real experiment requires
the use of a testbed to carry out the implementation and testing of our proposed security solution. It
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provides better information about the communication system using realistic conditions. However,
building and managing a testbed is expensive and complex, especially when implementing and
testing communication in mobile networks.

Secondly, discrete event simulation tools such as NS-3 (Nsnam 2021) and OMNET++ (Varga
2010) can be used to simulate the network activities. A discrete network simulator is built to rep-
resent a computer network simulating the functionality of entities and the communication channels
in a network. Simulation provides scalability with repeatable results and can simulate complicated
scenarios. It requires a series of long simulation runs to have an elaborative and correct analysis.
Since a mobile system consists of complex characteristics and various parameters, simulations take
time. Even though it is cheap with easier performance processes, currently it is very difficult to
simulate a complete stand-alone 5G communication system as the only available models can only
simulate E2E communication with mmWave module as radio technology and LTE as a core net-
work, same for D2D communication (Mezzavilla et al. 2018). Moreover, at the moment there is no
simulation tool that can capture all the entities, communication processes, and security parameters.

Thirdly, analytical modelling is based on a mathematical description of the proposed solution

Figure 3.1: Research Methodology
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using configurable computer states, mathematical theories, and techniques such as queuing and
probability. This enables the modelling of a system with transition between states and provides
approximate solutions applicable in computer systems. Numerical methods are applied to the state
model using tools and analytical processes such as like MATLAB (MATLAB 2019) and Markov
chains process (Stewart 1994), respectively. This approach provides accurate results, obtainable
formulas, and faster computations. Even though it relies on assumptions for approximate results, it
is the preferred method for quick and accurate computations validation. However, it is not realistic
as an experiment or flexible as a simulation.

For this research, considering the resources availability, system complexity, and other constraints,
which include the research’s objectives and lack of a testbed, we use the combination of simula-
tion and analytical approaches as shown in Fig. 3.1. This methodology consists of methods and
approaches that use mathematical theories and computer tools to define, model, and analyse a com-
puter network communication system (Basin et al. 2018), (Hussain et al. 2018). It starts by defining
a system model and performing threat modelling to investigate the security issues. Then designing
and simulating security protocols using a protocol proof verifier to model and verify the protocols to
address security issues in 5G enabled D2D communications as presented in the following chapters.
As stated in chapter 1, this methodology was proposed after identifying the constraints in different
studied areas of this research in the literature review.

Conventional simulation approaches cannot be used for complete coverage of complex systems
of 5G and D2D communications as modules such as the control plane and ProSe function are still
not available. Therefore, a mathematical model based on formal methods together with simulation
based on an abstract representation of the proposed protocols is applied to improve the security of
5G enabled D2D communications. This approach is also used in the validation of the developed
solutions.

3.3.1 Network Services Delivery (NSD) Framework

To investigate the security of NSD in 5G enabled D2D communications network, we present a
service delivery framework based on C-RAN architecture (Checko et al. 2015), NS abstraction in
section 2.5, D2D communications (3GPP 2014) and CCN (Jacobson 2009). It focuses on the entities
involved in the communication and how the services are accessed by the UE and shared with other
UEs but not how the data is stored or accessed on the application level. The NSD framework
consists of system, access, and delivery models to illustrate the delivery of services. Additionally,
to define the entities of the system model to give an overview of 5G enabled D2D system model
and security architectures. The NSD framework is discussed in chapter 4.

3.3.2 Threat Modelling

In order to discuss security threats in 5G enabled D2D communications, a clear adversary model to
evaluate security and privacy protection mechanisms is required. In our threat model, the attack
is based on a Dolev Yao (DY) model (Dolev & Yao 1983), an adversary that formally models the
attack against communication, assumed to be the communication channel.

Attacker’s Capabilities

The adversary is capable of intercepting, tapping channels, and eavesdropping on the transmitted
messages. In addition, the adversary can create, read, modify, capture, block, remove, replay, and
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send messages on the wireless and wired communication channels on the network. Which enables
the attacker to initiate the attack discussed in section 4. By listening to signalling messages, setting
up fake BSs to impersonate SNs, the attacker can compromise secure entities like USIM as well as
other entities in SN and HN.

For instance, the adversary can compromise UEs and other entities by revealing the secrets
between UEs as well as applying her own public functions like encryption, hashing, and signing on
values known to her. By impersonating any entity, she can become a legitimate user capable of
initiating communication and responding to interest messages sent by legitimate UEs. Might also try
to repudiate its malicious behaviour hence preventing data sharing among users. Furthermore, the
attacker can encrypt and decrypt messages with known keys. However, if the attacker does not know
the correct decryption key for a given ciphertext, then the attacker cannot gain any information from
the ciphertext. Also, no attacks are considered as the result of the implementation environment.
In addition, unbounded message lengths, unbounded number of fresh nonces, and protocol sessions
allowed by the threat model.

3.3.3 Solution Approach

After the introduction of the system model and defining the involved entities, the next step is to
investigate the security issues that could occur in 5G enabled D2D communications. Then introduce
our security framework which is a hybrid solution that integrates host-centric and information-
centric security schemes to address the security issues in 5G enabled D2D communications network.
This security framework includes authentication and authorization mechanisms verified using formal
methods techniques integrated into t=a complete security solution.

3.3.4 Network Services Security (NSS) Design

With the NSS framework, a security model needs to identify what can be used to protect the entities
and data of the proposed system model in a layered manner. We need to identify security protocols
to be developed to provide security on different levels of 5G enabled D2D communications network.
The security model relates to network access, service level, and D2D level security. Network access
security is concerned with protecting the initial connection between the users and the network
while service-level security is concerned with restricting access to the services from the end users.
Additionally, D2D level security is concerned with restricting service and sharing between two end
users. The security protocols are to be used with the security model to address the security of the
system model presented in chapter 5.

Next is to verify the proposed security protocols and check if they are vulnerable to any security
threats from the proposed system model point of view. Therefore, the next section presents methods
used in verifying these protocols.

3.3.5 Security Protocols Verification

In order to measure the effectiveness of security protocols in form of security guarantees, validation
methods such as Unified Modelling Languages (UML) and Specification and Description Language
(SDL) can be used to check protocol specification against undesired states and behaviour. But to
check the claimed security properties of a protocol, methods that use mathematical logic or model
checks are required such as Temporal Logic of Actions (TLA) (Lamport 1994) or Burrows-Abadi-
Needham Burrows Abadi Needham (BAN) logic (Burrows et al. 1989) to determine the relationship
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Figure 3.2: Cryptographic Protocol Modelling

between parties based on theorem proofs and verification logic. However, in the BAN logic method
all parties are assumed honest and only authentication properties considered (Boyd & Mao 1994),
hence, leaving out secrecy analysis. Additionally, formal methods can be used to verify the secrecy
and authentication properties of a security protocol relying on automated tools. Therefore, formal
methods are applied to determine the security guarantees that should be met by 3GPP security
protocols and the proposed security protocols in this thesis.

Formal Methods and Automated Protocol Verifiers

Formal methods and automated tools can be used to achieve verification of cryptographic protocols
by applying different approaches such as symbolic and computational modelling as shown in Fig. 3.2.
A symbolic model like DY assumes the perfect cryptography to allow the cryptographic primitives
to be represented as symbolic operations. When a property is proved in a DY model, it means
the protocol is accurately modelled at an abstract level with no attacks. The computational model
(Goldwasser & Micali 1984) uses complexity theory, messages as bitstrings, and cryptographic
operations are probabilistic algorithms on the bitstrings where a polynomial-time probabilistic
turing machine is the attacker. The proof of security is based on reducing the security properties
to computationally hard problems.

The analysis of security protocols for mobile network is complex and challenging whereby most
protocols are utilized before being formally verified leading to various attacks being found in full op-
erational protocols using formal methods with automated verification tools such as Automated Val-
idation of Internet Security Protocols and Applications (AVISPA) (Armando et al. 2005), ProVerif
(Blanchet et al. 2020) and Tamarin (Meier et al. 2013). This shows why it is necessary for protocol
formal verification for security functionality in mobile systems. The initial protocols specified for
legacy systems were manually verified using TLA (Lamport 1994) and enhanced BAN logic (Boyd
& Mao 1994).
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Unfortunately, mobile network protocols like those discussed in this thesis consist of complex
properties that are challenging for most verification techniques. For instance, 5G uses of SQN
and re-synchronization process which is an issue for tools that use a bounded number of sessions
reasoning and manual proof checks (Basin et al. 2018). In addition, these protocols are stateful and
have numerous loops which require inductive reasoning. The AKA protocols also use primitives
like XOR, which are hard to reason symbolically or manually because of their algebraic properties
like associativity (Basin et al. 2018). In this study, ProVerif (Blanchet et al. 2020) was chosen as
the protocol verifier over other tools such as AVISPA and Tamarin as it is commonly used for its
precision operation, good running time performance, wide functionalities, under active development,
and still supported. It uses an intuitive and expressive modelling language, while the analysis
technique has been formally defined and its proven soundness fits our objectives. For those reasons,
ProVerif and applied pi calculus are found suitable for protocols’ formal verification.

3.3.6 ProVerif and Applied Pi Calculus

Applied Pi Calculus

Formal methods are mathematical model techniques used in the verification of systems by perform-
ing mathematical analysis. Applied pi calculus is a specification language that uses formal methods
and notations (Abadi et al. 2017), a widely used algebraic method for specifying and analysing
security protocols with automated tools. It adds a symbolic application of functions and equations.
A process calculus can be used to describe concurrent computation while applied pi calculus process

Table 3.1: ProVerif Syntax and Semantics

M,N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . ,Mn) constructor application

D ::= expressions
M term
h(D1, . . . ,Dn) function application
fail failure

P,Q ::= processes
0 nil
out(N,M); P output
in(N, x : T); P input
P | Q parallel composition
!P !P replication
new a : T; P restriction
let x : T = D in P else Q expression evaluation
if M = N then P else Q conditional
event(M);P event
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is a sequence of operations with a finite sets T of functions and their arity, names N , variables V ,
and an equational theory Σ (Abadi et al. 2017).

ProVerif

ProVerif (Blanchet et al. 2020) is semi-automated tool that analyses security protocols using applied
pi calculus, with the DY model, allows user-defined equation theories to verify protocol’s security
properties. Cryptographic primitives defined by rewrite rules and equations for satisfying the finite
variant property are supported (Blanchet 2016), which excludes associativity. ProVerif’s focus on
the case of unbounded sessions and uses precise horn-clause abstraction, the abstractions’ theory
is very efficient. With the user-defined equation theories, ProVerif is sufficient to model XOR
(Küsters & Truderung 2009). Applied pi calculus is used as a formal language to describe and
model security protocols, by studying concurrency and process interaction. Furthermore, ProVerif
and applied pi calculus formally make a relationship between mathematical representation and
taxonomy of security properties using cryptographic primitives. ProVerif has been used to formally
analyse the security properties of security protocols in (O’Hanlon et al. 2017), (Hussain et al. 2018),
(Zhang et al. 2020).

The cryptographic primitives are modelled as functions, and terms represent messages built
over an infinite set of names a, b, c, . . ., variables x, y, z, . . . and function symbols
f1, . . . , fn. Functions symbols are presented as cryptographic operatives used on messages.
The set of reduction rules shows the effect of applying function symbols to terms. The syntax and
grammar of ProVerif process language are explained in Table 3.1, more details can be found in
(Blanchet et al. 2020) and its structure shown in Fig. 3.3. ProVerif is more precise than the tree
automata abstraction in AVISPA due to its focus on the case of unbounded sessions and horn-clause
abstraction. It can also verify some equivalence properties.

Modelling Protocols in ProVerif

Figure 3.3: Structure of ProVerif (Blanchet, 2020)
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ProVerif modelling of a protocol can be divided as follows: declarations, process macros, and main
process. The declarations formalize the behaviour of cryptographic primitives. Process macros
enable the definition of sub-processes for trivial development as the protocol is encoded as the main
process, with the use of macros (Blanchet et al. 2020).

Declarations
Protocol modelling in ProVerif requires variables, constants and cryptographic primitives. It in-
cludes a free name or global variable and constructor with their corresponding destructor and
definitions of the cryptographic primitives. The definition of process macros is explained as follows:

� User defined types type t, a type name for example nonce bitstring etc.

� Free name free n : t. Whereby n is a name and t is a type, free names are used to define
global variables.

� Channel channel c. or free c: channel, syntax are synonyms, free channel is known to the
adversary.

� Private channel free c: channel [private], private channel is not known to the adversary.

� Constructor fun f(t1,..,tn) : t. With f being a constructor of arity n, and t is the return type
of its arguments.

� Private constructor fun f(t1,..,tn) : t [private], constructors not known to the adversary,
used to store password tables.

� Destructors manipulate the terms created by the constructors and to convert the cipher-text
back to its original form. The definition of destructor is as follows:
reduc forall x1,1 : t1,1 , ....., x1, n1 : t1, n1; g(M1,1 , ...,M1,k ) = M1,0 ; .....
forall xm,1 : tm,1 , ....., xm, nm : tm, nm; g(Mm,1 , ...,Mm,k ) = Mm,0 .
above g is a destructor of arity k, the terms M1,1 , ..Mm,k built after applying constructor
to variable x1,1 , ...x1, n1 of type t1,1 , ..., t1, n1 (Blanchet 2016). The protocols use private
and public channels c for exchanging messages and while constructors and destructor model
cryptographic primitives are used in the protocol.

Processes
The brief definition of processes P and Q is that the null process 0 does nothing, P | Q is the parallel
composition of processes for a protocol parties running in parallel. The !P replication as the infinite
composition P | P |... . new n : t; P is the name restriction binding name n of type t within
P. While process in(c, x : t); P waits for message of type t from channel c, then carries on as
P with the message in bound to variable x. In that occurrence of x in P refers to the received
message. The process event(M); P executes event(M), and then executes P. Events annotate
processes and mark the reached level by the protocol but are not affected by them. Events are used
to specify correspondence assertions. The principals are modelled as applied pi calculus processes
with events.

3.3.7 Security Properties

This section presents the security properties used in the modelling of the protocols in ProVerif and
during the evaluation of the security requirements of the proposed protocols.
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ProVerif Security Properties

ProVerif supports secrecy, reachability, correspondence assertions, observational equivalence, and
authentication as properties specified as queries (Blanchet et al. 2020).

Secrecy: A secrecy property is specified as a query of the attacker’s knowledge attacker(M).
When the fact attacker(M) is derived from the horn clauses, then the attacker may have the
knowledge of M. But if the fact attacker(M) is not derived, there is no way that the attacker can
gain the knowledge of M.

Reachability: The query attacker(K) is also used to debug the model of the protocol to
check a particular branch is reachable or not. query k: bitstring; event(endServer(k)).

Authentication: The authentication properties are specified as correspondence assertions
in the form of event(e1(M)) event(e2(M)). When the clauses conclude event e1 with having
event e2, then event e1 can only be derived when event e2 holds, hence correspondence asser-
tion is proven.

Correspondence assertion is used to check the relationship between two events defined in the
same sub process or in different sub processes, defined as follows:
event e(M1, ...,Mn); P

� Event Correspondence: The basic correspondence assertion is queried as:
query x1 : t1, . . ., xn : tn ; event (e1(M1, . . . ,Mj) ) =⇒ event (e2(N1,.

. . ,Nk) ) ., the M1, . . . ,Mj ,N1, . . . ,Nk are terms the application of construct-
ors has built to variables x1, . . . , xn of types t1, . . . , tn while events e1 and e2’

are declared.

� Injective Correspondence: These assertions query one-to-one relationship:
query x1 : t1, . . . , xn : tn ; inj-event (e(M1, . . . ,Mj) ) =⇒ inj-event

(e’(N1, . . . ,Nk) ). The correspondence asserts that, for each occurrence of the event e

(M1, . . . ,Mj), there is a definite earlier occurrence of the event e’(N1, . . . ,Nk).

Type Conversion: Constructors declared data cannot be declared private, type converter is
used to convert the type of output as to avoid mismatch: fun tc(t) : t0 [typeconverter], type
converter tcwill take input of type t and then return type t0. Type converter is used to convert
the type bitstring to id and keys or nonce to bitstring.

Equations: Certain cryptographic primitives such as XOR cannot be encoded as destructors
because their algebraic properties need relations between terms. Instead, they are modelled as
equations, equation forall x1 : t1, ...., xn : tn; M = N. The M, N being terms built to
the variables x1, . . . , xn of type t1, . . . , tn from applying constructor symbols.

Formal Modelling of Cryptographic Primitives

The cryptographic primitives are modelled in ProVerif (Blanchet et al. 2020) as follows:
Symmetric and Asymmetric keys: Encryption and decryption are encoded as a constructor
and destructor.
Symmetric Key : type key.

fun senc (bitstring, key): bitstring.

reduc for all m: bitstring, k: key; sdec (senc(m, k), k) = m.

Asymmetric key : type skey. type pkey.
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fun pk(skey): pkey. fun aenc(bitstring, pkey): bitstring.

reduc forall m: bitstring , k: skey; adec(aenc(m, pk(k)),k) = m.

Hash functions: The constructor takes as input, and returns, a bitstring:
fun h(bitstring):bitstring.

Digital signature: The equation for digital signature is
check(x,sign(x,sk(y)),pk(y))= True.

type sskey. type spkey.

fun spk(ssk): spkey. fun sign(bitstring, ssk ): bitstring.

reduc for all m: bitstring , k: sskey; getmess (sign(m,k)) = m.

reduc forall m: bitstring, k: ssk; checksign(sign(m,k), spk(k)) = m.

MAC: The MAC is formalized by a constructor without an associated destructor or equation.
type mkey. fun mac(bitstring, mkey): bitstring.

XOR: With XOR function due to the intrinsic equational properties XOR is represented as an
equation
fun xor(bitstring, bitstring) : bitstring.

equation forall m1: bitstring, m2: bitstring; xor(m1, xor(m1,m2)) = m2.

Attacker Modelling in ProVerif
The attacker knows the free names by default. However, names can be declared private. Private
names are not prior knowledge to the attacker. A constructor is declared as data, the attacker can
construct and deconstruct data. Any party, including the attacker, can compute sdecrypt(X,k)

if the attacker has obtained X and k, so m can be obtained if X is sencrypt(m,k). In a symbolic
model, the attacker can learn nothing from sencrypt(m,k) if the attacker does not have k. To
have the capabilities as discussed in section 3.3.2, the attacker’s computation abilities in ProVerif
are defined as follows:
For each constructor f of arity n:
attacker (x1 ) ∧ . . . ∧ attacker (xn) =⇒ attacker(f(x1, . . . , xn))
For each destructor} g, for each rewrite rule g(M1, . . . ,Mn) =⇒ M
in def (g): attacker(M1 ) ∧. . .∧ attacker(Mn) =⇒ attacker(M)
Name generation: attacker(a[ ])

Initial knowledge: attacker(pk(skA [ ])), attacker(pk(skB[ ]))

The attack on a protocol can be explained using the attack derivation (abstracts) or attack
trace (semantics). In ProVerif the derivation explains the actions made by an attacker to break
the security properties of the protocol, it uses abbreviations of an internal representation of names
or terms. Which is a numbered list of steps each corresponding to a process or the attacker’s
action. The attack trace represents the real attack as an executable trace of the considered pro-
cess. The trace is a sequence of input and outputs on the public channel and of events in re-
lation to the process. The input, output, or event are followed by their location at {n} in a
process, referring to the program point at the beginning of the process. As mentioned earlier
when ProVerif is given query attacker (M) where M is the message transmitted on the chan-
nel c, it intends to prove that a property is unreachable by showing not attacker (M), there
for the RESULT not attacker (M) is true whereby the attacker does not have term M that
is the attacker does not have (M). With the query query x1 : t1, . . . , xn : tn ; event

(e(M1, . . . ,Mj) ) ==> event (e’(N1, . . . ,Nk) ) tests the relationship between events.
The correspondence asserts that, for each occurrence of the event, there is a definite earlier occur-
rence of another event.
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Now that formal analysis, verification methods, and security properties are explained, the next
section discusses the security requirements that should be met by the proposed protocols.

3.3.8 Security Protocol Properties Analysis

The security protocols in this thesis should meet certain security requirements. The security prop-
erties are informally defined before being formalized for a protocol, the taxonomies (Lowe 1997)
and (Menezes et al. 2018) are adopted, referred to as set 1 and set 2, respectively. The protocols
should have some desirable security properties from a different point of view as defined in set 1 and 2.

Security Requirement Set 1

They are as follows:

� Aliveness: A protocol guarantees to an agent a in role A aliveness of another agent b if,
whenever a completes a run of the protocol, apparently with b in role B, then b has previously
been running the protocol.

� Weak agreement: A protocol guarantees to an agent a in role A weak agreement with another
agent b if, whenever agent a completes a run of the protocol, apparently with b in role B,
then b has previously been running the protocol, apparently with A.

� Non-injective agreement: A protocol guarantees to an agent a in role A non-injective agree-
ment with an agent b in role B on a message M if, whenever a completes a run of the protocol,
apparently with b in role B, then b has previously been running the protocol, apparently with
a, and b was acting in role B in his run, and the two principals agreed on the message M .

� Injective agreement: Is defined to be non-injective where additionally each run of agent a in
role A corresponds to a unique run of agent b.

Security Requirement Set 2

They are as follows:

� Mutual Entity Authentication: This is achieved when each party is assured of the ID of the
other party.

� Mutual Key Authentication: This is achieved when each party is assured that no other party
aside from a specifically identified second party gains access to a secret key.

� Mutual Key Confirmation: This requirement means that each party should be ensured that
the other has possession of a secret key.

� Key Freshness: A key is considered fresh if it can be guaranteed to be new and not reused
through actions of either an adversary or authorized party.

� Unknown-Key Share Resilience: In this attack, the two parties compute the same session key
but have different views of their peers in the key exchange. In other words, in this attack, an
entity A ends up believing she shares a key with B, although this is the case, B mistakenly
believes the key is instead shared with an entity E ̸= A .
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� Key Compromise Impersonation Resilience: This property implies that if the Intruder com-
promised the long-term key of one party, he should not be able to masquerade to the party
as a different party.

These requirements, together with formal analysis, verify the proposed security protocols as
presented in chapters 6, 7 and 8. The next section discusses the evaluation process and methods
used to evaluate the protocols’ performance.

3.3.9 Security Protocols Performance Evaluation

Even though the main focus of the research in this thesis is not performance evaluation but in
order to show the effectiveness of the overall performance of the proposed solution, a performance
evaluation is conducted. We evaluate the performance of a security protocol using analytical and
simulation modelling. Detailed evaluation metrics and results are presented in chapter 9.

Analytical Modelling

Analytical modelling is used to get intuition about the protocol performance measurements, apply-
ing numerical methods and Markov chains process (Stewart 1994), (Bodei et al. 2005b), (Nottegar
et al. 2001), (Abadi et al. 2017). It relies on factors assumptions and theories that are translated
in the model. With the lack of a suitable simulation tool and since the protocols in this thesis are
modelled and verified using ProVerif that is based on processes and applied pi-calculus, analytical
modelling based on the Markov chain model is used. The mathematical representations of the sys-
tem model are based on queuing theory and probability is a key for analytical modelling. Detailed
definitions and evaluation results are presented in section 9.2.

The analytical model to evaluate the performance of the proposed protocols follows these steps.

� Specifications: Using syntax to define the protocol process and messages.

� Enhanced operation semantics: Specialised semantics and grammar used in specification of a
protocol and transition behaviour of a system.

� Quantitative measures: Quantifying cryptographic operation and message exchange with a
cost on the system based on quantitative properties like length and speed.

� Cost derivation: Any quantitative measures that is derived from transition properties such as
cryptographic procedure including encryption and decryption.

� Reward structure of the protocol: Associates a value with any state passed through in a
computation process such as a protocol.

Simulation Modelling

The proposed security protocols were modelled in an automated protocol proof verifier and network
simulator for effectiveness against attacks and overall performance, respectively. The protocol
modelling and verification are simulated in ProVerif tool (Blanchet et al. 2020) to make sure that
certain security properties are met, while network performance is simulated in NS-3 (Nsnam 2021)
to model the security protocols and measure the network impact of proposed protocols in E2E
simulation deployment setting to evaluate throughput and latency. NS-3 is an object-oriented and
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Figure 3.4: NS-3 software organisation (Nsnam, 2021)

event-driven simulator developed in C++ but also uses python, simulation modelling is conducted
in both programming languages. However, writing the code in C++ is more convenient with a lot
of reference material, written under the ns-3 namespace, using global defaults. NS-3 has an open
and extensible architecture, it has been used to model and evaluate different wired and wireless
networks and protocols (Kodali & Kirti 2020), (Sbai & Elboukhari 2019), (Malnar & Jevtić 2020),
(Mezzavilla et al. 2018). However, it is complicated to model security protocols in NS-3, so we
had to use a combination of modules and script modification to achieve our objective. Detailed
definitions and evaluation results are in section 9.3.

3.3.10 Simulation Environment Settings

In order to perform protocol simulation, both ProVerif and NS-3 tool are installed and configured
on a Ubuntu Linux virtual machine in VirtualBox environment installed on a windows computer.

Implementation environment setup is as follows:

� Windows 10: Processor Intel i7 - 2.40GHz, 16GB RAM and 250GB disk space

� VirtualBox

� Ubuntu 64bit operating system

� ProVerif 2.01

� NS-3.33

NS-3 Modules

The NS-3 is made up of mmWave and LTE modules that are used to programme and run a
successful simulation, consisting of key abstractions such as node, application, Internet, net device
and topology helper . The NS-3 programme organisation is shown in Fig 3.4.

� Node: represents the basic device (numUe, numEnb, remoteHosts) capable of computation to
which various functionalities can be added to and it is managed by NodeContainer.
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� Application: represents a user program responsible for generating an activity that needs to
be simulated using ClientApps for client and ServerApps for server.

� Internet: a medium through which a data is transmitted between entities, remoteHost with
bandwidth and propagation loss as configurable properties.

� Net Device: a network interface card is installed on a node to enable communication capab-
ility to work with the channels controlled by NetDevicesContainer such as enbmmWaveDevs,
uemmWaveDevs and internetDevices.

� Topology Helpers: support connections between the elements created by the user such as
Nodes, Internet and NetDevices.

The following topology helper are used.

� NodeContainer: provides the user with various ways to create nodes and manage them in
form of a network.

� PointToPointHelper: PointToPointHelper is used to configure PointToPointNetDevice and
PointToPointChannel objects to establish connection with DataRate and Delay attributes,
respectively.

� NetDeviceContainer: holds the NetDevices created with devices and channels configured
using Install methods enabling data transmission.

� InternetStackHelper: protocol stacks such as TCP, IP or UDP are installed on nodes.

� Ipv4AddressHelper: used to associate IP addresses with the devices on the nodes as an input
by the user.

Implementation

To model and implement the proposed protocols, we adopt various models and modify them to
suit our simulation models, the models are made up of modules written in C++ (Nsnam 2021),
(Mezzavilla et al. 2018), (Banerjee et al. 2020). In order to simulate 5G network communication,
the nodes, net device, applications and topology helpers were modified to represent communication
of the proposed security protocols entities based on 5G architecture. The NS-3 E2E simulation
structure with mmWave, eNB and UE radio stacks is shown in Fig 3.5 (Mezzavilla et al. 2018).
The modelling starts by defining the variable set up with the command line argument and declaring
local variables to control simulation parameters. The full code is in Appendix L. Nodes are created
for each role in the simulation numUe for UE, numEnb for gNB/SMF and Severs remmoteHosts with
pgw a gateway node. The size of the messages is defined as (M1, M2, M3, M4....) representing the
cryptographic quantitative values. The simulation stop time is configure with stopTime.

uint32_t numUe = 1;

uint32_t numEnb = 1;

uint32_t serverNodes = 4;

uint32_t stopTime = 2400;
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Figure 3.5: NS-3 mmWave end-to-end simulation structure

CommandLine cmd;

cmd.AddValue ("UE", "number of UE", numUe);

cmd.AddValue ("SEAF", "number of gNB", numEnb);

cmd.AddValue ("AUSF", "number of AUSF nodes", serverNodes);

cmd.AddValue ("ARPF", "number of ARPF nodes", serverNodes);

cmd.AddValue ("t", "simulation stop time (seconds)", stopTime);

cmd.AddValue ("M1", "Size of message 1 ", M1);

The UE, gNB, and servers are created with certain properties and attributes measuring metric
parameters. The MmwaveHelper and epcHelper are necessary for defining the actual mmWave
and EPC hardware.

NodeContainer ueNodes;

NodeContainer enbNodes;

enbNodes.Create (numEnb);

ueNodes.Create (numUe);

NodeContainer remoteHostContainer;

remoteHostContainer.Create (1);

Ptr<Node> remoteHost = remoteHostContainer.Get (0);

InternetStackHelper internet;

internet.Install (remoteHostContainer);
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NetDeviceContainer enbmmWaveDevs = mmwaveHelper->InstallEnbDevice (enbNodes);

NetDeviceContainer uemmWaveDevs = mmwaveHelper->InstallUeDevice (ueNodes);

In this simulation, packets movement and node mobility are configured using MobilityHelper

with uemobility and enbmobility for the UE and gNB, respectively. The devices positions are
set with enbPositionAlloc and ListPositionAllocator. The internet stack, routing, client, and
server applications are configured to send and receive predefined data packets as a security message
exchange between parties.

uint16_t dlPort = 1234;

uint16_t ulPort = 2000;

uint16_t otherPort = 3000;

ApplicationContainer clientApps;

ApplicationContainer serverApps;

UdpServerHelper dlClientHelper(port);

clientApps = authenticateA(clientApps, time , user, SEAF);

}

clientApps = authenticateB(clientApps, time , user, enbNodes.Get (0), SEAF);

}

clientApps = authenticateC(clientApps, time, UE, SEAF, ARPF, AUSF);

}

serverApps.Start (Seconds (0.0));

clientApps.Stop (Seconds (stopTime+1));

The sendMessage() function is used to create messages in UdpClients, while authenticate()
and authorise() functions simulate the verification of messages. The serverApps and clientApps

are used to start and stop the application.

ApplicationContainer authenticate(ApplicationContainer appContainer, double time,

Ptr<Node> user, Ptr<Node> gateway , Ptr<Node> device ){

appContainer = sendMessage(appContainer, time, user, device , M1);

appContainer = sendMessage(appContainer, time, gateway, device, M2);

appContainer = sendMessage(appContainer, time, device, user, M3);

return appContainer;

}

In order to generate pcap files for analysis and a xml file for viewing in NetAnim to animate
the simulation, the following configuration is done.

snprintf(saveFilePrefix, 50, "5GAKA_%dx%d_", numUe, numEnb, serverNodes);

if (enablePcap){

p2ph.EnablePcap (stringbuilder(saveFilePrefix,(char*)"_users"), numUe, 0);

p2ph.EnablePcap (stringbuilder(saveFilePrefix,(char*)"_devices"), numEnb,0);

p2ph.EnablePcap (stringbuilder(saveFilePrefix,(char*)"_gateway"), remoteHosts, 0);

}

if(enableAnim) {

AnimationInterface anim (stringbuilder(saveFilePrefix,(char*)"-animation.xml"));
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Mandatory

for (uint32_t i = 0; i < enbNodes.GetN (); ++i)

{

anim.UpdateNodeDescription (enbNodes.Get (i), "UE");

anim.UpdateNodeColor (enbNodes.Get (i), 255, 0, 0);

}

The simulation is completed with the following

uint32_t bytes_received = 0, totalPacketsThrough;

for (uint32_t i = 0; i < serverApps.GetN (); ++i){

totalPacketsThrough = DynamicCast<UdpServer> (serverApps.Get (i))->

GetReceived ();

bytes_received += totalPacketsThrough ;

}

std::cout <<"Total packets received ("<< "UE="<< numEnb <<", SEAF="<<

numEnb <<", AUSF="<< serverNode1 << ", ARPF="<< serverNode2 << ") :

"<< bytes_received << std::endl;

return 0;

}

3.4 Summary

This chapter explored the proposed approaches and methods required to address the research ques-
tions. This research attempts to define a NSD framework that incorporates the D2D commu-
nications and CCN based on C-RAN architecture, to investigate the security and privacy of an
integrated system such as 5G. In addition, it intends to propose security protocols, verify, and
formally analyse the protocols using formal methods to integrate them using the security frame-
work introduced in chapter 5. It also intends to evaluate the protocols’ security properties and
performance. The next chapter introduces a system model used to access services in 5G enabled
D2D communications network. It discusses D2D discovery, communication process and presents
different D2D application scenarios. Finally, it investigates threats and vulnerabilities against the
proposed system model and conducts a comprehensive and systematic analysis.
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Chapter 4

Network Services Delivery
Framework

4.1 Introduction

With 5G promising to provide services close to the edge and improving end user’s QoE, it requires
efficient service access and delivery models. Its integration with other architectures and services can
be provisioned as 5G NS. As aforementioned in chapter 2, the system model adopts C-RAN, CCN,
and D2D communications to enable content dissemination in 5G. The applications presented in this
chapter explore different scenarios that can be applied to D2D communications. A comprehensive
security investigation is conducted, which explores security and privacy issues in D2D communic-
ations and service-oriented networks. This chapter introduces the system model, investigates the
security threats against NSD, and analyses the security requirements of the system model based on
the threat model and security properties presented in chapter 3. Some of the work in this chapter
is also presented in (Edris et al. 2021c).

The rest of the chapter is structured as follows. Section 4.2 introduces a NSD framework. In
section 4.3, an investigation on security and privacy threats in 5G enabled D2D communications is
presented. The security evaluation based on x.805 security framework is presented in section 4.4.
The security solution approaches are presented in section 4.5. The chapter is summarised in section
4.6.

4.2 NSD in 5G enabled D2D Communications

4.2.1 System Model

The system model in Fig. 4.1 consists of the UE, BBU pool, RRH, HN, and the SN. The UE is
registered to the HN and receives roaming services from the VN. For the CCN integration, CCN
protocol can be embedded into the entities and 5GC (Kim et al. 2017), (Zhang et al. 2019) or
the control and user plane enhancement can be implemented with CCN functions within 5GC and
extend the interfaces to support CCN PDU sessions (Ravindran 2019). The UE must be registered
with MN/SP and subscribed for the services. With that the UE requests to connect to the HN,
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Figure 4.1: System Model

the primary authentication procedure is performed to authenticate the UE to the network then
the UE requests to access the services depending on the Service Level Agreement (SLA) and the
QoS agreement. After a successful network access authentication, a secondary authentication might
be required for UE and SP communication, which authorizes the UE to access more services and
perform extra activities such as data caching and sharing.

The SP is responsible for services subscription, authorization, and service provisioning. As
mentioned earlier, the SP could be the MNO or third-party SP with their own infrastructure or
using the MNO’s infrastructure. The SP might want to hide their visibility or deny the UE from
accessing the services. The communication channels between UE, SN, HN, and D2D devices are
vulnerable to attacks, also that HN and VN could eavesdrop on D2D communication. This research
is interested in content access and retrieval process, which deals with content discovery and delivery.
Moreover, the MNO controls the user’s access to the network, connection establishment, resource
allocation, and security management while the SP controls services authorization.

4.2.2 Service Access and Delivery Model

The process of content dissemination and service delivery starts with UE generating an interest
message which is forwarded to the BBU through RRH, then BBU starts a CCN forwarding process
to match the request content name (Zhang et al. 2019). If the targeted content exists in BBU pool

Figure 4.2: Service Access and Delivery Model
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CS, then it is sent back in a reverse path traversed by the interest message to fulfil the initial UE
request. During the content forwarding, the involved entities can choose to cache content replica
or not, subject to the level of permission such as cache authorization. The content retrieval in
D2D communications involves cache satisfaction at BBU, UE, and 5GC. Two scenarios of content
retrieval are considered, scenario 1 where the content is being matched at the 5GC, and scenario
2 where the content is being matched locally by another UE in proximity as shown in Fig. 4.2.
However, if the content request is not matched locally from UE in coverage or BBU, the interest
is forwarded to 5GC, if it is matched in CS of 5GC then the content is pushed back towards the
UE. In case the interest is not matched at this level it is forwarded to the internet, using the same
routing, and forwarding process. The content is being cached by various entities as it is sent back
to the UE. Therefore, the traffic burden is reduced on backhaul if the request does not go to the
5GC and the content retrieval is achieved at fronthaul or by D2D links as the BBU can discover
cached content by associated devices and content transmission through D2D communications (Jin
et al. 2017). Concurrently the security requirements must be fulfilled at the network, service, and
D2D levels by performing authentication and authorization procedures. It is assumed that primary
authentication between UE and the HN has been performed and the HN has already agreed on the
communication terms.

4.2.3 D2D Discovery and Communication Process

D2D communications can be initiated to satisfy a service request by establishing a communication
session securely and efficiently. The D2D communication between two UEs in cellular coverage is
controlled by BS, whereas the out-of-coverage is controlled by the D2D devices. Generally, the
D2D communication process in this thesis is like any D2D communications network with a few
changes. So during the discovery stage, the UE broadcasts a request message to discover other
UEs, when a UE receives a request message, it sends a response message back to the sending UE.
The broadcast or response message in this process includes UEs’ IDs, a Generic Public Subscription
Identifier (GPSI) for outside HN communication. With the link setup stage for a D2D connection
between two UEs, each UE sends a verification request to its gNB, with the GPSI of the target
UE being received in the discovery stage. After verification, ECIES is used to support security
vectors exchange, authentication, authorization procedures, and secure data transmission using the
proposed protocols in this research presented in chapter 8.

D2D communications Network Assisted

The gNB can initiate D2D connectivity via SMF even though the UE might not be aware of any
other UE in proximity. When the SMF in 5GC receives IP or CCN data packets, it is analysed to
consider the link as a D2D link or not. This process starts from step 1 below and it is assumed
that the UE can discover other UEs in proximity hence the UE can initiate D2D connectivity if it
wants to share content with another UE as stated in step 3. The generic D2D connectivity process
is explained below:

1. When the SMF receives a session request packet, it checks if the transmitter and receiver
are within the same cell and the channel condition can support D2D communication then it
initiates the D2D connectivity request to the gNB. The request messages include a UE ID,
service ID, and data name.
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2. Then gNB starts a strategy list of communication patterns, Physical Uplink Shared Channel
(PUSCH), Physical Uplink Control Channel (PUCCH), power indicator, scan spectrum, and
time, after analysing the request messages from SMF and it sends it to UE1.

3. The UE1 hoping to make D2D connectivity with UE2 sends regular device information in the
Physical Random-access Channel (PRACH) with binary code, UE ID, data name, and the
UE can also detect received information from other UEs.

4. After matching the targeted UE2, the initiating UE1 sends the D2D connectivity request to
the gNB.

5. Then gNB analyses the D2D connectivity request, chooses the best communication pattern
for the D2D pair based on the conditions of the channel and cell resource utilization.

6. When the D2D connectivity request fails, the normal cellular communication mode is adopted
and the communication between the UEs goes back to the conventional cellular mode.

7. Conversely, if the D2D mode request including orthogonal or reused pattern is permitted,
the gNB establishes a strategy list including communication patterns, power indicator, scan
spectrum, and scan time and sends it to UE1.

8. After completing the channel measurement such as normalized interference intervals, UE1
provides an update to the gNB.

9. The gNB allocates the spectrum resource to UE1 and lets UE2 recognise the same channel.
Training sequences at the allocated channel are sent by the UE1 to help UE2 to get the link
quality. Then UE2 sends a confirmation message back to UE1 after the link quality is suitable
and UE1 confirms to gNB.

D2D communications Non-Network Assisted

This is like MANET however, D2D link uses a reserved cellular licensed spectrum during an out-
band communication, also referred to as public safety network. This is a direct communication
between UEs with controlled link establishment by the UEs and it is explained below:

1. The UE1 hoping to make a direct communication transmits beacon signals with low frame
rate to reduce signalling overhead.

2. The UE2 in proximity then responds by sending acknowledgement messages.

3. The received messages are evaluated based on metrics, such as Signal-to-Interference-plus-
Noise Ratio (SINR).

4. The UEs can start direct communication with each other when a received signal is above the
predetermined metrics threshold with a good QoS.

The beacon signals are sent over channels dedicated for transmitting control signals, whereas shared
data channels are used for exchanging data between D2D UEs. The beacon signal should include
security vectors within the packet frames for securing the D2D links. 5G UE is capable of an
authentication process with low signalling overhead.
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Figure 4.3: Scenario 1 Intra Network Operator and in-Coverage

4.2.4 D2D Application Scenarios

With MNOs and SPs providing NS as an independent and cooperative business model, users sub-
scribe to both for specific NS. The UE connects via the HN and transfers to another network using
handover techniques, digital certificates are used to establish trust and service agreements to sup-
port UEs. Firstly, the UE and the HN mutually authenticate and agree on a session key for UE
and SN communication, network access security through AKA protocols discussed in chapter 6.
Secondly, the UE requests service authorization to SP, discussed in chapter 7. Thirdly, the UE
can establish D2D connectivity with another UE and perform security procedures as presented in
chapter 8 completing the security solutions to address security issues as intended by this research.

The UE may request access via HN or VN in a roaming state, there should be predefined SLA,
QoS, and roaming agreement between the UE’s HN and VN for seamless connectivity and access.
It assumed that two UEs hoping to establish a D2D link, have already been authenticated by their
HN and the communication session is established securely and efficiently. There are two types of
subscribers considered i.e., the one transmitting the content and the requester of the content, the
role of subscribers can change from transmitter to requester and vice-versa depending on cellular
coverage, D2D communication mode, and location of the content. This research focuses on four
scenarios.

Scenario 1: Intra Operator, Non-Roaming and Same Cell
UE1 sharing content with UE2 in an intra-operator and non-roaming scenario as shown in Fig. 4.3,
both users subscribe to the same MNO and get served by the same HN. The UEs are in cellular
coverage of the BS, D2D communications between two UEs are controlled by gNB. The MNO
controls the user’s access to the network, initial connectivity establishment, resource allocation,

Figure 4.4: Scenario 2 Intra Network Operators and in-Coverage
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Figure 4.5: Scenario 3 Inter Operators, in-Coverage and Roaming

and security management. The cellular licensed spectrum is shared between the established D2D
link with the normal cellular connections under the coordination of MNO.

Scenario 2: Intra Operator, Non-Roaming and Different Cells
UE3 sharing content with UE4 in HN, served by the same operator but in different cells, as shown
in Fig. 4.4. This is an intra-operator and non-roaming scenario, both users subscribe to the same
operators, and they are in coverage.

Scenario 3: Inter Operators and Roaming
UE5 sharing content with UE6, UE5 in HN while UE6 is roaming in VN, one SN, and two HN. This
is an inter-operator and roaming scenario, both users subscribe to different operators, and UE5 is
served by HN and UE6 served by VN in coverage as shown in Fig. 4.5. D2D communication is
established through the D2D link but the HN of UE5 can restrict UE5 from sharing content with
UE6 by hiding its service visibility or denying access through ACL mechanism and preventing its
services from being accessed by UE6. However, when static roaming agreements between VN and
HN are not applicable then dynamic roaming would be used to permit access.

Scenario 4: Inter Operators and out-of-Coverage
UE7 sharing content with UE8, both UEs are out-of-coverage and need to share content without
involving their HNs. This is an inter-operator; it also applies to emergency or disaster situations.
Both users, UE7 and UE8 subscribe to different operators as shown in Fig. 4.6.

Figure 4.6: Scenario 4 Inter Operators and out-of-Coverage
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4.2.5 Analysis

The system model identifies entities that are involved in the access and delivery of services, while
the access and delivery model describes the service request by the UE and how the request is
handled by the HN/SP and content dissemination back to the requester. The application scenarios
discussion entails how D2D users communicate and share content with network assistance or with
stand-alone D2D communications. This next section investigates the threats and vulnerabilities of
security and privacy in 5G enabled D2D communications and service-oriented networks.

4.3 Security and Privacy for NSD in 5G enabled D2D com-
munications Network

Security and privacy are interrelated issues that will be serious concerns in 5G enabled D2D com-
munications. The UE can participate in D2D based content transmission, distribution, and delivery
as well as traffic offloading, which increases the vulnerabilities of participating entities and the data
in transit. Moreover, mobile security at edge is another concern, where the services and user’s
data will be vulnerable. The MNO must authenticate and validate the SP to ensure secure service
access and provisioning. If not, it might compromise the security of HN entities and expose them
outside the HN (5GPPP 2017). Therefore, security mechanisms must be in place to protect the
network, UE, and services from any possible threats. This section explores the security threats and
vulnerabilities that might affect NSD in 5G enabled D2D Communications, some of these issues
have been discussed in (Haus et al. 2017), (Gandotra et al. 2017), (AbdAllah et al. 2015), (Tourani
et al. 2018).

4.3.1 Security Threats

The wireless nature of D2D communications plus its characteristics and architecture presents several
security vulnerabilities that put the network at risk to potential threats (3GPP 2010). 5G can still
be affected by threats from legacy systems and the security of NS could be compromised by new
attacks on different levels of the network. In a cellular network, the BS acts as a central authority
but in D2D communications it might play a minimal part hence strong anonymity is provided.
However, BSs have access to the data transmitted between the UE and other UEs, which could
expose the data to possible attacks in the form of active and passive, local, and extended. Based
on our system model in Fig. 4.1, some of the attacks are as follows.

Eavesdropping: D2D messages can be eavesdropped on by authorized and unauthorized cellu-
lar users, affecting data confidentiality (Haus et al. 2017). Side channel attacks can be used across
network slices targeting the implementation of cryptography or running a code to influence the
contents of the cache (Alliance 2016).

Data Fabrication: The unprotected transmitted data can be fabricated or changed by ma-
licious users, which leads to the content being circulated by the unaware infected device to other
devices, affecting the integrity of the system.

Control Data Attack: An attacker might try to modify the control data; cryptographic
techniques can be used to prevent such attacks.

Impersonation Attack: A legitimate user might be impersonated by a malicious user and
communicate to other D2D users through an ID impersonation attack. Network slice instances are
vulnerable to such attacks, which could lead to other attacks like location attack (Alliance 2016).
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Free-Riding Attack: In D2D communications UEs participate in sending and receiving data
willingly but some UEs might not be willing to send data to other UEs if they are in power-saving
mode while receiving data from their peers, which decreases the system availability.

Privacy Violation: Privacy affects both D2D communications and CCN, it is important to
preserve the privacy of users’ data such as their ID and location from being leaked. User’s privacy
could also be violated if sensitive data in transit is eavesdropped on. If an attacker can listen and
intercept transmitted messages, she would be able to extract information and guess the location
of the UE. ICN cached content, user privacy, and content names are all targets of privacy attacks.
Moreover, a user’s subscription information could be leaked by an attacker or a compromised
publisher through timing and anonymity attacks (Tourani et al. 2018).

Denial of Service (DoS) Attack: D2D services might be interrupted by making them un-
available to the intended users, an attacker can weaken or block legitimate devices from establishing
the connection completely. DoS attack can overload the NS by sending big continuous requests to
CCN nodes, domain name queries, and by interest flooding (Tourani et al. 2018). An attacker
might exhaust security resources in one network slice so that she can attack other slices (Alliance
2016).

Content Poisoning Attack: It involves filling the content router’s cache with invalid content,
the content being injected has a valid name matching the sent interest, however, the payload might
be fake or have an invalid signature (Ghali et al. 2014a).

Cache Pollution Attack: An attacker may weaken the caching activity by requesting more
frequently the less popular content with attacks such as locality disruption and false locality (Tour-
ani et al. 2018).

Unauthorized access: An unauthorized device might access some data which was for a specific
entity. For instance, in unauthorized cache access, a cached data object from a local device might
be access by an unauthorized device (Loo & Aiash 2015).

Cache Misuse: The attacker can utilize on caches capability and use it as storage, hence,
enabling her to make their own content available. Also, an attacker can corrupt the cached content
turning it into incorrect returned objects for a DoS attack.

False Accusation: A malicious publisher may try to make it look like the requesting device
has requested a data object when it has not and might also charge a subscriber for a service that
was not requested or obtained.

IP and Location Spoofing: Attackers use malicious code to manipulate the header of IP
packets (Lichtman et al. 2018). Might also send fake location information disrupting the D2D
connectivity establishment by imitating with artificial locations to confuse the D2D members.

Session Hijacking: The attacker spoofs the IP address of the victim device and guesses the
SQN expected by the targeted source device, this is followed by Distributed DoS (DDoS) attack on
the victim’s device, impersonating the device to carry on the session with the targeted device.

Communication Monitoring: The attacker may have access to the same router the requester
is using to receive content then she targets a requester and tries to identify the victim’s requested
content.

Jamming Attack: Malicious user masquerading as a legitimate subscriber on a shared link,
sends many content requests to disrupt the flow of information, and then replies are sent to a
destination other than the requester. In 5G jamming is achieved through analysing physical control
link channels and signals (Lichtman et al. 2018).

Data Leakage: The UE might be attached to several slices on the network with different
security parameters. If the UE cannot separate data from different slices, the separation between

50



Figure 4.7: X.805 Security Framework (Zeltsan, 2005)

slices could decrease, leading to the UE receiving sensitive data from one slice and then publish
that data via another slice (Alliance 2016).

4.4 Security Evaluation of NSD in 5G enabled D2D Com-
munications

To give a systematic approach of the security evaluation for 5G enabled D2D communications,
this section applies the X.805 framework (Zeltsan 2005) to analyse the security requirements for
delivering NS based on our system model. The NS abstraction is used to map NS with X.805
security layers. The framework was used in (Park & Park 2007), (Loo & Aiash 2015) to evaluate
E2E security of systems.

4.4.1 The X.805 Security Framework Overview

Analysing security in any networking system is very complicated, ITU-T developed X.805 standard
as a security evaluating tool, it uses a modular method to create a multi-layered framework that
assesses possible threats and vulnerabilities in E2E network security based on the eight security
dimensions to address security threats effectively. The standard defined three security layers (ap-
plications, services, and infrastructure); three security planes (end user, control, and management);
and eight security dimensions (access control, authentication, non-repudiation, data confidentiality,
communication security, data integrity, availability, and privacy) (Zeltsan 2005). The security lay-
ers and security planes are identified according to the network activities as illustrated in Fig. 4.7.
In addition, nine security viewpoints are created by applying each security plane to each security
layer, whereby each viewpoint has its own distinctive vulnerabilities and threats based on security
dimensions.

Security Layers: Infrastructure security layer covers the core building blocks of NS, NF,
network slices, applications, and individual communication links such as BSs, RRH, routers, servers,
slices, and fibre links. This layer facilitates the security of hosts involved in the data transmission,
it prevents attacks from air interfaces and physical links including content servers, gateways, BBU,
and D2D connectivity. Service security layer covers services provided to end users such as CCN,
IP, cellular, QoS, and location services. Securing this layer is complicated as services may build
upon one another to satisfy user requirements such as sharing and delivery of CCN services via
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Figure 4.8: Infrastructure Layer with Eight Dimensions

D2D communications. The CCN is related to the service layer while D2D communication is related
to the infrastructure layer.

Security Planes: The security plane is concerned with the security of operations and provi-
sioning of the individual mobile network elements, D2D, and cellular communication links as well
as securing the functions of NS such as the configuration of UE, BBU, 5GC, and secure content
provisioning. In addition, it is concerned with the security of the control data stored on the network
elements and in transit for NS such as D2D control link and PDU session. It gives assurances on
the security of the user’s data on the network elements.

Security Dimensions: The eight security dimensions are used as a viewpoint for vulnerabilities
and threats to provide protection against any attack in the form of security controls on each layer,
this aligns with 5G SCC.

4.4.2 Security Evaluation using X.805 Framework

To be able to mitigate potential threats and attacks as presented in section 4.3, the security require-
ments must be evaluated. The security requirements are classified using security layers, associated
with the security planes in modular format, each module is analysed using the eight security di-
mensions. The focus is on the service and infrastructure layers and how the UE is affected when
accessing the NS. Modules 1, 2, and 3 are associated with the infrastructure layer whereas modules
4, 5, and 6 are associated with the service layer. The X.805 demonstrates a methodical approach
in modular form as shown in Fig. 4.8 and Fig. 4.9. The security goal is to cover the security
capability of the framework including the detection and recognition of attacks, protection, audit
of the system, and its recovery after the attack. Next is the comprehensive security requirements
analysis:

Access Control

This dimension limits and controls access to network elements and services through encryption and
authorization mechanisms. Some services lack built-in support to provide ACL. When an entity
that is not controlled by the SP publishes content, the SP has no way of applying ACL or knowing
which user has accessed the data (Ohlman et al. 2014). Also, the system should be able to revoke
the user’s privilege if it is detected to be malicious. Attacks such as free-riding should be prevented,
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Figure 4.9: Service Layer with Eight Dimensions

and UE should be protected from joining rouge BS. Additionally, the privilege of D2D users should
be taken away in time if a user is found out to be malicious or their subscription has expired.
Moreover, revocability in D2D communications can be applied to avoid impersonation attacks.

Infrastructure Security Layer - Modules 1, 2 and 3 : The ACL at this layer is concerned
with only allowing authorized UE and network entities to perform activities such as accessing data
on the UE and content objects in the network. Without the appropriate access control policies, an
unauthorized device might be able to access services that were intended for limited UEs. ACL can
permit or deny a SP or a UE the right to perform any action on service or UE during the D2D
communications and extra mechanisms should be in place for the UE to control their data flow.
ACL must be applied to control the access of data on the network entities.

Service Security Layer - Modules 4, 5 and 6 : The ACL at this layer is concerned with
allowing only authorized BBU and SP to perform management activities of the NS and that the
received service originated from an authorized source. In addition, only authorized UEs can access
the NS and the services request message originated from an authorized UE before being accepted.
The BBU should be able to hide its services or visibility from unauthorized UE after the primary
authentication and during handover sessions. ACL must be applied on the BBU and content server
such as Role Based Access Control (RBAC) or Discretionary Access Control (DAC) depending on
the ID of the subject for authorization, it suits unstructured domains like the proposed system
model in this research.

Authentication

This dimension ensures a valid proof of ID is presented in the form of a shared secret, public key,
digital signature, or digital certificate (Ahlgren et al. 2012). Authentication evaluates the ID of
the entity and verifies if the entity has a secret and private key, it can be applied to an entity and
data. Assigning an ID to a secret or key is required during authentication. In a cellular network
for the UE to access the NS the UE and network must perform primary authentication using AKA
method, to stop attacks such as impersonation attacks, false content injection, and free riding.
After a successful primary authentication procedure, a secondary authentication can be performed
to ensure that only authorized UEs can access SP services (3GPP 2020f).

Infrastructure Security Layer-Modules 1, 2 and 3 : Authentication at this layer is concerned
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with verifying the ID of the UE requesting the services, SN, BBU, and content server providing the
NS to the UE. The ID of the communicating entities and transmitted data must be authenticated
to secure D2D communications. The first step is to authenticate the entities to confirm the D2D
peers’ IDs then authenticate the data source to confirm if it is from a legitimate user. If device
UEA receives a message from device UEB , UEA can verify that UEB is indeed the sender of the
message. For instance, verifying the signature of another UE.

Service Security Layer- Modules 4, 5 and 6 : Authentication on this layer is concerned with
verifying the ID of services, the service entities, and the origin of the NS. The verification of UE
trying to access the services should be done by Authentication Authorization Accountability (AAA)
servers, which also monitor, manage the subscription and service provisioned to the UE. With service
authentication, the external service should also be able to authenticate the UE. The receiver should
be able to assess the validity, provenance, and relevance of the data received (Ohlman et al. 2014),
to make sure that fragmented data received is complete and not corrupted. Therefore, verifying
the producer’s identification to ensure that ID and source of cached data can be trusted is a must
(Ahlgren et al. 2012).

Non-Repudiation

This dimension is concerned with preventing any device from denying its involvement in an activity
on the network. It prevents entities from denying transmission or reception of a service. It also
allows the tracking of the source of a possible security violation (Abd-Elrahman et al. 2015). The
MNO/SP and devices should be held accountable for their action through monitoring of network
activities. For example, a verified content producer should not be able to deny that they are the
source of the content or UE should not be able to deny sending an interest message. A digital
signature can be used to achieve non-repudiation and other mechanisms should be in place to prove
the originality of the data as well as proof of transaction to prevent false accusation attacks.

Infrastructure Security Layer - Modules 1, 2, and 3 : The non-repudiation at this layer
records and identifies entities such as UE, BBU, servers that perform activities on other devices,
modify control data, or access UE data in case they deny their involvement in such transactions.
The record acts as proof of access or alteration of the control data as well as identifying the origin
of control messages and the action that was performed. For example, identifiers can be applied as
a solution to bind user related messages to the UE and network for accountability. Packet level
authentication (Andersen et al. 2007) can be used to provide network layer authentication and
accountability of the data using public key cryptography.

Service Security Layer - Modules 4, 5, and 6 : The non-repudiation at this layer is concerned
with recording of the content producer, UE, BBU, or 5GC entities that performed NS activities,
the origin of the control message, and the UE that accessed the services. For example, information
about an object’s provenance, which indicates who generated or published what content object
by name. In addition, the requester who receives content is recorded and charged for the service,
the use of out-of-band digital signature (Mao 2004) solves this issue. There should be a strong
association between the entity IDs and the use of the NS to prevent spoofing attacks. However,
there might not be a direct link between SP and the requester despite the need for auditing of usage.
Therefore, the producer and requester must trust the system to account for usage fairly, charges
are added according to services accessed periodically (Aiash et al. 2014). The mobile network is
capable of tracking and monitoring system utilization and usage as per the service contract.
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Data Confidentiality

This dimension ensures the confidentiality of data on the network devices and in transit, encryption
should be used to provide confidentiality. Data must be encrypted and should only be decrypted by
an authenticated and authorized entity. The confidentiality of the data must be protected against
attacks such as eavesdropping and privacy invasion. Moreover, encrypting messages on a wireless
channel is standardized in 5G. For example, encryption keys can be applied to encrypt data before
transmission using symmetric or asymmetric encryption mechanisms.

Infrastructure Security Layer - Modules 1, 2, and 3 : The data confidentiality at this layer
deals with the protection of the data on network devices, control data, and data transiting the
network devices. For example, user’s control and configuration data should be protected against
any unauthorized access. During service provisioning, data might pass through possibly untrusted
segments. Encryption and ACL can be used to provide data confidentiality. Other methods based on
Channel State Information (CSI) could be used to avoid data leakage (Haus et al. 2017). Additional
use of cryptographic mechanisms like stream ciphers might stop the attacker from reading messages
between two D2D users as well as preventing eavesdropping attacks.

Service Security Layer - Modules 4, 5, and 6 : Confidentiality at this layer is concerned with
protecting the NS’s control, configuration, and management data such as PIT updates, security
settings in network entities, and UE data from unauthorized access and eavesdropping attack.
Also, encryption and ACL can be used to provide confidentiality of NS. A content producer should
be able to control which subscribers may receive what content in out-of-coverage scenario, however,
confidentiality might not be relevant where the producer is offering data to everyone. Group
key distribution (Liu et al. 2014) can be used for data confidentiality, whereby the producer pre-
distributes keys to all potential requesters. Although an out-of-band approach prearrangements
between the publishers and the subscribers might be required (Loo & Aiash 2015).

Communication Security

This dimension ensures that information only flows from source to destination using secure channels.
Security is achieved by creating a secure tunnel between the endpoints. In legacy systems, the
wireless communication channel was not secured but in 5G this problem will be addressed by
concealing SUPI (3GPP 2020f). However, point-to-point communication does not apply to ICN,
the content is requested without being aware of its location. Moreover, the requester might be
receiving chunks of cached data from different sources such as, SP, BBU Pool, and other UEs
which makes establishing secure channel complex and unmanageable. Therefore, information and
host-centric security methods must be considered to protect intended D2D users when receiving
and reading data. Encryption methods could be used for secure routing and transmission of data
to authorized users as well as physical layer security by exploiting wireless channel characteristics,
modulation, coding, and multiple antennas preventing eavesdroppers (Sun & Du 2017).

Infrastructure Security Layer - Modules 1, 2, and 3 : The communication security at this
layer ensures that UE, control, and management data only flows between entities and communic-
ation link that uses secure channels. For example, authentication data such as security context
should not be diverted or intercepted as it flows between the source and intended target. Se-
cure communication must be established between the UEs and other entities before sharing any
information.

Service Security Layer - Modules 4, 5, and 6 : The communication security at this layer
ensures the management, control, and UE data in transit for NS, only flows between entities using
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a secure channel, and that data is not intercepted. For example, with the interest messages and
service data, the SP registers a service ID to the server or cache node and binds the data under
a namespace. The BBU is tasked with monitoring and storing data regarding the interest and
data exchange, the BBU can search for malicious devices and select a different route for packets
to reach their destination securely, the ICN architecture can reveal misbehaving devices (Priya &
Sakthisaravanan 2015).

Data Integrity

This dimension ensures that data is received as sent or retrieved as stored and no data manipulation
has been performed by any malicious or authorized users. The compromised data can affect the
integrity of the whole network, D2D users should be able to receive correct data without alteration
or fabrication. If an attack like message injection or false reporting is initiated, the data’s integrity
might be violated which could compromise the UE. The integrity of the communication between
the UEs and the 5GC entities must be protected, this can be achieved by using hash functions,
digital signature, and manifest-based content authentication for content signing.

Infrastructure Security Layer - Modules 1, 2, and 3 : The integrity at this layer is concerned
with protecting the configuration and control data, D2D links, data transiting from the UE and
other entities against unauthorized modification or replication, and the data stored on the devices.
System integrity can be compromised if an attacker puts bogus subscription data using a malicious
server and behave as a bogus subscriber to the UE or BBU, respond to interest with a bogus reply
or drop the data completely. Protecting the integrity of legitimate user’s data can be achieved
with the use of MAC. Service Security Layer - Modules 4, 5, and 6 : The integrity at this
layer is concerned with protecting the management and control data of NS against unauthorized
modification and deletion. For example, the integrity of interest and service data in transits should
be protected as well as the integrity of identifications and security context from authentication
procedures. To provide integrity, cryptographic mechanisms such as hash functions and MAC
should be applied, however, 5G has no cryptographic integrity protection for the user data plane.
Also, integrity protection mechanisms should be applied to ensure that any data modification is
detectable.

Availability

This dimension ensures network elements and services are available to legitimate users, authorized
users should be able to access the network and services ubiquitously. Network access and services
should be available even during any attacks like DoS and free riding. DoS attacks are hard to
detect since D2D communication does not rely on centralized infrastructure (Huang et al. 2011),
while jamming attack affects communication between D2D users and can be started anonymously
(Haus et al. 2017) which can make services unavailable for users. However, due to CCN naturally
spreading contents to enable requests being satisfied by alternating sources, it requires a lot of
effort to initiate a DoS attack which reduces the impact of the attack, even though it is hard for an
attacker to send repeated requests on a single device but it is possible. In 5G, NS should always be
available for UEs, and the waiting time to connect or get services should be as short as possible to
complement 5G objectives like high data rate and reliability. In addition, devices such as intrusion
detection, intrusion prevention systems, and firewalls should be deployed in the network as well as
business continuity and disaster recovery plans should be in place to decrease downtime of 5G NS.
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Infrastructure Security Layer - Modules 1, 2, and 3 : The availability on this layer is
concerned with ensuring that network devices can receive control data, access UE data, and manage
the D2D link. Also authorized personnel and devices should have access to the infrastructure. The
network should be protected against DoS and jamming attacks. During a DoS attack, the attacker
can target caching and routing planes by creating large amounts of unwanted traffic, which is cached
by intermediate devices in the BBU and 5GC, resulting into cache overflow due to overloading
of caching plane. Moreover, a DoS attack can be initiated by polluting the content cache in
BBU and 5GC’s CS, hence returning an incorrect content object (Edwall 2011). To minimize the
damage from such an attack, data should not be delivered without a valid subscription from the
requester. Therefore, preventing unwanted traffic from bogus requests can improve availability and
dependability whereby the system only serves valid and authorized users.

Service Security Layer - Modules 4, 5, and 6 : The availability at this layer is concerned
with ensuring that the network devices participating in a NS provisioning are always available to
exchange control data. To ensure that accessing and managing the NS by authorized users cannot
be denied. Services must be protected from DoS and jamming attacks. The use of malicious
content and subscriptions to overload the system or a subscriber from flooding the producer with

Table 4.1: Infrastructure Layer in Relations with Security Dimensions

Security Infrastructure Layer Security Mechanisms
Dimensions
Access control Authorize UE and network entities ACL and passwords

to accessing data on the UE and
other entities

Authentication Verify the ID of the UE, BBU and shared secret, PKI, digital
server providing the NS to the UE certificate, and digital signature

Non-repudiation Record UE, BBU, servers that MAC, hash function, and
perform activities on devices while asymmetric encryption
accessing the NS

Data Protect the UE, control data and symmetric and asymmetric
confidentiality data on other network devices encryption
Communication Ensures that UE, control and symmetric and asymmetric
security management data only flows between encryption

entities on sure channels
Data integrity Protect the control data on the MAC, hash function, and digital

entities, links, and data in transit signature
against unauthorized modification

Availability Ensure that network devices can intrusion prevention and detection
receive control data, access the UE systems, business continuity and
data, and manage D2D links disaster recovery plans

Privacy Ensure that data that can identify symmetric and asymmetric
the UE and other entities are not encryption
available to unauthorized users
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bogus interest messages should be prevented. Availability of NS guarantees that authorized users
can access the services through D2D communications. Moreover, availability and dependability
can maintain a satisfactory user experience and enforce the availability of services even during an
attack.

Privacy

This dimension ensures that the identifiers, users, and network data are kept private. Privacy
in 5G is part of very critical security requirements, elements such as ID and location must be
preserved. This is central to the new age of information and users’ data privacy has become a very
sensitive topic in recent years. D2D users should know what data they are sharing, and the system
should collect only the required data for specific services. Encryption can be used to protect the
communication and data transmission between entities.

Infrastructure Security Layer - Modules 1, 2, and 3 : The privacy at this layer is concerned
with ensuring that data that can be used to identify the UE, BBU, and 5GC entities or communic-
ations link is not available to unauthorized users. Network elements should not be able to provide
data revealing the UE’s network activities such as UE’s location to the unauthorized user and only
certain user data should be accessed by authorized personnel. Exposing information from cached
data could lead to exposing UE data. The UE might need to communicate anonymously while
accessing services to reduce such attacks.

Service Security Layer - Modules 4, 5, and 6 : The privacy at this layer is concerned with
ensuring that data that can be used to identify the NS management systems and communication
links is not available to an unauthorized user. In addition, NS should not be able to reveal data
such as UE and service IDs. An attacker might be able to gather and obtain data by monitoring
the cache transaction even when the requester source is not clearly identified, by analysing the
direction of the requests and timings of the transactions (Loo & Aiash 2015). With location-
based services being provided to the UE, tracking of the UE is possible and UE privacy might be
compromised if the attacker manages to get into the network. Moreover, the UE activities can be
exposed to cache owners that they might have no transactions with the UE. It is impossible for
the user to request services without revealing their subscription and security information to the
SP or the infrastructure. Private information retrieval mechanism (Yi et al. 2013) could be used
to preserve the privacy of subscription data, it allows the retrieval of database entries without the
user disclosing the entries to the server. The Tables 4.1 and 4.2, summarise security requirements
classification based on security layers, security planes associated with the eight security dimensions.

4.5 Security Solution Approaches

With the threat modelling and security evaluation completed, next is to explore possible solution
approaches, which must consider the unique characteristics and pre-design security features of 5G,
D2D communications, and CCN. For instance, CCN has basic security mechanisms as part of its
architectural design such as integrity and authentication while the encryption messages over wireless
communication have been standardized and trust enhanced in 5G. In addition, cryptography and
ACLs can be deployed at the different layers to achieve security objectives.
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Table 4.2: Service Layer in Relations with Security Dimensions

Security Service Layer Security Mechanisms
Dimensions
Access Control Authorize BBU and SP to perform ACL and passwords

management activities on NS
Authentication Verify the ID of NS, the service shared secret, PKI, digital,

entities and the origin of the NS certificate, and digital signature
Non-repudiation Record the SP, UE, and BBU MAC, hash function, and

transactions and origin of the control asymmetric encryption
messages to prevent deniability

Data Protect the NS’s data transiting the symmetric and asymmetric
confidentiality network devices from unauthorized encryption

access
Communication Ensures the management, control symmetric and asymmetric
security and UE data for NS passes through encryption

a secure channel
Data integrity Protect the management, control, the MAC, hash function, and digital

UE data against unauthorized and signature
deletion of service data

Availability Ensure that the network devices, UE intrusion prevention and detection
data and D2D links are available to systems, business continuity and
to receive control data disaster recovery plans

Privacy Ensure that data that can be used to symmetric and asymmetric
identify NS is not available to encryption
unauthorized users

4.5.1 Authentication and Key Management

Authentication is a key factor in securing D2D communications, content delivery, and facilitating
content authenticity to resist various attacks. Security frameworks and authentication protocols can
be used to perform authentication and secure communications. Whereas data origin authentication
can be achieved by using a digital signature for proof of origin and protecting sensitive messages
from being tampered with. Cryptographic keys are used to encrypt and decrypt data; therefore, key
management plays a vital role in the preservation of data and transmission between D2D devices.
This includes the generation, distribution, and storage of keys.

4.5.2 Confidentiality and Integrity

Data confidentiality of NS, D2D messages, and control data can be implemented by using ACLs
and cryptographic techniques. Data integrity can be protected by using hash functions and digital
signatures, preventing a malicious user from forging data. In CCN, routing misuse is the result
of the concept of trustworthiness and integrity based on a trusted computing approach (Anderson
2004).
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4.5.3 Non-Repudiation Enforcement

The use of digital signatures and certificates can act as proof of work so that entities do not deny
their involvement in transactions. The UE must register to SP for services, whereby the SLA and
QoS are agreed upon. Then SP can monitor the services accessed and bill the subscriber accordingly.
An efficient auditing system can be used to stop attacks by logging all activities in the network
such as distributed audit service platforms (Group 1998). The system should be able to identify
the origin of the false message through traceability. The message originator can be verified through
the authentication process to avoid data leakage by false notifications from a malicious user.

4.5.4 Secure Naming, Routing, Forwarding and Transmission

The content naming technique is fundamental to ICN, binding a content name and its producer
prevents content poisoning attacks. Through secure naming, content source verification is affirmed,
secure routing and forwarding techniques are also vital to any network security. Secure naming
scheme can be achieved by using RSA and IBC (Tourani et al. 2018), whereas secure routing is
essential in D2D communications for protecting relayed messages (Panaousis et al. 2014). Addi-
tionally, a secure forward plane and a secure namespace mapping provide secure forwarding, by
binding the producer’s public key and the content name with the interest packet (Ghali et al.
2014b), mapping the producer with their content.

4.5.5 Access Control Mechanism

Authorization enables SP to control the access to its services requested by other entities using
Remote Authentication Dial-In User Service (RADIUS) (Lior & DeKok 2013) and diameter (Arkko
et al. 2012) protocols which are centralized authorization or through a distributed authorization
method (Woo & Lam 1998). This is achieved by applying fine-grained, encryption, attribute-based
ACLs, and context-aware schemes, which can be supported by the authentication mechanism to
provide different levels of authorization such as access to the network, resources, and services.

4.5.6 Privacy Preservation

The UE might be required to disclose their location for data routing and forwarding but UE might
be unwilling to share their location to avoid privacy violation hence slowing content dissemination.
Privacy can be preserved by using ID expiration enforcement technique based on homomorphic
cryptography (Dijk et al. 2010). In addition, data encryption and anonymity schemes can be
applied to improve publisher’s and consumer’s privacy (Martinez-Julia & Gomez-Skarmeta 2012).
Moreover, other methods include physical layer security that defines secrecy capacity at which
unintended users cannot decode transmitted message (Leung-Yan-Cheong & Hellman 1978) and
obfuscation that degrades the quality of information like UE location.

4.5.7 Availability and Dependability

This approach reduces the defect attacks such as DoS and free riding that make services unavailable
to legitimate users. A cooperative mechanism between UEs can be used to prevent selfishness
among UE participating in D2D content sharing. Other DoS mitigation may include a change in
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Table 4.3: Threats, Attacks and Solutions based on X.805 Framework

Threats Attacks Solutions
Destruction of Impersonation, man in the middle, authentication,
data and resources routing, misuse confidentiality and integrity
Corruption or Content poisoning, false Non-repudiation,
modification of accusation, cache misuse, data secure naming,
data fabrication, replay, IP/location authentication

spoofing
Theft, removal or Unauthorized, access ACL,
loss of data masquerading, false content message and entity
resources injection, data leakage authentication
Disclosure of Privacy violation, eavesdropping ACL
data discovery, monitoring, timing message and entity

anonymity, unlinkability, authentication
traceability

Interruption of Cache pollution, DoS, free riding ACL,
services jamming, session hijacking authentication,

interest flooding availability

intermediate cache structure reducing the rate of consumer request through a request of proof work
(Tourani et al. 2018) and interest flooding detection method (Wang et al. 2014).

4.5.8 Analysis

The related work solutions can be used on different layers of the network to provide security. In
addition, unconventional techniques such as strong cache verification and self-certifying naming
methods can prevent forged content. Security on the physical layer enforces security on the upper
layers in D2D communications and it is necessary to study network security on the upper layers
basing on building security protocols to provide secure communication without undermining D2D
communications and 5G functionalities. Therefore, the security threats in 5G require an integrated
solution using a hybrid approach that consists of information-centric and communication-centric
techniques.

Some of the threats, attacks, and possible solutions are presented in Table 4.3. There is no solu-
tion comprehensive enough to cover all 5G security domains and requirements of 5G. An integrated
solution should consider threats from legacy systems and 5G new use cases. Moreover, the security
mechanisms should be lightweight to avoid high communication, computational overhead, and the
negative effect of mobility on security to minimize the burden on the cellular network.

4.6 Summary

This chapter introduced the NSD framework in section 4.2 that proposed a system model and
defined the network entities which represent the parties involved in the proposed security protocols
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in the next chapters. However, before the security protocols are developed, an investigation on
the security and privacy along with threats and vulnerabilities of the system model was conducted
in section 4.3. Section 4.4 evaluated the security requirements comprehensively using a systematic
approach based on X.085 security framework. In addition, the existing approaches and possible new
approaches were discussed in section 4.5. Which highlighted the lack of an integrated approach to
address security in 5G enabled D2D communications. Therefore, the next chapter 5 introduces the
proposed security framework that intends to address the highlighted security issues in this chapter.
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Chapter 5

Network Services Security
Framework

5.1 Introduction

The general security approach in addressing security issues is the use of cryptography techniques
to achieve most security objectives. Cryptographic techniques should increase security reliability
in 5G enabled D2D communications, in form of anonymity, unlinkability, privacy, confidentiality,
integrity, and authentication. These mechanisms should be lightweight due to the computation
and energy consumption constraints in mobile devices. In the past D2D security was mostly ap-
plied at the application layer but recently network layer and physical layer security have been
applied to achieve security objectives. Whereby communication secrecy can be achieved at the
lower layers without depending on higher layer encryption. Additionally, physical layer security
can also be achieved by analysing and applying physical characteristics of D2D wireless channels to
achieve secrecy capacity, channel-based key agreement, physical-layer authentication, and privacy
preserving anonymity (Zhang & Lin 2017). This chapter presents the proposed security framework,
model, and protocols for NSD in 5G enabled D2D communications.

Some features in CCN provide some security, for instance, a consumer can achieve trust from
the received content, derived from the credential of the publisher using their public key certificate
(Zhang et al. 2011). Data integrity is provided intrinsically in CCN due to NDO names containing
a hash of the data formatting, integrity is achieved by a publisher signing a content with a private
key and verified by using publishers’ public key. Data confidentiality is achieved by using symmetric
encryption and secure key distribution to legitimate users. As mentioned earlier, DoS has less effect
on the CCN because of its name-based routing, as the interests are spread all over the network and
the request are aggregated. Security can be addressed on a basic level with secure naming, cache
verification, and self-certifying naming methods. Self-certifying is a popular method in 5G due to its
ability to handle dynamic content objects and providing an efficient content retrieval implementing
one of 5G objectives (Tourani et al. 2018). Some of the work in this chapter is also presented in
(Edris et al. Submitted for Publicationb).

This chapter is structured as follows. Section 5.2 presents an overview of the proposed security
framework. Security modelling of the security framework is introduced in section 5.3. This chapter
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is summarised in section 5.4.

5.2 Proposed Security Framework

According to security investigation and evaluation carried out in chapter 4, the security issues can
be addressed using infrastructural and information-centric security mechanisms to protect devices,
communication channels, and the NS. BSs assist in establishing D2D connectivity and the distri-
bution of security data like keys and digital certificates, which extends the decentralized security
methods into D2D architecture however the BS acts as the trust authority. An approach that integ-
rates both infrastructural and information-centric security services is proposed, the hybrid security
framework will focus on the following:

� Information-centric security services: providing data confidentiality, integrity, and availability.

� Infrastructural-centric security services: providing entities authentication, ACLs to the user
of network and services.

The proposed NSS framework assumes that network access security has been achieved. This
research’s main concern is the secure access of services by the UE and sharing between other UEs.
The UE should be able to get authenticated and authorized to access, share data hence achieving
5G service security. The verification of authenticity, integrity, and provenance of the NDO must
be done prior to the UE being granted access. Another concern is that whether the right data is
being published and can be restricted even during out-of-coverage scenario. The UE should be able
to share data without involving the HN evening during in coverage scenario, which addresses D2D
service security.

After a successful primary authentication with the network, the UE requests access to services of
SP via HN, the SP verifies the UE and grants access to UE. The security is implemented by various
security mechanisms which should be interoperable with each other. Before addressing security on
different levels, the security model must be defined, and its functions specified at each level.

5.3 Security Modelling

The security model enables the UE to access NS securely from the HN and SP at different levels.
The 5G root certificate is stored in the USIM and ARPF, 3GPP standard (3GPP 2020f) specifies
that the UE and ARPF share long-term key and identifiers used in a challenge and response
authentication procedure to generate a session key with SEAF as explained in chapter 6. The
AUSF is responsible for the mutual authentication of the network and the UE, after the initial
authentication the communication channel is left open with HN’s gNB until it is disconnected.
If the UE moves to a different gNB, re-authentication is required and the generated keys and
security information might be reused during the handover handled by the ARPF in both the HN
and VN, this falls out of the scope of this research. In this case, the UE gets access to the services
after connecting to the network, this can be supported further by D2D communications and the
CCN which are host and information-centric respectively hence the hybrid approach of the security
framework. Multiple methods are used to address the complexity of this system model as presented
in the next chapters.

The security modelling in Fig. 5.1 leverages the security principles by 3GPP (3GPP 2020f).
It applies the authentication and authorization methods that grant the UE access to services and
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Figure 5.1: Security Model

permission to engage with other UEs. A multilevel framework is proposed to align with the NS
abstraction, 5G protocol stack. It consists of Physical Layer Security (PLS), NAC, SLS, and DDS
which also align with the NS abstraction in section 2.5. However, this security framework is only
interested in the SLS and DDS, as PLS and the NAC have been studied extensively by related work.
The PLS provides security for physical layer access, NAC for network access, SLS for services access,
and DDS for D2D services sharing.

The framework considers the security link between all the security levels and the security entities,
represented as a unified security model. This security framework intends to provide the UE with
secure communication, access, and sharing of services with UE from another network without losing
their initial network access and without the need of the SN or HN as the central authority in some
scenarios.

5.3.1 Physical Layer Security (PLS)

This level of security is concerned with the PLS such as spectrum, resource allocation, interference,
and signal. Even though PLS falls out of the scope of this study, a brief overview is given on
PLS solutions applied by relying on the characteristics of wireless channels such as interference,
signal, and fading. The quality of the attacker’s signal can be degraded through keyless secure
transmission by using signal design and processing methods. Different studies explored PLS in 5G,
detailed reviews on different PLS techniques are presented (Sun & Du 2017), (Wu et al. 2018),
(Gao et al. 2018). Techniques and approaches such as artificial noise injection improve channel
quality, anti-eavesdropping signal methods align multiple user signals at the eavesdroppers. Secure
beamforming enhances the spatial distribution properties of the transmitted signal that leads to
the increase in the difference between legitimate users and eavesdroppers’ channel quality.

5.3.2 Network Access Security (NAC)

The NAC has been well-defined in 3GPP’s 5G security standards (3GPP 2020f), (3GPP 2020g),
(Arkko et al. 2018) and studied in (Arkko et al. 2015), (Basin et al. 2018), (Fang et al. 2018).
3GPP specifies that for mobile subscribers to access the network securely via ng-RAN with their
UEs, a primary authentication process is required to provide the NAC. Therefore, secure access
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is paramount to 5G principles, the security requirements have been defined in (3GPP 2020f) and
supporting system architecture in (3GPP 2020g) to support 5G objectives.

3GPP standardized the security mechanisms that should protect UE and HN connection, sub-
scribers and MNO expect security guarantees such as trust, authentication, confidentiality, and
integrity from these mechanisms. The UE and the HN must achieve mutual authentication so that
the UE can gain access to the network, services and perform other activities like connecting to SP
via the DN function. The UE will be able to access the NS through a multilayer AP securely. The
initial security is achieved by running AKA protocol between the UE, the SN, and HN, to achieve
mutual authentication between the UE and the HN and generation of a session key for UE and SN
secure communication. The 5G standard addresses the most critical security requirements of 5G,
by defining two types of authentication procedures: primary and secondary authentication. The
primary authentication can be achieved by using 5G-AKA and 5G EAP-AKA’ protocols (3GPP
2020f).

The network-level authentication is responsible for verifying that the UE is accessing the right
network. The 5G AKA protocol messages via radio interface are to be encrypted and implemented
according to the security standard. The security context obtained after a successful authentication
on this level is reserved for further security procedures on other levels when the UE wants to access
other services. The security on this level is concerned with authentication and mobility of the
UE whereby handover authentication and re-authentication of involved parties might be required.
After this security assurance from NAC, the UE can request to access the other services from 5GC
entities in the HN or from 3rd party SPs.

5.3.3 Service Level Security (SLS)

With SLS, the user is verified before being granted access to the services on this level, it checks if the
right user is requesting access. As previously stated, this research is focussing on SLS due to new
emerging services being promised by 5G, as PLS and NAC have been investigated extensively by
related work. With 5G extending the capability of mobile networks, service provision is becoming
more complex especially the security aspect. However, the NAC is recalled in the discussion as
SLS might use some of the NAC’s security context to achieve its objectives. SLS is concerned with
service security in HN and SP, by providing authentication and authorization between the UE,
MNO, and SP which gives the UE secure access to services provided by SP.

Since 5G is heterogeneous in nature, some of the studies on service security are still relevant
to this research. The Service Level AKA Protocol for the mobile network in (Kuroda et al. 2004),
(Aiash et al. 2014) addressed security for service access in legacy systems based on IP-based HetNets.
After gaining access to the network the UE must be authorized to access the services, the UE and SP
must mutually authenticate each other supported by HN through a secure communication channel
provided by service level security protocols.

5.3.4 Device-to-Device Security (DDS)

Security for D2D communications in 4G was addressed to some extent as explored in chapter 4 but
as explained in chapters 1 and 2 with 5G using D2D communications as an underlay technology
that makes it crucial to 5G’s functionality. DDS is concerned with service security and how the
existing D2D security can be enhanced. After allowing the UE to access the network and services
securely, how does the UE deal with the service accessed such as data? The D2D authentication
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Figure 5.2: Security Framework

and authorization so far have been based on multiple security procedures, whereby every time it
disconnects from the network it must get authenticated and authorized again. Moreover, now it is
not possible to share the restricted data on UE in a no-coverage scenario. So, what happens to the
data when it is on the UE and how can it be shared securely with or without network assistance.
Therefore, DDS security will try to address these mentioned security issues.

With the security model defined, next is specifying security protocols for each level as defined
in the proposed framework shown in Fig. 5.2, to address security issues faced by the system model
as discussed in chapter 4. The framework includes four levels, however, this thesis focusses on three
security levels i.e., NAC, SLS, DDS, and seven underlying security protocols, which are discussed
in detail in chapters 6, 7 and 8, respectively:

� Network Access Security

1. 5G-AKA Protocol : To provide authentication and anchor key establishment between the
UE and the HN.

2. 5G EAP-AKA’ Protocol : To provide authentication and anchor key establishment between
the UE and the HN.

� Service Level Security

1. SAP-AKA Protocol : To provide authentication and anchor key establishment between
the UE and the SP.

2. NS-FId Protocol : To provide federated authentication and authorization between the
UE and the SP.

3. DCSS Protocol : To provide data caching and sharing security for the UE requesting
authorization to cache and share the data accessed from Service Server (SS).

� Device-to-Device Security

1. DDSec Protocol : To provide authentication and authorization to share the cached data
between two UEs in proximity with network assistance.

2. DDACap Protocol : To provide authentication and authorization to share the cached
data between two UE in proximity without network assistance.
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Figure 5.3: Unified Modular Architecture

5.3.5 Network Service Security Architecture

To address the security issues of network access and services, it requires a unified modular architec-
ture as shown in Fig. 5.3 to support the proposed NSS framework. The NSS architecture adopts
5G security architecture entities shown in Fig. 5.4 and are responsible for security procedures such
as primary and secondary authentication methods.

� UE: A combination of ME and USIM, it is the end user’s device accessing the provisioned
services.

� SEAF: Serves in the SN as the anchor for security in 5G, communicates with the AUSF to
authenticate the UE and uses the anchor key for all the access scenarios with the UE.

� Security Context Management Function (SCMF): Retrieves the keys from SEAF and derive
further keys for securing other communication within the 5GC.

Figure 5.4: 5G Security Entities
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� AUSF: An authentication server residing in MNO’s HN, supports authentication for 3GPP
access and untrusted non-3GPP access. It interacts with the SEAF to authenticate the UE.

� ARPF: A repository residing in a MNO’s HN. stores key K, security credentials for UE
authentication and computes cryptographic algorithms with UE security credentials as input
to create AV. Together with the UDM they support unified authentication procedures with
various technologies and allows security context sharing.

� UDM: Generates 3GPP AKA credentials for users, stores user identification data and manages
the encrypting of SUPI and decrypting of the SUCI.

The NSS architecture also consists of the following security entities modified according to various
security levels:

� HN AAA Servers: Consist of SEAF as the access network or pass-through authenticator,
AUSF for authentication from the HN if the services are in a home-controlled environment.
ARPF that stores security context from the network perspective that is used for primary
authentication.

� External AAA servers: For authorization and secondary authentication in external DNs such
as DN AAA. They authenticate and authorize the UE to access the service and share it with
other UEs.

� SS: A server storing the content/services provided by the SP that the UE is trying to access.

5.3.6 Security Mechanisms

To achieve the security framework objectives, which are authentication, authorization of service
access and data sharing in 5G enabled D2D communications network, multiple security techniques
are deployed. The techniques apply cryptographic primitives such as symmetric and asymmetric
encryption, one-way hash function, digital signature, and MAC, facilitated by ECIES.

MNO adopted a service authorization model that provides default services, whereby implicit
authorization is applied to any subscribed service on a network for the registered UE to access it after
a successful primary authentication. Service authorization in 4G was based on a static subscription
of a user. In 5G, all UE authorization matrices are stored in the HN and then downloaded to the
SN after UE authentication to the SN (3GPP 2020f). The downloaded authorization matrix of each
UE is used to grant access services provisioned by the SN’s SP.

The SP static authorization was able to facilitate interoperability viewpoint, to a business model
with limited services provisioned by one or two MNOs. With multiple shareholders in 5G, the UE
will be able to access unlimited service from the HN and multiple DNs, hence raising access and
security concerns. In addition, the authentication procedure has been decoupled from the author-
ization process, introducing multiple security procedures as 5G will provide diverse services with
network slices. Given the expected diversity of services provisioned and the number of end users,
a new service model that supports service delivery through SP based authorization mechanisms to
support the new on-demand multilevel and implicit service authorization is needed.

The authentication and authorization mechanisms used in this research adopt AKA and ACL
methods to provide security in 5G enabled D2D communications. As presented in chapter 4, the
security requirements that are being addressed in this research are aligned with security properties
defined in chapter 3 of security mechanisms presented in chapters 6, 7 and 8. Summarised as
secrecy, authentication, confidentiality, integrity, and privacy.
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Authentication

As mentioned earlier, 5G standard (3GPP 2020f) specifies two authentication procedures i.e.,
primary authentication and secondary authentication based on EAP framework which is an im-
portant step for 5G to become an open network platform. The mutual authentication between
the UE and the HN is facilitated under primary authentication. It is like that used in the legacy
systems, however, in 5G the HN has been given more control during the authentication procedure.
The authentication mechanism has an in-built home control application allowing the HN to know
whether the UE is has been successfully authenticated to the SN, and take the final decision on
authentication decision by agreeing with the message exchange and verification process or not. It
is independent of radio access technology whereby it can also be applied to non-3GPP technologies
such as IEEE 802.11.

Secondary authentication provides authentication between UE and DN outside the mobile oper-
ator domain based on EAP based methods and associated credentials. The UE gets authenticated
by DN, establishing data path from MNO’s network to DN assisted by HN SMF. The DN might
be providing data services such as operator services, Internet access, and multimedia services. The
DN function has been mapped onto the 3rd party domain in 5G architecture due to the secondary
authentication provided by DN AAA servers. In another applicable scenario, the HN might provide
infrastructure services via network slices to other MNO or SP, even when they are in the same
network domain, but the service and security provision is handled by another party. Therefore,
secondary authentication could be applied to internal DN (Ravindran 2019). The primary and
secondary authentications are discussed in chapter 6 and chapter 7, respectively.

Mutual authentication is achieved when both parties confirm each other IDs and agree on a
session key. The access security in ng-RAN and 5GC involves mutual authentication between the
HN and UE, key derivation for access network, and other security procedures. It provides ciphering,
integrity, and replay protection of signalling within 5G. The 5G system supports mutual AKA
between the UE and SN, 5G-AKA or 5G EAP-AKA’ are mandatory for 5G primary authentication
methods, and the only authentication methods supported by UE and SN, for private networks EAP
framework should be used as specified in (3GPP 2020f).

Authorization

Generally, a mobile network authorizes service access implicitly after authentication. ACL is used
to implement permission and access rights to protect a service in the form of an object. When a
subject wants access, the subject’s name is checked against a list, if it is on the list then access
is granted (Sandhu & Samarati 1994). Conventional ACL approaches to provide service access
authorization to the system have been proposed in related work, RBAC, DAC, and Attribute-
based Access Control (ABAC). Such ACL mechanisms sometimes require additional techniques
like Encryption-based Access Control (EBAC) to provide a robust and efficient authorization to
complex systems like HetNets. However, these ACL mechanisms are not capable of facilitating an
integrated, manageable, and efficient authorization mechanism to support 5G NS provisioning, due
to 5G characteristics.

RBAC provides user access authorization based on roles and supports least privilege and sep-
aration of duties. However, the use of RBAC based ACL becomes a problem with role explosion
as the resources grow or the increase in the number of administrative domains. It complicates the
interpretation of complex and heterogeneous 5G applications. ABAC ACLs policies directly associ-
ate attributes with subjects, authorization is based on user attributes, an access right is granted by
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ACL authority to provide a fine-grained ACL. However, attributes specification and policy manage-
ment in a domain or across different domains get complicated as the number of devices increases.
Hence, not suitable for large-scale distributed 5G enabled D2D communications mobile networks.
Capability-based Access Control (CBAC) mechanisms have been proposed as promising solutions
to 5G authorization complexity, with CBAC based authorization, an unforgeable token with a set of
rights is used to grant access to a resource, with unique reference to an object (Dennis & Horn 1983).
Each subject is associated with a capability list indicating what activity the subject is authorized
to execute on the object and the access matrix is stored in the metadata of the object (Sandhu &
Samarati 1994). The subject presents a capability to the resource owner to get access to an object,
the capability is transferable and non-forgeable, its validity and access right authorization can be
executed by local SPs or at the edge making it feasible for D2D communications. Although CBAC
raises capability propagation and revocation problems in mobile network applications (Anggorojati
et al. 2012).

With in-network caching, content objects may not always arrive from their original producer/SP,
content security cannot be considered in the traditional mobile network model based on secure and
wireless or point-to-point channels (Kuriharay et al. 2015). This implies that content must be en-
crypted to prevent unauthorized access, invalid disclosure, or modification by unauthorized parties
using EBAC. The existing ACL mechanisms represent a good conceptualization of authorization
methods for providing access permissions to services. All these ACL policies can be implemented
independently or as an integrated ACL solution. Moreover, in (3GPP 2020f) it is mentioned that
the mobile network authorization methods apply the OAuth 2.0 framework as specified in RFC
6749 (Dick 2012). It also states that client credentials should be used as grants and access tokens
shall be in JavaScript Object Notation (JSON) Web Token format and can be hardened with digital
signatures or MAC based on JSON Web Signature (Jones et al. 2015).

Federated Delegation

Delegation allows the assigning of access rights to a user by an administrator or another user. The
administrative user does not need to have the ability to use the access right, but it requires the user
to have the ability to use the access right being delegated (Crampton & Khambhammettu 2008). A
federated delegation mechanism can be applied to the capability generation and propagation pro-
cess for authorization and capability revocation management. The use of ABAC and CBAC with
Federated Identity (FId) in a content-aware mobile network could efficiently address challenges in
ACL strategy processing of a hybrid security mechanism. By delegating some of the authentication
and authorization tasks to other security domains, it supports the 5G security policies and ubi-
quitous services access in different domains from multiple SPs. Processing validation of capability
in the HN and third-party SPs enables a flexible, elastic, context-aware, and fine-grained ACL for
D2D communications. Hence, inter-domain delegation with a variety of ACLs techniques enables
all-round service security in 5G enabled D2D communications.

5.4 Summary

This chapter introduced the security framework, explained the security levels that are addressed
by the related work and those that still need to be addressed. It defined the security model, levels,
entities, and the underlying security protocols of the security framework. In addition, authentica-
tion, and authorization techniques to be used by the security protocols were presented. The next
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chapter 6, formally analyses and verifies the primary authentication protocols as specified by 3GPP
to find out the security guarantees that are provided by 5G-AKA and 5G EAP-AKA’ protocols.
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Chapter 6

Network Access Security

6.1 Introduction

5G security should provide guarantees to users and MNO from the defined security properties like
authentication, confidentiality, and integrity. The UE must be authenticated to access the network,
this is achieved by applying AKA protocols between the UE and HN to address the network-level
security. This chapter presents a formal analysis of NAC protocols on whether they address the
security requirements as defined by the 3GPP. For our framework efficiency, it is assumed that these
protocols provide the security foundation for the proposed solution later in this thesis. The 5G-
AKA and 5G EAP-AKA’ protocols are formally analysed, and their security protocols are evaluated
for security and privacy guarantees as described in the 3GPP standard TS 33.501 (3GPP 2020f).
Some of the work in this chapter is also presented in (Edris et al. 2020b).

The rest of this chapter is structured as follows. Section 6.2 discusses the related work on
AKA protocol. The 5G-AKA protocol is introduced in section 6.3. The modelling of 5G-AKA
is presented in section 6.4. In section 6.5, the verification of 5G-AKA is presented. Section 6.6
introduces 5G EAP-AKA’ protocol. The modelling of 5G EAP-AKA’ is presented in section 6.7.
The verification of the protocol is presented in section 6.8. This chapter is summarised in section
6.9.

6.2 Related Work

Different from the related work, this study provides an updated formal analysis of a 5G AKA
protocol based on the latest version of TS 33.501 v15.5.0. It formalizes the protocol using two
models illustrating all message flows and cryptographic operations presented in section 6.3. The
related work omitted the four entities model which shows the function of AV in providing the HN
more home control regarding the authentication process as proof of UE participation to the HN.
This model shows the role played by the random nonces included in the resynchronization process
that was previously sent by the ARPF to AUSF in the previous transaction between the two entities.
It gives an up-to-date comprehensive formal analysis in various adversarial settings with different
observations of the revised 3GPP specifications.

A malicious actor impersonating another user to SN was found in (Dehnel-Wild & Cremers
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2018), this is no longer possible as the 33.501 specifications v0.70 have been revised, now Serving
Network Name (SNN) binds UE and 5G to a specific authentication session. It was also based
on SUPI not being included in the authentication response between ARPF and AUSF, but it is
now included in the 33.501 updated version as shown in the four entities model in section 6.4.
Additionally, it is stated in (Basin et al. 2018) that some security goals were not met by the 5G
standard except under additional assumptions. However, these findings are also no longer accurate
as now, the SUPI and UE/SN session key KSEAF are sent together. Also, the binding of SNN to
SEAF and UE as well as AUSF and ARPF solves the problem of SN assigning the KSEAF or SUPI
to the malicious UE, this is achieved by including the SNN in response (RES∗)/expected response
(XRES∗) and the derivation input for KSEAF . Moreover, the analysis in (Basin et al. 2018) based
on 33.501 v15.1.0 mentioned that the attacker can observe a 5G-AKA authentication session and
replay the SN’s message to a subscriber. It was also added that with the subscriber’s reply, the
attacker can distinguish between the two subscribers in different sessions, this is in relation to MAC
and synch failure messages. Which can be used to track mobile subscribers over time, however, it
requires assumption like the subscriber using the same BS multiple times to be true.

5G-AKA protocol is still affected by all known attacks except the IMSI-catcher and it is also
vulnerable to de-synchronization attack (Koutsos 2019). An attack using a fake BS is unlikely due
to the SNN binding to the entities. In addition, since SEAF does not react to unsolicited synch
failure messages or send a new authentication request message to the UE before it gets a response
from AUSF or times out, then permanent de-synchronization can be avoided. The related work
acknowledges the challenges of modelling 5G AKA protocol that is why AUSF and ARPF entities
are mostly modelled as one entity HN, SQN is replaced with nonces, and the re-synchronization
phase is omitted to simplify the process. Moreover, XOR is either not modelled or simpler algebraic
properties are used. The simplification in protocol modelling may lead to some security properties
not being analysed and attacks as the one found by our analysis could be missed. The 5G-AKA
modelling differences are demonstrated in section 6.3.

6.2.1 5G Identifiers

3GPP has specified different identifiers for UE for different applications. MNO will allocate SUPI
as a unique identifier of the UE, SUPI is converted to SUCI while being sent on a wireless link to
avoid sending the UE ID in plaintext as specified in TS 23.501 (3GPP 2020g). SUPI is located in
the USIM and the UDM function. During the authentication process, the VN’s AMF may assign
a temporary ID to the USIM called Global Unique Temporary Identifier (GUTI), if the user is
registering to the network for the first time. Other identifiers used in 5G are:

� SUPI consists of mobile’s country, network codes, and subscriber identification number.

� SUCI consists of SUCI type, HN ID, public key ID, routing indicator, protection scheme, and
protection scheme.

� GUTI consists of PLMN ID, AMF ID, and 5G temporary mobile subscriber ID.

� GPSI can contain either an external identifier (local and domain identifiers) for use outside
the 3GPP system or an international subscriber’s directory number to identify mobile phone
numbers globally.
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Figure 6.1: 5G Keys Hierarchy and Derivation (3GPP, 2020)

6.2.2 Keys Hierarchy and Derivation

The key K provisioned in the USIM and the 5GC is the primary source of the security context in the
same way as in a 4G system. After a successful primary authentication, the SN specific anchor key
KSEAF is derived from K. The 5GC and ng-RAN related key requirements are described in the key
hierarchy generation in TS 33.501 as shown in Fig. 6.1. It involves the USIM/ME and other entities
such as ARPF, AUSF, SEAF using Key Derivation Function (KDF). The Key derivation occurs
on both the UE and Network side. The keys related to authentication include key K, Cipher Key
(CK) and Integrity Key (IK) that are used to derive other keys such as intermediate key KAUSF

and anchor key KSEAF for secure communication between UE and SEAF. KSEAF is used to derive
key KAMF , which is used to derive other keys for protecting the confidentiality and integrity of the
NAS (KNASint,KNASenc) and RRC signalling (KRRCint,KKRRCenc), Up traffic (KUPint,KUPenc),
mobility (KgNB), NH (KNG−RAN∗ , K ′

AMF ), forward security, non-3GPP access (KN3IWF ), which
are also used for further derivation of horizontal and vertical keys. The key hierarchy includes K,
CK/IK, KAUSF , KSEAF . The KAUSF is derived by ME and ARPF from CK/IK and while AUSF
and ME derive KSEAF from KAUSF .

6.3 5G-AKA Protocol

In 5G standard (3GPP 2020f), 5G AKA protocol was specified as the main method of AKA between
UE and HN, based on the Evolved Packet System (EPS)-AKA protocol (3GPP 2020b). As men-
tioned earlier 5G security authentication mechanisms enable the HN to get notified when the UE
is authenticated in each network and to take the final call on the authentication process. After a
successful run of the protocol, parties should be able to share and agree on the anchor key KSEAF

and derivation of other keys achieved for communication between local network entities. Therefore,
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the secrecy of KSEAF is crucial for the security of future communications and operations.

6.3.1 5G Architecture Overview

5G standards are still under development, the overview points out the key differences in protocols
and reference points between legacy systems and 5G, full details in (3GPP 2016). The 5G system
architecture (3GPP 2020f) consisting of UE, SN, and HN as presented in chapter 2. The access
network consists of the gNB referred to as the SN where the UE attaches to when connecting
to the network. The HN is where the database and other security functions responsible for the
authentication and storing of the security context reside. The UE and the SN communicate on a
wireless channel and the SN and HN communicated on a secure wired channel. The 5G security
architecture (3GPP 2020f) consists of UE, SEAF and AUSF, and ARPF, as discussed in chapter 5.
The UE shares the long-term symmetric key K and other information with ARPF which are used
during the authentication process between UE and network. SUPI is encrypted with HN public
key into SUCI while in transit and only decrypted by the HN to give HN more security control.
The UE and SEAF must achieve mutual authentication and must be in possession of the session
key before communicating as this occurs on an insecure wireless channel while the communication
between SEAF, AUSF, and ARPF occurs on a secure wired channel.

The 5G-AKA protocol uses the following communication channels between entities as shown in
Fig. 6.2; UE ↔ SEAF (UE ↔ SN), SEAF ↔ AUSF (SN ↔ HN) and AUSF ↔ ARPF (HN). As specified
by the 5G Standard, the communications between SEAF, AUSF, and ARPF are within the 5GC,
which makes it a secure connection. Various security properties must be met for E2E interconnection
security, the security mechanisms shall satisfy the security requirements such as confidentiality and
integrity between source and destination network. The destination network is able to determine
the message authenticity of the source network, achieved using standard security protocols.

In addition, channel properties must be met even though the delivery of messages or the right
ordering of received messages is not a guarantee. These properties are used for setting up and
maintaining IPSec, Datagram TLS (DTLS), or diameter sessions for a secure channel such as SEAF
to AUSF to prevent attacks such as eavesdropping and wiretapping (3GPP 2020f). The channel
between UE and SEAF is considered insecure.

6.4 Modelling of 5G-AKA Protocol

While developing the 5G-AKA protocol, some changes were made in relation to EPS-AKA, the
authentication and roaming were mainly based on trust in legacy systems. The HN could not
verify if the roaming partner claims of a UE visiting a specific SN were true or not. The primary
authentication protocols like 5G-AKA address this problem by increasing HN control (3GPP 2017)
and give more guarantees to HN. This is achieved through authentication confirmation, whereby

Figure 6.2: 5G Entities Communication
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the UDM stores the UE’s SUPI, authentication status, timestamp, and the SNN after receiving
authentication confirmation from AUSF. The values used for 5G AV are defined in Table 6.1, the
value RES has been divided into two halves for backward compatibility. When RES is received
by SEAF, only the first half of RES can be verified, due to AV containing XRES∗ value, however,
the HN can verify both RES and RES∗ values. The AV includes a random nonce RAND as a
challenge, AUTN as an authentication token to check the freshness and authenticity of the challenge
as XRES∗ is the expected response to the challenge.

6.4.1 Modelling Choices

The 5G-AKA protocol is modelled using four entities (UE, SEAF, AUSF, and ARPF) and three
entities (UE, SN, and HN) referred to as model A and model B, respectively. The four entities model
illustrates the role played by AUSF calculating HXRES, verifying RES, and sending RAND to
ARPF as part of AUTS re-synchronization message. Also, the communication channels between the
communicating parties are modelled with some security properties and the messages exchange are

Table 6.1: 5G-AKA Notation and Description

Notation Description
HNname/HNID (MMC, MNC )
SNN service code:SNID
SNID SN identifier
Ki/K preshared symmetric key (UE, HN)
PKHN/SKHN HN public key/private key
RAND random nonce challenge
SUPI (MMC, MNC, MSIN )
SUCI (MMC, MNC, enc(MSIN))
AUTN (SQNHN ⊕ AK, MAC, AMF)
MAC,XMAC f1(K, (SQNHN, Rand, AMF))
RES, XRES f2(K, Rand)
RES*,XRES* KDF((CK, IK), (Rand, RES /XRES ))
CK f3(K, Rand)
IK f4(K, Rand)
AK f5(K, Rand)
HXRES* SHA-256(Rand, XRES*) one-hash function
HRES* SHA-256(Rand, RES*) one-hash function
AMF authentication management field 0-1
KAUSF KDF((CK, IK), (SNN, Xor(SQN,AK))
KSEAF KDF(KAUSF, SNN)
SQN sequence number = Xor(Xor(SQN,AK),AK)
SQNUE UE SQN
SQNHN HN SQN
MACS f1* (AMF, RAND, K, SQNUE)
AK* f5* (K, Rand)
AUTS (Xor(SQNUE,AK) ∥ MACS
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tagged on both secure and insecure channels. The following communication channels are modelled:

1. PubSecChannel, consisting of public channel UE-SN and private channel SN-HN. The insecure
channel (UE and SN) and secure channel (SN and HN).

2. PubChannel consisting of public channel UE-SN and public channel SN-HN. The insecure
channel between (UE and SN) and compromised channel (SN and HN).

In terms of cryptographic messages, the SQNHN is a counter for each UE and the SQNUE
indicates the highest SQN accepted by the USIM. It assumes that the attacker cannot follow SQN
creation, so it is not known at first. A natural number can be modelled to as a check for freshness,
with the possibility of SQN being out of sync during protocol execution, an attacker can trigger
AV request hence increasing the SQNHN as decreasing any SQN is not possible in the UE or the
HN side (Basin et al. 2018). The mac failure and sync failure messages for re-synchronization
and authentication procedures are modelled to an extent as our focus is on authentication and
authentication failure, not re-authentication. The concealment of the SQN uses XOR and the
public key with ECIES profiles for protection securely provisioned in control of the HN.

For Implicit authentication of SN to UE, the primary AKA binds the KSEAF to the SN, pre-
venting one SN from claiming to be a different SN. The SNN is used as a parameter for a set of
derivations from key K to the anchor key and a binding element. The UE and the SEAF shall
both construct the SNN, by setting the service code to ”5G” and the network identifier to “SNID”
of the network the UE is trying to authenticate to and for SEAF to the SN the AUSF is sending
authentication data to. Concatenate the service code and SNID. The SNN = (Source code “5G”.
SNID). The SNN also binds RES∗ and XRES∗ to the SN. This ensures that the anchor key is for
specific authentication sessions for specific entities. SNN links UE to SEAF and AUSF to SEAF.

6.4.2 Security Requirements and Assumptions

Most of the assumptions and requirements are extracted from TS33.501 (3GPP 2020f) and TS
33.102 (3GPP 2020a) but there are some that are not. The communication between the SN and
the HN is assumed to be transmitted on a secure channel, hence it should provide authentication,
confidentiality, integrity, and replay protection. The channel between the UE and SN is vulnerable
to eavesdropping, manipulation, interception, and message injection attacks. In a case where the
channel between SN and HN is not secure, it is exposed to the same attacks. It is assumed that
cryptographic primitives such as the functions f1, f1*, f2 provide integrity as MACs, and f3, f4,
f5, f5* provide integrity and confidentiality as a cipher, integrity, and anonymity respectively as
defined in (3GPP 2020a). Functions f1 and f1* also provide confidentiality to the input data of AV
like SQN, while the individual messages use their own cryptographic protections directly.

The parties involved can be compromised if the attacker can gain access to the presumed secure
channel (SN and HN) through a compromised SN. It is assumed that the diameter protocol (Engel
2014), (RIFS 2016) can be compromised due increasing capabilities of the adversary. This is
supported by 5G characteristics that increase the attacker’s vector. Moreover, the attacker may be
in possession of genuine or compromised USIMs, whereby, the attacker is able to get access to all
secret values on the USIMs, i.e., SUPI, Key K, and SQN, leading to gain access to secrets, key K,
SKHN , and SUPI from compromised HN. Initially, it is assumed that the UE credentials such as
key K and SUPI on non-compromised entities are secrets shared between UE and HN. The SQN
value and the HN private key SKHN are also assumed to be secrets when the protocol starts, the
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attacker may try to find out how SQN is incremented but not possible to guess it, due to the big
size of its bits counter.

The desired security properties for 5G-AKA protocol are authentication, confidentiality, integ-
rity, and privacy as specified (3GPP 2020f), interpreted and briefly discussed below:

1. Authentication Properties: The SN that UE is trying to connect to should be authorized
by HN. During the primary authentication procedure, the SN should authenticate the SUPI,
obtain a non-injective agreement on SUPI with the UE, hence authenticating the UE and UE
authenticating SNID through implicit key authentication. The UE is authorized by the SN
with the subscription profile from the HN, based on the authenticated SUPI. The UE must
get assurance that a successful authentication with SN can only occur with HN authorization,
while a UE gets a non-injective agreement on SNN with its HN after key confirmation. In ad-
dition, the HN obtain the aliveness of the UE from the SN, which is a non-injective agreement
on SNN from the HN’s point of view with the UE.

2. Secrecy and Confidentiality Properties: 5G-AKA protocol should guarantee the secrecy of
SUPI, KSEAF , K, and SKHN , that the knowledge of the KSEAF in one session is not enough
to derive another KSEAF in an old or new session. It emphasises that the same KSEAF should
never be established twice.

3. Privacy Properties: Privacy in 5G has been strongly defined in (3GPP 2017), subscription
privacy deals with preserving subscribers’ information, e.g., identifiers and data. The legacy
generation had security requirements for user ID’s confidentiality, anonymity, and untraceab-
ility but attacks such as IMSI-catchers breached privacy and eavesdropped as passive attack
(Rupprecht et al. 2018). 5G has precise requirements on privacy, since SUPI is a subscriber
identifier it is sensitive and must remain secret. Moreover, if an attacker gets SUPI, can easily
identify a subscriber and their location. In addition, the SQN must remain secret to prevent
USIM data leakage attacks, which leaks USIM age and activities leading to further attacks
like traceability, location, and monitoring. Since this was a minimal requirement in legacy
systems hence should be a requirement in 5G (Basin et al. 2018).

The 3GPP standard security requirements are enough to provide the security guarantees expec-
ted by the mobile network systems. The previous work is based on TS 33.501 v15.1.0 while our
analysis is based on the latest TS 33.501 version. The main security goals and framework have
not changed much, the changes made in the specification updated version are to address some of
the issues raised by related work as discussed concisely in the next sections. The protocol should
provide mutual authentication and establish the anchor key. The UE ID, SKHN and SQN should
stay a secret during the AKA process and KSEAF not revealed to any other party apart from those
involved in the protocol run. In addition, the UE should get authorization from HN on SN in
real-time, and parties involved in the AKA protocol should agree on the shared key KSEAF .

Even though the diameter base protocol can be secured using TLS, DTLS, or IPsec but it is
still vulnerable to several attackers like masquerading, malware, DDoS attacks that can be used for
further attacks on the mobile network (Thanh et al. 2014), (Enisa 2018). The trust enhancement in
5G is due to attacks such as key theft, routing attack Signalling System 7 (SS7) (Engel 2014) and
impersonation of network nodes and source address spoofing (RIFS 2016) in signalling messages
which exploited the trusted domain of the internetwork connectivity in legacy systems. Encryption
is enabled in diameter unlike in SS7 but in practice, mobile operators almost never use encryption
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inside the network, only occasionally on its boundaries. When used it is based on the P2P principle,
not E2E, the network security is built on trust between operators. Furthermore, since in diameter
protocol every request receives a response and uses the same route, this makes it easier to intercept
and gather information. Different solutions have been proposed in this study, an investigation is
conducted on how the vulnerabilities in the 5GC can affect the 5G-AKA through formal methods.

Having said that however this research agrees with (Dehnel-Wild & Cremers 2018), (Basin et al.
2018), (Koutsos 2019) that since the security of the authentication depends on successive procedures
specified by 5G standard, cannot all be assessed in one study. Therefore, to assess if all the current
and future specified successive procedures correctly enforce these requirements, more studies must
be conducted on all 5G use cases as 5G is still prone to many attacks including traceability and
location attacks.

6.4.3 Protocol Messages Exchange and Execution

This subsection explains the 5G-AKA protocol execution and message exchange based on model
A. At the beginning of the protocol run the involved parties know the following information.
UE: (K, SUPI, pkHN, SQNUE); SEAF: (SNN); AUSF:(); ARPF: (K, SUPI, AMF, SQNHN). The
AKA protocol in 5G consists of three phases: (i) authentication initiation and method selection,
(ii) the protocol, and (iii) resynchronization. The protocol message (msg) exchange between the
participating parties is explained next with some text concisely omitted and reference to notation
in Table 6.1.

Phase 1 - The Authentication Initiation and Method Selection:
In this phase, the initializing of the authentication and selection of the method of authentication
occurs and the 5G-AKA protocol is selected, Fig. 6.3 shows the message exchange. The SEAF in
SN initiates the authentication procedure with the UE after that UE asks to connect to it.

Msg1. UE → SEAF: (N1Message)

Then UE sends authentication request in N1Message with SUCI = ({SUPI},pkHN),HNID).
Msg2. SEAF → AUSF:(NausfAuthnReq)

The SEAF receives message 1, adds its SNN then sends NausfAuthn request message containing
SUCI and SNID (SUCI ∥ SNN) to AUSF in the relevant HN.

Msg3. AUSF→ ARPF:(NudmAuthnReq)

Figure 6.3: 5G-AKA Initialization Phase Message Flow
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When AUSF receives message 2, before using the SNN, AUSF checks that the SEAF is authorized,
then sends (SUCI ∥ SNN) in NudmAuthn get request message to UDM/ARPF. When the UD-
M/ARPF receives message 3 it retrieves the SUPI and chooses an authentication method (5G-AKA
or 5G EAP-AKA’). It decrypts SUCI to SUPI with the help of SIDF.

Phase 2 - The Protocol:
The 5G-AKA protocol flow in a form of challenge-response between entities as shown in Fig. 6.4.

Msg4. ARPF → AUSF:(NudmAuthnResp)

After retrieving SUPI, UDM/ARPF generates authentication vectors AV = (RAND, AUTN ,
XRES∗, KAUSF , SUPI) with AMF separating bit set of AMF* in AUTN 0 to 1. First, it generates
a RAND and SQN then AV from RAND, the UE’s key K and SQN, and calculates XRES∗ and
KAUSF key for AUSF. The ARPF sends AV in NudmAuthnResp get response message to the
AUSF indicating 5G-AKA is to be used.

Msg5. AUSF→ SEAF: (NausfAuthnResp)

The AUSF generates the 5G AV from the AV received in message 4, computes HXRES∗ a hash
of XRES∗. The AUSF stores XRES∗, SUPI and KAUSF , derives KSEAF from KAUSF , replaces
XRES and KAUSF with HRES and KSEAF , respectively. It then removes the KSEAF , sends the
AV (RAND,AUTN,HXRES∗) in NausfAuthnResp authentication response to the SEAF.

Msg6. SEAF → UE:(AuthReq)

Figure 6.4: 5G-AKA Protocol Phase Message Flow
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When SEAF receives message 5, it keeps HXRES∗and sends RAND ∥ AUTN to the UE with
some of the native security contexts. It includes the ABBA parameter for protecting new security
features.

Msg7. UE → SEAF:(AuthResp)

When UE receives message 6, it forwards the RAND ∥ AUTN to the USIM, the USIM verifies the
freshness of the AV and checks if AUTN is acceptable. First computes AK and retrieves the SQN.
Then computes xMAC, (i) it checks if xMAC = MAC and also checks (ii) if SQN is in the right
range SQNUE < xSQNHN . If (i) and (ii) are the expected response, USIM computes RES. And
finally, it computes CK and IK. The USIM returns RES, CK, IK to the UE. The UE computes
RES∗ from RES, calculates KAUSF from CK and IK then KSEAF from KAUSF and checks that
the ”separation bit” in the AMF field of AUTN is set to 1. UE returns RES∗ in AuthResp. The
UE proves its ID and ownership of Key K by sending RES∗ to the SEAF.

Msg8. SEAF → AUSF:(NausfAuthnReq)

When SEAF receives message 7, it calculates HRES∗ the hash of RES∗, then compares it with
the HXRES∗ received from the AUSF in message 5. If it matches HRES = HXRES, the
authentication is considered successful by SEAF from the SN point of view. A RES∗ is sent in
NausfAuthnReq message to the AUSF. The process is aborted if HRES is not equal to HXRES.

Msg9. AUSF→ SEAF: (NausfAuthnResp)

When AUSF receives the RES∗, it checks if the AV has expired and if it has then the authen-
tication is considered unsuccessful. AUSF compares the received RES∗ with XRES∗. That is
RES∗ = XRES∗, the authentication is considered successful by AUSF from the HN point of view.
If the authentication was successful, AUSF sends KSEAF ∥ SUPI to SEAF in message 9.

Phase 3 - Re-synchronization:
The out-of-sync SQN is updated in HN during the re-synchronization procedure as shown in Fig.
6.5. At the UE side, if the received AUTN fails the verification, the USIM informs the ME of the
reason for failure whether it is MAC or synchronization failure and it passes the AUTS parameter
to the UE.

Msg10. UE → SEAF: (AuthnFail)

The UE sends AuthnFail NAS message authentication failure to SEAF in message 10 that includes
mac failure or synch failure message with AUTS.

Figure 6.5: 5G-AKA Synchronization Phase Message Flow
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Msg11. SEAF → AUSF: (NausfAuthnFail)

When SEAF receives message 10 from the UE, SEAF may request re-identification from UE in
case of mac failure or start a new authentication process in case of sync failure then SEAF sends
NausfAuthnFail message to AUSF indicating sync failure with AUTS.

Msg12. AUSF → ARPF: (NudmAuthnFail)

The AUSF sends NudmAuthnFail message to the UDM/ARPF, it includes Synchfailuremessage,
AUTS, and RAND that was sent to the UE in message 6 the preceding AuthRequest message, and
AUTS received in message 12. In HN the ARPF retrieves SQNUE from AUTS, checks if SQNHN
is in the correct range and if the next SQNHN would be accepted by the USIM. Therefore, if the
SQNHN is in the correct range, the UDM/ARPF generates a new AV. Otherwise, it verifies AUTS,
if the verification is successful, the ARPF resets the value of the counter SQNHN to SQNUE.
Then UDM/ARPF sends new AV for the UE to the AUSF. The AUSF runs a new authentication
procedure with the UE but this falls outside of the scope of this research.

6.5 Formal Verification of 5G-AKA Protocol

This section follows the same ProVerif process defined in chapter 3. The security protocol modelling
in ProVerif is made up of declaration, process macros, and main processes. With queries used for
the correctness rectification and secrecy of a protocol. The ProVerif syntax and applied pi calculus
are used to encode and specify the protocol concisely using a declaration of types, functions, queries,
and events such as the following:

� Free names are free variables that are known to the public, globally known whereas bound
names are locally known by the process like the free pubChannel:channel for communica-
tion and [private] excludes names from the attacker.

� Types: key, id and nonce.

� Functions: fun f2(key,nonce):bitstring, fun xor(bitstring,bitstring):bitstring.

� Queries: query attacker (SecretUE), query attacker (supi), (ki), and (kseaf) are
used to test the secrecy of supi, ki, and kseaf.

� Events: Querying events uses correspondence assertion to test the relationship between events
(authentication). query x1: id, x2: id, x3: key; event (endUE(x1, x2, x3)) ==>

event(begUE(x1, x2, x3)).

� Process: The protocol is encoded using the main process and process macros processUE,
processSEAF, processAUS, processARPF. A number copies of the system entities (UE, SEAF,
AUSF, ARPF) macros are started with the required parameters as multiple sessions of the
roles.

6.5.1 Formal Analysis of the 5G-AKA Protocol

The protocol was simulated using two models on secure, insecure channels and the following pro-
cesses:

� Model A (four parties’ protocol) in Appendix A.1.
processUE as UE, processSEAF as SEAF, processAUSF as AUSF and processARPF as ARPF
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Figure 6.6: 5G-AKA Model A Attack ProVerif Results

� Model B (three parties’ protocol) in Appendix A.2.
processUE as UE, processSN as SN, and processHNas HN

When the protocol was modelled and run in ProVerif, there was no effect on the protocol apart
from the emphasis on the message exchange in model A, on the pubsec channel and no attack
found. However, when the protocol was run on the compromised channel, the authentication
did not hold as assumed by the standard. With the possibility of an attacker getting access to
all communication channels including those in the HN. The security properties this research is
interested in are KSEAF , mutual authentication, and the secrecy of the SUPI and key K. In relation
to attacks discussed informally, an attack was found on this protocol for model A and model B,
respectively.

ProVerif results of model A as shown in Fig. 6.6 indicates that the secrecy of secretUE,
secretSEAF, secretAUSF, supi, ki, kseaf and authentication of UE to SN holds but the au-
thentication of SN to UE does not hold on both non-injective and injective agreements. In addition,
ProVerif results of model B as shown in Fig. 6.7 indicate that the same secrecy properties as in
model A hold, authentication of UE to SN holds and but authentication of SN to UE does not hold
on both non-injective and injective agreements. The study deep analysis focuses on model A since
most related work based their arguments on a model like our model B.

With the event endSEAF indicating that the SEAF has completed the protocol, the UE re-
ceived message 4 and sent message 5, e1 indicates that the SEAF sent message 4. These events
take all parameters of the protocol as arguments: autn, and the rand, except e2 that checks
if xsqn = xor (xored_sqn, ak), xmac = f1((xsqn, xrand), ki) and if xmac = mac then if
xsqn = sqn_ue. If the arguments are true, then RES is sent otherwise it sends either MAC_failure

Figure 6.7: 5G-AKA Model B Attack ProVerif Results
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or synch_failure message for authentication failure or re-authentication initiation. This research
would like to prove the following correspondence.

(*Check authentication of UE to SN/HN and SN/HN to UE *)

query x1: id, x2: id, x3: key; event (endUE(x1, x2, x3)) ==>

event(begUE(x1, x2, x3)).

query x1: bitstring; event (endSEAF(x1)) ==> event (beginSEAF(x1)).

query x1: id, x2: id, x3: key; inj-event (endUE(x1, x2, x3)) ==>

inj-event (begUE(x1, x2, x3)).

query x1: bitstring, x2:nonce; inj-event(endSEAF (x1)) ==>

(inj-event(beginSEAF(x1)) && (inj-event (e3(x1)) ==> (inj-event (e2(x1)) ==>

(inj-event (e1(x1,x2)))))).

However, this correspondence fails to be proved directly in ProVerif because message 4 can
be replayed, resulting in several e2 for a single e1. The research also tries to prove the desired
correspondence but ends up noticing that event e2 which has res as an argument cannot be
executed before autn and rand has been sent, that is, before e1 has been executed. Which fails in
ProVerif with false.

6.5.2 The Attack Against 5G-AKA Protocol

The ProVerif results indicate there was an attack on the protocol as shown in Fig. 6.6 and 6.7. As
discussed in chapter 3, in ProVerif attack derivation represents the attacker’s action while the attack
trace represents the real attack as an executable trace of the considered process. The derivation and
trace are a sequence of steps, inputs, and outputs on the public channel and of events in relation
to the process. The attack derivation and trace for Model A is as follows.

Figure 6.8: 5G-AKA Attack Trace
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6.5.3 Attack Derivation and Trace

The attacker I starts by eavesdropping on the communication between entities, impersonates the
UE, continuing the protocol with SEAF , which completes the protocol with the attacker instead
of UE. The attacker’s actions are illustrated in Fig. 6.8 and explained concisely in derivation and
trace steps below, some text is omitted for simplicity, full trace output in Appendix J:

� When event(endSEAF(x1_80))==> event(beginSEAF(x1_80)) queried, the attacker’s goal
is achieved, when he gets suci_4228 using attacker(suci_4228) and attacker(rand_4227)

for rand_4227 together with function SHA256 to obtain SHA256(rand_4227,x1_4230).

� The attacker’s goal is also achieved in trace 1 when event endSEAF(a) is executed in session
copy a_4234 SEAF has with the attacker at event {57}. In trace 2, the injective agreement
fails when event endSEAF(a_5801) is executed in session a_5800.

6.5.4 Security Analysis

Protocol Security Analysis

With the discovered attack, 5G-AKA protocol’s key K might be leaked because of other attacks such
as eavesdropping, hacking of a USIM card, an inside/local attack through the USIM vendor, mobile
operator, or through side channels. Additionally, this vulnerability would be used by an attacker
without privileged access to impersonate another user to SN in a roaming scenario. Which allows
the billing of expensive phone calls or access charges to other legitimate users through eavesdropping
on their initial connection (Dehnel-Wild & Cremers 2018). The analysis of the protocol is based
security requirements of set 1 (Lowe 1997) and set 2 (Menezes et al. 2018) as presented in chapter
3.
Analysis based on security properties of set 1 is as follows:

� Secrecy: This is achieved since SUPI’s secrecy holds. By using xor and anonymity keys to
protect the parameters used in derivations of keys in transit and in storage. The use of F1
and F* provides privacy protection of SQN to the data. This achievement also covers the
confidentiality and privacy properties of the protocol.

� Aliveness: The aliveness of UE is obtained by HN at the SN, with a non-injective agreement on
SNN with the subscribers. But also, the injective agreement on KSEAF with the subscribers,
the HN obtains fresh aliveness as a result.

� Weak Agreement: When SN achieves non-injective agreement on SUPI with UE and the key
confirmation with SNID as parameter fulfils this requirement. However, the weak agreement
does not hold as ProVerif results indicate.

� Non-injective Agreement: The UE obtains non-injective agreement on SNN with its HN
after key confirmation of KSEAF and HNID as it is part of SUPI. The SN obtain non-
injective agreement on SUPI with the HN after SUPI authentication by HN. It gets injective
agreements on KSEAF between the SN and UE. Any agreement on KSEAF between the HN
and the UE also guarantees that UE is attached to an authorized SN, this is achieved since
KSEAF ’s derivation includes RAND from HN and SNN from SN. Which assures the UE
that SN is trusted but the authentication SN-UE fails due to the changed assumption of the
communication channel security.
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� Injective Agreement: The UE and the SN’s injective agreement on KSEAF is crucial to the
protocol’s objective and achieving injective agreement on KSEAF for different pairs of parties
means KSEAF cannot be derived twice for the same session. The inclusion of RAND in the
derivation of KSEAF guarantees an injective agreement on KSEAF between the HN and the
UE. The injective agreement on KSEAF based on SNN with the HN assures the UE that SN
is known and trusted. The UE obtains the injective agreement on KSEAF with the HN to
assure that the session with SN was authorized by the HN. However, the SN fails to achieve
the same trust from UE as the SN-UE does not hold.

Analysis based on security properties of set 2 is as follows:

� Mutual Entity Authentication: The UE is authenticated to the SN if RES∗ = HRES, to
HN if RES∗ = XRES, while the HN is authenticated to UE after verifying AUTN . The
SNN enforces weak agreement and implicit authentication from HN and UE after a successful
authentication and key KSEAF confirmation. Additionally, when SUPI, SNN , and HNID
are sent to the HN in the first phase of the authentication and proved to hold they enforce
this requirement even when some routing data is not encrypted. Moreover, the creation of
SNN involves the UE, SN, and AUSF in the HN which also endorses the entity. The SNN
links the UE to SEAF and SEAF to AUSF. However, the SN to UE authentication fails to
hold.

� Mutual Key Authentication: Since the authentication of between UE and HN is based on the
secrecy of KSEAF , it also gets implicitly authenticated by including KAUSF and SNN in its
derivation parameters.

� Mutual Key Confirmation: The successful AKA roundtrip between the UE, SN, and HN
ending with KSEAF confirmation enforce this requirement.

� Key Freshness: ProVerif has no function to check key freshness however during the authen-
tication process as the UE checks if data involved in the authentication process is valid such
as checking the freshness the xSQN > SQN which also facilitated the derivation of KSEAF . In
5G KSEAF from the previous session cannot be reused in a new session as every KSEAF is
linked to a session and SN by SQN and SNN , respectively. And since the secrecy of KSEAF

is not violated, it implies key freshness.

� Unknown-Key Share: The reachability property in ProVerif is used to check aliveness. The
entities’ ID and Key binding prevent this attack. The inclusion SUPI, HNID in the authen-
tication procedure and SNN in the KDF of KSEAF links it to SN and since it is derived from
key K, which is pre-shared between UE and HN also proving this requirement. The KSEAF

is only sent to SEAF after RES verification by AUSF.

� Key Compromise Impersonation Resilience: Since KSEAF is derived from long-term key and
both the secrecy of KSEAF and key K hold hence they enforce this requirement. Additionally,
knowing keyKSEAF generated in one session should not be enough to deduce keyKSEAF that
has been generated in an old session or that will be generated in a new session. Backward and
forward security on keys are not possible (Cohn-Gordon et al. 2016) this is not forward secrecy,
no entity or adversary is capable of computing keys of a past session or predicting future keys.
Even when the attacker manages to know KSEAF key in another session, KSEAF in each
session should be different and confidential. However, forward secrecy and post-compromise
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Figure 6.9: 5G-AKA Model A Safe ProVerif Results

secrecy does not hold because if key K is compromised, the adversary can compute future
and past keys. Which requires session key secrecy even when long-term key material is
compromised.

Security Consideration

The adversaries nowadays are more sophisticated, and this was ignored in related work (Basin et al.
2018), (Dehnel-Wild & Cremers 2018), (Koutsos 2019). They assumed that security mechanisms
in place would protect diameter protocol, the channel, and HN entities but doesn’t (Engel 2014),
(Enisa 2018), (RIFS 2016), so the author believes that even a secure network can be compromised
in several ways which creates a wider attack vector. Since the non-injective and injective agreement
on SN to UE fails to hold that indicates that replay attack is possible between SN and UE. Forward
secrecy fails as the attacker could get the past and future keys by knowing key K.

The UE’s privacy is put at risk if the standard is underspecified, the protocol vulnerability would
allow an attacker to impersonate another user to the SN. 5G-AKA cannot provide perfect forward
secrecy of KSEAF , this is because a compromised USIM prior to the running of the protocol can
lead to the attacker knowing key K, while KSEAF can be revealed, using only K and the message
RAND,AUTN sent from SEAF to UE. Perfect forward secrecy could be achieved with Diffie-
Hellman key exchange, but its computation is too expensive regarding mobile devices resources
usage. It should be noted that authentication relying on the KAUSF in AUSF is not as strong as
direct authentication between the ARPF and the USIM.

The results in Fig. 6.9 show model A when the HN environment communication channels are
made secure by using a more robust mechanism this might include cryptographic techniques and
more secure communication protocols. Full ProVerif description of the secure protocol is illustrated
in Appendix A.1. The standard should be strengthened to prevent active attacks on the privacy
properties by using encryption and randomness on UE data. The sequence and unlink-ability
problems (Koutsos 2019) can be solved after the replayed message has made a roundtrip to the
HN, also it should be noted that resynchronization in HN is achieved by either checking if the
SQNUE sent in AUTS is greater than SQNHN if not then SQNHN is set to SQNUE. The security
mechanism that protects the diameter sessions should also be enhanced.

6.6 5G EAP-AKA’ Protocol

This section interprets security properties and models 5G EAP-AKA’ protocol as specified in the
3GPP standard, also referred to as EAP-AKA’ in this thesis. A formal, security analysis and verific-
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ation of the protocol is conducted to automatically identify the security properties and guarantees
provided by the protocol. The 5G standard (3GPP 2020f) addresses the most critical security
requirements in 5G and specifies EAP-AKA’ as one of the methods used in the primary authentic-
ation. There has been a significant amount of research conducted on primary authentication but
mostly covers 5G-AKA protocol, hence, why this research is also discussing and formally verifying
the EAP-AKA’ protocol using similar methods as used on 5G-AKA protocol in section 6.3.

6.6.1 Related Work

The EAP framework supports authentication method defined under RFC 3748 (Vollbrecht et al.
2004), that runs over data link layers without an IP for dedicated, wired, and wireless links for
flexibility. The EAP was developed by 3GPP and verified by the EAP WG in RFC 4187 (Arkko
& Haverinen 2006). It was later specified as an EAP-AKA method for authentication and session
key distribution for 3rd generation mobile network UMTS based on symmetric keys and run in a
USIM. EAP-AKA included options for ID privacy, result indications, and fast re-authentication.
The RFC 4187 made the use of AKA method for primary authentication possible within the EAP
framework, later improved in 5448 (Arkko et al. 2018) with a new EAP method, EAP-AKA’.
The changes included a new KDF binding the derived keys with the name of the access network
hence protection from binding down attacks. Furthermore, the EAP-AKA’ can be applied as an
authentication method to gain 5G and non-3GPP network access, specified in TS 33.501 (3GPP
2020f) as a primary authentication method. The EAP-AKA’ uses CK’ and IK’ as specified in
TS 33.402 (3GPP 2020c) and updates the hash function from Secure Hash Algorithm (SHA)-1 to
SHA-256 and Hash Message Authentication Code (HMAC) to HMAC-SHA-256.

The EAP-AKA’ protocol was specified in (3GPP 2020f) and proposed as one of the main methods
of AKA between a mobile device and its HN. As it can be used as an alternative authentication
method to 5G-AKA in primary authentication. It uses similar cryptographic primitives and fulfils
similar security guarantees as explained in section 6.3. The difference is EAP-AKA’ uses the EAP
framework for messages exchange and the session key is derived differently as explained in the next
sections. In addition, 3GPP recommends the EAP framework for the secondary authentication to
external DN.

EAP Architecture Overview

The 5G EAP-AKA’ uses the same architecture as the 5G-AKA protocol described in section 6.3,
it consists of the following three essential parties UE, SN, and HN. The communication process,
security procedure, and the entities are also the same as used in 5G-AKA which are UE, SEAF,
AUSF, and ARPF as per the security architecture (3GPP 2020f). It should protect the SUPI with
SUCI on all channels, achieve mutual authentication and agree on session key KSEAF . However,

Figure 6.10: 5G EAP-AKA’ Entities
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the EAP framework in RFC 3748, defines peer, pass-through authenticator, and back-end authen-
tication server roles. With 5G EAP-AKA’ the EAP framework is supported with the following
entities as shown in Fig. 6.10 (3GPP 2020f):

� The UE as the peer.

� The SEAF as the pass-through authenticator.

� The AUSF as backend authentication server with the support of the ARPF and UDM.

The main EAP-AKA’ attributes in the EAP-request/response are AT RAND,AT AUTN,
AT RES,AT MAC,AT KDF,AT KDF INPUT,AT MAC,AT AUTS. There are some signi-
ficant changes that have been made in EAP-AKA’, as per 5G security specifications (Arkko et al.
2018):

� Network name field: The SNN shall be constructed by the UE and the SEAF, the service code
set to ”5G” and the network ID to “SNID” for the network the UE is trying to authenticate
to and for SEAF/SN to which the AUSF is sending authentication data to.

� The identifiers: SUPI, SUCI, SNID.

� Key derivation inputs: 5G identifiers should not be trackable for privacy preservation and,
permanent identifiers like SUPI should not be transmitted outside HN.

� Session identifiers: EAP Type code ∥ RAND ∥ AUTN , carries the AT KDF INPUT at-
tribute, including Network Access Identifier (NAI) for the UE and AUSF. It supports future
extension with KDF negotiation via the AT KDF attribute.

Keys Derivation

The UE ID and the access network ID are used as an input in the key derivation using the
at kdf input parameters. After a successful authentication between the UE and the HN, KSEAF

is derived from KAUSF . The Key derivation occurs on both the UE and network sides. The
keys related to authentication include keys: K, CK/IK, CK’/IK’ that are used to derive the
EMSK(KAUSF ) then KSEAF and later used derive other keys to secure communication between
the UE and other entities in the network. In addition, the KDF input parameters for CK’ and IK’
are the same only separated by a 256-bit return output, where the 128 most significant bits are for
CK’ and the 128 least significant bits are for IK’ (3GPP 2020c).

6.7 Modelling of 5G EAP-AKA’ Protocol

The modelling of 5G EAP-AKA’ same as 5G-AKA in section 6.3 with some changes in the notation
as shown in Table 6.2. The AV values are the same but 5G EAP-AKA’ uses the EAP-AKA chal-
lenge/response framework. The anchor key KSEAF binding with SN shall be achieved by including
”NAI” into the chain of key derivations parameters which is the SNN. It should be noted that direct
involvement of USIM and ARPF in an authentication procedure provides strong guarantees than
the one based on KAUSF in the AUSF, equivalent to EAP-AKA’ fast re-authentication.
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Table 6.2: 5G EAP-AKA’ Notation and Description

Notation Description
SNname/SNN service code:SNID
K symmetric key (UE, HN)
PKHN/SKHN HN public/private keys
RAND (AT RAND) random nonce challenge
SUPI (MMC,MNC,MSIN)
SUCI (MMC,MNC,enc(MSIN))
SUCI/SUPI User’s Network Access Identifier (NAI)
AUTN (AT AUTN) (Xor(SQNHN AK),MAC,AMF)
MAC, MAC2 (AT MAC) f1(K, (SQNHN, Rand, AMF))
RES (AT RES), XRES f2(K, Rand)
CK f3(K, Rand)
IK f4(K, Rand)
AK f5(K, Rand)
CK’ IK, CK, SNN, Xor(SQN,AK)
IK’ IK, CK, SNN, Xor(SQN,AK)
KAUSF/EMSK KDF((CK’, IK’), (SNN, Xor(SQN,AK))
KSEAF KDF(KAUSF, SNN)
SQN sequence number
MACS (AT MACS) f1* (AMF, RAND, K, SQNUE)
AK* f5* (K, Rand)
AUTS (AT AUTS) Xor(SQNUE, AK) ∥ MACS
h(x) hash value of message x
{x}{k} message encrypted with key K

Security Requirements and Assumptions

Most of the assumptions are based on TS 33.501 (3GPP 2020f) specifications like those presented in
section 6.3 and (Arkko et al. 2018), with UE-SN channel assumed insecure and the SN-HN assumed
secure, providing authentication, confidentiality, integrity, and replay protection. It is also assumed
that cryptographic primitives such as functions and hash functions provide integrity and confiden-
tiality using derivation keys and MAC, while the individual messages use their own cryptographic
protections directly. There is no cipher suite negotiation mechanism in EAP-AKA’ but there is one
for KDF, the security properties provided by SHA-256 such as mutual authentication, confidential-
ity, cryptographic binding, and session independence are as good as those of the old EAP-AKA. It
is also assumed that SHA-256 is like a pseudo-random function and the pre-shared secret cannot be
calculated from any keys by any practically feasible means. As per the 5G standard, EAP-AKA’
uses different identifiers in different scenarios to identify the UE. The protocol key strength prevents
brute force attacks but does not provide channel binding (Arkko et al. 2018).

The desired security properties for EAP-AKA’ protocol are the same as the 5G-AKA protocol
explained in section 6.4.2 with UE getting assurance that it is authenticating to SN authorized
by its HN. The UE shall authenticate SN with the SNN through implicit key authentication and
key confirmation with the secrecy of the anchor key KSEAF ensured. The also EAP-AKA’ uses
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Figure 6.11: 5G EAP-AKA’ Initialization Phase Message Flow

diameter-based over IPSec or TLS to provide some security.

6.7.1 Protocol Message Exchange and Execution

This subsection explains the EAP-AKA’ protocol message exchange and execution, consisting of
three phases and described as follows:
Phase 1: The Authentication Initiation and Method Selection
Starts with initiating the authentication and selecting a method to be used, in this case, it is the
EAP-AKA’. The SEAF initiates the authentication with the UE as shown in Fig. 6.11.

Msg1. SEAF → UE: (EAP-Request/Identity)

The SEAF sends ID request to UE.
Msg2. UE → SEAF: (N1Message)

Then UE sends an authentication request message which includes SUCI and HNID.
Msg3. SEAF → AUSF: (NausfAuthnReq)

When SEAF receives message 2, it sends SUCI and SNN to AUSF in NausfAuthnReq get request
message to AUSF.

Msg4. AUSF → ARPF: (NudmAuthnReq)

The AUSF sends NudmAuthnReq get request message to UDM/ARPF in HN. Before using the
SNN, AUSF checks that the SEAF is authorized. When the ARPF receives message 4, it decrypts
SUCI into SUPI with the help of SIDF and chooses an authentication method.

Phase 2: The Protocol
The EAP-AKA’ flows in a form of EAP challenge/response between entities as shown in Fig. 6.12.

Msg5.ARPF → AUSF: (NudmAuthnResp)

After retrieving SUPI, UDM/ARPF generates AV with AMF ∗. First it generates a RAND and
SQN then XRES and AUTN . Calculates CK, IK, computes CK ′, IK ′. The ARPF sends EAP-
Response/AKA’ AV (RAND, AUTN , XRES, SNN , CK ′ ∥ IK ′, SUPI) in NudmAuthnResp
get response message to the AUSF indicating EAP-AKA’ is to be used.

Msg6. AUSF → SEAF: (NausfAuthnResp)

The AUSF storesXRES and SUPI then sends EAP-Request/AKA’-Challenge inNausfAuthnResp
message that includes RAND, AUTN and SNN to SEAF.
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Figure 6.12: 5G EAP-AKA’ Protocol Phase Message Exchange Flow

Msg7. SEAF → UE: (AuthReq)

When SEAF receives message 6, it sends RAND with AUTN to the UE in AuthReq message. It
also includes ngKSI and the ABBA parameter to enable binding down protection.

Msg8. UE → SEAF: (AuthResp)

When UE received message 7, it forwards the RAND and AUTN to the USIM, which verifies AV
freshness and if AUTN is acceptable. It computes AK and retrieves SQN . Then computes MAC2,
(i) it checks if MAC2 = MAC and (ii) checks if SQN is in range SQNUE < SQNHN . If (i) and
(ii) are the expected response, USIM computes RES then CK, IK then forwards them to the UE.
The UE compute CK ′, IK ′. UE returns RES and MAC2 in AuthResp message.

Msg9. SEAF → AUSF: (NausfAuthnReq)

The SEAF transparently forwards RES,MAC2 as NausfAuthnReq message to AUSF. There is
an optional exchange of further EAP messages after message 9.

Msg10. AUSF → SEAF: (NausfAuthnResponse)

When AUSF receives RES and MAC2, it verifies them by comparing RES with XRES, if RES =
XRES the authentication is considered successful by AUSF and it informs the UDM/ARPF. If not,
it sends an error message to SEAF. Otherwise, it derives EMSK (KAUSF ) from CK ′ and IK ′, then
calculates KSEAF from KAUSF . It sends KSEAF and SUPI to SEAF in NausfAuthnResponse
message, an EAP-Success. The key KSEAF shall become the anchor key.

Msg11. SEAF → UE: (N1Message)

SEAF sends EAP success message in N1Message with ngKSI and the ABBA parameter. The
UE drives EMSK(KAUSF ) from CK ′ and IK ′, then calculatesKSEAF in the same way as the AUSF.

Phase 3: Re-synchronization
This phase updates the SQN on the HN side when SQN is out-of-sync. So AUTN cannot be
verified, the USIM informs the ME whether it is MAC or synchronization failure and it passes the
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Figure 6.13: 5G EAP-AKA’ Synchronization Phase Message Exchange Flow

AUTS parameter to the UE as shown in Fig. 6.13.
Msg12. UE → SEAF: (AuthFail)

The UE sends mac failure and synch failure with AUTS to SEAF in AuthFail message.
Msg13. SEAF → AUSF: (NausfAuthFail)

When SEAF receives message 12, it requests the UE for re-identification for mac failure or initiate
new authentication process for Sync failure then sends Synch failure,AUTS in NausfAuthFail
message to AUSF.

Msg14. AUSF → ARPF: (NudmfAuthFail)

Then AUSF sends NudmfAuthFail consisting of Synch failure, AUTS and the RAND sent
to the UE in message 6 to the UDM/ARPF. The ARPF gets SQNUE from AUTS, it checks if
SQNHN is in the correct range and if the next SQN generated using SQNHN would be accepted
by the USIM. If SQNHN is in the correct range, the UDM/ARPF generates a new AV otherwise,
it verifies AUTS and upon a successful verification, the ARPF resets the value of the counter
SQNHN to SQNUE. The UDM/ARPF sends new AV for the UE to the AUSF. The AUSF runs
a new authentication procedure as per the specification.

6.8 Formal Verification of 5G EAP-AKA’ Protocol

This section follows the same formal verification process as that defined in chapter 3. The modelling
of 5G EAP-AKA’ protocol is like that in section 6.3 and used same ProVerif processes as used in sec-
tion 6.5 with some changes in the ProVerif code such as fun PRF(key, key, bitstring, id):key,

Figure 6.14: 5G-EAP-AKA’ Safe ProVerif Results
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Table 6.3: Secrecy Properties

Properties UE SN HN
SUPI H H H
K H H H
KSEAF H H H

fun HMAC_SHA_256(key, bitstring):bitstring. Modelled with model A, the four parties’ pro-
tocol, processUE as UE, processSEAF as SEAF, processAUSF as AUSF, and processARPF as
ARPF. EAP-AKA’ is verified with query attacker(secretAUSF), (secretUE), (supi) and
(kseaf). Authentication is queried with query u:host, a:host, r:nonce, kseaf:key, k: key;

event(endAUSF(u,a,r,k))==> event(beginUE(u,a,r,k)).inj-event(endAUSF(u,a,r,k)) ==>

inj-event(beginUE(u,a,r,k)).
Full ProVerif description of 5G EAP-AKA’ protocol is illustrated in Appendix B.1. When the

protocol was modelled, the authentication on UE and HN holds as assumed by the standard on
both non-injective and injective agreements as shown in Fig. 6.14. The SN authorization is checked
in the process. The security properties of interest are KSEAF , mutual authentication for the UE
and HN, and privacy of communication between entities. The results also indicate that the secrecy
of secretUE, secretAUSF, supi, kseaf hold as shown in Table 6.3.

6.8.1 Security Analysis

Protocol Security Analysis

The 5G EAP-AKA’ protocol should meet certain security properties and the analysis is based on
security requirements taxonomies presented in chapter 3, H is used when the property holds, and
X is when the property does not hold. The security analysis is like that of the 5G-AKA protocol
in section 6.3, Tables 6.3, 6.4, and 6.5, show that security properties hold. The difference is in the
challenge/response and RES and MAC2 and sent for verification to AUSF instead of RES∗ in
5G-AKA. The query attacker on secrecy, aliveness, weak, non-injective, and injective agreement
hold. Also, the mutual authentication, mutual key authentication, mutual key confirmation, key
freshness, unknown key share, and key compromise requirements are achieved. This is due to 5G
EAP-AKA’ being modelled based on the secure 5G-AKA protocol, the difference in the message
exchange could not cause an attack on its own.

Table 6.4: Security Properties for Set 1

Properties UE − SN SN − UE UE −HN HN − UE
Aliveness H H H H
Weak Agreement H H H H
Non-Injective Agreement H H H H
Injective Agreement H H H H

95



Table 6.5: Security Properties for Set 2

Properties UE − SN SN − UE UE −HN HN − UE
Mutual Entity Authentication H H H H
Mutual Key Authentication H H H H
Mutual Key Confirmation H H H H
Key Freshness H H H H
Unknown Key Share H H H H
Key Compromise Impersonation Resilience H H H H

Security Consideration

The EAP-AKA’ faces similar attacks as 5G-AKA like the impersonation attack. However, EAP-
AKA’ also faces privacy attacks alleviated by using network name binding and its configuration
should not depend on the requester’s location unless cryptography is applied to the location data.
DoS attack can only occur if the SN requests large numbers of authentication runs for UE, but re-
synchronization and tracking/monitoring mechanisms should stop this type of attack by limiting the
number of authentication attempts (Arkko et al. 2019). The issue of fake BS and non-repudiation
is addressed by increasing home control. Even though 5G EAP-AKA’ provides even better security
than EAP-AKA, it is still affected by some of the 5G-AKA related attacks (Dehnel-Wild & Cremers
2018), (Koutsos 2019), and diameter protocol vulnerabilities (Enisa 2018).

Our analysis on both 5G-AKA and EAP-AKA’ illustrates more detailed protocol modelling and
evaluation, it discovered that some security goals and assumptions are underspecified or missing.
It also showed the properties that are violated due to changing the channel assumption from secure
to insecure. That is why the non-injective and the injective agreement did not hold as explained
in section 6.5. We can conclude that 5G authentication protocols are still vulnerable to legacy
attacks and with an increase in sophistication of cyber-attacks, it is inadequate to assume that the
communication channel is secure without anticipating the adversary capabilities.

6.9 Summary

This chapter discussed 5G-AKA and EAP-AKA’ for primary authentications. The 5G standard
and EAP-AKA’ RFC have been interpreted and analysed to identify all assumptions and security
properties that need to be met to achieve the AKA in 5G. The 5G-AKA and EAP-AKA’ protocols
that provide security to the NAC-level have been modelled based on three and four entities models.
Formal verification and systematic security evaluation of the protocols were conducted. With the
found vulnerabilities, this study recommended some measures that later showed that the protocol
can be secured. After formally analysing the primary authentication security protocols and they
are considered secure to an extent under certain conditions. Considering how the primary au-
thentication could affect the secondary authentication and service authorization, the next chapter
introduces the service-level security and the underlying security protocols.
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Chapter 7

Service-Level Security

7.1 Introduction

After primary authentication, the UE would have achieved mutual authentication and key agree-
ment with the HN derived session key and used it to derive other keys to be used in securing
communication with other 5G HN entities. With our proposed integrated solution, the UE will be
able to get authorized to access services from the SP and get permission to cache and share content
with other UEs. This chapter introduces service-level security and its proposed security mechan-
isms. It proposes secondary authentication, service access, data caching, and sharing authorization
protocols. Some of the work in this chapter is also presented in (Edris et al. 2020c,a, In Press,
2021a).

The rest of this chapter is structured as follows. Section 7.2 discusses the secondary authentica-
tion framework. The proposed SAP-AKA protocol is presented in section 7.3. Section 7.4 presents
the modelling of SAP-AKA protocol. The verification of SAP-AKA protocol is presented in sec-
tion 7.5. In section 7.6, the FIdM in 5G is introduced. Section 7.7 presents the NS-FId model.
Section 7.8 introduces the NS-FId protocol. In section 7.9, the proposed solution of the NS-FId
protocol is presented. The NS-FId protocol modelling is presented in section 7.10. In section 7.11,
the verification of NS-FId protocol is presented. Section 7.12 introduces data caching and sharing
security. The proposed solution of DCSS protocol is presented section 7.13. Section 7.14 presents
the modelling of DCSS protocol. The verification of DCSS protocol is presented in section 7.15.
This chapter is summarised in section 7.16.

7.2 5G Secondary Authentication

To access the services from the third-party SP the UE must get authenticated by SP via SMF
of the HN which acts as a pass-through authenticator. Having achieved primary authentication
with the HN, the UE with some of its NAC credentials, and a NAS security connection with the
AMF, requests a PDU service session establishment with target SP. The SMF process the request
by getting UE’s subscription data like SUPI, service agreement from the UDM via AMF, then UE
is assigned a GPSI to use outside HN. The SMF also checks the validity of the UE’s request in
relation to user subscription, local or external service policies. The SMF may also check whether
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the UE has been authenticated and authorized by the target SP before. Then SMF redirects the
UE to the SP to initiate authorization, the SP checks if the UE has been registered if not then
it will initiate a secondary authentication. The secondary authentication process is discussed in
the following sections. If the UE is already registered, it will continue with the authentication and
authorization procedure explained in section 7.6.

The secondary authentication should be used to provide authentication between the UE and
the SP, which adopts the EAP framework as specified in (3GPP 2020f) with a few modifications.
It was specified for secondary authentication for DN, however, in this research, it is used for both
internal SP and external SP. This is due to 5G’s SBA that enables MNO to act as a network
operator, infrastructure provider, and internal SP. In the case of external SP, this authentication
procedure will provide optional authentication between UE and SP while the 5G-AKA and EAP-
AKA’ methods will provide authentication between the UE and the HN. It is assumed that UE
would have registered with and the SP and MNO would have a service subscription of the UE. If
the MNO and the SP are different, they should have an inter-operator service agreement for the
UE.

After a successful authentication, the UE will be assigned a permanent ID, the UE’s ID should
be different from that used in primary authentication that will be used to request access to services.
The ID will be either derived from the IP address or pseudo-randomized name given by the au-
thenticator. Both the UE and SP would have authenticated each other and agreed on a session key
to use during communication as well as achieving the authenticity and validity of the content. The
UE and SPAAA will agree on a session key and the SPAAA will assign the UE with an external
ID EID which is used in the next step of our security framework.

7.2.1 Problem Definition

As mentioned earlier, 3GPP recommends that the EAP framework should be used as the secondary
authentication method in a fully active exposure scenario to external networks, however, the EAP
has some limitations in achieving this objective. There is a restriction on using 5G security context
such as keys and IDs outside the HN with non-3GPP access networks and the EAP framework’s
requirement of the authentication key AUT Key to be preshared between the UE and the AAA
server before the run of the protocol raises security problems. The Aut Key is used to derive
CK’/IK’ and other following keys.

The IDs used in 5G primary authentication are not allowed to be used outside the HN that is
why the SAP-AKA protocol uses Generic Public Subscription Identifier (GPSI), a publicly know
ID which is later replaced by the (EID) created by SPAAA and securely assigned to the UE. The
EAP derived keys; K encr is used to encrypt AT ENCR DATA attribute such pseudonym IDs
(identity privacy), K aut issued to encrypt the AT MAC attribute and K re only used in the
re-authentication process as per 3GPP and EAP specifications. MSK is used to protect the EAP-
AKA packets for non-3GPP access interworking function and the EMSK is used in the derivation
of 3GPP related access keys to secure the HN. Therefore, the proposed SAP protocol intends to
provide mutual authentication, a session key, and an external ID to secure communication between
the UE and SPAAA. The SAP solves the issue of not sharing primary authentication keys and
security context with an external AAA server as per 5G specification as shown in Fig. 7.1 by using
symmetric and asymmetric cryptography. After a successful run of SAP-AKA protocol, key KUE3A

is generated to be used by UE and SPAAA to secure their communication, and EID is created
and assigned to the UE as its permanent ID. The EID and SPID are used in the derivation of the
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Figure 7.1: 5G EAP-SAP Problem Definition

session key to bind both the UE and SPAAA to the session and the key.
Most of the security assumptions and requirements are based on the specifications in TS 33.501

(3GPP 2020f), TS 33.402 (3GPP 2020c) and RFC 5448 (Arkko et al. 2018) as mentioned in chapter
6. The desired security properties that SAP-AKA protocol should meet are secrecy, confidential-
ity, integrity, authenticity, and privacy (3GPP 2020f). The UE must be assured that the SP is
authorized by its HN, while the UE authenticates SP with the NAI through mutual authentication
and key establishment. The HN must achieve a weak agreement with SP after key confirmation.
The SP shall be able to authenticate the UE with GPSI and pre-shared information with HN in
the registration process. SAP-AKA protocol must ensure the secrecy of key KUE3A, EID, and se-
cure communication between UE and SP without using any of the primary authentication security
contexts. Since no security context is shared with third-party SP compromising primary authentic-
ation should not compromise the secondary authentication. In addition, user’s subscription privacy
should also be ensured by providing confidentiality, anonymity, and untraceability.

7.3 Proposed Secondary Authentication Protocol

This section presents the proposed SAP-AKA protocol that leverages the EAP framework (Voll-
brecht et al. 2004) as recommended by 3GPP (3GPP 2020f). This protocol uses the security
parameters and EAP-AKA KDF (3GPP 2020c). It is an optional authentication that must be ini-
tiated by third-party SP when UE requests its services. The proposed SAP-AKA Protocol should
provide mutual authentication and session key establishment between the UE and the SP.
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Table 7.1: AT KDF Parameters

Key Input
MK KDF (PRF ′(IK ′|CK ′, ”SAP”|Identity))
K encr KDF (MK[0..127])
K aut KDF (MK[128..383])
Kre KDF (MK[384..639])
MSK KDF (MK[640..1151])
EMSK KDF (MK[1152..1663])
KSEAF KDF (EMSK,SNN)
KAMF KDF (KSEAF, SUPI,ABBA)
KUE3A KDF (EMSK, (EID, SPID))

7.3.1 Architecture Overview

SLS recalls the following the entities from the system and security architectures defined in chapters
2 and 5, respectively, to participate in the secondary authentication:

� UE as the peer.

� H-SMF as pass through authenticator, the HN’s SMF that communicates with the HN’s
AUSF/UDM/ARPF via AMF and SP entities such SP authenticator or backend server.

� SPAAA as the authentication server owned by SP. It grants authority and issue the security
parameters used by the UE to access the service such as AV and EID.

Keys Derivation

The key derivation is performed according to EAP framework (Arkko et al. 2018) with at kdf input
parameters as inputs (3GPP 2020c). The UE and the authentication server compute CK’, IK’ keys
which are used together with PRF’, SAP and identity as key derivation inputs at kdf input. PRF’
is a pseudo-random function, SAP is a string indicating the type of protocol and identity is the
UE identity used to derive a Master Key (MK). The MK is used to derive K encr, K aut, K re,
Master Session Key (MSK) and Extended Master Session Key (EMSK) as shown in Table 7.1.
The K encr is used for AT ENCR DATA and K aut for AT MAC attributes respectively while
the K re is applied during re-authentication if required. The MSK and EMSK are derived after a
successful EAP AKA challenge-response run for non-trusted and trusted non-3GPP access networks,
respectively.

After a successful secondary authentication process using SAP-AKA protocol, the EMSK
key, UE, and SP identifiers are used as input parameters at kdf input with derivation function
KDF (EMSK, (EID, SPID)) in deriving KUE3A to secure communication between UE and SP in
next stage of service authorization. The MSK is used to derive keys for non-trusted non-3GPP
access interworking function. In addition, KAMF is used to secure communication between UE and
SMF provided by AMF, derived from KSEAF using SUPI associated with NAI and Anti-Bidding
down Between Architectures (ABBA) parameters for forward compatibility as at kdf input para-
meters KDF (KSEAF, SUPI,ABBA) (3GPP 2020f) during primary authentication run. The
KUE3A is derived after a successful SAP-AKA protocol run between the UE and the SP. The key
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Figure 7.2: SAP-AKA Key Derivation

derivation and hierarchy are shown in Fig. 7.2, where [0..n] denotes the substring from bit 0 to n
used in the key derivation (3GPP 2020f).

7.4 Modelling of SAP-AKA Protocol

SAP-AKA protocol is modelled with UE, SMF, and SPAAA as entities, the communication between
the SP and the UE goes through SMF, then SMF relays the message to UE or communicate to
AMF and UDM for message interpretation and subscription data verification, respectively. The
SMF performs as an EAP authenticator, it relies on the SP’s AAA server to authenticate and
authorize the UE’s request to establish a service session. The SAP-AKA protocol should provide
authentication and a session key for UE to access services from the DN. Its main purpose is to allow
the UE 3GPP HN to communicate securely to authorize non-3GPP networks without compromising
the security context such as SUPI to SP. The SMF check with UDM for any previous authentication
or authorization sessions between UE and SP. If so, they can use the previous keys and trust for
generating new session keys. The GPSI is used as UE’s initial ID, globally known but it is not used
in the AV as it is swapped with EID.

7.4.1 Protocol Message Exchange and Execution

This subsection explains the message exchange and execution of the SAP-AKA protocol, it consists
of two phases: (i) service request and (ii) authentication. The protocol message exchange is illus-
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Figure 7.3: SAP-AKA Protocol Message Exchange Flow

trated in Fig. 7.3, with reference to notation in Table 7.2 and described as follows:

Phase 1: Service Request
Msg1.UE→SMF:({ServSsReq})

After the primary authentication, the UE sends a service session request message ServSsReq via
AMF to SMF in 5G HN, which includes the service name Servname and session ID SID to request
a service and session establishment. The Servname is the identifier of the service, while SID is
used for session management purposes by SMF.

Msg2.SMF→UE:({ServSsResp})

The SMF checks the user’s subscription data, the primary authentication security status, and the
context of the UE in HN’s UDM. It checks if the SP provisioning the service to the user resides
inside or outside HN and security context available. If its external SP, then SMF retrieves the
UE global generic identifier GPSI that corresponds with the UE’s permanent Identifier SUPI and
sends it to the UE along with the SPID and SP’s public key PKSP in a service session response
message ServSsResp. SMF redirects the UE to SP for authentication and service authorization.

Msg3.UE→SPAAA:({ServReq}{PKSP})

Then UE sends a service request message ServReq to SP, it includes service name Servname,
session ID SID encrypted with SP public key PKSP .
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Table 7.2: SAP-AKA Protocol Notation and Description

Notation Description
SPID SP identity
SID service/session identity
DNN service code: SPID (NAI)
NAI (SID, SPID)
Aut Key/K preshared key between (UE, SP)
KAMF session key for UE and AMF/SMF
RAND (AT RAND) random nonce challenge
EID UE permanent identity
GPSI UE generic identity
AUTN(AT AUTN) (SQNSP ⊕ AK,MAC)
MAC,MAC2(AT MAC) f1(K, (SQNSP, Rand))
RES (AT RES), XRES f2(K, Rand)
CK f3(K, Rand)
IK f4(K, Rand)
AK f5(K, Rand)
CK’ ik, ck, dnn, (sqn ⊕ak))
IK’ ik, ck, dnn, (sqn⊕ak))
EMSK KDF((CK’, IK’), (SNN, SQN ⊕ AK))
SQN sequence number
PKSP SP public key
KUE3A KDF(EMSK, (EID, SPID))
h(x) hash value of message x
{x}{k} message encrypted with key K

Phase 2: Authentication
Msg4.SPAAA→UE:(EAP_Reqid)

The SPAAA verifies the ServReq by checking the details of the Servname and SID in its database
which includes the services and agreement policies with HN, if they are valid then it sends an EAP
request message requesting the UE to identify itself, initiating an EAP-AKA message exchange.

Msg5.UE→SPAAA:(EAP_RespId)

When the UE receives message 4, it sends an EAP response identity message to the SPAAA,
including its generic identity GPSI.

Msg6.SPAAA→UE:(EAP_Req/AKA’Challenge)

After receiving message 5, the SPAAA checks GPSI and policies, then sends EAP request to start
AKA challenge with the UE, this includes (AT_RAND, AT_AUTN, AT_MAC, AT_KDF, AT_KDF_INPUT),
random number, authentication challenge AUTN, MAC, KDFs, and the input for generating keys.

Msg7.UE→SPAAA:(EAP_Resp/AKA’Challenge)

The UE verifies the AUTN, the MAC, checks the token challenge and MAC values, for freshness
and message integrity. If they match, it responds with an EAP response message that includes
(AT_RES, AT_MAC2) a response RES to the challenge sent in message 6 and a new MAC2.

Msg8.SPAAA→:(EAP_Success)

The SP verifies MAC2 and checks the response from UE received in message 7, if they match it
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Figure 7.4: SAP-AKA Attack ProVerif Results

generates session key KUE3A for UE and SPAAA and a permanent Identifier EID for use during
service authorization procedure. The session key KUE3A and EID are encrypted with K enc key
in the EAP success message sent to the UE.

Msg9.SPAAA→UE:(EAP_Success)

The SP also sends an EAP success message to the SMF that authentication was successful. Then
SMF sends a message to UDM to update the UE profile in the HN.

7.5 Formal Verification of SAP-AKA Protocol

This section follows the same ProVerif process as that defined in chapter 3. The modelling of
SAP protocol uses ProVerif code like that used for 5G EAP-AKA’ protocol in chapter 6 with some
changes, full Proverif protocol syntax in Appendix C.1.

7.5.1 Formal Analysis of SAP-AKA Protocol

The SAP-AKA protocol is simulated with processes procUE(hostU) as UE, procAAA(hostA) as
SPAAA, and procSMF(hostS) as (SMF). When the protocol was modelled in ProVerif, an attack
was found on the authentication protocol between the UE and SP as non-injective and injective
agreements as shown in Fig. 7.4. The security properties of interest are secrecy and authentication.
The results also indicate that the secrecy of secretAAA, secretUE, eid and Kue3a do hold.

The event endAAA means that the SPAAA has completed the protocol, that the UE received
message 6 from SPAAA and UE responded with message 7. These events take at_rand: nonce,
at_autn: bitstring, at_mac: bitstring, at_kdf:bitstring, at_kdf_input:bitstring para-
meters as arguments. It checks the sent at_mac, at_autn and computes the at_rand. If the
arguments are true then at_res, at_mac2 are sent otherwise it sends authentication failure. The
study would like to prove the following correspondence.

(*Check authentication between UE and AAA*)

query u: host, a: host, r: nonce, kue3a:key, k: key;

event(endAAA(u, a, r, k)) ==> event(beginUE(u, a, r, k)).

inj-event(endAAA(u, a, r, k)) ==> inj-event(beginUE(u, a, r, k)).

The direct proof of this correspondence does not hold in ProVerif because message 7 was sent and
message 8 was received hence the failure of the authentication. The study also tries to prove and con-
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Figure 7.5: SAP-AKA Attack Trace

clude the desired correspondence by noticing that message 7 which has at_res, at_mac2 as argu-
ment that cannot be executed before at_rand: nonce, at_autn:bitstring, at_mac:bitstring,
at_kdf:bitstring, at_kdf_input:bitstring has been sent in message 6, that is, message 6 has
been executed. Which does not hold in ProVerif showing false.

7.5.2 The Attack Against SAP-AKA Protocol

ProVerif produced results indicating there was an attack on the protocol as shown in Fig. 7.4.
As attack derivation represents the attacker’s action while trace represents the real attack as an
executable trace of the considered process as explained in chapter 3. The attack derivation and
trace sequence of steps, input, and outputs are explained in this subsection.

Attack Derivation and Trace

The attacker I starts by eavesdropping on the communication between entities, impersonates the
UE by continuing the protocol with SPAAA, which completes the protocol with the attacker instead
of UE. The attacker’s actions are illustrated in Fig. 7.5 and explained concisely in derivation and
trace steps below, some text is omitted for simplicity, full trace output in Appendix J:

� Steps 1 and 2 indicate that the attacker may have received the SP’s key pair in output {7} as
the attacker impersonates UE. The input {1}, {3} corresponds with the creation of private
key sksp_16418 and session key kue3a_16417. Output {7} corresponds with the creation
of public key that the attacker stores in a fresh variable ~M_16501 for later use. Input {55}
corresponds to a session of the SP (copy a_16416) with the attacker, the attacker sends its
copy of service request created at {54} to the server. The server responds with output 57
asking for ID, attacker sends its ID input 58. The session key was obtained at {92} after {91}
(event beginAAA(u,hostA,at_rand_53,k_aut_67)).
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Figure 7.6: Improved SAP-AKA Protocol Message Exchange Flow

� Traces 1 and 2 show that correspondence non-injective and injective fail as the attacker’s
query goal is reached, that is the SP end the protocol thinking it was talking to UE while UE
never run the protocol with the SP.

7.5.3 Improved Version of SAP-AKA Protocol

This subsection discusses the changes that were made in modelling of SAP-AKA protocol to address
security threats discovered in the old version of the protocol. To improve the protocol instead of

Figure 7.7: SAP-AKA Safe ProVerif Results
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assuming that the exchange between the UE and HN is secure, session key KAMF derived during
primary authentication was used. The communication between the UE and SMF/AMF is encrypted
with keyKAMF within the HN as shown Fig. 7.6. When the protocol was modelled again the secrecy
and authentication were found to hold on both non-injective and injective agreements as shown in
Fig. 7.7. The implicit authentication between the SP and HN is also checked in the process. The
results also indicate no attacker ([]) is true on SecretAAA, SecretUE, eid and Kue3a.

7.5.4 Security Analysis

Protocol Security Analysis

The proposed security protocols should meet certain security requirements and the analysis for the
improved version of SAP-AKA is based on the properties of sets 1 and 2 as explained in section 3.

Analysis based on security properties of set 1 is as follows:

� Secrecy: This is achieved since key KUE3A is never revealed to the attacker. By using XOR
and anonymity keys to protect the parameters used in derivations of keys in transit and in
storage. The use of functions f1, f2, f3, f4, f5 to provide privacy protection of challenges/re-
sponse of the data. By achieving this property also covers confidentiality and privacy of the
protocol.

� Aliveness: The SP obtain the aliveness of the UE at SMF, which is a non-injective agreement
on NAI from the SP’s point of view with the subscribers. But also, the SP should have
injective agreement on KUE3A with the subscribers, which gives recent aliveness as a result.

� Weak Agreement: This is achieved when HN achieves non-injective agreement on EID with
UE as it is the ID. Also, the SP achieves weak agreement with HN after the key confirmation
as the key includes SPID and GPSI.

� Non-injective Agreement: The UE obtains non-injective agreement on NAI with its SP after
key confirmation of KUE3A. Moreover, since GPSI also is assigned by HN, an agreement
on EID is an agreement on GPSI. The HN obtain non-injective agreement on EID with
the SP after EID is assigned to UE by SP. The injective agreement on KUE3A from the SP
towards the UE, also guarantees that UE is attached to an authorized SP, this is achieved
sinceKUE3A’s derivation includes nonce from SP and NAI. Assuring the UE that SP is trusted
and the authentication UE-SP holds.

� Injective Agreement: The injective agreement on KUE3A for different pairs of parties is
achieved when the KUE3A cannot be derived twice for the same session. The KUE3A de-
rivation also includes at_rand, which gives an assurance on KUE3A from the SP to the UE.
The injective agreement on KUE3A, which is bound to SPID provided by the HN assuring
the UE that SP is known and trusted. The UE obtain the injective agreement on KUE3A

with the SP to assure that the session was authorized by the HN. Also, it achieves the same
trust from UE as the event correspondence holds.

Analysis based on security properties of set 2 is as follows:

� Mutual Entity Authentication: The UE is authenticated to SP if at_res and at_mac2 are valid
and HN implicitly. Since the SPID andGPSI are included, it enforces implicit authentication
upon a successful authentication.
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� Mutual Key Authentication: Since the SPAAA sends the at_kdf:bitstring, at_kdf_input:
bitstring strings to UE with key derivation parameter, which fulfils this requirement.

� Mutual Key Confirmation: After the successful AKA roundtrip between the entities ending
with SPAAA sending Success message and KUE3A, it enforces this requirement.

� Key Freshness: ProVerif has no function to check key freshness, however, during the authen-
tication process the UE checks the at_autn freshness and computes at_rand. Key KUE3A is
a result of the input request that was sent by SPAAA to UE in during the current protocol
session, hence the input is fresh and the key is fresh.

� Unknown-Key Share: The reachability property in ProVerif is used to check aliveness. The
entities’ IDs and at_kdf: bitstring, at_kdf_input:bitstring prevent this attack. The
inclusion of GPSI, SPID in the authentication process and the GPSI in the derivation of
K_aut, also proves this requirement. Moreover, KUE3A is only sent to UE after the RES and
MAC2 verification by SPAAA.

� Key Compromise Impersonation Resilience: The KUE3A is implicitly authenticated and its
secrecy holds. It remains confidential since the key derivation input was sent by SPAAA in
a secure communication exchange as defined by RFC 5448. Hence, forward secrecy and
post-compromise secrecy might hold. Since SAP-AKA uses EAP framework and EAP-
AKA’ does meet these security requirements as no other key is involved in the derivation of
KUE3A; therefore, deriving past and future keys by the attacker based on at_kdf:bitstring,
at_kdf_input:bitstring is not possible.

Security consideration

The service session establishment procedure falls out of the scope of this research, for IP based
and CCN based procedure refer to (3GPP 2020f) and (Ravindran 2019), (Ravindran et al. 2017)
respectively. Now that the UE has been authenticated to access the SP network, further authoriz-
ation to access services is required. When the UE registers with the network it shares some data
with HN as per 3GPP standard and with SP as per SLA and QoS. The HN gets in agreement with
SP if they are different parties. After the authentication, the SPAAA will create a session key for
UE and SPAAA.

7.5.5 Summary

This section proposed the SAP-AKA protocol an optional authentication as part of the service
authorization procedure for UE requesting access to services provided by SP via its HN. Before
other authorization procedures are presented, the next section discusses FIdM in 5G and its role in
service authorization.

7.6 Network Service Federated Identity Management

This section explores FIdM and how it can be integrated with authentication and authorization
procedures in 5G. It proposes a NS-FId architecture model that complements the 5G system and
security architectures, facilitates authentication and authorization with SSO in different scenarios.
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The model leverages 3GPP AKA mechanism and OAuth2 framework to provide federated author-
ization.

It is crucial for 5G to create a chain of trust between the UE, HN, and DN during the authoriz-
ation process. With 5G supporting multiple shareholders and multi-tenancy on the infrastructure,
seamless connectivity and secure access is a big challenge, while the interoperable ACL implementa-
tion at different levels might be difficult. ACL mechanisms must be able to identify and authorize the
UE requesting access to 5G NS via different access networks. Therefore, there is a need for security
contextualization propagation between the MNO and the SP such as a service-oriented authentic-
ation and authorization mechanism to facilitate network slicing and service security. Additionally,
how will services from multiple providers be delivered to users in different security domains? 5G
also is faced with the issue of incompatibility of 3GPP AKA framework with virtualization frame-
works for network access and network slices provisioning. This can be solved with Identity and
Access Management (IAM) solutions that facilitates FId and SSO via trusted third-party (Norma
2016), (5GPPP 2017) (VirtuWind 2017).

The use of federated authentication and authorization can facilitate adaptable security man-
agement, precise UE data tracking, seamless connectivity, and enablement of security management
delegation. This would reduce the use of secondary authentication protocol, improve infrastruc-
ture resources optimization and third-party trust whereby ID management, authentication, and
authorization for the UEs accessing SP services are provided by a third-party provider. Related
work discussed the possibility of FIdM in 5G without proposing a robust, unified, multi-purpose
solution to complement the complexity of 5G’s SBA which will be supported by various technologies
that need security guarantees, authentication, and ID protection. Additionally, FIdM was being
suggested for network slicing and IoT but not in network access and service authorization where
the author believes that FIdM will be an ideal solution in supporting 5G’s objectives.

7.6.1 Related Work

With 5G standardization still to be finalized, the integration of FIdM in 5G can benefit NF service
provisioning (5GPPP 2017). With MNOs using federated solutions to provide users with NF as a
service (Mwangama et al. 2015) but federated network access is yet to be explored. However, FIdM
in cloud services, social networks, and IoT has been explored extensively, with the focus on data
storage, cloud access, and social media. The FIdM for 5G is not well investigated, so this study
intends to address federated security for NS access, services authorization, and network slicing in
5G.

Identity and Access Management

As users roam across different networks, it is becoming a big challenge for MNOs to provide robust
ACLs, security, and session continuity but the advancement of IAM technologies can provide secur-
ity, improve user experience, and privacy. With SSO implementation in 5G, a user can use a single
common set of credentials to gain access to multiple services in different security domains for tech-
nical interoperability across systems. Whereby the UE relies on a single ID, security association,
and trust to get authenticated and authorize to services in the HN and SP. This would allow UE
seamless mobility, handover, and connectivity across networks, hence reducing multiple authentic-
ation procedures every time the UE requires access to restricted services in multiple domains. IAM
system is responsible for the identification, authentication, and authorization of a user accessing
services by enforcing ACLs and management of the user’s digital ID linked to multiple accounts.
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Each account is assigned different ACLs and security contexts. It also manages the access database
by updating users’ access rights and storing user’s information such as ID, keys, and certificates.
This is facilitated with SSO, multi-factor authentication, and privileged access management.

Federated Identity Management

With FIdM, users can use the same identification information while accessing resources from mul-
tiple SPs in different domains in form of a FId. The SP facilitates user’s identification, authentica-
tion, and authorization procedures processed and managed by a third-party authority the Identity
Provider (IdP). The IdP creates and manages the user’s ID data as well as facilitating MNO/SP
and user’s connection after a successful authentication. The user ID and security context are sent
to the SP for access decision-making (Bertino & Takahashi 2010). The IdP and SP must agree
on security policies, cryptographic schemes, and authentication methods used in the identification
and authentication of the user. However, there is an issue of a single-point failure of a centralized
ID management which is solved by enabling the sharing of the IdP’s functions among several local
IdPs in different SP security domains (Fang & Ye 2018).

After federated authentication, the user’s authorization to the services relies on the authentic-
ated credentials. The user IDs are mapped to IdPs in different domains based on PKI, trust, and
service agreements. FIdM is enabled by mechanisms such as SSO, SAML (Hughes et al. 2005),
OAuth2 (Dick 2012), OpenID (Recordon & Fitzpatrick 2006) and some of the entities used are
IdP authentication server, IdP ID database server, SP authorization server, SP federation server,
and resource server. In 5G, users can gain access to services in the HN or DN using the federated
authentication method and OAuth2 framework providing a secure delegated access. With the UE
accessing resources on a resource server on behalf of a user without sharing their credentials with
the resource server. The OAuth2 can also ensure that only authorized NFs are granted access to a
service offered by another NF in 5G (3GPP 2020f), hence enabling FIdM in 5G.

Heterogeneous Network Service Access

5G will require enhanced User ID protection for UEs accessing NS via ng-RAN and pseudo-
identifiers will be used to provide anonymity and protection from UE tracking based on IDs. While
robust key generation and management are required to prevent key leakage and unknown key share.
In legacy systems, the user’s ID and access verification are carried out in a controlled security mes-
sage exchange process within the HN by MNO. However, 5G introduced an ID management domain
to support the use of alternative UE IDs during authentication from semi-trusted networks and an
IAM domain to address access control based on SCC. Third-party will also be able to authen-
ticate and authorize the UE via third-party and DN functions of the 5G system. Moreover, the
management domain was introduced to manage services, security, UE, and virtualized environment
domains (5GPPP 2017).

In 5G, the MNO would communicate with the SP via IdP to identify and manage the UE IDs,
enabling ID interoperability between MNO and SP and allowing the UE to access services even in
cases where roaming agreements between networks do not apply or during D2D scenarios. This
would also enforce accountability and non-repudiation by utilizing the linkage between UE and its
ID, giving assurance to the VN or SP that UE accessing a service is genuine (5GPPP 2017). UDM
will manage users’ profiles, so should be flexible and interoperable to support unified IAM and
FIdM (Fang et al. 2018).

110



The use of a single digital ID for multiple profiles would give the user access to multiple systems,
increasing mobility availability and management of overlapping digital IDs from different security
domains, hence achieving 5G objectives and meeting users, MNOs, and SPs security requirements.
The trust between shareholders is used to provide services and implement ID verification, ACL,
attributes, and capabilities sharing through the federated delegation process. However, the user
would need an ID and a combination of other security inputs such as cryptographic primitives and
ACLs for authentication and authorization, while the security level would depend on the security
policies. Therefore, FIdM would be ideal in supporting the secure access and delivery of NS in the
5G network.

7.7 Proposed Network Service Federated Identity Model

IAM solutions are needed to support UEs and network devices with different security capabilities
and attributes for 5G, legacy systems, and non-3GPP technologies. 5G Infrastructure Public Private
Partnership (5GPPP) defined new methods to enable the use of UE IDs in network slicing and IAM
solutions (5GPPP 2017) for 5G including FIdM. This study proposes a NS-FId model that leverages
3GPP system (3GPP 2020g), security (3GPP 2020f), SBA (3GPP 2020d) to facilities FIdM in 5G,
complementing the relevant 5G standards. The user federated authentication to NS provided by
SP would be handled by trusted IdP.

7.7.1 Model Architecture

As 5G is in the final stages of standardization, there are still crucial security issues that need
addressing such as authentication, authorization, and IAM mechanisms. Since 3GPP specifies that
security parameters and ARPF generated AV must be used within the 5G network and SUPI
should not be shared outside the HN. Therefore, to address those mentioned issues a new model is
needed, to enable seamless and secure connectivity across multiple domains. For the architecture,
the proposed NS-FId model recalls the following entities defined in chapters 2 and 5, these entities
might have more than one role:

� UE: End user and principal accessing the service.

� HSMF: SMF function that communicates with the AAA servers in HN and SP entities. Since
the IdP and SP cannot interact directly with home security entities

� HNAAA: AAA servers that carry out the primary authentication with UE and it consists of
AUSF, UDM, and ARPF.

� IdP: Creates, manages FId, and performs federated authentication with the UE. Issues ID
tokens and acts as federated active directory and ID database servers.

� SPAAA: Acts as SP AAA servers, the SP is also part of the transaction as it issues EID,
authorization grants, issue access/fresh tokens for service access.

� SS. Server hosting the services, verifies access token to grant the UE access to the protected
services.
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The proposed model adopts federated AAA, database servers, and 5G security architecture entities
to support FIdM, redefine UE’s ID parameters, and the sharing of security contexts such as keys
and IDs outside of the HN. The user’s data is stored in a federated server and UDM is used to
process the user’s federated identification supporting FIdM and 5G objective of minimal exposure
of 5G security context. The main role of the IdP is to perform federated authentication on behalf
of the MNO and SP, based on FId that is later used in creating ID and access tokens for service
authorization of the UE. The UE must register and authenticate the HN as per the 5G standard
and then performs federated authentication and authorization to access the services in HN or DN.
Additionally, the following Identity Provider Broker (IdPB) and Service Provider Broker (SPB) are
introduced to expand on the proposed model:

� IdPB: Is an ID broker that maps ID attributes from different IdPs to a single user and uses
trust relationship to connect SPs to IdPs in different domains (Austin et al. 2013). It also
translates tokens into different formats and enables cross-platform federated authentication.

� SPB: Is affiliated with SPs that the user requests access to for a particular service, linking the
user to multiple services (Research 2013). It also manages the HN and SP communication with
SPs, IdP, or the IdPB. In this model, three phases are defined to complete a FId procedure,
and they are presented in the following sections.

7.7.2 Registration

In this phase the UE registers to the MNO in the HN, its subscription and security data are stored
in the UDM. The UE’s details including ID, access policies, and service agreements are registered
to the SP by the MNO. Additionally, the MNO and SP register to IdP, agreeing on the mechanisms
to be used such as IDs, PKI, ACL, cryptographic parameters for authentications and authorization
procedures. The MNO, SP, and IdP share the necessary security information to their counterparts
in form of services, policies, security secrets, IDs, user attributes, and other credentials to purposely
support the process.

7.7.3 Authentication

As presented earlier in chapter 6, the primary authentication is the initial stage of the authentication
procedure for the UE to access the HN via the SN, it gets authenticated and authorized to use the
MNO resources. The second stage authentication comprises two authentication procedures, the first
one is the secondary authentication that occurs when the UE requires resources that are provided
by the third-party SP rather than the MNO and the SP is not registered to the same IdP as the
MNO hence completing the registration phase. The UE, HN, and SP participate in the secondary
authentication which is based on the EAP framework as discussed in section 7.3.

The other procedure of the second authentication stage is the federated authentication that
occurs between UE, IdP, and SP when the FIdM is enabled managed by IdP, it uses some of the
security context and UE’s subscription data from the previous authentication procedures such as
GPSI and access policies. It is based on FId, the SP generates authorization code that the UE
presents to IdP, which creates the ID and ID token that are used in the authorization of process
that facilitates SSO relying on the registration information.

Similarly, a Generic Bootstrapping Architecture (GBA) protocol enabling the reuse of existing
security procedures such as primary authentication to grant access to application services facilitated
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Figure 7.8: 5G NS-FId Model Generic Message Flow

by the application and bootstrapping functions in 5G was developed by 3GPP (3GPP 2020e).
It verifies if the UE was verified correctly with AV in the UDM, GBA protocol can extend the
capabilities of federated protocols in protecting NF to securely expose security context and events
to third-party AF using NEF in 5G (3GPP 2020f).

7.7.4 Authorization

With authorization, this study adopts the OAuth2 framework (Dick 2012), it has also been stand-
ardized for authorizing the access to NF application services in 5G (3GPP 2020f). The OAuth2 is
integrated with federated authentication to facilitate an authorization process that uses UE creden-
tials and ACL. The UE is issued with an ID token by the IdP that it presents to the SP which issues
an access token in return that UE presents to SS to be granted access to the services. Additionally,
the SP can issue a fresh token as an optional token to be used if the access token is invalid, expired
or another activity is needed (Dick 2012). Even though requests from the AF can be authorized by
the NEF using the OAuth2 method, however federated authentication, and authorization methods
with OAuth2 can be more efficient and scalable.

The generic federated authentication and authorization steps of any NS-FId model are initiation,
authorization grant, identification, authentication, authorization, and access as illustrated in Fig.
7.8.
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(a) Model A (b) Model B

Figure 7.9: FIdM Models A and B

7.7.5 Use case Scenarios

Depending on the network architecture and service provisioned, FIdM in a mobile network can be
implemented in many ways supported by the use of trust and PKI mechanisms. MNOs, SPs, IdP,
UEs, and other shareholders are accommodated in the models that illustrate different scenarios and
they are as follows:

� Model A: MNO is the SP in a network using a single IdP illustrated in Fig. 7.9.

� Model B: Multiple MNOs and SPs in a network using multiple IdPs through IdPB illustrated
in Fig. 7.9.

� Model C: Multiple MNOs and SPs across multiple networks using a single IdP illustrated in
Fig. 7.10.

(a) Model C (b) Model D

Figure 7.10: FIdM Models C and D
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Figure 7.11: FIdM Model E

� Model D: Multiple MNOs and SPs across multiple networks using an IdPB with multiple IdPs
and multiple SPs illustrated in Fig. 7.10.

� Model E: Multiple MNOs and SPs across multiple networks using an IdPB with multiple IdPs
and SPB with multiple SPs across multiple networks illustrated in Fig. 7.11.

7.7.6 Analysis

Most of the existing IAM solutions are based on assumptions that seldom apply to multiple domains
with multiple users and SPs. The entities taking part in the transactions must be trusted, a familiar
protocol is used for the data exchange and appropriate credentials are used by users while requesting
access to service in different domains. This is not always the case, so new IAM solutions that adopt
federated methods and apply FId in a mobile network should be considered, this is due to 5G
features such as network slicing, infrastructure multi-tenancy, and multiple shareholders.

MNO should implement FIdM and collaborate with other shareholders outside their network
through trust relationships. The use of federated security between domains will provide efficient
authentication and authorization for seamless access to services. Additionally, the authentication of
the user to the access network and services in HetNets like 5G should also provide SSO. The proposed
model defines procedures that provide authentication, authorization, ID protection, interoperability,
and management of SSO in 5G. This will address 5G security as a unified multilayered security
solution as every level of the system has different security requirements as discussed in section 2.5.
Therefore, FIdM with mobile network security can become a business model for service authorization
and a security hardening technique.

7.7.7 Summary

This section explored IAM and how the FIdM can be used to support NS access in 5G. It proposed
a NS-FId model that facilitates federated authentication and authorization to the user for NS access
using FId in 5G. It also introduced different FIdM models that can be adopted to support HetNets,
SPs, and users, making a case for FIdM in 5G. The next section introduces a security protocol that
uses the model discusses in section 7.6 to secure NS access by UE.
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7.8 Network Service Federated Identity Protocol

This section proposes the NS-FId protocol to secure service access and achieve SSO in 5G and SP
networks using FId. As explained earlier, mobile subscribers will be able to access the NS, provi-
sioned by MNOs and SPs using a federated security mechanism to facilitate unified authentication
and authorization procedures and smooth interaction between shareholders. This requires MNOs
to provide robust AKA, fine-grained ACLs, privacy protection and session continuity as users roam
across different networks. The author also believes that the use of FId and SSO will be an ideal
solution to achieve robust authentication and authorization. Therefore, the NS-FId protocol is
proposed to provide a federated multi-level authentication and authorization to the UE for secure
access NS in HetNets. It leverages 3GPP AKA mechanisms presented in chapter 6, NS-FId model
in section 7.6, and OAuth2 framework (Dick 2012).

Related work discussed FId in 5G (5GPPP 2017) and in HetNets (Targali et al. 2013). (Xu
et al. 2018) presented a federated capability-based access control framework for IoT systems. A
subscriber can use a single digital identification as FId to obtain access to SP services in different
networks handled by IdP with the SP verifying the access request. And as discussed in chapter 5,
ACLs have been used to facilitate authorization in mobile systems by granting a user access to a
service object, checked against the user’s name and some permissions. However, conventional ACL
mechanisms alone are not enough to provide the required security for authorization in 5G due to
its complex characteristics. The proposed solution adopts an integrated approach by using RBAC
and ABAC, EBAC, and CBAC to facilitate the granting of different access rights and attributes
to a user as a subject and service as an object. Moreover, EBAC provides an additional layer of
security using cryptography. The CBAC approach provides the subject with a capability referring
to the object and a capability token granting the subject access to the object (Sandhu & Samarati
1994) enforcing security to the entity but also to the data.

7.9 Proposed NS-FId Protocol

This section proposes a NS-FId protocol that uses the NS-FId Model presented in section 7.7.
To access the services from SP, the UE would use the NS-FId protocol for authentication to SP
controlled by a trusted IdP, after the authentication, the UE would be assigned FID and achieve
SSO. Then the user gets authorized by SP to gain access to services through the home security
domain.

7.9.1 System Model

The proposed NS-FId protocol is based on the FIdM model presented in section 7.6 as shown in Fig.
7.9 that incorporates 5G entities as specified in (3GPP 2020f) with federated entities which can be
implemented in 5GC or third-party network. The entities UE, HSMF, IdP, SPAAA, and SS are
recalled, with the same registration process described in section 7.6 used. The user’s data on the
federated server and UDM is used in the implementation of federated processes. Additionally, the
UE’s registration, authentication to the network, and authorization to SP follow the 5G standard.
When the UE registers to the MNO, it is also gets registered to SP by the MNO and both MNO
and SP agree with IdP on security processes and policies such as IDs, PKI, authentication methods,
and ACLs. Furthermore, the content producer must register the NDO/service to the SP whereby
validation, authentication, and encryption of the NDO is performed.
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Table 7.3: Security Token Attributes

Attributes Description
Token ID security token identifier
Issuer token issuer and signed its private ke
Issue time timestamp when the token was issued
Issue sign digital signature of the token
Subject UE’s ID to with access rights
Service SP address/URI
Audience entity that the token is intended for
Nonce random nonce for authentication
Expiry time token expiring time
Access right set of attributes and capabilities
Scope set of conditions (grant type, offline access, token type)

7.9.2 Authentication and Authorization

As explained in section 7.6, the first stage of authentication is provided by primary authentication
method between the UE and HN, granting UE access to the HN as presented in chapter 6. Secondary
authentication between UE and SP can be performed at the request of the SP for UE that is not
registered to the same IdP as the SP as discussed in section 7.3. The proposed protocol provides
the second stage of federated authentication handed by the IdP using some of the UE’s data from
primary authentication to create FId and ID token for authentication of UE to SP.

For authorization, the OAuth2 framework is adopted for authorization with some additional
components. The authorization grant, access permission, attributes, and access tokens are generated
based on the user’s profile and access policies to assist in the authorization process. With the ACLs,
the UE and the service object are assigned attributes and capabilities with encryption integrated
into a FIdACap token, generated during the authorization process. The SP creates, manages, and
delegates the permissions to the participating entities, while the attributes and capabilities are
set up based on the agreed policies with the HN. The security tokens used in this process are also
assigned attributes such as access rights, parameters, claims in relation to the subject’s and object’s
attributes and capabilities. The attributes and format of the security token such as FIdAcap, ID,
and access tokens vary but the main structure and mandatory attributes are the same as shown in
Table 7.3.

7.9.3 Token and Security Policies

The PKI mechanism is used to authenticate the IdP, SP entities, and HSMF, different security
policies, and cryptographic primitives are used depending on the security requirement of the process.
These may include the encryption of signed hash of messages, nonce, and keys in tokens associated
with nonce keys. The access and ID tokens are renewed by the UE sending a refresh token specifying
the token in question, the fresh token is verified, and a new token is issued. In addition, the server
can revoke any token by sending a revoke token detailing the type of authorization, token ID,
content, and token type. The timestamp and expiry date in a token are used to reduce the risk of
replay attacks.
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Token Verification

The tokens used in the authorization process must go through a federated authorization validation
process, whereby the tokens are validated by the authorization and service servers. The attributes
that are checked and verified are nonce, signatures, claims, issuer, subject, audience, timestamp,
and expiry date. Similarly, the grant type and token ID for renewal and revocation details are
verified, as well as the data name, issuer signature, capabilities, and expiry date of the data. A
timestamp is used to prevent replay attacks and check the validity of the token. It is evaluated
by checking if it is within a given time window relying on the clock of the device. The message
timestamp must be equal or slightly off by seconds to the current time/date, while the token lifetime
time/date must be after the current time/date.

Keys Derivation

The keys used in NS-FId protocol use the KDF(Nonce, ID) as an input in the key derivation of
KUE3A and KUESS using the k(x) parameters. After a successful authentication between the UE
and the SP, key KUE3A is derived. Key KUESS is a session key generated by SP for communication
between UE and SS.

7.10 Modelling of NS-FId Protocol

This section models the proposed NS-FId protocol using UE, SMF, IdP, SPAAA, and SS as entities.
The cryptographic primitives used are symmetric and asymmetric encryption, one-way hash func-
tion, digital signature, and MAC, facilitated by ECIES, and security properties assumptions are
based on the 5G specifications in (3GPP 2020f). The proposed solution should provide a federated
authentication and authorization with SSO to UE and it stops the requirement of the secondary
authentication procedure every time the UE requests access to SP services. This protocol addresses
the concern of sharing the UE’s SUPI and other security contexts outside the HN. The UE would
be able to access services of different networks even without roaming agreements so long as they
fulfil the federated security acquirements. Providing privacy preservation for users’ IDs is intended
to enforce accountability and non-repudiation in 5G, hence should be included in the modelling.
The process includes initiation, authorization grant, identification, authentication, authorization,
and granting access.

7.10.1 Protocol Message Exchange and Execution

This subsection gives a concise description of NS-FId protocol execution and message exchange
between UE, SPAAA IdP, and SS. The UE would have achieved registration and primary authen-
tication to HN and secondary authentication to the SP if needed. As a result, it is assumed before
the start of the protocol run that the UE is in possession of GPSI, however, it would only have EID
and KUE3A if the secondary authentication method in section 7.3 was performed. The protocol
message exchange consists of three phases: (i) service request, (ii) identification and authentication,
(iii) authorization, illustrated in Fig. 7.12, with reference to notation in Table 7.4 are described as
follows:

Phase1: Service Request
Msg1.UE→ SMF:({ServReq})
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After a successful primary authentication to HN, the UE initiates a service session by sending service
request message ServReq to the HN SMF via AMF, which includes service name ServName and
session ID (SID).

Msg2. SMF → UE:({RedSp})

When SMF receives message 1, it checks the user’s subscription data, security status, and context
with UDM. Check if the SP is internal or external and if it is internal, then SMF retrieves the UE
generic ID (GPSI) that corresponds with the UE permanent ID (SUPI) and pass it on to internal
SP related functions. Otherwise, it sends the GPSI to the UE along with the SP (SPID), SP
public key PKSP in RedSP message for the UE to request access to external SP services. The
SMF redirects the UE to SP for authorization in both cases.

Phase 2: Identification and Authentication
Msg3.UE → SPAAA:({AuthzReq},{PKSP)})

The UE sends authorization request AuthReq to SPAAA encrypted with SP public key PKSP , it
includes the SID, service name ServName, and its GPSI.

Figure 7.12: NS-FId Protocol Message Exchange Flow

119



Table 7.4: NS-FId Notation and Description

Notation Description
IdPID IdP identifier
SPID SP identifier
SID service identifier
K(X) session key
R1 random nonce challenge
EID UE external identifier
FID UE federated identifier
GPSI UE generic identifier
IDT ID token
PK(x) public key
SK(x) private key
label capabilities string
Act access Token
Ack 1 acknowledgement
Serv service bitstring
Exp expiry date
Ts time stamp
AGrcode authorization grant code
h(x) hash value of message x
{x}{k} message encrypted with key K

Msg4. SPAAA → UE:({RedIdP},{PKUE})

When the SP receives a request in message 3, it retrieves the GPSI, ServName and SID that
includes the HN details and checks the UE’s HN service agreement and policies with the SP. If it
is valid then it generates authorization grant code AuthGrant, UE’s (EID), and the session key
KUE3A for the UE and SPAAA, sends it to the UE in RedIdP messages encrypted with UE’s public
key that was part of the security context shared between the HN and SP in the service provisioning
agreement. The EID and KUE3A are only generated if the secondary authentication method was
not performed otherwise they are reaffirmed to the UE. Then SPAAA redirects UE to IdP for a
federated authentication procedure.

Msg5. UE→ IdP:({IDTokenReq},{PKIdP})

When the UE receives message 4 it retrieves the KUE3A, then sends EID, authorization grant code
AuthzGrant and a nonce R1 to IdP for Federated Identifier FID and ID token IDT encrypted
with the IdP public key PKIdP .

Msg6. IdP→ UE:({IDTokenResp},{PKUE})

When the IdP receives message 5, it checks the grant code in AuthGrant, retrieves the EID and
PKUE , whether there is a need of secondary authentication or the security context. The IdP verifies
the UE credentials and generates the FID for the UE and IDT as per the security policy. It maps
FID with EID, UE profile with MNO/SP attributes to support SSO then sends IDToken response
message IDTokenResp which includes FID, IDT , hash of the IDT hash(IDT ), nonce R1, the
hash of the whole message hash(FID, IDT, hash(IDT ), R1) and encrypts the whole message with
UE’s public key PKUE. Both hashes are signed with IdP private key SKIdP .
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Phase 3: Authorization
Msg7. UE → SPAAA:({AccessReq},{KUE3A}})

When the UE receives message 6, it retrieves the FID, send access request message AccessReq for
access token AcT/refresh tokens from the authorization server of the SP. The message includes the
IDT and hash of the IDT hash(IDT ) signed with IdP private key SKIdP and encrypts the whole
message with KUE3A.

Msg8. SPAAA → UE:({AccessResp},{KUE3A})

When the SPAAA receives, message 7, the authorization server verifies the IDT , checks IDT is valid
with the right parameters, if it does then it generates an access token AcT/fresh token. Then sends
an access response message AccessResp, which includes the AcT/refresh token, session key KUESS

for UE and SS, hash of AcT hash(AcT ) and hash of whole message hash(AcT, hash(AcT ),KUESS)
signed with SP private key SKAAA and encrypted with the shared key KUE3A.

Msg9. UE → SS:({GrantAccessReq},{KUESS})

The UE sends grant access request message GrantAccessReq that includes AcT and hash of AcT
hash(AcT ) received in message 8 to SS encrypted with KUESS .

Msg10. SS→ UE:({GrantAccessResp},{KUESS})

The SS verifies the AcT and then sends a grant access response GrantAccessResp granting UE
access to the service SERV (DATA) signed hash of the service name ServName encrypted with
KUESS .

7.11 Formal Verification of NS-FId Protocol

This section follows the same ProVerif modelling process as defined in chapter 3. The protocol
modelling is like that illustrated in section 7.3 with some changes and full ProVerif protocol syntax
in Appendix D.1.

7.11.1 Formal Analysis of NS-FId Protocol

The protocol was simulated using secure, insecure channels and processes procUE as UE, procSMF
as SMF, procIdP as IdP, procSPAAA as SPAAA, and procSSas SS.

When the protocol was modelled, an attack was found on the public channel between UE, IdP
and SP, hence the protocol is insecure. The security properties we are interested in are the secrecy
of EID, FID, KUE3A, PKX(SKX), IDT , AcT , and authentication of UE to SP via IdP. ProVerif

Figure 7.13: NS-FId Attack ProVerif Results
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results in Fig. 7.13 shows that secrecy (kue3a[]), (kuess[]), (eid[]), (fid[]), (serv[])

and authentication UE to IdP holds but IdP to UE fails.
The event endIdP indicates that the protocol has been completed by IdP, the UE received

message 6 and sent message 7, while event beginIdP indicates that message 6 was sent by IdP.
The parameters of the protocol AuthzGrant, R1 and EID are taken as an argument by these events,
with the IdP verifying the grant codes and responding to nonce with an ID token. The ID token
is only sent if the arguments are true, otherwise, an authentication failure for re-authentication
initiation is sent. This study would like to prove the following correspondence.

(*Check authentication between UE and IdP*)

query U:host,I:host,K:pkey;

event(endUE(U,I,K))==> event(beginIdP(U,I,K)).

inj-event(endUE(U,I,K)) ==> inj-event(beginIdP(U,I,K)).

The sending of message 5 before message 6 proves the correspondence directly, hence, it holds
in ProVerif. This research also tries proving and concluding the desired correspondence by noticing
that event which has IDT as an argument can only be executed if AuthzGrant, R1 and EID are
sent first. That is, the request of the IDT is executed with IDToken Response that includes the
FID. This gives true results in ProVerif, hence holding.

7.11.2 The Attack Against NS-FId Protocol

ProVerif results indicate there was an attack on the protocol as shown in Fig. 7.13. The attack
derivation and trace are explained in this subsection.

Attack Derivation and Trace

The attacker I starts by eavesdropping on the communication between entities, impersonates the
IdP , continuing the protocol with UE, which completes the protocol with the attacker instead of

Figure 7.14: NS-FId Attack Trace
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IdP . The attacker’s actions are illustrated in Fig. 7.14 and explained concisely in derivation and
trace steps below, some text is omitted for simplicity, full trace output in Appendix J:

� Steps 1 and 2 indicate that attacker has some term A’_17951, attacker(A’_17951) input
{25}, so event endUE(hostU[],hostI[],pk(skidp[])) may be executed at {34}. The input
{1}-{8} corresponds with the creation of public/private keys. Output {11} corresponds with
the creation of public key that the attacker stores in a fresh variable ~M for later use. Input
{25} corresponds to a session (copy a_17956) the UE has with the attacker, where the
attacker gets UE ID.

� In trace 1, attacker’s goal is achieved when event endUE(hostU,hostI,pk(skidp_17957))

is executed in session copy a_17956 the UE has with the attacker at event {34}. In trace
2, the injective agreement fails when endUE(hostU,hostI,pk(skidp_22772)) is executed in
session copy a_22770 that is the UE end the protocol thinking it was talking to IdP while
UE never run the protocol with IdP.

Figure 7.15: Improved NS-FId Protocol Message Exchange Flow
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7.11.3 Improved Version of NS-FId Protocol

When the protocol was modelled again, no attack was found due to the changes made in the
specification of the new version of the NS-FId protocol. To improve the protocol instead of assuming
that the exchange between UE and SMF in the HN is secure, key KAMF is used in their exchange,
which is derived during primary authentication discussed in chapter 6. The improved version
message exchange is shown in Fig. 7.15 and ProVerif results in Fig. 7.16, shows that no attacker
on secrecy is true and authentication holds for both non-injective and injective agreements.

7.11.4 Security Analysis

Protocol Security Analysis

This security analysis for the improved version of NS-FId protocol is based on security requirements
of sets 1 and 2 as presented in chapter 3.
Analysis based on security properties of set 1 is as follows:

� Secrecy: Since the EID, FID and KUE3A are not known to the attacker after the run of
the protocol, it achieves this requirement. Hence achieving this property would also cover
protocol data confidentiality and privacy with the Secrecy property in ProVerif.

� Aliveness: When UE sends an authorization request to SP including SPID, both the SP and
HN get non-injective agreement on FID with the IdP, then aliveness of UE is obtained by
the SP conversely.

� Weak Agreement: When HN gets non-injective agreement on FID with IdP, it addresses this
requirement. In addition, HN and SP achieve a weak agreement after the confirmation of the
session key.

� Non-injective Agreement: The UE gets non-injective agreement on FID with the IdP, while
the SP gets it on GPSI with HN. The non-injective agreement on EID is obtained by HN
with the SP after FID is generated by IdP. Moreover, HN gets non-injective agreement on
IDT and AcT with IdP and SP, respectively, as they both include FID, fundamental to the
protocol’s objective. Since the IDT includes a nonce, HN gets an assurance from the token
IDT given to the UE by the IdP.

� Injective Agreement: The UE is assured by the SP that IdP can be trusted with injective
agreement on EID. The UE obtain injective agreement on IDT and AcT with IdP and SP,
respectively, assuring the UE that its sessions with SP were authorized by the HN. Also, SS
is assured that its sessions with the UE were authorized by SP.

Analysis based on security properties of set 2 is as follows:

� Mutual Entity Authentication: This is achieved when FID is generated, the UE is authen-
ticated to the IdP and the access token request is sent to SP. Since the IDT is computed
using grant code from SP, this enforces weak agreement between SP and UE after a successful
authentication and generation of IDT . In addition, when UE sends GPSI via SMF to SP,
it is used to verify UE and the computation of grant codes, FID, and IDT , enforces this
requirement.
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Figure 7.16: NS-FId Safe ProVerif Results

� Mutual Key Authentication: The session keys KUE3A and KUESS are authenticated after the
successful authentication of the UE to the SP and generation of IDT . This is also enforced
as the UE and SP credentials are used in the generation of the session keys.

� Mutual Key Confirmation: The successful authentication of UE by IdP and security context
agreement between the HN, SP, and IdP that facilitates the generation of grant codes and
security tokens enforces this requirement.

� Key Freshness: There is no function in ProVerif to check key freshness, however, the SP
checks if GPSI is valid and freshness of KUE3A and while the IdP checks the validity of the
grant codes. Then SP checks whether IDT includes a nonce and time stamps hence checking
the freshness of KUESS . It also checks if session keys are not from the previous session, with
KUE3A linked to a SID, while KUESS is linked to AuthzGrant and IDT . Since the secrecy
of these keys is not violated, hence the keys are fresh.

� Unknown-Key Share: Since the reachability property in ProVerif checks the entities’ aliveness
with their IDs and key binding, this attack is prevented. The protocol achieves this require-
ment by including GPSI, EID, and SPID in the authentication message exchange and
session keys derivation. Also, the KUE3A is only sent to UE after validation of GPSI, SPID
is encrypted with public key PKSP , while KUESS is only sent to UE after the verification of
IDT . Moreover, the public keys used are based on ECIES as per the 5G standard.

� Key Compromise Impersonation Resilience: This requirement is achieved since the KUE3A is
derived after the SP verifies GPSI and SID, while KUESS is derived after IDT verification.
As stated earlier that knowing a key in one session is not enough to deduce a key in another
session. So no entity or adversary is capable of computing keys in past sessions or can predict
future keys to compromise any keys, the ECIES together with IdP, and SPAAA will have to be
compromised at the same time. It should also be noted that if the HN primary authentication
protocol is compromised, it does not mean that NS-FId or another protocol in this study is
compromised.

Security Consideration

The tokens used in this protocol can be cached for re-use and renewed if they are expired based
on the security policies, type of service, security parameters validity, suspicious requests, or faulty
process. To facilitate the requirements of the 5G standard, GPSI and EID are used to prevent the
exposure SUPI outside the HN. The UE’s GPSI is translated to a corresponding SUPI by SMF
the HN, to EID by SP and FID by IdP in DN. Hence, a universal recognition of the UE, multiple
IDs mapped together into a federated single ID, matching its user profile in the HN and DN.
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With 5G is introducing network slices, infrastructure multi-tenancy and restriction of sharing
security context with a third-party, secure communication can be facilitated by federated protocols.
In terms of network and service access, successful end user authentication should provide SSO in
5G. NS-FId protocol provides mutual authentication, authorization, ID protection, secure access,
interoperability, and SSO. The implementation of the NS-FId protocol secures the NS-Fid Model
and enables massive communication, seamless connectivity, and secure access to services taking
advantage of the single digital ID of the UE.

7.11.5 Summary

This subsection explored how FId can be used to provide the UE with a universal ID in 5G. It
proposed a federated protocol NS-FId that is based on the NS-FId model in section 7.6 that can
secure the service access in 5G and DN as well as providing the UE with SSO. The protocol was
verified with ProVerif and proved to be secured. This NS-FId protocol could be applied by users
to access services and by MNOs to share infrastructure resources in HetNets. In the next section,
a protocol that addresses the caching and sharing problem in 5G is introduced.

7.12 Data Caching and Data Sharing Security in 5G Net-
work

This section introduces data caching and data sharing security for authorizing the UE to cache and
share the data accessed in section 7.8. It proposes a DCSS protocol to address data caching and
sharing security. After being granted access to the service, the UE can access data, request further
authorization, and performing other activities such as data caching, data sharing, and delegating its
access rights to other UEs. This could be achieved with the assistance of the SP or independently
depending on the policies and network coverage conditions. The ACL mechanisms such as ABAC
and CBAC with security context from the NS-FId protocol are used to enable the UE to request
caching and sharing permissions from SP.

7.12.1 Capabilities and Attributes

The capabilities mechanism used in this section is based on the abilities defined in (Dennis & Horn
1983) and labels defined in (Aiash & Loo 2015) as token claims. After being granted access to the
services and the UE retrieves the data and then sends another request to SPAAA for caching and
sharing data. The SPAAA generates security tokens that define the object and subject abilities, the
data is the object and UE is the subject. The generated tokens are cache and share tokens, consisting
of capabilities and attributes parameters, similar in structure but with different parameters. They
are linked with the data object name and the UE ID, which are used to define objects and subjects’
abilities. As in (Aiash & Loo 2015), dot-separated sequence of numbers is used for an ability in the
form of a label whereby an ability is represented by a string .i1.i2.i3...in for value n and i1, i2, i3..., in
are integers. In this case, the UE or NDO abilities are .1.2.3.4, or 01.02.03.04.

After tokens are created by the SPAAA’s authentication server, they are passed to the author-
ization and service servers. After authentication, both data and UE will be given labels as part
of their security tokens. Access to a data object is granted if the data object’s label is a prefix of
the UE’s label. Whereby, a data object with a label ”2.0.0” with abilities ”0.1.0” for caching and
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”0.0.2” for sharing could only be accessed by UE with abilities like ”.2.0.0”, ”.2.1.0”, ”.2.1.2”...etc.
That is, whenever an authenticated UE requests content data, it must present the right label to
SS that confirms its access rights to cache or share the data. The SPAAA on behalf of the SP
generate labels for the subject and object, the UE cannot promote themselves to access other data
objects, but the permission can be delegated to other UEs if the delegation permission was part
of the initial request of the access token in section 7.8. The labels are integrated into the security
tokens as access rights. Any other subject to access the data will require the nonce key to decrypt
that data object as the data can only be accessed with the access token or nonce key both generated
by SP.

7.13 Proposed DCSS Protocol

The proposed DCSS protocol is divided into caching and sharing authorization stages that use cache
and share token to authorize users. These tokens have a similar structure as that of the access token,
however, they have some additional claims and scope to achieve their objectives. These include
labels and access rights, delegation, i.e., UE and data object capabilities, delegation ability in
form of label bitstring, and the security context such as nonce key. The labels enable caching and
sharing of the data in situations where the SP involvement is limited or non-existent, the UE is
out-of-coverage, and when transferring attributes and capabilities from one UE to another.

7.13.1 Data Cache and Share Authorization

The UE uses the access token and security context from NS-FId protocol such as KUE3A and
KUESS to request caching authorization of the accessed data. The data caching stage provides
authorization to UE to cache the accessed data. After caching the data, the UE uses the cache
token and security context such as acknowledgement strings to request sharing authorization of the
accessed or cached data. The data sharing stage provides authorization to the UE to share the
accessed data. The UE in HN or VN might want to share the cached data with another UE, in
order to do so, the UE must request permission from the SP to grant it sharing permission. The
cache/share tokens have the same security attributes as the access token discussed in section 7.8
such as a timestamp, expiry date, entity’s ID, but they have an additional attribute in form of a
capability label. Similarly, the security token and verifiable data are distributed securely to the
entities and digitally signed by the SPAAA to guarantee the token’s integrity and authenticity.

7.14 Modelling of DCSS Protocol

This section models the proposed DCSS protocol using UE, SPAAA and SS entities based on the
model in Fig. 7.9 in section 7.6. It also uses similar cryptographic primitives used for NS-FId
protocol in section 7.8 with the labels, cache, and share tokens as the new additions. After the
successful run of the protocol, it should achieve service authorization by allowing the UE to cache
and share the data accessed from SS. It also achieves entity and message authentication. This
protocol is an optional protocol that might be used if the UE needs to cache or share data. Moreover,
it also depends on data being configured with abilities to be cached or shared and UE being given
abilities to cache or share the data. In a case where neither ability of the subject or the object match
then the caching/sharing authorization will be denied. This is achieved using capability labels and
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Figure 7.17: DCSS Protocol Message Exchange Flow

delegation of access permissions. The messages between entities are encrypted and signed by the
sender while the tokens are signed by the SPAAA.

7.14.1 Protocol Message Exchange and Execution

This subsection explains the DCSS protocol execution and message exchange, it consists of data
caching and sharing authorization phases. The UE is granted access to the SP services using
federated authorization protocol presented in section 7.8, that is when the access token AcT , KUE3A

and KUESS are generated before this proposed protocol is run. In addition, the UE and SS would
also know each other’s ID, public key, and shared session key from the previous authentication and
authorization protocol that granted the UE access to the service. The protocol messages exchange
is illustrated in Fig. 7.17, with reference to notation in Table 7.5 and described as follows:

Caching Authorization
Msg1.UE→SPAAA: ({CachTokenReq},{KUE3A})

After the UE is granted access to the data, it sends a cache request CachTokenReq to SPAAA for
a cache token which includes the UE ID (EID/FID), data name DataName, AcT , the hash of
the access token hAct signed by the SPAAA private key SKAAA and key KUESS encrypted with
preshared key KUE3A. The Act, hAcT , SKAAA, KUE3A and KUESS are generated during the
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Table 7.5: DCSS Protocol Notation and Description

Notation Description
SPID SP identifier
ASID authentication server ID
SSID service server ID
DNN service code:SPID
R1 nonce
EID UE permanent identifier
KUE3A KDF(nonce, eid,spid)
KUESS KDF(nonce,eid,ss)
Ack 1 acknowledgement 1
Hack 1 hash for Ack 1
Ack 2 acknowledgement 2
Hack 2 Hash for Ack 2
Exp expiry date
D1 dataname
Ts timestamp
label capabilities
Kd nonce key
AcT access token
ChT cache token
ShT share token
h(x) hash value of message x
{x}{k} message encrypted with key K

security procedure between UE and SPAAA to grant the UE access to the service. Key KUESS is
included if it was not sent in the previous authentication and authorization procedure and the AcT
is used as an additional ID as it has all the UE subscription details.

Msg2.SPAAA→UE: ({CachTokenResp},{KUE3A})

When the SPAAA receives message 1, the authorization server verifies the AcT , if the subscription
policy includes caching rights, it creates and sends a cache token ChT , with its hash hChT signed
with its private key SKAAA in cache response CachResp message to the UE encrypted with key
KUE3A.

Msg3.UE→SS: ({CachReq},{KUESS})

The UE receives a cache token in message 2, sends a cache request message CachReq encrypted
with key KUESS to the service server requesting permission to cache the data, the message includes
a cache token ChT and a signed hash of the cache token hChT with SPAAA private key SKAAA.
Msg4.SS→UE:({CachAck},{KUESS})

The SS receives CachReq in message 3, verifies the cache token ChT , if it is valid then it authorizes
the UE to cache the data by sending an acknowledgement Ack1 in CachAck message encrypted
with KUESS , which includes the hash of the Acknowledgement hAcK1 signed with the SS private
key SKSS .

Sharing Authorization
Msg5:UE→SPAAA:({ShaTokenReq},{KUE3A})
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Now that the UE is authorized to cache the data, it sends a share request message ShaTokenReq
to SPAAA for a share token to get share authorization of the cached data. The message includes
AcT and cache acknowledgement Ack1, for validation and to notify the authorization server that it
was granted permission to cache the data it is requesting to share by the SS.

Msg6:SPAAA→UE:({ShaTokenResp},{KUE3A}})

When SPAAA receives message 5, it verifies the AcT, checks if the subscription policy includes
sharing rights then sends a share response message ShaTokenResp to the UE in message 6. The
message includes a share token ShT , hash of the share token hShT signed with SKAAA, encrypted
with the KUE3A that authorizes the UE to share the content.

Msg7:UE→SS: ({ShaReq},{KUESS})

When the UE receives message 6, it sends a share request message ShaReq to SS encrypted with
KUESS , that includes a share token ShT and its hash hShT that were sent to UE in message 6 by
SPAAA.

Msg8:SS→UE:({ShaAck},{KUESS})

The SS verifies the received share token parameters in message 7 and sends an acknowledgement
Ack2 with its hash hAck2 signed with SS’s private key SKSS in a share acknowledgement message
ShaAck back to UE authorizing it to share the data.

7.15 Formal Verification of DCSS Protocol

This section follows the same ProVerif modelling process as defined in chapter 3. The protocol
modelling used is like that illustrated in section 7.8 with some changes, full ProVerif protocol
syntax in Appendix E.1.

7.15.1 Formal Analysis of DCSS Protocol

The DCSS protocol was simulated using secure, insecure channels and processes procUE(hostU) as
UE, procAAA(hostA) as SPAAA, and procSS (hostSS) as SS. When the protocol was modelled,
there was an attack found on the public channel between UE, SPAAA and SS as shown in Fig.
7.18. The security properties the study was interested in are authentication, authorization, privacy
of communication data specifically the tokens (ChT/ShT ) and acknowledgements (Ack 1/Ack 2).
Using formal analysis, in consideration with adversary vector, there were attacks on the protocol.
The above ProVerif results indicate that the secrecy of ChT, ShT, D1, FID, Ack_1, Ack_2 holds.
The authentication event between UE and SS does not hold, in the form of non-injective and

Figure 7.18: DCSS Attack ProVerif Results
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injective agreements that is SS may end the protocol thinking it is talking to UE while UE never
run the protocol with SS.

The event beginSS means that the SS has completed the protocol, that the UE received mes-
sage 8 and sent message 7, event beginUE means that the SS received message 3. These events
take as arguments all parameters of the protocol: KUESS and ChT and its claims, SS which must
verify the ChT and digital signature. If the arguments are true, then Acknowledgement is sent oth-
erwise it sends invalid token message. This research tries to prove the following correspondence
between UE, SPAAA, and SS events.

(*Check authentication between UE and SS*)

query U: host, SS: host, K: key;

event(endSS(U, SS, K)) ==> event(beginUE(U,SS,K)).

inj-event(endSS(U, SS, K)) ==> inj-event(beginUE(U, SS, K)).

The direct proof of this correspondence in ProVerif does not hold because message 7 and message
8 sent after query []; event (endSS()) event(beginUE()) fails to hold due attacker’s knowledge
of M , query attacker (M) ==> event () as explained in attacker trace below. We also try to
prove the desired correspondence by concluding that event which hasKUESS as an argument cannot
be executed before Ack 2 has been sent. That is before the CacheReq message has been executed
with CachAck to generate the Ack 2. One part of correspondence holds with true while the other
does not hold in ProVerif.

7.15.2 The Attack Against DCSS Protocol

After the simulation ProVerif produced results indicating there was an attack on the protocol as
shown in Fig. 7.18. The attack derivation and trace are explained in this subsection.

Figure 7.19: DCSS Attack Trace
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Attack Derivation and Trace

The attacker I starts by eavesdropping on the communication between entities, impersonates the
SS, continuing the protocol with UE, which completes the protocol with the attacker instead of
SS. The attacker’s actions are illustrated in Fig. 7.19 and explained concisely in derivation and
trace steps below, some text is omitted for simplicity, full trace output in Appendix J:

� Steps 1-3 indicate that the attacker may know the UE, therefore, may also know key kue3a

by using the 3-tuple function. The attacker may have received message A′ 15173 by eaves-
dropping on the public channel at input {12}, uses the knowledge to obtain kue3a 19424.
Output {6}-{8} corresponds with the creation of public keys and their insertion on the public
channel, which the attacker saves in the new variables ~M = pk(skue_15181), ~M_15346 =

spk(skss_15182) and ~M_15427 = spk(skaaa_15183)for reuse later. The attacker gets key
kuess at input {56} in session copy a_15180.

� Trace 1 shows there was an attack against the event endUE(hostU,hostSS,kuess) at event
{25} where the attacker achieves his goal in session copy a_15180 (goal) with UE, when the
event endUE(hostU,hostSS,kuess) is executed. In trace 2, the attacker was able to achieve
another goal against one-to-one relationship correspondence in session copy a_19431, that is
the UE end the protocol thinking it was talking to SS while UE never run the protocol with
the SS.

7.15.3 Improved Version of DCSS protocol

This subsection discusses the changes made in the modelling of the protocol to address the security
threats discovered in the previous version and presents an improved version of the DCSS protocol.
To improve this protocol the UE sends its ID (FID) to SPAAA in message 1 and to SS in message
3, SPAAA sends its ID (SPID) to UE in message 2, and the service server sends its ID (SSID)
in message 4. After the changes were made, the protocol was modelled and run again in ProVerif
as shown in Fig. 7.20, there was no attack found on the protocol, hence the protocol is secure.
The above ProVerif results indicate that the secrecy of AcK_1, Ack_2, Fid, d1, ChT, ShT holds.
The authentication event in the form of non-injective and injective agreements is true.

Figure 7.20: DCSS Safe ProVerif Results
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7.15.4 Security Analysis

Protocol Security Analysis

This analysis is for the improved version of DCSS protocol based on security requirements sets 1
and 2 as presented in chapter 3.
Analysis based on security properties of set 1 is as follows:

� Secrecy: This is achieved since the FID and D1 are never revealed to the attacker. By
achieving this property also confidentiality and privacy of the protocol data are addressed.

� Aliveness: The SP obtain the aliveness of UE when UE sends a cache authorization request
to SP with AcT , while SS does when UE sends a cache or share message to SS and in return,
it receives tokens (ChT, ShT ) and Acknowledgement strings (Ack 1, andAck 2), respectively.

� Weak Agreement: This is achieved when SP achieves non-injective agreement on AcT with
UE while SS achieves this when Acknowledgement strings are sent to the UE.

� Non-injective Agreement: The UE obtains non-injective agreement on AcT with the SP. The
SS achieves non-injective agreement on ChT/ShT with UE after it is generated by SP. The
token ChT/ShT includes labels; therefore, SS obtains assurance as a non-injective agreement
on ChT/ShT from the SP with UE.

� Injective Agreement: The injective agreement on tokens between the SP and SS is central to
the protocol’s purpose. The injective agreement on labels with the SP assures the UE that
SS is known and trusted. The UE obtain the injective agreement on ChT/ShT and AcT with
the SP and SS, respectively to assure that the sessions with SS were authorized by the SP.
At the same time, SS is assured that its sessions with the UE were authorized by SP.

Analysis based on security properties of set 2 is as follows:

� Mutual Entity Authentication: Since the UE is already authenticated with SP and uses SSO
for further authorization, it uses AcT to acquire both cache/share tokens from SP, it enforces
weak agreement and implicit authentication between SS and UE. In addition, reverifies the
AcT , the SS verifies the ChT/ShT and in return, it accepts the UE’s caching/sharing requests
by sending Acknowledgements. The FID and Ack1/Ack2 proved to hold which also enforces
this requirement.

� Mutual Key Authentication: This property is not required as the involved parties are in a
possession of session keys KUE3A and KUESS .

� Mutual Key Confirmation: The successful run of the protocol between the UE, SP, and SS
enforces this requirement.

� Key Freshness: ProVerif has no function to check key freshness, however, the SP checks if
token expiry date and timestamp are included in the message, enforcing the freshness of the
session, but this does not check key freshness. However, since the secrecy of these keys is not
violated, it implies keys are fresh.

� Unknown-Key Share: The reachability property in ProVerif is used to check aliveness. The
entity’s ID and key binding prevent this attack. The inclusion of FID, SPID, and AcT
parameters; EID, ASID and labels in the authorization process proves this requirement.
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� Key Compromise Impersonation Resilience: The UE, SPAAA, and SS are in possession of
KUE3A and KUESS when the protocol starts to run which are pre-shared keys. Since the
secrecy property of all data exchanged holds hence, they enforce this requirement. Further
enforcement of this requirement is achieved when digital signatures are used in the message
exchange.

Security consideration

The UE will be able to refresh the access token and request cache and share tokens for other services
as defined by the SP with ACL claims and security parameters. The use of FID and security tokens
enables the UE and SP to start a new authorization process that might require new parameters.
With SSO the UE can request other services which reduce exposure to adversaries, while DCSS
protocol enables the UE to request further authorization from SP to cache and share data. It will
also be able to share data and security tokens with other UEs, enabling access right delegation
to other UEs. This protocol will provide authorization, implicit authentication to the UE and
SP which is another security assurance in the integrated security solution proposed in this study,
ensuring secure communication, user experience, and utilization of network resources. Therefore,
DCSS protocol addresses data caching and sharing issues at the SLS as discussed in chapter 5. As
the UE is granted access to a service, it must request further authorization if it intends to cache and
share the data. Whereby during the generation of the security token, the right access permissions
and labels can be included in tokens and data security.

7.16 Summary

This chapter presented and formally analysed the proposed secondary authentication and service
authorization protocols that will enable the UE to access services from any SP in HN or DN using
FID and SSO. These protocols allow the UE to access services, cache data, get permission to share
data, and delegate access rights to others. The next chapter presents the DDS protocols that
enable the UEs in proximity to authenticate each other and share data as well as delegate their
authorization permissions to other UEs in different scenarios.
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Chapter 8

Device-to-Device Security

8.1 Introduction

Primary authentication methods such as 5G-AKA and EAP-AKA’ presented in chapter 6 are used
to authenticate the UE before being granted access to the HN. After a successful authentication,
usually, the UE gets static service authorization but due to 5G’s characteristics and objectives,
multi-level service authorization mechanisms like those presented in chapter 7 will have to be
applied to allow the UE access to services in different security domains and interoperability between
networks. With NAC and SLS protocols presented and proved to be unflawed, they can provide
UE security at different levels of the network and services. The next step is to define security
mechanisms that can secure data access, caching, and sharing between two UEs. Therefore, this
chapter proposes a DDS solution and the underlying security protocols. It discusses the need for
network and non-network assisted security methods.

After gaining access to the network and services, two UEs in proximity of each other can engage
in D2D communications to share data. The D2D communication process can be initiated by
performing device discovery, link setup, and communication steps. Each step needs to be protected
from any possible attacks as discussed in chapter 4, using security measures proposed in this chapter.
Some of the work in this chapter is also presented in (Edris et al. 2021b).

The rest of this chapter is structured as follows. Section 8.2 presents the proposed D2D security
solution. The DDSec protocol modelling is presented in section 8.3. Section 8.4 presents the
verification of DDSec protocol. The DDACap protocol modelling is presented in section 8.5. Section
8.6 presents the verification of DDACap protocol. This chapter is summarised in section 8.7.

8.2 The Proposed D2D Service Security Solution

The proposed solution is composed of two protocols for D2D security that can be applied to two
different scenarios. One is based on network-assisted D2D communication relying on gNB for
discovery and initiation of communication and the other is based on direct D2D communication
whereby the communication and discovery are controlled and managed by the D2D UEs without
a need of a central authority for connectivity and data distribution. In addition, the UEs can
choose any publicly known information as its ID, the UE’s public key, or IP address based on IBE
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scheme (Boneh & Franklin 2003), it can be used with another form of ID such as FId or EID. If the
UE does not have either IDs assigned from previous security procedures like primary or secondary
authentication in chapters 6, 7, respectively, GPSI is used. Hence, no need to distribute the keys as
in the traditional AKA or PKI or using SUPI outside the HN. For integrity, privacy and uniqueness,
the UE uses a pseudonym ID (UEID) in D2D communications, calculated from the UE’s preferred
choice of ID, hash(x(ID)), where x is the public key of UE, randomly generated using hash function
(UEID) = hash(PKUEi(ID) (Altmann et al. 2014).

As mentioned earlier, the original NDO is published by the content provider/data owner using a
URI of the data as the data ID or data name. For service discovery, a UE searches for specific data
by the data ID, and some contacts from the owner’s routing table are requested, which are in the
search tolerance of the data ID (Altmann et al. 2014). The searching UE knows only the desired
data object name and thus can generate only one hash value. Additionally, the UE must learn the
ID mapping, so when the UE with the data wants to publish, first it calculates the logical/node
address nAdd. The relation between UE and data is determined by pseudonym IDs of the UE and
the data which becomes the logical address nAdd of the UE with the data. The pseudonym ID of
the data is D1, generated by hashing the data name hash(DataName). The UEi would first hash
both the UEID and D1 as hash(UEID,D1) then publish it as its logical address. The keys and
IDs are generated using ECIES (SECG 2009) according to 5G standard (3GPP 2020f). Whereby
nAdd =hash(UEID,D1), the offered service types, the NDO, and a UEID are mapped together.
The UE interested in the data uses the logical address to send a query to the UE in possession of
the data.

Our proposed solution intends to provide a secure exchange of data in coverage or out-of-coverage
scenarios. The D2D discovery, communication, and content dissemination processes are discussed in
chapter 4. The content discovery is based on CCN interest and data messages, any UE can take part
and retrieve data from the UE in possession of the data. The UE with the data verifies the requesting
UE before authorizing the request. This mode provides autonomy, decentralization, authorization,
scalability, fault tolerance, data integrity, and authentication during D2D data sharing.

Keys Derivation

Based on ECIES, each UE generates its own self-certifying public key, PKUEi
and its correspond-

ing private key SKUEi (Girault 1991). In this study, the private/public key generation is done at
each of the two communicating parties UEi. Whereby UEi must generate its respective secret key
SKUEi

by selecting a random number using chosen binary of ECC then public keys PKUEi
(SECG

2009). Each UEi sends its public key and pseudonym ID to the gNB in terms of network-assisted
application and to each other in a direct communication application. Traditionally certificates
would be used to bind the UEi to its public key, however in this case self-certifying public keys
are used. Each UEi also can estimate the shared channel between them and extract hashed ran-
dom number generated with a hash function. Furthermore, the UEi can generate hash functions,
symmetric/asymmetric keys, and digital signatures achieved using ECIES. ECIES is suitable for
systems with low computational capabilities and resources, such as mobile devices and smart cards
due to the point multiplication operation. The proposed protocols use ECIES as applied by 5G to
conceal SUPI and generation of the anchor key (3GPP 2020f).
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Figure 8.1: ECIES Encryption and Decryption at UE side (3GPP, 2020)

Security Assumptions

Each UEi can generate its own public/private key, stores its public key PKUEi, SKUEi
and its

hash hash(PKUEi) while gNB stores the public keys, pseudonym ID and other relevant information
of all users in the cell. Information about a specific UE can be obtained by any interested UE.
The UEs involved in D2D communications can authenticate and establish a secure communication
channel, generate hash functions, public/private keys through asymmetric cryptography instead
of sending authentication requests to HN, achieved by using ECIES. The proposed protocols use
ECIES as used by 5G to conceal SUCI and generate the anchor key as shown in Fig. 8.1 and
provide perfect forward secrecy (Pardo 2013). In this proposed solution, the UEs and gNB have a
pair of public and private keys. The public key is known by all entities including the gNB which
acts as a central authority, it can also issue certificates that bind users’ IDs to their public keys in
case of the network-assisted D2D communications, the private key is secret to all but the owner.
The security properties for DDS protocols are also analysed using the taxonomies (Menezes et al.
2018) and (Lowe 1997) presented in chapter 3.

8.2.1 Authentication

In this phase, the D2D communication the parameters such as PKUEi, hash(PKUEi
) and nonce are

used for authentication. As explained earlier, for instance, communication between UEA and UEB

after generating their self-certifying key pairs, then they generate their unique IDs (UA) and (UB).
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The UEA must learn the UEID/Dataname mapping hash(UEID,D1) and the same for UEB . If
UEA has data D1 to publish, it uses its logical address nAdd to publish. Later, when node UEB

wants to access D1, it uses nAdd to send a query to UEA for obtaining more details and initiating
authentication procedure. It sends a service request with UEID to gNB for D2D services, where
the gNB maintains a registration table to associate the UEi with PKUEi

and service information.
Then authentication process begins between the two UEs after authentication UEB proceeds

with requesting the data, fetching the data D1 via conventional routing mechanisms of D2D com-
munications and CCN processes. For routing, any UE can access the UE responsible for the D1 and
to each UE along the routing path, providing access to UEA and D1 without exposing any other
interface. The assumption is that users have not communicated before and there are no shared keys
between them. In a case where they have, there is no need for authentication but can use cached
security context to re-authenticate if required and context is still valid. After the discovery and
communication process, the two D2D perform mutual authentication of each other before exchange
of data securely.

8.2.2 Authorization

In this phase, in application 1 when a UE requested content and cannot be resolved by BBU pool
then it can be resolved by UE in proximity. The two proximity users discover each other, establish
a secure D2D communication link without involving their HN or gNB. However, in application 2
the D2D devices can communicate in coverage and when out of coverage. In both applications, the
D2D device can share the data securely without involving the BBU pool in the authentication and
authorization of content even though the SP still has control of who accesses the data and for how
long. There are two types of sharing applications and are as follows:

1. When the D2D UEs are in proximity both their HNs have full service agreements including
FIdM with VN in coverage and out-of-coverage, then cache and share tokens can be used.

2. When the D2D UEs are in proximity but one of the UE’s HN may have partial service
agreement hence permission delegation can be used.

In application 1, the authorization of data can be achieved through tokens, while in application 2
this can be achieved with the delegation of access rights to the user, capability, and attributes of the
user and data itself. The UE uses FId when communicating to other UE with FId. In application
2, the UE uses GPSI/public key as its global profile to communicate with FId authorized UE. The
UE generates the hash value of global ID to communicate to other UEs in proximity. UEs can get
authorized to access, cache, and share the data without involving a central authority even though
the security context such as data encryption keys might be set by a third-party. Therefore, the
authorization procedure might depend on the MNO set policies and service agreements between
UE and HN or SP.

As discussed in chapter 7, the SP generates capabilities in form of labels for the UE and data
object and each object specifies a set of access rights that can be granted to a UE, these capabilities
are transferable through the delegation process. The object’s data includes data name, metadata,
payload, and other security configuration. The metadata consists of the publication date, expiry
date, and created time while the payload consists of ACLs configured in the content. The access
attributes and capabilities are specified in the ACL profile within the payload of the data object
which includes the name (key id) of the symmetric key (nonce key). The ACap token is created by
the UE possessing the data object and the ACap = (D1, DA, AR, L, hKd, exp) defined in Table
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Table 8.1: ACap Token Attributes

Attributes Description
D1 hash of the data name of the data object
DA delegated access: dataset delegation (true)
label ucap 2.1.2/dcap 0.1.2
hSPid data owner id
UEI ACap owner
Scope (offline access/cache/share)
hKd nonce key id signed by SKSP

Exp expiry date of ACap

8.1. The ACap token is made up of DA, which includes the dataset delegation set to true that
permits the delegation of attributes and capabilities to other users. The scope is the access rights
of the user, it includes the SPID and user ID. The nonce key is the symmetric key for decrypting
the data object. The data object capabilities include whether it should be cached or shared by
entities and for how long.

The next sections present the DDSec and DDACap Protocols which intend to provide authen-
tication and authorization to cache, share data and allow the transfer of access capabilities to other
UEs. The DDSec protocol intends to provide security for D2D devices in a network-assisted com-
munication scenario while the DDACap protocol intends to provide security for D2D devices in
direct communication scenarios.

8.3 Modelling of DDSec Protocol

This section models the proposed DDSec protocol using UEA, UEB and gNB entities based on ar-
chitecture shown in Fig. 4.1 and scenarios A, B and C presented in chapter 4. This protocol applies
cryptographic primitives like those used in 5G-AKA, NS-FId, and DCSS protocols in chapters 6
and 7, respectively to achieve security requirements of 5G enabled D2D communications. The cryp-
tographic primitives used include symmetric and asymmetric encryption, one-way hash function,
digital signature, and MAC.

The proposed solution intends to provide mutual authentication and authorization between two
UEs to cache and share data assisted by gNB. The UEs would be allowed to access services even
in the cases where certain roaming agreements do not apply between different networks or D2D.
At this security level, the UE uses the federated security context, however, it is still capable of
generating its own cryptographic primitives and security tokens such as asymmetric pair of keys
using ECIES. It leverages the security parameters used in NAC and SLS mechanisms proposed so
far in this research.

After UEA is granted access to the service in the form data object, it also gets authorized to
cache and share data. The UEA can share the data and delegate its access right and capabilities
to UEB , the UEB must be on the same NAC-level, that is primary authentication. The UEA and
UEB can use the proposed DDSec protocol to authenticate and share data. The UEA and UEB

can use the proposed DDSec protocol to mutually authenticate and share data assisted by the gNB.
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Figure 8.2: DDSec Protocol Message Exchange Flow

8.3.1 Protocol Message Exchange and Execution

This subsection explains the DDSec protocol message and execution, it involves UEA and UEA and
gNB entities. Before the run of the protocol, the UEs would have achieved a successful network
access authentication through primary authentication using 5G-AKA/5G EAP-AKA’ protocols
presented in chapter 6. The communication between the UEs and gNB is secured with respective
keys KgNBa and KgNBb, derived after a successful primary authentication. The UEA is also
in possession of a symmetric key Kd1 for decrypting the data, received as part of the service
authorization procedure that grants the UE access to the service, discussed in chapter 7. The UEA

can advertise to devices in proximity including the gNB about the data in its possession, also the
gNB would have information on IDs, previous data transmissions, data names, and data owners.
Additionally, when another UE sends an interest message about that data, the gNB assists in the
D2D device discovery and link setup between the two UEs. The protocol messages exchange is
between UEA, UEB and gNB entities for scenarios A, B and C discussed in chapter 4. In the case
of B and C, two gNBs would be used, Fig. 8.2 illustrates messages execution for scenario A with
reference to notation in Table 8.2 and described as follows:

Msg1 UEA → gNB:({AdvMsg},{KgNBa})

The UEA sends an advertisement to the gNB that it is in possession of data. The advertisement
message AdvMsg includes the data name DataName, its UEID (UA), logical address nAdd and
public key PKUEA

encrypted with preshared key KgNBa with gNB. Then gNB updates its
registration table and BBU Pool updates the intra cell content database with the received message.

Msg2 UEB → gNB:({IntMsg},{KgNBb})

The UEB sends an interest message IntMsg to the affiliated BBU pool via gNB, it includes its
UEID (UB), data name DataName of the data it is interested in and its public key PKUEB
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Table 8.2: DDSec/DDACap Protocol Notation and Description

Notation Description
UEID UE identifier
Rand 1, 2, ra, rc nonce
PK(X) public key
SK(X) private key
Ack 1/Ack 2 acknowledgement
Hack 1/Hack 2 hash(Ack 1/Ack 2)
Exp expiry date
D1 hash(Dataname)
Ts timestamp
ChT 2 cache token
ShT 2 share token
KD1 nonce key
hKD1 hash(KD1) key id
KgNBa/KgNBb session key UE and gNB
UA/UB/UC hash(X)UEID))
hUA,hUB/hUC hash(UA/UB/UC)
ACap attributes and capabilities token
h(x) hash value of message x
{x}{k} message encrypted with key K

encrypted with preshared KgNBb with gNB.
Msg3.gNB→UEA:({DiscMsg},{KgNBa})

The gNB with BBU pool check intra cell content database for an interest match within the local
cell coverage or the D2D users in proximity via AMF which may have information about other
UEs from other cells in intra or inter-operator scenarios. If there is a match, the gNB initiates
the D2D communications process of discovery and link setup between UEA and UEB via D2D
communications supported by SMF. In this case the BBU pool finds a match from UEA, gNB sets
up a link with UEB and forwards (UB), DataName and PKUEB

to UEA in DiscMsg message
encrypted with key KgNBa.

Msg4.gNB→UEB:({LinkUpMsg},{KgNBb})

The gNB forwards UEA’s (UA), data name DataName, logical address nAdd and public key
PKUEA

to UEB in LinkUPMsg message encrypted with key KgNBb.
Msg5.UEA→UEB:({PublMsg},{PKUEB})

After the confirmation of link quality of the allocated channel, UEA initiates the authentication
request by sending a PublMsg message that includes its UEID (UA), data name DataName,
pseudonym ID of the DataName (D1), a nonce Rand a as authentication challenge, a timestamp
Ts1 and hash of the whole message hash(UA,DataName,D1, Rand a, Ts1) signed with its private
key SKUEA

and PublMsg is encrypted with UEB ’s public key PKUEB
the hashing is for integrity

and message authentication, while the timestamp is for replay protection..
Msg6.UEB→UEA:({LookUp},{PKUEA})

When UEB receives message 5, responds with a LookUp message that includes its pseudonym ID
(UB) and dataname pseudonym ID D1, confirming the dataname and its ID. The UEB also returns
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the nonce Rand a, together with new nonce Rand b, a timestamp Ts2, hash of the whole mes-
sage (UB,D1, Rand a,Rand b, Ts2) signed with its private key SKUEB

and encrypts the LookUp
message with UEA’s public key PKUEA

. The UEB authenticates UEA by sending back Rand a
together with Rand b.

Msg7.UEA→UEB:({SendData},{PKUEB})

When UEA receives message 6, it generates attributes and capabilities token Acap using the per-
mission delegation authorization granted by the original data owner. Then UEA returns Rand b
to confirm a successful authentication of UEB together with the requested DATA, Kd1 symmet-
ric key to decrypt the data, ACap token authorizing the UEB to cache, share data and delegate
its access rights to another UE. It also includes the hash of the symmetric key with the token
hash(Kd1, ACap) signed with SKUEA

in SendData message encrypted with PKUEB
.

8.4 Formal Verification of DDSec Protocol

This section follows the same ProVerif modelling process as that defined in chapter 3. The protocol
modelling used is like that illustrated in chapter 7 with some changes and full ProVerif protocol
syntax in Appendix F.1.

8.4.1 Formal Analysis of DDSec Protocol

The protocol was simulated using insecure public channel and processes processUEA as UEA,
processUEB as UEB, and processgNB as gNB. When the protocol was modelled, there was an
attack found on the public channel between UEA and UEB as shown in Fig. 8.3. The security
properties the study was interested in are secrecy, mutual authentication, authorization, and secrecy
on communication. Using formal analysis, in consideration with adversary vector, there were at-
tacks on the protocol hence the protocol is not secure. ProVerif results show that the secrecy of
rand b, skuea, skueb, ua, ub, d1, ACap holds but the secrecy of rand a and mutual authentication
of UEA to UEB do not hold that is non-injective and injective agreements. Whereby UEB may
end the protocol thinking it is talking to UEA while UEA never run the protocol with UEB .

The event beginUEB means that the UEB has completed the protocol, that the UEB received
message 2 and sent message 3, event beginUEB means that the UEA sent message 4. These events

Figure 8.3: DDSec Attack ProVerif Results
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take parameters of the as arguments; the A,B, pkueb, rand a, rand b which must verify the ID
and respond to a nonce with a nonce. If the arguments are true, then DATA is sent otherwise it
sends authentication failure and terminates the communication. This study would like to prove the
following correspondence.

(*Check authentication between UEA and UEB*)

query A: host, B: host, K: pkey, rand_a:nonce, rand_b:nonce;

event(endUEB(A,B,K,rand_a,rand_b))==> event(beginUEA(A,B,K,rand_a,rand_b)).

inj-event(endUEB(A,B,K,rand_a,rand_b))==>inj-event(beginUEA(A,B,K,rand_a,rand_b)).

The direct proof of this correspondence in ProVerif does not hold because message 3 is sent
before message 4. This study also tries to prove and conclude the desired correspondence by
noticing that event which has ub, d1, rand a, rand b, Ts 1 as arguments cannot be executed before
ua, d1, randa has been sent, that is, before rand a request has been executed with rand a, rand b
response. Which does not hold in ProVerif.

8.4.2 The Attack Against DDSec Protocol

The ProVerif results show an attack on the protocol as shown in Fig. 8.3. As attack derivation
represents the attacker’s action while trace represents the real attack as an executable trace of the
considered process as explained in chapter 3. The attack derivation and trace sequence of steps,
input, and outputs are explained in this subsection.

Attack Derivation and Trace

The attacker I starts by eavesdropping on the communication between entities, impersonates the
UEA, continuing the protocol with UEB , which completes the protocol with the attacker instead
of UEA. The attacker’s actions are illustrated in Fig. 8.4 and explained concisely in derivation and
trace steps below, some text is omitted for simplicity, full trace output in Appendix J:

Figure 8.4: DDSec Attack Trace
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� In the first trace, the attacker knows rand a, {1} - {6} corresponds to the creation of
secret and shared keys, the output of public keys of UEA and UEB in the main process.
The output {8}, {10}, {12}-{14} corresponds to the public keys, they are stored in fresh
variables ~M, ~M_2190, ~M_2262, ~M_2333 respectively, by the attacker for later reuse. UEA

starts to input the public key of the attacker. In {15} and {16}, the public keys are inserted
in the key table in the main process for UEA and UEB . Then the attacker gets rand_a[].

� In the second trace, steps 1-3 indicate what the attacker has terms hm3_7794 and m3_7494,
using PublMsg function 3-tuple the attacker may also obtain PublMsg, attacker(PublMsg).
In step 5, the attacker may have received message (PublMsg,m3_7793,hm3_7794) at input
{63}. Inputs {57} and {58} correspond to creations of ua, ub, also the attacker creates
ua_8130, ub_8131 and stores them in copy a_7802. So, output {62} corresponds to a ses-
sion copy a_7802 that UEB has with the attacker, who sends ID ub_8132 and dataname
dataname_8132 stored in a new variable ~M_8189 for later use. In the same session the
attacker receives (PublMsg, a_7800, a_7801)) at input {63}. The attacker achieves her
goal at {64} when event endUEB(A, B, pk(skueb_7803), rand_a, rand_b) is executed in
session a_7802. That is the entity authentication, key confirmation, unknown key share fail.
The trace shows there was an attack against the correspondence on injective agreement.

� In the third trace, the attacker was able to achieve another goal against one-to-one relation-
ship correspondence, when event endUEB(A, B, pk(skueb_9980), rand_a, rand_b) is ex-
ecuted in session a_9977 with UEB . The trace shows false results on the injective agreement.

8.4.3 Improved Version of DDSec Protocol

To address the security threat discovered in the previous version of the DDSec protocol, this subsec-
tion discusses the changes made in modelling of the protocol and presents the improved version of
DDSec protocol. To improve this protocol the UEA send nonce rand na with hash of its public key
PKUEA

to gNB in message 1 and while UEB sends rand nb with hash of its public key PKUEB
to

gNB in message 2. The gNB returns rand na along with rand nb in message 3 and which UEA

returns to UEB in message 4. That prevents the attacker from starting a conversation with UEB

as it will need rand nb, UB and the right hash for the public key to be trusted by UEB .

Figure 8.5: DDSec Safe ProVerif Results
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After the changes were made, the protocol was run again as shown in Fig. 8.5, ProVerif found no
attack this time hence the protocol is secure. ProVerif full description of the protocol is illustrated
in Appendix F.1. ProVerif results indicate that the secrecy of protocol messages holds and mutual
authentication of UEA and UEB holds.

8.4.4 Security Analysis

Protocol Security Analysis

This analysis is for the improved version of the proposed protocol based on security requirements
of sets 1 and 2 as presented in chapter 3.
Analysis based on security properties of set 1 is as follows:

� Secrecy: This is achieved since the rand_a and rand_b are never revealed to the attacker. By
achieving this property also covers confidentiality and privacy of the protocol data.

� Aliveness: The UEA obtain the aliveness of UEB when UEB sends LookUp request to UEA

with ub, hd1, rand_a,rand_b, pkueb, Ts_6, then UEA gets non-injective agreement on
rand_a with UEB .

� Weak Agreement: This is achieved when UEA achieves non-injective agreement on rand_b

with UEB . Also, the UEB achieves weak agreement with UEA on rand_b.

� Non-injective Agreement: The UEA obtains non-injective agreement on rand_a with the
UEB . Also, UEB get non-injective agreement on rand_b with UEA. The non-injective
agreement UEA to UEB and UEB to UEA holds.

� Injective Agreement: The injective agreement on rand_a, rand_b between the UEA and
UEB is central to the protocol’s purpose. The injective agreement between UEA and UEB

on PKUEA
and PKUEB

assures each other that they are known and it holds in ProVerif.

Analysis based on security properties of set 2 is as follows:

� Mutual Entity Authentication: The UEA and UEB authenticated each other with A,B, pkuea,
rand_a, rand_b. When they proved to hold, they enforced this requirement.

� Mutual Key Authentication: The public keys PKUEA
PKUEB

are known to the public and
private keys are not, they are verified with a digital signature using their private keys, which
implicitly authenticates the self-certifying public keys.

� Mutual Key Confirmation: This requirement does not apply to this protocol as the UEs
generate their own public and private keys. However, since they both use ECIES that partly
enforces this agreement. The successful authentication of UEA to UEB and UEB to UEA

implicitly enforces this requirement.

� Key Freshness: ProVerif has no function to check key freshness, however, the messages ex-
change includes random numbers and timestamps hence checking the freshness of messages
which include the keys. And since the secrecy of these keys is not violated, it implies the keys
are fresh.
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� Unknown-Key Share: Since the entities use their own unique public keys/private keys, it en-
forces this requirement. Also, the reachability property in ProVerif is used to check aliveness.
The entities’ ID and digital signature prevent this attack. The inclusion of UEA, UEB , UA
and UB in the authentication process proves this requirement.

� Key Compromise Impersonation Resilience: Since the entities use their own unique public
keys/private keys using ECIES, it enforces this requirement. Furthermore, knowing one key
in a session is not enough to deduce another. Backward secrecy and forward secrecy of keys
are possible, no entity or adversary is capable of computing keys in past sessions or predict
future keys, this is due to ECC. Obviously, the public keys are globally known but the private
keys are only known to the owners. However, to compromise the keys, the ECIES, UEA and
UEB will have to be compromised at the same time. Also compromising the HN during the
primary authentication does not mean that D2D security will be compromised.

Security consideration

With DDSec the UEs will be able to authenticate each other, share data and delegate their access
rights via security tokens. Both UEs use ECC whereby solving ECDLP is not feasible. Therefore,
attackers cannot break the proposed protocol’s KDF and find the secret key if a big size of the
binary elliptic curve is used as it requires very high computational time. The larger the curve size
the better the security levels of a protocol. Also, the use of randomness, hash function, tokens,
delegation, ID, and certificate digital signature makes the comprise unlikely. Hence, the DDSec
protocol will address security issues for D2D communications discussed in chapter 4.

8.5 Modelling of DDACap Protocol

This section models the proposed DDACap protocol using two devices UEB and UEC based on
architecture shown in Fig. 4.1, scenario D presented in chapter 4 and the improved version of
DDSec protocol. This protocol applies similar cryptographic primitives like those used in the DDSec
protocol in section 8.3 to achieve security requirements of 5G enabled D2D communications. The
proposed DDACap will provide mutual authentication and authorization between two UEs to cache
and share data, like the DDSec protocol in a direct communication scenario. The UEs would be
able to access and share services with each other without roaming and communication restrictions.
For instance, during disaster events or where there is no network coverage. At this security level,
the UE uses some of the security contexts from the DDSec protocol if it applies to its scenario,
however, it is still capable of generating its own cryptographic primitives and security tokens. It
also leverages the security parameters used in NAC and SLS mechanisms.

After UEA shares the data and delegates its capabilities to UEB then UEB can use the same
attributes and capabilities to cache the data object and later share it with UEC in a non-network
assisted D2D communications. For UEB to share data with UEC , it does not have to be on the same
NAC-level as in the case of DDSec protocol. The UEB and UEC can use the proposed DDACap
protocol to authenticate and share data relying on the subject and object security attributes and
capabilities.
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Figure 8.6: DDACap Protocol Message Exchange Flow

8.5.1 Protocol Message Exchange and Execution

This subsection explains the DDACap protocol message and execution, involving UEB and UEC .
The protocol initiation can be performed by the interested UE or the UE with data. In this case,
UEB with data initiates the direct communication by sending beacon signals with advertisement
message and UEC in proximity responds with interest messages. When the messages are evaluated,
and the signal has exceeded the predetermined metric threshold then both UEs start to communicate
directly. The control signal and the data are exchanged over dedicated control and shared data
channels, respectively. The protocol messages exchange between UEB and UEC is illustrated in
Fig. 8.6, similarly with reference to notations in Table 8.2 and described as follows:

Msg1 UEB → UEC:({AdvMsg})

The UEB sends beacons signals with an advertisement message AdvMsg by broadcasting to the
D2D users in proximity which includes UEC . It includes its ID (UB), data name DataName,
logical address nAdd, its public key PKUEB

and hash of its public key hash(PKUEB
) signed with

its private key SKUEB
, the hash is used for integrity and message authentication.

Msg2 UEC →UEB:({IntMsg},{PKUEB})

The UEC sends an interest message IntMsg to UEB by replying AdvMsg. It includes its ID (UC),
data nameDataName of its interest, its public key PKUEC

and its hash with (hash(PKUEC
) signed

with its private key SKUEC
and encrypted with UEB ’s public key PKUEB

hoping to make a direct
communication.

Msg3.UEB→UEC:({PublMsg},{PKUEC})

When UEB receives message 2, responds with a publish message PublMsg. The UEB gener-
ates a nonce Rand rb as an authentication challenge, a timestamp Ts3 for freshness and re-
play protection, pseudonym ID of DataName (D1) and hash of the whole message hPublMsg
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Table 8.3: Secrecy Properties

Properties UEB UEC

UB H H
UC H H
Rand rb H H
Rand rc H H

=hash(UB,D1, Rand rb, Ts3) signed with its private key SKUEB
. The UEB sends a PublMsg

message that includes (UB), D1, Rand rb, Ts3 and hPublMsg as an authentication request en-
crypted with UEC ’s public key PKUEC

.
Msg4.UEC→UEB:({LookUp},{PKUEB})

Both UEs evaluate the received messages to establish direct communication over dedicate channels.
Then UEC responds with LookUp message that includes its ID (UC), data name D1, new nonce
rand rc, nonce Rand rb, a timestamp Ts4 and hash of the whole message hash(UC,D1, Rand rb,
Rand rc, Ts4) signed by its private key SKUEC

. The LookUp message is encrypted with PKUEB
.

The UEC authenticates UEB by sending back Rand rb together with Rand rc.
Msg5.UEB→UEC:({SendData},{PKUEC})

When UEB receives message 4, checks if there are any delegated permissions, if there are then
generates attributes and capabilities token ACap1 including cache and share permissions for the
requested data by UEC . It returns Rand rc to confirm a successful authentication of UEC , together
with requested DATA, ACap1 token with abilities and capabilities string, Kd1 symmetric key to
decrypt the data and hash of the symmetric key and token hash(ACap,Kd1) signed with SKUEB

to UEC in SendData message encrypted with PKUEC
.

8.6 Formal Verification of DDACap Protocol

This section follows the same ProVerif modelling process as that defined in chapter 3. The protocol
modelling used is like that illustrated in section 8.3 with some changes and full ProVerif protocol
syntax in Appendix G.1.

Figure 8.7: DDACap Safe ProVerif Results
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8.6.1 Formal Analysis of DDACap Protocol

The protocol was simulated using insecure public channel and processes ProcessUEB as UEB and
ProcessUEC as UEC. When the protocol was modelled, no attack was found on the public channel
between UEB and UEC as shown in Fig. 8.7 because it was based on the improved version of
DDSec protocol in section 8.3. However, to harden the protocol and compensate for not having a
central entity, each UE includes a hash of its public key at the beginning of communication with
another UE. This increases integrity and reduces replay attacks. The security properties this study
is interested in are like that of the DDSec protocol. Using formal analysis, in consideration with
adversary vector, there were no attacks on the protocol hence the protocol is secure. ProVerif
results above indicate that the secrecy of rand rb, rand rc, SKUEB , SKUEC , d1, ACap holds and
mutual authentication of UEB to UEC holds in form of non-injective and injective agreements as
shown in Tables 8.3, 8.4 and 8.5.

The events that prove the correspondence are like that of DDSec protocol and take similar
arguments, ID, PKUEI

and nonces. If the arguments are true, then data is sent otherwise it
sends authentication failure and terminates the communication. This study would like to prove the
following correspondence.

(*Check authentication between UEB and UEC*)

query C: host, B: host, K: pkey, rand_rc:nonce, rand_rb:nonce;

event(endUEC(C,B,K,rand_rc,rand_rb))==> event(beginUEB(C,B,K,rand_rc,rand_rb)).

inj-event(endUEC(C,B,K,rand_rc,rand_rb))==> inj-event(beginUEB(C,B,K,rand_rc,

rand_rb)).

The direct proof of this correspondence in ProVerif holds because message 3 is sent before mes-
sage 4. This study also tries to prove and conclude the desired correspondence by noticing that event
which has uc, hd1, rand rb, rand rc, Ts3 as argument cannot be executed before ub, hd1, rand rb
has been sent, that is before rand rb request is has been executed with rand rb, rand rc response.
Which holds in ProVerif with true.

8.6.2 Security Analysis

Protocol Security Analysis

The security analysis of the DDACap protocol is based on security requirements of sets 1 and 2
shown in Tables 8.4 and 8.5 respectively as presented in chapter 3 and like that of DDSec protocol in
section 8.3. The query attacker on secrecy, aliveness, weak, non-injective, injective agreement holds.
Also, mutual authentication, mutual key authentication, mutual key confirmation, key freshness,
unknown key share, and key compromise properties are achieved.

Table 8.4: Security Properties for Set 1

Properties UEB - UEC UEC - UEB

Aliveness H H
Weak Agreement H H
Non-Injective Agreement H H
Injective Agreement H H
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Table 8.5: Security Properties for Set 2

Properties UEB - UEC UEC - UEB

Mutual Entity Authentication H H
Mutual Key Authentication H H
Mutual Key Confirmation H H
Key Freshness H H
Unknown Key Share H H
Key Compromise Impersonation Resilience H H

Security consideration

Similarly, with DDACap protocol the UEs will be able to authenticate each other and share data as
well as delegate their access rights using security tokens via direct communication without network
assistance. The security encryption schemes and parameters used are the same as those of the
DDSec protocol, hence the same security properties are achieved and the protocol will be able to
address D2D communications security issues discussed in chapter 4. The main goal of the proposed
two protocols is to provide entity authentication and data authorization between two devices in 5G
enabled D2D communications, in network-assisted and non-network assisted scenarios.

8.7 Summary

This chapter proposed two DDS protocols that can be used by two UEs in proximity to share and
cache data. The DDSec protocol can be used with network-assisted communication and in coverage
scenarios whereas the DDACap protocol could be used in non-network assisted communication
and out-of-coverage scenarios. Now that the proposed security protocols are verified and security
properties analysed, the next chapter evaluates the performance of all proposed security Protocols in
this study. It also explores the integration and possible implementation of the proposed protocols.
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Chapter 9

Performance Evaluation and
Integration of the Proposed
Security Protocols

9.1 Introduction

Now that the proposed security protocols have been specified, verified and analysed, this chapter
evaluates security protocols performance using analytical and simulation modelling (Bodei et al.
2005b), (Nsnam 2021), respectively for quantification of cryptographic properties of the protocols. It
also presents the integration and encapsulation of the proposed protocols to create a comprehensive
security solution as well as possible implementation of the proposed protocols. Some of the work
in this chapter is also presented in (Edris et al. Submitted for Publicationa,S).

The rest of this chapter is structured as follows. Section 9.2 presents security protocols per-
formance evaluation based on analytical modelling. In section 9.3 security protocols performance
evaluation based on simulation modelling is presented. The integration of the proposed security pro-
tocols is discussed in section 9.4. In section 9.5, possible implementation of the proposed protocols
is explored. This chapter is summarised in section 9.6.

9.2 Performance Evaluation based on an Analytical Model
Approach

Our analytical modelling differs from (Bodei et al. 2005b) as ProVerif and applied pi calculus are
used in this study for protocols specifications as discussed in chapter 3. The evaluation procedure
uses special operational semantics of applied pi calculus (Abadi et al. 2017), enabling the use of
quantitative measures on processes describing cryptographic protocols by deriving Markov chains.
Every cryptographic operation and message exchange have a cost on the system, which can be
estimated through quantitative measures specified and evaluated based on quantitative properties
such as speed and availability (Bodei et al. 2005b). The protocols are measured by describing them
through a ProVerif process and using labelled semantics (Abadi et al. 2017) to associate a cost with
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each transition of the system.
The transitions have enhanced labels that associates with cost (Nottegar et al. 2001). This

is achieved by assigning rates to transitions of system activities, whereby these rates reflect the
distributed architecture of the system model and the use of encryption system such as ECIES and
PKI. Then transition systems and Markov chains are mapped together for protocol performance
evaluation based on literature in (Bodei et al. 2005b). The quantitative measures and qualitative
semantics are abstracted symbolically from ProVerif specification of the proposed protocols and the
full syntaxes can be found in Appendix H.

Since applied pi calculus is used for specifying our protocols, it is easier to estimate and evaluate
their cost. The interpretation of the quantities is associated to transitions, includes rates and
measures as a cost of using cryptographic primitives. This method supports users input in analysing
the actions and performance of the protocols.

9.2.1 Protocol Specifications for Performance Evaluation

This subsection introduces the enhanced operations’ semantics, and functions that enhance a sys-
tem’s transitions and costs used in evaluating a protocol’s performance. It integrates applied pi
calculus process with enhanced labels (Bodei et al. 2005b), (Blanchet 2016), (Abadi et al. 2017).
The system behaviour is illustrated using a graph called transition system defined by operational
semantics (Nottegar et al. 2001) as protocol specification. The communication between entities
are states and the protocol are pi calculus processes, with arcs as translations from one state to
another.

Semantic Operations

The applied pi calculus grammar used in ProVerif as presented in section 3.3.6 is recalled, the formal
specifications of the protocols use channel c as the communication channel, which is associated with
input and decryption. ProVerif syntax comprises terms M,N with set of names and processes P,Q
with set of variables, and encryptions are tuples of terms M1, ,Mk. With these main semantics,
message M is pushed on channel N by N(M).Q and received by N(x).P . The processes Q and

Table 9.1: Enhanced Operation Semantics

M ::= terms ∈ M
n name (n ∈ N )
x variable (n ∈ X )
{M1, ...,Mk}Eo

symmetric encryption (k ≥ 0)

M ::= processesP
0 nil
⟨M1, ...,Mk⟩.P output
(M1, ...,Mj ;xj+1, ...xk).P input (with matching)
P1|P2 parallel composition
(νn) restriction
A(y1, ..., yn) constant definition
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P stay in parallel with each other, whereby the received message M replaces X. The enhanced
semantics are presented in Table 9.1.

The process is prepared to perform reductions by defining semantics using reduction semantic
configurations, with E as a finite set of names and P as finite multiset of closed processes. The envir-
onment E with at least all free names of processes in P . The configuration {a1, ..., an}, {P1, ..., Pn}
corresponds intuitively to the process new (νa1)...new(νan)(P1|...|Pn). The reduction simplifies
the computational evaluation of a process in ProVerif (Blanchet 2016). The meta-variables µout and
µin, resp are used to denote runtime prefixes, whereby the enhanced operational semantics are built
on top of a reduction semantics (Bodei et al. 2005b). The process νn.P makes private name n and
acts as P . If M = N then P when Q is 0. With N(x).P ready to input from channel N, then runs P
with formal parameter x that replaced the actual message, while N̄⟨M⟩.P is ready to output M on
channel N , then to run P and omitting P when it is 0 (Abadi et al. 2017). The focus is on normal
semantics, new processes and labels that enhance transitions. Using constructors and destructors
(Blanchet 2016), the data structure can be represented as tuples and cryptographic operations for
encryption and decryption hence modelling perfect symmetric and asymmetric cryptography.

Example 1 Let us consider one of the protocols SAP-AKA fully modelled in section 7.3 using
entities end user (UE), pass through authenticator (SMF) and authentication server (SPAAA),
(UE|SMF |SPAAA) as principles to explain this approach.

The UE, SMF and SPAAA are principals which are running in parallel. ν is binder which
binds the key PKUEA and PKSP with the principals, respectively. The processes are extended
with active substitutions in Table 9.2, written as {M/x} to replace the variable x with the term
M , {M/x} can be defined as let x = M in . . ., and which also practical to add a restriction:
νx.(M/x|P ) corresponding to let x = M in P (Abadi et al. 2017). The principals receive and send
messages that include terms, associated with input and output. Using parallel composition (|) of
the processes, a definite number of activities are executed by each of process before starting again.
The new names are created with a restriction operator νnP , that acts as a static binder for n in
the process P . The protocols specifications and ProVerif modelling are presented in chapters 6, 7
and 8. The communication between entities using protocol can be shown by using transitions of
system from one state to another.

Table 9.2: Processes Extensions with Active Substitutions

A,B.C ::= extended processes
P plain processes
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

L ::= labels
νn.P name restriction (”new”)
N(x).P message input
N̄⟨M⟩.P message output
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9.2.2 Enhanced Labels

After specification, an enhanced label is associated to each transition of the system i.e., each commu-
nication and to each decryption (Bodei et al. 2005b), by using enhanced operational semantics based
on labelled bisimilarity (Abadi et al. 2017) used to prove observation equivalence. The enhanced la-
bel (l) records communication output and input elements with their syntactic contexts, facilitated
by specific processes creating finite state spaces. With labelled operational semantics, each en-
hanced label is associated to each transition of ProVerif processes i.e.,((!procUE()) (!procSMF())

(!procSPAAA()).
A context label ϑ is associated to each prefix of a specific process. During the building of the

labels, parallel compositions and restriction construct are considered by differentiating the type of
name restriction created. A ∥ 0 (resp.∥ 1) for the left branch of a parallel composition and a νa for
each restriction of the name a are introduced. Each prefix is associated by a context label (Bodei
et al. 2005b). The enhanced labels of transitions systems show input and put during communication
between entities.

Labelled transitions
ϑ−→ occurs when an output P is the same as an input P ′. That is matching

the term from an encryption Mo against the decryption pattern M ′o. The reduction
ϑ−→ ends

under parallel composition and restriction and only used for communication labels. With ProVerif
processes, the output or input prefix are improved with sequences ϑ of tags such as νn, ∥0 or ∥1. If
the prefix appears after a restriction, the tag νn occurs in the sequence and tag ∥0 (resp∥1) occurs,
if the prefix is moved in the left branch of a parallel composition (Bodei et al. 2005b).

Example 2 The state transitions of the protocol are preceded by the sequence of tags which can be
reduced as

.

� ϑUE = νPKUEνPKSP νServNameνSID ∥ 0 ∥ 0 preceding the prefixes of UE.

� ϑSMF = νPKUEνPKSP ∥ 0 ∥ 1 (resp. ϑ′
SPAAA = νPKUEνPKSP νGPSIνSPID ∥ 0 ∥ 1)

preceding the first input of SMF .

� ϑSPAAA = νPKUEνPKSP ∥ 1 (resp. ϑ′SPAAA = νPKUEνPKSP νIdentityνKUESP ∥ 1) preced-
ing the first input of SPAAA.

In the transition system graph as shown in Fig. 9.1, processes are the entities while arcs
are the possible transitions between those entities. Labelled operational semantics enables reason

about processes, states, and transitions. The labelled semantics define a relation P
(α)
−→ P ′ referring

to abstract transitions from states P and P ′ in the form of P
(label,caption)
−−−−−−−−−−−→ P ′, the multi states

transitions are presented as P
(label,caption)
−−−−−−−−−−−→ P ′1, P ′2,P ′n. Where α can be a label of any of the

following as presented in Table 9.2:

� a label N(M), where M is a term that may contain names and variables, corresponding to
an input of M on N ;

� a label N̄⟨u⟩ or νu.N̄⟨u⟩, where u refers to a channel name or a variable type, which corres-
ponds to an output of u on N .

This represents the label of the transition and the part of the protocol in transition, such as 1 :
UE→SMF, for the communication between UE and SMF.
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UE|SMF|SPAAA UE′|SMF′|SPAAA UE′|SMF′|SPAAA

UE′|SMF|SPAAA

UE′|SMF|SPAAA

UE′|SMF|SPAAA′

UE′|SMF|SPAAA′

UE′|SMF|SPAAA′

UE′|SMF|SPAAA′

UE′|SMF|SPAAA′UE′|SMF|SPAAA′UE′|SMF|SPAAA′

UE′|SMF|SPAAA′

UE′|SMF|SPAAA′

UE′|SMF|SPAAA

UE′|SMF|SPAAA

UE′|SMF′|SPAAA

l1, l:UE→SMF l2, 1:SMF Decrypts

l3, 2:SMF→UE

l4, 2:UE Decrypts

l5, 3:UE→SPAAA

l6, 3:SPAAA Decrypts

l7, 4:SPAAA →UE

l8, 4:UE Decrypts

l9, 5:UE →SPAAA

l10, 5:SPAAA Decryptsl11, 6:SPAAA→UE

l12, 6:UE Decrypts

l13, 7:UE→SPAAA

l14, 7:SPAAA Decrypts

l15, 8:SPAAA→UE

l16, 8:UE Decrypts

l17, 9:SPAAA→SMF

Figure 9.1: SAP-AKA State Transition System

9.2.3 Defining the Cost of a Protocol as a Process

The transitions attained from the enhanced labels are allocated cost by the cost function $(·) (Bodei
et al. 2005b), whereby the cost is any quantitative measure that effects transitions’ properties like
cryptographic procedure that apply encryption and decryption. The cost of transitions is derived
by inspecting enhanced labels, the time that the system is probable to remain within transitions is
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measured to get the cost. Therefore, the cost of the protocol can be specified based on the time
overhead of the activities of the primitives.

Additionally, the cost function associates a cost with each transition labelled by θ, where θ =
(out, in|dec), representing the transition rate, which is the parameter that identifies the exponential
distribution of the duration times of θ (Bodei et al. 2005b) and action of the originating transition
α = l(θ). Moreover, the cost the label element ϑµ relies on the action µ and on the context
ϑ. A scaling factor r is introduced in correlation with each procedure of the transition θ under
consideration. The costs are assigned to terms and components of activities µin, µout represented
by functions as follows:

� fu(n) and fu(n) are the cost of unary terms and functions.

� fenc is the cost function for the encryption which computes the cost of the routines that
implement the encryption algorithm.

� fin and fout specify the costs of the procedure which applies sending and receiving primitives,

� f = (j) is the cost function for a pattern matching of size j.

� fkind(crypt) indicates an encryption or a decryption costs in line with the encryption scheme.

� fkind(MO) indicates the cost based on the used key.

� fsize(ctxt) indicates the cost based on size of the cleartext to encrypt.

� fsize(msg) indicates the cost based on the size of message created as the result of the evaluation
of the cost of an output or an input.

� f = (j) computes the cost because of pattern matching on j.

$T (n) = fu(n)
$T (x) = fu(x)
$T ({M1, ...,Mn}M0) = fenc(fkind(crypt), fsize(ctxt), fkind(M0), $T (M1, ...,Mk))
$T ((M1, ...,Mn) = min$T (M1), ..., $(Mn))
$in(µin = fin(fsize(msg), f = (j), $T (M1, ...,Mj))
$out(µout = fout(fsize(msg), $T (M1, ...,Mk))

The number of np of processes available determine how the parallel composition is evaluated,
$o(∥) = 1 for an unbound number of ProVerif processes not including the communication cost. In
that the number of names n(P ) of process P determines cost of restriction as defined in (Bodei et al.
2005b), it also depends on the name fkind(a) such as nonce, key, hash function, MAC. Therefore,
the label of the transition is ⟨ϑ ∥i ϑinµin, ϑ ∥1−i ϑoutµout⟩, which records the actual communication
operations. In addition, an exponential distribution with rate r determines the time parameter
∆t, that is needed to have a probability near to 1 in relation with Markov chains. By estimating
the corresponding duration with a fixed rate r = min{$in(∥i ϑinµin), $out(∥1−i ϑoutµout)} as a
minimum cost as the communication occurs at the same time. If the label is for decryption ⟨dec⟩,
fdec is used to compute the cost to derive the decryption algorithm cost. Therefore, cost is defined
by induction on θ and by using the functions $µ as basis, and then $o.

Definition 1 Whereby the cost function is i = 0, 1 as defined by (Bodei et al. 2005b)

156



$(µ) = $µ(µ)
$(oθ) = $o(O)× $(θ)
$(∥i θ) = $o(∥ i)× $(θ)
$(⟨ϑ ∥i ϑinµin, ϑ ∥ 1− iϑoutµout⟩) = $(ϑ)×min$(∥i ϑinµin), $(∥1−i ϑoutµout)
$(⟨dec⟩) = fdec(fkind(crypt), fsize(ctxt), f = (j), fkind(MO), $T (M1, ...,Mj))

Cost Metrics

Next is to specify the costs to tune a probabilistic distribution relating to the expected speed of
actions as the cost is influenced by the following factors:

� The input, output components and context determine the cost of communication, whereby
the cost of an output depends on the message size and the cost of each part of the message.

� The type of algorithm, size of the cleartext and type of key, determine the cost of an encryption
together which is not constant.

� The size of the message, the cost of the terms to be matched and the number of checks made
before accepting the message determine the cost of an input.

� The size of the ciphertext, type of algorithm and the key used determine the cost of decryption
of a ciphertext.

� The number of checks made during the decryption also determine the decryption cost even
though it does not depend on its context.

Cost function parameters are used to reflect on the architecture and encryption scheme, taking
in count the number processes and cryptographic algorithms (Bodei et al. 2005b). Whereby the
cost only considered due to parallel composition. To associated a cost to each transition in the
system, while computing the performance, the cost due to restrictions is neglected. Also, since it
can be assumed that each principal might have a processing unit of its own, cost 1 can be given to
each tag ∥ i (i = 0, 1). The context is ignored, and the same cost is given to output and input. In

a transition, communication is assigned a cost equal to n ∗ s+
∑l

i=1 mi ∗ e, decryption is assigned
a cost equal to n ∗ d and terms are described in Table 9.3.

Example 3 The cost of the third transition of SAP-AKA protocol H.3 with label

Table 9.3: Cost Description

Term Description
n size of the message
mi size of the ith encryption
e cost of unitary encryption
d cost of unitary decryption
s cost of unitary output
li label in relation to the state
ci cost in relation to the label
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l3 = ⟨ϑUE({ServName, SID, SPID}PKSP
), ϑSPAAA(t

UE
enc⟩ (msg3), the cost is 3s + 3e = C, whereby

the output message is 3S and the size of the encrypted cleartext is 3e. The cost of decryption of
this message in the third transition is 3d, that is for a ciphertext decryption back to a cleartext
of size 3e. The full list of the protocols’ costs ci in relations to their labels li are presented in
section 9.2.7. The cost parameters vary this due to the difference system architecture, protocol,
encryption scheme, algorithm and cryptographic primitives used. For instance in 5G, ECC, SQN,
AKA challenge, XOR must be considered. The cost of communication and encryption are affected
by speed operations and the communications link.

9.2.4 Continuous Time Markov Chains

The required quantitative information is extracted to derive the Continuous Time Markov Chains
(CTMC) (Stewart 1994) using enhanced operational semantics by mapping transition system to
Markov chains. The CTMC compromises of sets of states and labelled transitions between the
states with a sequence of random values, the probabilities of these values at a time interval depends
on the values of the previous states (Hillston 2005). As explained earlier, a function is used to assign
costs to individual transition to enable an application of costs to tune a probabilistic distribution.
These costs are interpreted as parameters of exponential distributions (Bodei et al. 2005b). After
computing the exponential distributions of transitions, it leads to numerical process because of
collapsing the arcs which share source and target.

However, the next transition appearance does not depend on when the last transition appeared.
The assumption is that all transitions are time homogeneous, so the rate of a transition does not
depend on the time at which it happens. The parameter r is associated with a transition to extract
some transition probabilities, that is the rate at which a system changes from process Pi to behaving
like Pj . Hence, corresponding to the sum of the costs of all the transitions that are performed from
Pi to Pj . Moreover, there is only one transition between any two entities and so rates coincide with
single costs within a transition system.

Definition 2 The transition rate between two states Pi and Pj, written q(Pi, Pj), is the rate at
which the transitions between Pi and Pj occur (Bodei et al. 2005b)

q(Pi, Pj) =

∑
P

θk−→
i Pj

$(θk). (9.1)

A directed graph is used to represent a CTMC C, in that the entities are the states of C, only the
states that can reach each other are connected by the arcs. Whereby the rates at which the process
moves from one state to another is illustrated by a square matrix Q, called generator matrix, which
is the adjacency matrix of the graph representation of the CTMC of process (CTMC(P )). The
entries of Q are instantaneous transition rates defined as 3.2 (Bodei et al. 2005b).
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qij =



q(Pi, Pj) =
∑
P

θk−→
i Pj

$(θk) if i ̸= j

−
n∑

j=1
j ̸=i

qij if i = j

(9.2)

9.2.5 Quantitative Measure of a Process using CTMC

After long periods executions the performance measures of systems become comprehensible. The
derivation of these measures of process P are achieved by exploiting the stationary probability
distribution Π for the CTMC, associating it with P , since they have finite and cyclic properties.

Definition 3 Let Πt(xi) = p(X(t) = xi) be the probability that a CTMC is in the state xi at time
t, and let Π0 = (Π0(x0), ...,Π

0(xn)) be the initial distribution of states x0, x1, ..., xn. Then a CTMC
has a stationary probability distribution Π = (Π(x0), ...,Π(xn)) if (Bodei et al. 2005b)

ΠQ = 0 and

n∑
i=0

Π(xi) = 1. (9.3)

The stationary distribution for each of the system solves the system linear equations 3.4. The
standard numerical techniques are used to utilize the preferred numerical package available for
needed computations and the stochastic analysis. The stationary distribution of the Markov chains
is Πi = (X0, ..., Xn−1)(i = 1, 2 and n = 6, 8) for the protocols and corresponding equation as defined
in definition 3 and solution of the following linear equations of each proposed protocol is presented
in subsections 9.2.7.

ΠQ = 0 and

n−1∑
i=0

Xi = 1. (9.4)

9.2.6 Reward Structure of a Protocol as Process

A process P performance is measured by associating it with a reward structure based on (Hillston
2005). The reward structure of the performance model is a function that associates a value with
any state passed through in a computation of P this due to the performance model being CTMC
(Nottegar et al. 2001).

Definition 4 Given a function ρθ associating as a transition reward with each transition θ in a
transition system, the reward of a state P is (Bodei et al. 2005b)

ρp =

∑
P

θ−→Q

ρθ. (9.5)
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The reward structure of a process P is described as a vector of rewards with many elements in
relations to the number of derivatives of P . From that and the stationary distribution Π of CTMC
of a process P performance measures are computed (Bodei et al. 2005b).

Definition 5 Let Π be the stationary distribution of CTMC(P ). The total reward of a process P
is computed as (Bodei et al. 2005b)

R(P ) =

∑
Pi∈d(P )

ρPi X Π(Pi). (9.6)

The utilization of an encryption scheme is achieved by getting the sum of the values of Π
multiplied by the equivalent reward structure. This adds up to the time spent in the states with
encryption scheme enabled. Even though the reward structure is just a function that associates a
reward with a state going through a computation of process P , we can also compute rewards from
rates of transitions (Nottegar et al. 2001). This is achieved by measuring the throughput of the
system in terms of amount of work accomplished per unit time using non-zero reward value against
the rate of corresponding transition (Bodei et al. 2005a).

Definition 6 Let process P reward structure be ρθ = ρθ(0), ...., ρθ(n − 1). The total reward of
process P is computed as (Bodei et al. 2005b)

R(P ) =

∑
i ρ(i).Xi. (9.7)

Q1 =



l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16 l17

l1 −b b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l2 0 −2d 2d 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l3 0 0 −c c 0 0 0 0 0 0 0 0 0 0 0 0 0
l4 0 0 0 −3d 3d 0 0 0 0 0 0 0 0 0 0 0 0
l5 0 0 0 0 b b 0 0 0 0 0 0 0 0 0 0 0
l6 0 0 0 0 0 −2d 2d 0 0 0 0 0 0 0 0 0 0
l7 0 0 0 0 0 0 −a a 0 0 0 0 0 0 0 0 0
l8 0 0 0 0 0 0 0 −d d 0 0 0 0 0 0 0 0
l9 0 0 0 0 0 0 0 0 −a a 0. 0 0 0 0 0 0
l10 0 0 0 0 0 0 0 0 0 −d d 0 0 0 0 0 0
l11 0 0 0 0 0 0 0 0 0 0 −g g 0 0 0 0 0
l12 0 0 0 0 0 0 0 0 0 0 0 −5d 5d 0 0 0 0
l13 0 0 0 0 0 0 0 0 0 0 0 0 −b b 0 0 0
l14 0 0 0 0 0 0 0 0 0 0 0 0 0 −2d 2d 0 0
l15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −c c 0
l16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3d 3d
l17 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −s


(9.8)

Figure 9.2: SAP-AKA Matrix
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9.2.7 Performance Evaluation with Markov Chain

Having specified the protocols, defined the labelled enhanced operation semantics and cost function,
this section evaluates performance of our proposed protocols using Markov chain as discussed in
section 9.2.4 based on the cost definition in Table 9.3. We recall the SAP-AKA, NS-FId, DCSS
protocols in chapter 7, DDSec, and DDACap protocols in chapter 8. The stationary distribution of
the Markov chains for these protocols and corresponding equation (9.2) as defined in subsection 9.2.4
and solution of the linear equation (9.4) subsection 9.2.5 of each protocol are presented in following
subsections. The protocols detailed labels and matrix are in Appendices H and I, respectively.

SAP-AKA Protocol

The state of transition and labels are shown in Fig. 9.1, detailed labels in Appendix H.1 and
matrix Q1 is shown in Fig. 9.2, the cost and transition association metrics in Tables 9.4 and
9.6. Consider the transition system which is finite and has cyclic initial states so that it has
stationary distributions. The following generator matrix Q1 = CTMC (SAP-AKA) is derived and
the stationary distributions is Π1, where A = 20s+ 19e+ 19d.

Π1 =

[
A

b
,
A

2d
,
A

c
,
A

3d
,
A

b
,
A

2d
,
A

a
,
A

d
,
A

a
,
A

d
,
A

g
,
A

5d
,
A

b
,
A

2d
,
A

c
,
A

3d
,
A

s

]
(9.9)

Table 9.4: Cost Metrics for the Enhanced Labels of the Proposed Protocols

SAP-AKA NS-FId DCSS DDSec DDACap
c1 = 2s + 2e c1 = 2s + 2e c1 = 4s + 4e c1 = 2s +2e c1 = 3s
c2 = 2d c2 = 2d c2 = 4d c2 = 2d c2 = 6s + 6e
c3 = 3s + 3e c3 = 2s + 2e c3 = 2s + 2e c3 = 2s + 2e c3 = 6d
c4 = 3d c4 = 2d c4 = 2d c4 = 2d c4 = 6s + 6e
c5 = 2s + 2e c5 = 3s + 3e c5 = 2s + 2e c5 = 5s + 5e c5 = 6d
c6 = 2d c6 = 3d c6 = 2d c6 = 5d c6 = 3s + 3e
c7 = s + e c7 = 3s + 3e c7 = 2s + 2e c7 = 7s + 7e c7 = 3d
c8 = d c8 = 3d c8 = 2d c8 = 7d c8 = 4s + 4e
c9 = s + e c9 = 3s + 3e c9 = 4s + 4e c9 = 3s + 3e c9 = 4d
c10 = d c10 = 3d c10 = 4d c10 = 3d
c11 = 5s + 5e c11 = 5s + 5e c11 = 2s + 2e c11 = 4s + 4e
c12 = 5d c12 = 5d c12 = 2d c12 = 4d
c13 = 2s + 2e c13 = 2s + 2e c13 = 2s + 2e c13 = 4s + 4e
c14 = 2d c14 = 2d c14 = 2d c14 = 4d
c15 = 3s + 3e c15 = 4s + 4e c15 = 2s + 2e
c16 = 3d c16 = 4d c16 = 2d
c17 = s c17 = 2s + 2e

c18 = 2d
c19 = 2s + 2e
c20 = 2d
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where:

A =
17A

20s+ 19e+ 19d
(9.10)

NS-FId Protocol

The state of transition with labels, detailed labels, matrix in Appendices K, H.2, I.1 respectively,
the cost and transition association metrics in Tables 9.4 and 9.6. Consider the transition system,
with the following generator matrix Q2 = CTMC (NS-FId) and the stationary distributions Π2,
where B = 28s+ 28e+ 28d.

Π2 =

[
B

b
,
B

2d
,
B

b
,
B

2d
,
B

c
,
B

3d
,
B

c
,
B

3d
,
B

c
,
B

3d
,
B

g
,
B

5d
,
B

b
,
B

2d
,
B

f
,
B

4d
,
B

b
,
B

2d
,
B

b
,
B

2d

]
(9.11)

where:

B =
20B

28s+ 28e+ 28d
(9.12)

DCSS Protocol

The state of transition with labels, detailed labels, matrix in Appendices K, H.3, I.2 respectively.
The cost and transition association metrics in Tables 9.4 and 9.6. Consider the transition system,
with the following generator matrix Q3 = CTMC (DCSS) and the stationary distributions Π3,
where C = 20s+ 20e+ 20d.

Table 9.5: Cost Metrics for the Enhanced Labels of Benchmark Protocols

5G-AKA D2D-5G (SEOK)
c1 = 2s + e c1 = s
c2 = 3s c2 = s
c3 = 3s c3 = 5G-AKA
c4 = d c4 = 5G-AKA
c5 = 5s + 3e c5 = 5G-AKA
c6 = 3s c6 = 5G-AKA
c7 = 2s c7 = s + e
c8 = 3d c8 = s + e
c9 = s + e c9 = 2s
c10 = s c10 = 2s
c11 = s c11 = 2s
c12 = d c12 = 2s
c13 = 2s c13 = d

c14 = d
c15 = s
c16 = s
c15 = s + e
c16 = d
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Table 9.6: Metrics Variables

Variable Description
a s + e
b 2s+2e
c 3s+3e
f 4s+4e
g 5s+5e
h 6s+6e
i 7s+7e

Π3 =

[
C

f
,
C

4d
,
C

b
,
C

2d
,
C

b
,
C

2d
,
C

b
,
C

2d
,
C

f
,
C

4d
,
C

b
,
C

2d
,
C

b
,
C

2d
,
C

b
,
C

2d

]
(9.13)

where:

C =
16C

20s+ 20e+ 20d
(9.14)

DDSec Protocol

The state of transition and labels, detailed labels, matrix in Appendices K, H.4, I.3 respectively,
the cost and transition association metrics in Tables 9.4 and 9.6. Consider the transition system
with the following generator matrix Q4 = CTMC (DDSec) and stationary distributions Π4, where
D = 27s+ 27e+ 27d.

Π4 =

[
D

b
,
D

2d
,
D

b
,
D

2d
,
D

g
,
D

5d
,
D

i
,
D

7d
,
D

c
,
D

3d
,
D

f
,
D

4d
,
D

f
,
D

4d

]
(9.15)

where:

D =
14D

27s+ 27e+ 27d
(9.16)

DDACap Protocol

The state of transition and labels, detailed labels, matrix in Appendices K, H.5, I.4 respectively,
the cost and transition association metrics in Tables 9.4 and 9.6. Consider the transition system
with the following generator matrix Q5 = CTMC (DDACap) and the stationary distributions Π5,
where E = 26s+ 23e+ 23d.

Π5 =

[
E

3s
,
E

h
,
E

6d
,
E

h
,
E

6d
,
E

c
,
E

3d
,
E

f
,
E

4d

]
(9.17)

where:

E =
9E

22s+ 19e+ 19d
(9.18)
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9.2.8 Analytical Model Performance Results

Efficiency

The relative efficiency of each protocol, in terms of their utilization of cryptographic procedures are
defined in section 9.2.6 definition 5 and 6 with equations (9.6) and (9.7) respectively. It assigns
value 1 (a non-zero transition reward) to any transition in which the decryption is enabled and
assigns value 0 to any other transition. Value 1 is assigned to the following:

1. the 2nd, 4th, 6th, 8th, 10th, 12th, 14th, 16th transitions in SAP-AKA

2. the 2nd, 4th, 6th, 8th, 10th, 12th, 14th, 16th, 18th, 20th transitions in NS-FId

3. the 2nd, 4th, 6th, 8th, 10th, 12th, 14th, 16th transitions in DCSS

4. the 2nd, 4th, 6th, 8th, 10th, 12th, 14th transitions in DDSec

5. the 3rd, 5th, 7th, 9th transitions in DDACap

Using the performance measure R, the performance of the protocols is as follows:

R(SAP −AKA) =
A

8d
(9.19)

R(NS − FId) =
B

10d
(9.20)

R(DCSS) =
C

8d
(9.21)

R(DDSec) =
D

7d
(9.22)

R(DDACap) =
E

4d
(9.23)

It is possible to prove that one protocol is more costly than the other based on s, d and e
and depending on encryption scheme, since same quantitative measure were used for performance
evaluation. It can also be measured and compared to the performance of different versions of the
same protocol for efficiency.

Protocol Throughput

The throughput is the result of associating a transition reward to a rate and a transition of an activ-
ity. Since a transition is run once in a system, CTMC is cyclic and each transaction is represented
by a label then throughput of all transactions is the same. The last transaction is chosen to compute
the throughput of the protocol by associating a transition reward to be equal to the rate with the
last protocol communication and then give zero transition reward to all the other communications.
It is assumed encryption and decryption have the same cost, while point multiplication consumes
more time than decryption. It is also known as stated in (Hodjat & Verbauwhede 2002), that time
complexity of cryptographic algorithm is related to its energy consumption as the results indicate.
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The reward structure and total rewards discussed in section 9.2.6 are computed as follows:

ρ1 = (0......C16), (C16) = 3d R(SAP −AKA) =
3d

20s+ 19e+ 19d
(9.24)

ρ2 = (0......C20), (C20) = 2d, R(NS − FId) =
2d

28s+ 28e+ 28d
(9.25)

ρ3 = (0......C16), (C16) = 2d, R(DCSS) =
2d

20s+ 20e+ 20d
(9.26)

ρ4 = (0......C14), (C14) = 4d, R(DDSec) =
4d

27s+ 27e+ 27d
(9.27)

ρ5 = (0......C11), (C9) = 4d, R(DDACap) =
4d

22s+ 19e+ 19d
(9.28)

9.2.9 Performance Analysis

There are many studies on 5G security that proposed security protocols, but few evaluated the
protocols’ performance. Generally, performance evaluation is based on communication and com-
putational overheads, but also quantitative measurements from mathematical models can be used.
The authors in (Haddad et al. 2020) proposed a secure authentication and key agreement pro-
tocol for 5G based on blockchain. They also evaluated the performance of the protocol in relation
to communication and computational overheads, with results indicating that it is more efficient
than the current schemes. In (Gupta et al. 2018), the authors present a generic construction for
the efficient and secure AKA protocol in a 5G network, with the performance evaluation showing
less communication and computational overhead. In (Seok et al. 2020), the author proposed a
secure D2D communication system based on ECC and lightweight authenticated encryption with
associated data (AEAD) ciphers to cover resource-constrained IoT devices.

To evaluate our proposed security protocols based on analytical modelling, the cost metrics in
Tables 9.4 and 9.5 defined in subsection 9.2.3 are used as inputs to measure output (s), encryption
(e), decryption (d) cost. This study uses the 5G-AKA protocol in chapter 6 as a benchmark for

Table 9.7: Protocols Performance Evaluation

Protocols Efficiency Throughput
5G Protocols

3GPP-5G-AKA (3GPP 2020f) 3GPPP−5G−AKA
3d

d
21s+5e+5d

SAP-AKA A
8d

3d
20s+19e+19d

NS-FId B
10d

2d
28s+28e+28d

DCSS C
8d

2d
20s+20e+20d

5G D2D Protocols

D2D-5G-Seok (Seok et al. 2020) D2D−5G−Seok
5d

d
15s+3e+3d

DDSec D
7d

4d
27s+27e+27d

DDAcap E
4d

4d
22s+19e+19d
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Figure 9.3: Efficiency Comparison of the Proposed Protocols based on Analytical Modelling

protocols proposed in chapter 7 since it is 3GPP’s specified protocol to address NAC, and its cost is
shown in Table 9.5 with stationary distribution as 3GPP − 5G−AKA = 20s+13e+13d. The 5G-
AKA synchronization and re-authentication phases are excluded from all performance evaluation,
since not all protocols are modelled with those two phases. The results in Table 9.7 and Fig. 9.3
indicate that 3GPP-5G-AKA has similar performance costs in terms of efficiency and throughput
as SAP-AKA, NS-FId and DCSS. However, the little spikes on SLS protocols performance are due
to the additional protection added such as non-repudiation and SSO, as 5G-AKA cannot be used
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Figure 9.4: Throughput Comparison of the Proposed Protocols based on Analytical Modelling
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outside the HN or with third-party networks. This study also compares the D2D security protocols
in chapter 8 with the D2D-5G-Seok protocol (Seok et al. 2020) and its cost, shown in Table 9.5
with the stationary distribution as D2D − 5G − Seok = 25s + 20e + 20d. The results indicate
that D2D-5G-Seok as efficient as DDSec and DDACap protocols, as shown in Table 9.7 and Fig.
9.4. However, graph 9.4 shows that it has better performance on throughput but this is due to the
exclusion of 5G-AKA cost from the total sum of the D2D-5G-Seok protocol performance cost. It
uses 5G-AKA to authenticate the UEs and generate security tokens. Moreover, it also uses some of
its security context like SUCI, but our proposed protocols do not, as that would increase the attack
vector on our integrated security solution, and it is against 5G security standard specifications
3GPP (2020f).

The performance evaluation of the proposed solution was achieved using an enhanced opera-
tional semantics with bisimilarity labelled transitions and associated rates. The general distribution
of an activity was based on enhanced labels (Priami 1996), deriving CMTC associated with trans-
ition system of a process, and assigning rates to transitions. Using its stationary distribution, the
performance of the process was evaluated using continuous time approach. The study adopted the
same approach as (Bodei et al. 2005b) but relied on ProVerif and applied pi calculus for security
properties and bisimilarity labelling, respectively, to conduct security behavioural and quantitative
analysis. The analytical modelling used numerical results to illustrate the effectiveness of the model
and system linear equation to calculate some results based on some assumptions.

Additionally, the system model architecture information and the cryptographic schemes enabled
the acquisition of actual values to evaluate the cryptography primitives and schemes of the pro-
posed protocols. Each cryptographic scheme has a different cost based on its resources and time
consumption. Moreover, the algorithm behaviour and cost can be influenced by the cryptographic
scheme and the protocol design and vice versa, such as in symmetric and asymmetric cryptography.

Table 9.8: Approximate Time for Cryptographic Operations

Notation Description Rough computation
(time to compute) time (ms)

TAv authentication vectors 33.5
Th hash function 5
TSe symmetric encryption 4
TSd symmetric decryption 5.5
TAe asymmetric encryption 8
TAd asymmetric decryption 9.5
TTn token 5
TTs timestamp 5
TKDF NAC/SL key 12.0
TD2D D2D key 20.0
TE execute 21.5
TV verify 12.5

167



9.3 Performance Evaluation based on a Simulation Model
Approach

This section evaluates the performance of proposed protocols in chapters 6, 7 and 8 and intends to
measure the network impact of these protocols based on NS-3 (3.33) simulation model. As presented
in section 3.3.9, the simulation model was built using C++ programming language based on NS-3
5G and LTE modules (Nsnam 2021), (Mezzavilla et al. 2018) and (Banerjee et al. 2020). As real
representation of 5G non-standalone implementation, whereby 5G is being deployed with 5G radio
technology and LTE as the core network. The NS-3 simulation is made up of different modules
that are used to programme and run a successful simulation. In order to simulate 5G network
communication, the nodes, net device and topology helpers modules were modified to represent
communication between 5G protocols. In addition, the computational and communication costs
of the protocols are evaluated with the assumption that all protocols are using 5G cryptographic
primitives and algorithms recommended by 3GPP (3GPP 2020f).

9.3.1 Computational and Communication Cost

The evaluation of the computational and communication costs of the proposed security protocols
follows a similar method as in section 9.2.7, the SLS protocols are compared with 3GPP’s specified
5G-AKA protocol since it is the recommended network protocol for 5G HN. The DDS protocols are
compared with D2D-5G-SEOK protocol as it was also developed for D2D in 5G.
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Figure 9.5: Comparison of Computational for SLS and DDS Protocols based on Simulation Mod-
elling
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Table 9.9: Computational Cost of the Proposed Protocol

Protocols Computational Time (ms) Total Time
(ms) (ms)

5G Protocols
SAP-AKA TE + 6TSe + TAe + 6TSd + TAd + 1TAv + 13TKDF 439.2

+ 6TV

NS-FId TE + 6TSe + 4TAe + 6TSd + 4TAd+ 1TAv + 2TKDF

+ 5Th + 2Tn + 10TV 396
DCSS TE + 8TSe + 8TSd + 4Th + 2Tn + 10TV 285

5G-AKA TE + 6TSe + TAe + 6TSd + TAd+ 1TAv + 8TKDF 545.5
(3GPP 2020f) + 2Th + 11TV

5G D2D Protocols
DDSec TE + 4TSe + 3TAe + 4TSd + 3TAd + 2TKD2D

+ 360.5
7Th + 1Tn + 2Ts+ 7TV

DDACap TE + 5TAe + 5TAd + 2TKD2D
+ 307.5

7Th + 1Ts +8TV

D2D-5G-Seok (TE + 7TSe + 2TAe + 7TSd + 2TAd+ 2TKD2D
+ 238.5 + 545.5 =

(Seok et al. 2020) 8TKDF + 2Tn + 2Th + 6TV ) + (5G-AKA) 784

Computational Cost

The time cost of security vectors and primitives generation are defined as TAV , Th, TSE , TSD, TAE ,
TAD, TTn, TTs, TKDF , and TKD2D

as shown in Table 9.8. Moreover, these are the estimated times in
milliseconds (ms) needed for computing the respective cryptographic primitives and messages. The
total computational cost of each protocol is summarised in Table 9.9 and performance comparison
is shown in Fig.9.5.

Communication Cost

The protocol cryptographic primitive, scheme and the message used as parameters with values as
shown in Tables 9.10 and 9.11, which are used to define the cost of a protocol. Security context
used such as AMF, synch fail/mac fail authzgrant code, dataname, and success message in 5G-
AKA, NS-FId and SAP-AKA, respectively are represents as strings. The message sent between
entities is defined as m and the n is the total sum of m in a protocol, n= (m1,m2,m3,m4....)
measured in bits. However the value of n may vary depending on the number of message and

Figure 9.6: NS-FId simulation results
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Table 9.10: Cryptographic primitive size

Primitive Value
Symmetric key 128 bits
Asymmetric key 256 bits
SHA256 256 bits
Token 128 bits
Nonce 128 bits
5G IDs 64 bits
D2D IDs 256 bits
Nonce key 256 bits
D1 256 bits
Strings 32 bits
MAC 64 bits
SQN 48 bits
Timestamp 16 bits
RES 256 bits

Table 9.11: Evaluation Metrics

Parameters Values
Throughput bits/ms
Latency ms
m messages primitive cost
n total sum of m

the primitives used. n is used to get the communication cost of the protocols by measuring the
throughput (bits/ms) and latency (ms) as performance metrics during the protocol simulation in
NS-3. The total communication costs of the proposed protocols are summarised in Table 9.12.

9.3.2 Simulation Performance Model Results

To run the simulation, ./waf --run scratch/sapaka command is used on the terminal and
Mobileusernode is defined as the UdpEchoClient pointing to the serveNode as the UdpEchoServer
installed on the node to run the simulation successfully. Based on the analysis of the trace pcap,
and XML files generated in NS-3, measurement results of our proposed protocols are obtained. The

(a) Throughput (b) Latency

Figure 9.7: Communication Cost for NS-FId Protocol
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(a) Throughput (b) Latency

Figure 9.8: Communication Cost for 5G-AKA Protocol

values and metrics in Tables 9.10 and 9.11 are used as inputs for NS-3 simulation. Figs. 9.6 shows
a successful simulation run and 9.7 shows throughput/latency results for NS-FId protocol graph-
ically. Other protocols’ results are in Appendices M and N. The simulation results also illustrate
the exchange of packets of data (protocol messages) between the nodes (protocol entities) and the
relevant packets received by the devices.

9.3.3 Performance Analysis

For simulation analysis, similarly, the 3GPP’s 5G-AKA protocol (3GPP 2020f) is used as a bench-
mark for evaluating the proposed SLS protocols and D2D-5G-Seok protocol (Seok et al. 2020) for
proposed DDS security protocols. The computational cost of the proposed protocols is summarised
in Table 9.9, with Fig. 9.5 (a) indicating that the proposed SLS protocols have a lower computa-
tional cost than the 5G-AKA protocol. In addition, DDS protocols also have lower computational
costs compared to the D2D-5G-SEOK protocol, due to D2D-5G-Seok using the 5G-AKA protocol
for authentication and token generation, as shown in Fig. 9.5 (b).

Table 9.12: Communicational Cost of the Proposed Protocol based on Simulation Modelling

Protocols Total Communication Number of messages
Cost (bits) (n) (m)

5G Protocols
SAP-AKA 3136 9
NS-FId 5472 10
DCSS 4096 8
3GPP 5G-AKA (3GPP 2020f) 5898 10
5G D2D Protocols
DDSec 7904 7
DDACap 5760 5
D2D-5G-Seok (Seok et al. 2020) 2016 + 5898 (5G-AKA) = 7914 9 + 10 = 19
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The communications cost of the proposed protocols are summarised in Table 9.12, the plot
graphs for throughput and latency generated directly from NS-3 simulation are in Appendix N.
The results indicate that the proposed SLS protocols have lower communication costs than 5G-
AKA. It is interesting to note that both NS-FId and 5G-AKA have 10 m but have 5472 bits and
5898 bits n, receptively. Figs. 9.7 and 9.8 show variation in their NS-3 output. For DDS protocols,
they have lower communication costs than the D2D-5G-Seok protocol(Seok et al. 2020), due to
its reliance on the 5G-AKA protocol. Hence, increasing its communication cost n to 7914 bits
and messages m to 19, as shown in Table 9.12. Therefore, these approaches use cost factors to
influence the design and efficiency of a protocol for a particular security solution. Both analytical
and simulation modelling analysis show that our proposed SLS protocols have similar performances
to 5G-AKA protocol and our DDS protocols have better performance than D2D-5G-Seok protocol.

The next section discusses the integration of proposed solutions in this research into a unified
solution and how these protocols can be implemented.

9.4 Security Protocols Integration

This section presents the integration of proposed protocols. As discussed in chapter 5, the proposed
NSS framework addresses security for NSD in 5G enabled D2D communications from when the UE
requests access to the network via the wireless access to when it is authorized to share the service
with another UE. The purpose of the NSS framework is to protect the entities that are involved in
the communication and the data being shared on the communication channels in different security
domains and scenarios from threats discussed in chapter 4. The solution consists of three levels
NAC, SLS and DDS which were introduced in chapter 5, they are as follows:

Figure 9.9: Security Protocols Interfaces
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� NAC is concerned with 5G network access security and it provides primary authentication.
It protects the data on wireless connection, the entities and the communication between UE,
SN and HN.

� SLS is concerned with service authorization of UE, it provides secondary authentication and
authorization. It protects data, entities, and communication between the UE, HN and SP in
different domains.

� DDS is concerned with D2D communication security, it provides authentication and author-
ization between two UEs in proximity of each other, it enables data sharing both in networks
assisted and non-network assisted communication. It protects the data, entities, and the
communication between two UEs and network.

The next section discusses how the protocols presented in this thesis are applied in their re-
spective levels and how the protocols interface each other to provide a continuous security for the
UE at all levels of mobile network communications.

9.4.1 Security Model

This subsection recalls the security model reflecting on network, service and D2D security levels
as introduced in chapter 5. The underlying security protocols of the security framework address
security on three levels of communications i.e., network, service and D2D communications. These
security levels interconnect with the protocols interfaces and the protocols are encapsulated while
addressing the security requirements from one level to another through protocol interfacing as shown
in Fig. 9.9.

The security model levels each consists of the following security protocols,
NAC:

1. 5G-AKA achieves primary AKA.

2. EAP-AKA’ achieves primary AKA.

SLS:

1. SAP-AKA achieves the secondary authentication by providing authentication and session key.

2. NS-FId achieves federated authentication, authorization and SSO.

3. DCSS achieves data caching and sharing authorization.

DDS:

1. DDSec achieves authentication, authorization and federated delegation with network assist-
ance.

2. DDACap achieves authentication, authorization and federated delegation without network
assistance.
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9.4.2 Connection of Different Levels of NSS Model in 5G

The user via their UE starts by requesting network access, the closest SEAF will initiate primary
authentication. The process for the UE to access the network and services is described in chapter
4. The security model is intended to establish three secure connections between the UE and HN,
UE and SP as well as UE and UE in different stages as described below:

� The first stage, the UE sends network access request whereby a primary authentication pro-
tocol invokes choosing either 5G-AKA or EAP-AKA’ protocol described in chapter 6 to fa-
cilitate AKA procedure between UE and HN.

� The second stage, after a successful primary authentication the UE sends a service request
that triggers either a secondary authentication or authorization procedure, which is handled
by SMF in HN and SPAAA in the SP network. At this stage SAP-AKA or NS-FId protocols
can be chosen depending on registration status and security policies described in chapter 7.

� The third stage, after being granted access to the services, the UE sends another request
for data caching and sharing authorization which invokes DCSS protocol also described in
chapter 7.

� The fourth stage, the UE authorized to cache and share the data then can publish the data
by broadcasting the data name to other UEs in proximity. An interested UE sends its data
interest to another UE which invokes the DDSec or DDACap protocols as discussed in chapter
8.

Figure 9.10: Integrated Security Solution
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9.4.3 Federated Security in 5G

This subsection discusses how federated security is integrated in 5G and how the UE achieves
SSO. FIdM in 5G was presented in chapter 7, it explained the advantages of using FId in mobile
communications and how it eliminates the need for the UE from continuous re-authentication and
re-authorization for services. In fact, the UE might need to re-authenticate to the network or
perform handover authentication while roaming but due to SSO, tokens and caching data, such
security processes are reduced when the proposed solutions in this research are implemented in 5G
enabled D2D communications network.

Next, we demonstrate how federated security is invoked in 5G communication and it is as follows:

� Step 1: After UE is authenticated to the network, it requests service authorization to the SP.

� Step 2: The SP via SMF redirects the UE to IdP, which generates the FId and assigns it to
UE.

� Step 3: The IdP and UE perform federated authentication procedure that assigns UE with a
new ID and a token.

� Step 4: The UE use ID token to request access token from the SP. The SPAAA assigns the
access token/refresh token and achieves SSO.

� Step 5: The UE uses access token to request access to service, which granted by the SS if the
access token is valid.

� Step 6: After gaining access to the services, the UE requests data caching and sharing au-
thorization with other UE, hence the generation of cache and share tokens.

The interface between the underlying security protocols of the security framework provide an
integrated security solution addressing security threats at different levels of the system model as
shown in Fig. 9.10.

9.5 Possible Implementation of the Proposed Protocols

Security protocols formal modelling and verifications have advanced that the development of pro-
tocols have reduced the attacks on developed protocols before being utilized. The implementation
of security protocols in mobile networks are challenging and error prone despite the advance in
verification methods as discussed in chapter 3. This is due to the complexity of direct integration
between verification and implementation tools. Tools like ProVerif should be able to interact with
any Integrated Development Environment (IDE) platform to prevent implementation caused vul-
nerabilities and incorrect software development (Garcia & Modesti 2017), (Blanchet 2016). The
adoption of formal modelling directly in real world scenarios can be achieved by integrating formal
modelling and software development methods supported by IDE. The use of formal methods auto-
mated tools together with compilers and code generators can improve the generation of codes using
programming languages such as C and Java.
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Figure 9.11: ProVerif, Complier and Code Generator

9.5.1 Compiler and Code Generator

Different approaches have been suggested to integrate protocol modelling and implementation using
the back-end and front-end tools (Garcia & Modesti 2017), (Aizatulin et al. 2011), (Sisto et al.
2018). To generate any code, the language uses an independent intermediate format for protocol
logic to parametrize the translation and simplify the hard-core programming language as shown
in Fig. 9.11. Type system refers to type expression, terms and variables for well-typed code and
helps in the evaluation of incoming messages with the protocol specifications (Garcia & Modesti
2017). The Applicatoion Programing Interface (API) calls are bound to the protocol logic and the
verification is achieved by translating protocol logic to applied pi calculus in ProVerif from which
the implementable code is extracted. Proverif was developed in OCaml programming language with
a byte-code compiler ocamlc and a native-code compiler ocamlopt for generating executable code.
Therefore, C or Java functions can be called in OCaml code and verse versa (Leroy et al. 2019).
This is achieved by deploying user-defined primitives in C or Java, linking it with OCaml code.
However, the code generation, interpretation and protocol implementation are beyond the scope of
this study.

9.5.2 Analysis

The threats and vulnerabilities in 5G enabled D2D communications have been discussed and pos-
sible solutions explored in chapter 4. To address these issues security model, framework and un-

176



derlying security protocols were proposed in chapters 5, 6, 7, and 8. The security protocols were
encapsulated to achieve a unified integrated, robust, and efficient security solution for NSD in 5G
enabled D2D communications network at network, service and D2D levels. The underlying secur-
ity protocols at each level of the system model are configured as an interface using cryptographic
primitives and security context to create a refined security mechanism. These include the 3GPP
specified protocols, however, the compromise of these protocol should not affect the security of the
proposed security protocols. The proposed protocols have been simulated against the DY adversary,
verified in ProVerif with the results in sections 6.3, 7.3, 7.8, 8.4.1, and 8.6.1 indicating the they can
protect 5G enabled D2D communications from the defined threat adversary capabilities and attacks
presented in sections 3.3.2 and 4.3, respectively. Attacks such as eavesdropping, data fabrication,
control data, impersonation, free-riding, privacy violation, content poisoning,cache pollution, unau-
thorized access, cache misuse, false accusation, location spoofing, session hijacking, data leakage can
be prevented. However attacks such as communication monitoring, jamming attack, IP spoofing
and DoS might require the control measure at the BBU and edge network entities. The proposed
solution in this thesis provide and multi-layered security for an integrated 5G system.

9.6 Summary

This chapter discussed the performance evaluation of the proposed security protocols based on
analytical and simulation modelling. The analytical modelling relies on protocols specifications in
applied pi calculus, enhanced semantic operations, and Markov chain model to quantify the secur-
ity properties and ProVerif processes to measure the efficiency and throughput of the protocols.
The simulation modelling uses NS-3 modules, parameters set using c++ to simulate the message
exchange entities as predefined packets sizes, and estimation of computational time to measure pro-
tocols’ computational time, latency, and throughput. The chapter also discussed how the security
model and framework support the 5G communications and how the proposed protocols interface
with each other using federated security to provide an integrated solution for 5G. Moreover, it
secures the UE access to the network and services in 5G enabled D2D communications network,
including non-3GPP access. The chapter also explores how the intuitive and functional program-
ming languages can be integrated and supported by IDE platform to verify security protocols using
formal methods, an automated protocol verifier, and automatically interpret and generate codes in
C and Java for implementation. With all the mathematical and simulation analyses in this chapter
considered, the proposed protocols in this research study have good performance compared with the
similar protocols and as analysed in chapters 7 and 8, they are proved to be secure as an integrated
security solution as discussed in this chapter.
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Chapter 10

Conclusions and Future Work

10.1 Introduction

This chapter summarises the main ideas, results, achievements, and future work of the proposed
novel concepts. It describes the main theme of this study and how the research questions were
answered successfully. This chapter also lists the limitations of the thesis.

10.2 How were the key research questions answered?

The research identified crucial gaps in addressing the issues of providing security in 5G network. It
disclosed how security is imperative in providing NSD in 5G enabled D2D communications network.
It also revealed how D2D communication is going to play a momentous role as an under technology
in delivering NS to the end users as well pushing the data traffic from the back backhaul to the
fronthaul of 5G network. In addition, the research highlighted the need to address security on
different levels of 5G network and in different scenarios. These issues were included in one main
question ’How to provide secure communications for use cases in 5G enabled D2D
communications network?’, which led to four important research questions, and they are as
follows:

’How to introduce an integrated NSD framework for the 5G enabled D2D commu-
nications network and what are the main supporting technologies that are required in
this model?’
The answer to these questions, a networks services delivery framework was introduced in chapter 4.
It defined the main entities required for NSD provisioning and its security. Furthermore, it defines
the technologies that are used to support 5G functionality. These entities enable service access and
delivery in 5G enabled D2D communications network based on different scenarios in HN and VN.
5G defines three main processes to access the services: Registration to MNO, authentication to the
network, and authorization to the services. While D2D communication has the following process:
Discovery, D2D link, and D2D communication. They are discussed in detail in chapters 2 and 4.

’What are the security vulnerabilities and threats in the NSD framework that the
UE can be exposed to in 5G enabled D2D communications network?’
To answer this question as stated in chapter 4, the research provided a comprehensive investigation
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into the security issues that affect UE in a 5G enabled D2D communications network. The X.805
was used to define the security threats and vulnerabilities, it was also used to evaluate the security
requirements of the system model.

’What are the underlying protocols of the NSS framework and how these protocols
are integrated together?’
To answer this question as stated in chapter 5, the research defined a security framework that
specified the security model, levels, and the underlying protocols in chapters 6, 7 and 8. It also
presented authentication and authorization procedures that provide authentication, key establish-
ment, and authorization at network, service, and D2D-level in different domains such as HN, DN,
and D2D communications. That is why the D2D-level of security was introduced in this research.
All the security protocols were verified by using formal methods, ProVerif, and applied pi calculus.
Furthermore, the security performance of the proposed protocols was evaluated with quantitative
measures using labelled semantics and Markov chains as well as a network simulator NS-3 in chapter
9. Then the integration between these protocols was defined by authentication and federated au-
thorization mechanisms.

How could the proposed security protocols interface into an integrated security
mechanism to provide security for 5G enabled D2D communications network?’
The answer to this question was answered in chapter 9. After designing the security protocols
for authentication and authorization at network access, service, and D2D levels, an interface was
set at each level between protocols to accomplish an integrated comprehensive and robust security
solution. This was defined in the security framework’s authentication and federated authorization
mechanisms.

10.3 Main Contributions

As presented in chapter 1, the main contributions of this research are as follows:

� A critical review of existing legacy systems, 5G and D2D communications has been presented.
Furthermore, it reviewed the existing technologies that can support NSD in 5G enabled D2D
communications network. Consequently, this review also found 5G lacked a robust security
mechanism for NSD, and the security standards defined by 3GPP were under specified for
some security guarantees provided by AKA procedures.

� Introduced abstraction model of NS in 5G enabled D2D communications network that maps
the NS with mobile network architectures and 5G protocol stack.

� Introduced a delivery framework that defines the system entities and describes the service
overview and content dissemination.

� Explored a threat model to identify, enumerate, and prioritize vulnerabilities with an ad-
versary point of view.

� Performed a security analysis and evaluated the requirement using a systematic and compre-
hensive approach in a modular format based on X.805 security framework. It identified the
threats and vulnerabilities that needed to be addressed.

� Proposed a hybrid security solution that protects the entities, the communication channels,
and the content object from any form of attack.
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� Proposed NSS framework with an abstract security model, the framework defined three se-
curity levels; NAC, SLS, and D2D to address the security threats in 5G enabled D2D com-
munications network.

� Formally analysed the 3GPP specified protocols used for primary authentication procedure
using ProVerif.

� Proposed a FIdM model that can be integrated with a 5G network to facilitate federated
authentication and authorization providing SSO.

� Proposed security protocols that can be integrated with a multi-level functional system and
are interoperable with underlying supporting platforms.

� Formalized and verified the proposed security protocols with formal methods, ProVerif and
applied pi calculus.

� Evaluated the security properties of the proposed security protocols with two taxonomies.

� Evaluated the security performance of the proposed protocols using Markov chain stochastic
process for quantitative measures of the protocols’ actions and cryptographic operations as
well as measuring the performance in NS-3 with predefined message packets.

10.4 Elaboration on the Main Contributions

10.4.1 Identification of crucial gaps in knowledge in the field of deliver-
ing Network Services and providing security for 5G enabled D2D
Communications network

The research carried out a comprehensive literature survey of related works on 5G, D2D commu-
nications, and security. It highlighted the momentous flaws in the investigated approaches:

� The security of related works on 5G, D2D communications, and CCN have been addressed
separately in various studies without considering one unified abstracted multilayered solution.

� The D2D communications in 5G ambiguity, leading to abstract solutions not reflecting into
5G’s SBA and scenario-specific solutions that include the service and D2D-level security solu-
tions.

� Not recognising the role of FIdM in 5G; this versatile feature should be considered in the
security architecture design and development of the security mechanisms to standardize its
design and implementation.

� Not noticing that the enablement of virtualization in 5G supported by cloud services backend,
also enables content-aware services which allow the integration of CDN such as CCN in
the network. Hence, it should be considered in the design of the next generation mobile
architecture but also consider the security benefits and challenges of such architecture.
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10.4.2 Defining Network Services and Abstraction Levels for 5G enabled
D2D Communications network.

We have introduced a NS abstract in chapter 2, which elaborated more on NS in 5G and explained
how the NS solution needs to be aligned with the 5G protocol stack for developing solutions for a
specific level.

10.4.3 Defining the NSD framework for 5G enabled D2D Communica-
tions network to retrieve and share services

To propose a practical mechanism for addressing security requires a system model. Since there
is no system model that supports NS integration as discussed in this research, a service delivery
framework that integrates both D2D communication and CCN leveraging on C-RAN was introduced
in chapter 4. It specified how the supporting technologies benefit each other to provide an effective
NSD process. Also, it specified how the UE can access the services in different scenarios concurrent
with the 5G objectives.

10.4.4 Defining the security threats and vulnerabilities in an integrated
system model for 5G enabled D2D Communications network

After defining the system model that defines access and delivery of services in HN and SP environ-
ment, to provide a secure system, a comprehensive security analysis has been provided in chapter
4 using X.805 security framework that evaluated the security and privacy requirements of the pro-
posed system model. It highlighted on the security issues that are faced by an integrated system
model. The results indicated that there was a need to address the following security requirements;
access control, authentication, non-repudiation, data confidentiality, communication security, data
integrity, availability, and privacy in a modular form focussing on infrastructure and services layers.

10.4.5 Defining a security framework for an integrated system model in
Next Generation mobile network.

Having conducted a security analysis, and we identified threats and vulnerabilities that need to
be addressed, a security framework was proposed in chapter 5, it defined three security levels,
which are NAC, SLS, and DDS in chapters 6, 7, and 8 respectively. The framework addressed
the security threats and vulnerabilities in 5G enabled D2D Communications network at different
levels. First, we had to ensure that the 3GPP AKA framework discussed in chapter 2 provided the
security guarantees as specified as it was going to be used as the security foundation of the proposed
security solution. So, this research formally analysed and verified the specified security protocols;
5G-AKA and 5G EAP-AKA’ protocols in chapter 6 to evaluate the security guarantees provided by
the primary authentication as specified by the security standard TS 33.501. The security framework
consisted of the following levels:

1. NAC: Two protocols were introduced under the 3GPP AKA framework to provide primary
authentication between UE and HN at the network level.

2. SLS: Three protocols were proposed to provide security between the UE and SP. The first
protocol provides secondary authentication, while the second protocol provides the federated
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authentication, authorization, and SSO to the UE granting access to services. While the third
protocol provides data caching and sharing authorization to the UE.

3. DDS: Two protocols were proposed to provide security in two different D2D communications
scenarios.

10.4.6 Providing security for 5G enabled D2D Communications network.

Having introduced the security framework that defined different security levels, security was provided
by the proposed underlying security protocols. The security protocols were formally verified, ana-
lysed using ProVerif and pi calculus. ProVerif was chosen as it is still supported and a widely used
formal verification tool for many security protocols as stated in (Blanchet 2016). These include two
protocols specified by 3GPP and five protocols developed as a result of this research and they are
as follows:

1. 5G-AKA in chapter 6 is based on EPS AKA and defined by 3GPP, it provides authentication
between UE and SN to HN and session for UE and SN.

2. 5G EAP-AKA’ in chapter 6 is based on the EAP framework also defined by 3GPP, it provides
authentication between UE and SN to HN and session key for UE and SN.

3. SAP-AKA in chapter 7 provides secondary authentication and session key between HN and
SP in 5G communications.

4. NS-Fid protocol in chapter 7 provides federated authentication, authorization, and SSO to a
UE from 5G HN to SP services.

5. DCSS protocol in chapter 7 provides data caching and sharing authorization in 5G commu-
nications

6. DDSec protocol in chapter 8 provides authentication, data caching and sharing authorization
in a network-assisted D2D communication.

7. DDACap protocol in chapter 8 provides authentication, data caching, and sharing authoriz-
ation in a non-network assisted D2D communication.

10.5 Future Improvements to the proposed solutions that
can benefit this study

A set of improvements to the proposed solutions are as follows:

� Analysing the security protocols performances using simulation, emulation tools, and testbed
implementations.

� Integrating the security protocols from OCaml to C or Java so that it can be implemented
within D2D communication, designing, simulation, and implementation for operation applic-
ability.
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10.6 Limitations of the Research

5G is still early stages of deployment but not fully standardized and D2D communication has been
considered in many applications yet and it was never standardized for any previous mobile network
generations, even though the legacy system specified some ProSe functionalities. Moreover, related
work discussed the security issues in D2D communications, but few discuss service authorization.
This thesis is limited by some other practical issues, such as the availability of simulation tools and
5G testbeds. For example, it was not possible to perform an E2E simulation of D2D communications
in 5G stand-alone network as the current simulation tools only offer 5G modules with mmWave as
radio technology and LTE as core network. Also, the implementation was not possible due lack of
5G testbeds.

10.7 Future Works that can be pursued based on this study

Crucial security mechanisms have been discovered as the result of the proposed solutions in this
study, improving the user’s QoE, QoS and providing secure communication for 5G enabled D2D
communications network. New opportunities have been produced because of the successful devel-
opment of these new mechanisms, improving research interest in different areas of network services,
5G, D2D communications, and security management. Future work will also include the implement-
ation of these protocols using a 5G testbed, allowing us to check for any new attacks as a result of
implementation. Furthermore, the open issues will motivate future research trends including secur-
ity on SDN/NFV, cryptographic protection below layer 2 in 5G network and integrated systems as
well as federated-based network slices security.

10.8 Concluding Remarks

This thesis has addressed the crucial concerns of providing security for NSD in 5G enabled D2D
communications network. With this contribution, I hope the future development of next generation
mobile networks, will benefit from this contribution.
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Appendix A

A.1 5G-AKA Protocol (Model A) ProVerif Source Code

(*This file is part of a PhD ProVerif Simulation**Author: Ed Kamya Kiyemba Edris*)

(*5G Authentication and Key Agreement Protocol*) (*UE-SEAF-AUSF-ARPF*)

(*Primary Authentication*)

(*Public channel between the UE and the SN*)

free pubChannel :channel.

(*Secure channel between the SN and the HN*)

free secChannel:channel [private].

(*types*)

type key.

type id.

type nonce.

type msgMac.

type msgHdr.

type pkey.

type skey.

(*constant message headers*)

const REG: msgHdr.

const NAUSF_AUTH_REQ: msgHdr.

const NUDM_GET_REQ: msgHdr.

const NUDM_GET_RES: msgHdr.

const NAUSF_AUTH_RES: msgHdr.

const AUTH_REQ: msgHdr.

const AUTH_RES: msgHdr.

const NAUSF_REQ_RES: msgHdr.

const NAUSF_AUTH_RESULT: msgHdr.

const ERR_MSGmac:msgHdr.

const ERR_MSGsynch:msgHdr.
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(*Functions*)

fun f2(key, nonce): bitstring.

fun f3(key, nonce): bitstring.

fun f4(key, nonce): bitstring.

fun f5(key, nonce): bitstring.

fun h(bitstring) : bitstring.

fun SHA256(nonce,bitstring) : bitstring.

fun hash(bitstring, bitstring) : bitstring.

fun kdf_ausf(bitstring, bitstring, id): key.

fun kdf_seaf(key, id): key.

(* Public key encryption *)

fun pk(skey): pkey.

fun encrypt(bitstring, pkey): bitstring.

reduc forall x: bitstring, y: skey; decrypt(encrypt(x,pk(y)),y) = x.

(* Mac *)

fun f1(bitstring, key):bitstring.

(* XOR *)

fun xor(bitstring, bitstring) : bitstring.

equation forall m1: bitstring, m2: bitstring; xor(m1,xor(m1,m2)) = m2.

(*Type Converter*)

fun nonce_to_bitstring(nonce): bitstring [data, typeConverter].

fun bitstring_to_key(bitstring): key [data, typeConverter].

fun bitstring_to_id (bitstring): id [data, typeConverter].

fun macFail():bitstring.

fun synchFail():bitstring.

fun Fail(bitstring):bitstring.

(*the table id/keys shared between UE & HN*)

table keys(id, key).

(*Queries*)

free SecretUE: bitstring [private].

query attacker(SecretUE).

free SecretSEAF: bitstring [private].

query attacker(SecretSEAF).

free SecretAUSF: bitstring [private].

query attacker(SecretAUSF).

free supi:id [private].

query attacker (supi).

free ki:key [private].

query attacker (ki).

free kseaf:key [private].

query attacker (kseaf).

(*Events used to specify correspondence assertions*)
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event begUE(id, id, key).

event endUE(id, id, key).

event beginSEAF(bitstring).

event endSEAF(bitstring).

event e3(bitstring).

event e2(bitstring).

event e1(bitstring,nonce).

(*Check authentication of UE to SN/HN and SN/HN to UE*)

query x1: id, x2: id, x3: key; event (endUE(x1, x2, x3)) ==>

event(begUE(x1, x2, x3)).

query x1: bitstring; event (endSEAF(x1)) ==> event (beginSEAF(x1)).

query x1: id, x2: id, x3: key; inj-event (endUE(x1, x2, x3)) ==>

inj-event (begUE(x1, x2, x3)).

query x1: bitstring, x2:nonce; inj-event(endSEAF (x1)) ==>

(inj-event(beginSEAF(x1)) && (inj-event (e3(x1)) ==>

(inj-event (e2(x1)) ==> (inj-event (e1(x1,x2)))))).

(*Processes*)

let processUE (supi:id, hnid_ue:id,ki:key)=

new sqn_ue:bitstring;

new suci:bitstring;

new snn_ue:id;

new rand:nonce;

insert keys(supi, ki);

new pkhn:pkey;

new skhn:skey;

let (=supi, =hnid_ue) = encrypt(suci,pkhn) in

out(pubChannel, (suci)); (*[Msg1]*)

in(pubChannel, (x:bitstring)); (*[Msg6]*)

event e2(x);

let (xrand:nonce, xautn:bitstring) = x in

let (xored_sqn:bitstring,amf:bitstring, mac:bitstring) = xautn in

let ak = f5(ki, xrand) in

let xsqn = xor (xored_sqn, ak) in

let xmac = f1((xsqn, xrand,amf), ki) in

if xmac = mac then

if xsqn <> sqn_ue then

let res = f2(ki, xrand)in

let ck = f3(ki, xrand)in

let ik = f4(ki, xrand)in

let kausf_ue = kdf_ausf(ck, ik, snn_ue)in

let kseaf = kdf_seaf(kausf_ue, snn_ue) in

event beginSEAF(res);

out(pubChannel, (SecretUE, res)); (*[Msg7]*)

event endUE(supi, snn_ue, kseaf)
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else

out(pubChannel, (macFail)) (*[Msg10]*)

else

let ak_ue = f5(ki, xrand) in

let mac_ue = f1((sqn_ue, xrand), ki) in

let AUTS = (xor(sqn_ue,ak_ue),mac_ue) in

out (pubChannel, (synchFail,AUTS)). (*[Msg11]*)

let processSEAF (snn_sn:id)=

new rand_sn:nonce;

new kseaf:key;

in(pubChannel, (suci: id)); (*[Msg1]*)

out(secChannel, (suci, snn_sn)); (*[Msg2]*)

in(secChannel,(autn:bitstring,rand:nonce, hxres:bitstring)); (*[Msg5]*)

event begUE(supi, snn_sn, kseaf);

out(pubChannel, (autn, rand)); (*[Msg6]*)

event e1(autn, rand_sn);

in(pubChannel, (res_sn:bitstring)); (*[Msg7 ]*)

let hres = SHA256(rand,res_sn) in

if hres = hxres then

out(secChannel, (SecretSEAF, res_sn)); (*[Msg8]*)

event endSEAF(res_sn);

in(secChannel, (supi:id,kseaf:key)) (*[Msg9]*)

else

in(pubChannel, (macFail:bitstring)) (*Msg10*)

else

in(pubChannel, (synchFail:bitstring,AUTS:bitstring)); (*[Msg11]*)

out (secChannel, (synchFail,AUTS)). (*[Msg12]*)

let processAUSF =

in(secChannel,(supi: bitstring,snn:id)); (*[Msg2]*)

out(secChannel,(supi, snn)); (*[Msg3]*)

in(secChannel,(autn:bitstring, rand:nonce,

xres:bitstring, kausf_hn:key, supi:id)); (*[Msg4]*) (* 5G HE AV*)

let hxres = SHA256(rand,xres)in

out(secChannel,(SecretAUSF, autn,rand,hxres)); (*[Msg5]*) (* 5G SE AV*)

in(secChannel, (res_hn:bitstring)); (*[Msg8]*)

if res_hn = xres then

let kseaf = kdf_seaf(kausf_hn, snn) in

event e3(res_hn);

out(secChannel, (supi,kseaf)) (*[Msg9]*)

else

in(secChannel, (synchFail:bitstring,AUTS:bitstring)); (*[Msg12]*)

out (secChannel, (synchFail,AUTS,rand)). (*[Msg13]*)

let processARPF (supi:id,ki:key,amf:bitstring) =
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new sqn_ue:bitstring;

in(secChannel,(suci :bitstring,

snn:id)); (*[Msg3]*)

new hnid:id;

new skhn:skey;

let pkhn = pk(skhn)in

let(=supi, =hnid) = decrypt(suci, skhn) in

new rand_hn: nonce;

new amf:bitstring;

new sqn_hn: bitstring;

get keys(=supi, =ki)in

let ak_hn = f5(ki, rand_hn)in

let xored_sqn=xor(f5(ki, rand_hn), sqn_hn) in

let mac_hn = f1 ((sqn_hn, rand_hn, amf), ki)in

let xres = f2 (ki, rand_hn)in

let ck_hn = f3 (ki, rand_hn)in

let ik_hn = f4 (ki, rand_hn)in

let autn = (xor (sqn_hn,ak_hn),amf, mac_hn) in

let kausf_hn = kdf_ausf(ck_hn, ik_hn, snn)in

out(secChannel,(autn, rand_hn, xres, kausf_hn)) (*[Msg4]*)

else

in (secChannel, (synchFail:bitstring,AUTS:bitstring, rand_hn:nonce)); (*[Msg13]*)

let ak_ue = f5(ki, rand_hn) in

let mac_ue = f1((sqn_ue, rand_hn), ki) in

let AUTS = (xor(sqn_ue,ak_ue),mac_ue) in

if mac_ue = mac_hn then

if sqn_hn <> sqn_ue then

new new_AV:bitstring;

out (secChannel, (new_AV)). (*[Msg14]*)

process

new snn_sn:id;

new supi_sn:id;

new kausf_hn:key;

new snn_hn:id;

let kseaf = kdf_seaf(kausf_hn, snn_hn) in

out (secChannel,kseaf);

insert keys(supi, kseaf);

new ki:key;

new amf:bitstring;

new hnid_ue:id;

((!processUE(supi,hnid_ue,ki))|(!processSEAF(snn_sn))|(!processAUSF)|

(!processARPF(supi,ki,amf)))
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A.2 5G-AKA Protocol (Model B)

(* 5G_AKA 3 Entities - Mutual Authentication and secrecy properties. Result: ok.*)

(*Public channel between the UE, SN and the HN*)

free pubChannel :channel.

(*Secure channel between the SN and the HN*)

free secChannel:channel [private].

(*types*)

type key.

type id.

type nonce.

type msgMac.

type msgHdr.

type pkey.

type skey.

(*constant message headers*)

const REG: msgHdr.

const NAUSF_AUTH_REQ: msgHdr.

const NAUSF_AUTH_RESP: msgHdr.

const AUTH_REQ: msgHdr.

const AUTH_RESP: msgHdr.

const NAUSF_REQ_RESULT: msgHdr.

const NAUSF_AUTH_RESULT: msgHdr.

const ERR_MSGmac:msgHdr.

const ERR_MSGsynch:msgHdr.

(*Functions*)

fun f2(key, nonce): bitstring.

fun f3(key, nonce): bitstring.

fun f4(key, nonce): bitstring.

fun f5(key, nonce): bitstring.

fun h(bitstring) : bitstring.

fun SHA256(nonce,bitstring) : bitstring.

fun hash(bitstring, bitstring) : bitstring.

fun kdf_ausf(bitstring, bitstring, id): key.

fun kdf_seaf(key, id): key.

(* Public key encryption *)

fun pk(skey): pkey.

fun encrypt(bitstring, pkey): bitstring.

reduc forall x: bitstring, y: skey; decrypt(encrypt(x,pk(y)),y) = x.

(* Mac *)

fun f1(bitstring, key):bitstring.

(* XOR *)
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fun xor(bitstring, bitstring) : bitstring.

equation forall m1: bitstring, m2: bitstring; xor(m1,xor(m1,m2)) = m2.

(*Type Converter*)

fun nonce_to_bitstring(nonce): bitstring [data, typeConverter].

fun bitstring_to_key(bitstring): key [data, typeConverter].

fun bitsring_to_id (bitstring): id [data, typeConverter].

fun macFail():bitstring.

fun synchFail():bitstring.

fun Fail(bitstring):bitstring.

(*the table id/keys shared btn UE & HN*)

table keys(id, key).

(*Queries*)

free SecretUE: bitstring [private].

query attacker(SecretUE).

free SecretSN: bitstring [private].

query attacker(SecretSN).

free SecretHN: bitstring [private].

query attacker(SecretHN).

free supi:id [private].

query attacker (supi).

free ki:key [private].

query attacker (ki).

free kseaf:key [private].

query attacker (kseaf).

(*Events used to specify correspondence assertions*)

event begUE(id, id, key).

event endUE(id, id, key).

event begSN(bitstring).

event endSN(bitstring).

event e3(bitstring).

event e2(bitstring).

event e1(bitstring,nonce).

(*Check authentication of UE to SN/HN and SN/HN to UE *)

query x1: id, x2: id, x3: key; event (endUE(x1, x2, x3)) ==>

event(begUE(x1, x2, x3)).

query x1: bitstring; event (endSN(x1)) ==> event (begSN(x1)).

query x1: id, x2: id, x3: key; inj-event (endUE(x1, x2, x3)) ==>

inj-event (begUE(x1, x2, x3)).

query x1: bitstring, x2:nonce; inj-event(endSN (x1)) ==>

(inj-event(begSN(x1)) && (inj-event (e3(x1)) ==>

(inj-event (e2(x1)) ==> (inj-event (e1(x1,x2)))))).
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(*Processes*)

let processUE (supi:id, hnid_ue:id,ki:key)=

new sqn_ue:bitstring;

new suci_ue:bitstring;

new snn_ue:id;

new rand_ue:nonce;

insert keys(supi, ki);

new pkhn:pkey;

new skhn:skey;

let (=supi, =hnid_ue) = encrypt(suci_ue,pkhn) in

out(pubChannel, (suci_ue)); (*[Msg 1]*)

in(pubChannel, (x:bitstring)); (*[Msg 4]*)

event e2(x);

let (xrand:nonce, xautn:bitstring) = x in

let (xored_sqn:bitstring,amf:bitstring, mac:bitstring) = xautn in

let ak = f5(ki, xrand) in

let xsqn = xor (xored_sqn, ak) in

let xmac = f1((xsqn, xrand), ki) in

if xmac = mac then

if xsqn <> sqn_ue then (*Authentication HN to UE*)

let res = f2(ki, xrand)in

let ck = f3(ki, rand_ue)in

let ik = f4(ki, rand_ue)in

let kausf_ue = kdf_ausf(ck, ik, snn_ue)in

let kseaf = kdf_seaf(kausf_ue, snn_ue) in

event begSN(res);

out(pubChannel, (SecretUE, res)); (*[Msg 5]*)

event endUE(supi, snn_ue, kseaf)

else

out(pubChannel, (macFail))

else

let ak_ue = f5(ki, xrand) in

let mac_ue = f1((sqn_ue, xrand), ki) in

let AUTS = (xor(sqn_ue,ak_ue),mac_ue) in

out (pubChannel, (synchFail,AUTS)).

let processSN (snn_sn:id) =

new kseaf:key;

in(pubChannel, (suci_sn: id)); (*[Msg 1]*)

out(secChannel, (suci_sn, snn_sn));(*[Msg 2]*)

in(secChannel,(autn:bitstring,rand_sn:nonce,

hxres_sn:bitstring)); (*[Msg 3]*)

event begUE(supi, snn_sn, kseaf);

out(pubChannel, (autn, rand_sn)); (*[Msg 4]*)

event e1(autn, rand_sn);
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in(pubChannel, (res_sn:bitstring)); (*[Msg 5]*)

let hres = SHA256(rand_sn,res_sn) in

if hres = hxres_sn then (*Authentication UE to HN-SN view*)

out(secChannel, (SecretSN, res_sn)); (*[Msg 6]*)

event endSN(res_sn);

in(secChannel, (supi_sn:id,kseaf:key)) (*[Msg 7]*)

else

in(pubChannel, (macFail:bitstring))

else

in(pubChannel, (synchFail:bitstring,AUTS:bitstring));

out (secChannel, (synchFail,AUTS)).

let processHN (supi:id, ki:key, amf:bitstring) =

new sqn_ue:bitstring;

in(secChannel,(suci_hn :bitstring,

snn_hn:id)); (*[Msg 2]*)

new hnid_hn:id;

new skhn:skey;

let pkhn = pk(skhn)in

let(=supi, =hnid_hn) = decrypt(suci_hn, skhn) in

new rand_hn: nonce;

new sqn_hn: bitstring;

get keys(=supi, =ki)in

let ak_hn = f5(ki, rand_hn)in

let xored_sqn=xor(f5(ki, rand_hn), sqn_hn) in

let mac_hn = f1 ((sqn_hn, rand_hn), ki)in

let xres = f2 (ki, rand_hn)in

let ck_hn = f3 (ki, rand_hn)in

let ik_hn = f4 (ki, rand_hn)in

let autn = (xor (sqn_hn,ak_hn),amf, mac_hn) in

let hxres_hn = SHA256(rand_hn,xres)in

let kausf_hn = kdf_ausf(ck_hn, ik_hn, snn_hn)in

out(secChannel,(SecretHN, autn, rand_hn, hxres_hn, kausf_hn)); (*[Msg 3]*)

in(secChannel, (res_hn:bitstring)); (*[Msg 6]*)

if res_hn = xres then (*Authentication UE to HN-HN view*)

let kseaf = kdf_seaf(kausf_hn, snn_hn) in

event e3(res_hn);

out(secChannel, (supi,kseaf)) (*[Msg 7]*)

else

in (secChannel, (synchFail:bitstring,AUTS:bitstring));

let ak_ue = f5(ki, rand_hn) in

let mac_ue = f1((sqn_ue, rand_hn), ki) in

let AUTS = (xor(sqn_ue,ak_ue),mac_ue) in

if mac_ue = mac_hn then

if sqn_hn <> sqn_ue then

out (secChannel, ( synchFail)).
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process

new snn_sn:id;

new supi_sn:id;

new kausf_hn:key;

new snn_hn:id;

let kseaf = kdf_seaf(kausf_hn, snn_hn) in out (pubChannel,kseaf);

insert keys(supi, kseaf);

new ki:key;

new amf:bitstring;

new hnid_ue:id;

((!processUE(supi,hnid_ue,ki))|(!processSN(snn_sn))|(!processHN(supi,ki,amf)))
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Appendix B

B.1 5G EAP-AKA’ Protocol

(*This file is part of a PhD ProVerif Simulation**Author: Ed Kamya Kiyemba Edris*)

(*5G Extensible Authetication Protocol*) (*UE-SEAF-AUSF-ARPF*)

(*Primary Authentication*)

free c: channel.

type key.

type nonce.

type host.

type id.

(*Functions*)

fun nonce_to_bitstring(nonce): bitstring [data, typeConverter].

fun bitstring_to_key(bitstring): key [data, typeConverter].

fun bitstring_to_id (bitstring): id [data, typeConverter].

fun macFail():bitstring.

fun synchFail():bitstring.

fun Fail(bitstring):bitstring.

(* encryption *)

fun encrypt(bitstring, key): bitstring.

reduc forall x: bitstring, k: key; decrypt(encrypt(x, k), k) = x.

(*Hash Funtions*)

fun h(bitstring): bitstring.

fun hash(bitstring): bitstring.

fun SHA_256(bitstring): bitstring.

fun PRF(key, key, bitstring, id): key.

fun HMAC_SHA_256(key, bitstring): bitstring.

fun f1(key, bitstring):bitstring.

fun f2(key, nonce): bitstring.

fun f3(key, nonce): bitstring.

fun f4(key, nonce): bitstring.

fun f5(key, nonce): bitstring.
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fun kdf ():key.

fun at_kdf_ausf(key): key.

fun at_kdf_seaf(key, id): key.

fun at_kdf_ck1(bitstring, bitstring, id, bitstring):key.

fun at_kdf_ik1(bitstring, bitstring, id, bitstring):key.

(* XOR *)

fun xor(bitstring, bitstring) : bitstring.

equation forall m1: bitstring, m2: bitstring; xor(m1,xor(m1,m2)) = m2.

(**Constant*)

const ReqId: bitstring [data].

const ResId: bitstring [data].

const Success: bitstring [data].

free hostA, hostU, hostR, hostS: host.

(* table *)

table keys(host, host, key).

(* events *)

event beginAUSF(host, host, nonce, key).

event endAUSF(host, host, nonce, key).

event beginARPF(host, host, nonce, key).

event endARPF(host, host, nonce, key).

event beginSEAF(id, key).

event endSEAF(id, key).

event beginUE(host, host, nonce, key).

event endUE(host, host, nonce, key).

(*Queries*)

free secretAUSF, secretUE: bitstring [private].

query attacker(secretAUSF); attacker(secretUE).

free supi:id [private].

query attacker (supi).

free kseaf:key [private].

query attacker (kseaf).

free k:key [private].

query attacker (k).

(*Events*)

query u: host, a: host, r: nonce, kseaf:key, k: key;

event(endAUSF(u, a, r, k)) ==> event(beginUE(u, a, r, k)).

query supi: id, kseaf:key; event(endSEAF(supi, kseaf)) ==>

event(beginSEAF(supi, kseaf)).

query u: host, a: host, r: nonce, kseaf:key, k: key;

inj-event(endAUSF(u, a, r, k)) ==> inj-event(beginUE(u, a, r, k)).

query supi: id, kseaf:key; inj-event(endSEAF(supi, kseaf)) ==>

inj-event(beginSEAF(supi, kseaf)).

(*Processes*)
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let procSEAF(s: host)=

out(c, ReqId); (*msg1*)

in(c, (=ResId, u: host)); (*msg2*)

out(c, (ResId, u)); (*msg3*)

in(c, (at_rand:nonce, at_autn:bitstring, at_mac:bitstring, at_kdf:bitstring,

at_kdf_input:bitstring)); (*msg6*)

out(c, (at_rand, at_autn, at_mac, at_kdf, at_kdf_input)); (*msg7*)

in (c, (at_res:bitstring, at_mac2:bitstring)); (*msg8*)

out(c, (at_res, at_mac2)); (*msg9*)

event beginSEAF(supi, kseaf);

in(c, (=Success, kseaf_sn:key, supi_sn:id)); (*msg10*)

out(c, Success); (*msg11*)

event endSEAF(supi, kseaf);

in(c, (macFail:bitstring)); (*msg12*)

in(c, (synchFail:bitstring,AUTS:bitstring)) ;(*msg12*)

out (c, (synchFail,AUTS)). (*msg13*)

let procUE(u: host) =

new supi_ue:id;

new sqn: bitstring;

new amf: bitstring;

new eap_aka:bitstring;

new snn:id;

in(c, a: host);

get keys(=u, =a, k)in

in(c, =ReqId); (*msg1*)

out(c,(ResId, u)); (*msg2*)

in(c,(at_rand: nonce, at_autn: bitstring, at_mac: bitstring, at_kdf:bitstring,

at_kdf_input:bitstring )); (*msg7*)

let ck = f3(k, at_rand) in

let ik = f4(k, at_rand)in

let ak = f5(k, at_rand)in

let mac = f1 (k, (sqn, at_rand))in

let ik’ = at_kdf_ik1(ik, ck, snn, xor(sqn,ak)) in

let ck’ = at_kdf_ck1(ik, ck, snn, xor(sqn,ak)) in

let kausf = at_kdf_ausf (PRF(ck’,ik’,eap_aka,supi)) in

let k_aut = PRF(ck’,ik’,eap_aka,supi) in

let kseaf_ue = at_kdf_seaf(kausf, snn) in

if at_mac = HMAC_SHA_256(k_aut,(at_rand,at_autn)) &&

at_autn = (xor (sqn,ak),amf, at_mac) then

let at_res = f2(k, at_rand) in

let at_mac2 = HMAC_SHA_256(k_aut, at_res)in

event beginUE(u,a,at_rand, k_aut);

out(c, (at_res, at_mac2)); (*msg8*)

in(c, =Success); (*msg11*)

if a = hostA then
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out(c, encrypt(secretUE, k_aut)) (*msge*)

else

out(c, (macFail)) (*msg12*)

else

let ak = f5(k, at_rand) in

let mac = f1(k,(sqn, at_rand)) in

let AUTS = (xor(sqn,ak),mac) in

out (c, (synchFail,AUTS)). (*msg12*)

let procAUSF(a: host) =

in(c, (=ResId, u: host)); (*msg3*)

get keys(=u, =a, k)in

out(c, (ResId, u)); (*msg4*)

new supi_hn:id;

new at_rand: nonce;

new sqn_hn: bitstring;

new amf: bitstring;

new eap_aka:bitstring;

new snn:id;

let ck = f3(k, at_rand) in

let ik = f4(k, at_rand) in

let ak = f5(k, at_rand) in

let mac_hn = f1 (k, (sqn_hn, at_rand))in

let ik’ = at_kdf_ik1(ik, ck, snn, xor(sqn_hn,ak)) in

let ck’ = at_kdf_ck1(ik, ck, snn, xor(sqn_hn,ak)) in

let autn = (xor (sqn_hn,ak),amf, mac_hn) in

let kausf = at_kdf_ausf (PRF(ck’,ik’,eap_aka,supi)) in

let k_aut = PRF(ck’,ik’,eap_aka,supi) in

let at_kdf_input = (snn) in

let at_autn = (autn) in

let at_kdf = (kdf) in

let at_mac = HMAC_SHA_256(k_aut, (at_rand, at_autn)) in

in (c, (at_rand:nonce, at_autn:bitstring, at_mac:bitstring, at_kdf:bitstring,

at_kdf_input:bitstring)); (*msg5*)

out(c, (at_rand, at_autn, at_mac, at_kdf, at_kdf_input)); (*msg6*)

in(c, (at_res: bitstring, at_mac2: bitstring)); (*msg9*)

if at_mac2 = HMAC_SHA_256(k_aut, at_res) &&

at_res = f2(k, at_rand) then

out(c, (Success, kseaf, supi)); (*msg10*)

if u = hostU then

out(c, encrypt(secretAUSF, k_aut)); (*msg1*)

event endAUSF(u, a, at_rand, k_aut) (*msg1*)

else

in (c, (synchFail:bitstring,AUTS:bitstring)); (*msg13*)

let ak_ue = f5(k, at_rand) in

new sqn:bitstring;
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let mac= f1(k ,(sqn, at_rand)) in

let AUTS = (xor(sqn,ak),mac) in

if at_mac2 = at_mac then

if sqn <> sqn_hn then

out (c, (synchFail,AUTS, at_rand)). (*msg14*)

let procARPF(r: host) =

in(c, (=ResId, u: host)); (*msg4*)

get keys(=u, =hostA, k) in

new supi_hn:id;

new at_rand: nonce;

new sqn_hn: bitstring;

new amf: bitstring;

new eap_aka:bitstring;

new snn:id;

let ck = f3(k, at_rand) in

let ik = f4(k, at_rand) in

let ak = f5(k, at_rand) in

let mac_hn = f1 (k, (sqn_hn, at_rand))in

let ik’ = at_kdf_ik1(ik, ck, snn, xor(sqn_hn,ak)) in

let ck’ = at_kdf_ck1(ik, ck, snn, xor(sqn_hn,ak)) in

let autn = (xor (sqn_hn,ak),amf, mac_hn) in

let kausf = at_kdf_ausf (PRF(ck’,ik’,eap_aka,supi)) in

let k_aut = PRF(ck’,ik’,eap_aka,supi) in

let at_kdf_input = (snn) in

let at_autn = (autn) in

let at_kdf = (kdf) in

let at_mac = HMAC_SHA_256(k_aut, (at_rand, at_autn)) in

let kseaf_hn = at_kdf_seaf(kausf, snn) in

out(c, (at_rand, at_autn, at_mac, at_kdf, at_kdf_input)); (*msg5*)

event endARPF(u, r, at_rand, k_aut)

else

in (c, (synchFail:bitstring,AUTS:bitstring, at_rand:nonce)); (*msg14*)

new AV:bitstring;

out (c, (AV)). (*msg15*)

let keyRegistration =

in(c, (h1: host, h2: host, k: key));

if (h1, h2) <> (hostU, hostA, hostR) then

insert keys(h1, h2, k).

process

new kseaf: key;

insert keys(hostU, hostA, kseaf);

((!procUE(hostU))|(!procAUSF(hostA))|(!procSEAF (hostS))|(!procARPF(hostR))|

(!keyRegistration))
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Appendix C

C.1 SAP-AKA Protocol

(*This file is part of a PhD ProVerif Simulation**Author: Ed Kamya Kiyemba Edris*)

(*Secondary Authentication Protocol - Authentication and Key Agreement*)

(*UE-SMF-SPAAA*) (*Secondary Authentication*)

free c: channel.

type key.

type pkey.

type skey.

type nonce.

type host.

type id.

(*Functions*)

fun nonce_to_bitstring(nonce): bitstring [data, typeConverter].

fun bitstring_to_key(bitstring): key [data, typeConverter].

fun bitstring_to_id (bitstring): id [data, typeConverter].

(* encryption *)

fun encrypt(bitstring, key): bitstring.

reduc forall x: bitstring, k: key; decrypt(encrypt(x, k), k) = x.

(* Public key encryption *)

fun pk(skey): pkey.

fun aencrypt(bitstring, pkey): bitstring.

reduc forall x: bitstring, y: skey; adecrypt(aencrypt(x,pk(y)),y) = x.

(*Hash Funtions *)

fun h(bitstring): bitstring.

fun hash(bitstring): bitstring.

fun SHA_256(bitstring): bitstring.

fun PRF(key, key, bitstring, id): key.

fun HMAC_SHA_256(key, bitstring): bitstring.

fun f1(key, bitstring):bitstring.

fun f2(key, nonce): bitstring.
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fun f3(key, nonce): bitstring.

fun f4(key, nonce): bitstring.

fun f5(key, nonce): bitstring.

fun kdf ():key.

fun at_kdf_ausf(key): key.

fun at_kdf_ue3a (id, id):key.

fun at_kdf_ck1(bitstring, bitstring, id, bitstring):key.

fun at_kdf_ik1(bitstring, bitstring, id, bitstring):key.

(* XOR *)

fun xor(bitstring, bitstring) : bitstring.

equation forall m1: bitstring, m2: bitstring; xor(m1,xor(m1,m2)) = m2.

(* table *)

table keys(host, host, key).

(*Constant)

const ReqId: bitstring [data].

const ResId: bitstring [data].

const Success: bitstring [data].

const ServSsReq: bitstring [data].

const ServSsResp: bitstring [data].

const ServReq: bitstring [data].

const ServResp: bitstring [data].

free hostA, hostU, hostS: host.

(* events *)

event endAAA(host, host, nonce, key).

event beginUE(host, host, nonce, key).

event endUE(host, host, nonce, key).

event beginAAA(host, host, nonce, key).

(*queries*)

free secretAAA, secretUE: bitstring [private].

query attacker(secretAAA); attacker(secretUE).

free eid:id [private].

query attacker (eid).

free kue3a:key [private].

query attacker (kue3a).

free k:key [private].

query attacker (k).

query u: host, a: host, r: nonce, kue3a:key, k: key;

event(endAAA(u, a, r, k)) ==> event(beginUE(u, a, r, k)).

query u: host, a: host, r: nonce, kue3a:key, k: key;

event(endUE(u, a, r, k)) ==> event(beginAAA(u, a, r, k)).

query u: host, a: host, r: nonce, kue3a:key, k: key;

inj-event(endAAA(u, a, r, k)) ==> inj-event(beginUE(u, a, r, k)).
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query u: host, a: host, r: nonce, kue3a:key, k: key;

inj-event(endUE(u, a, r, k)) ==> inj-event(beginAAA(u, a, r, k)).

(*Processes*)

let procUE(u: host, kamf:key) =

new gpsi:id;

new sqn: bitstring;

new amf: bitstring;

new eap_aka:bitstring;

new dnn:id;

new servname:id;

new sid:id;

new spid:id;

in(c, a: host);

get keys(=u, =a, k)in

let ServSsReq = (servname, sid) in

out (c, encrypt(ServSsReq, kamf)); (*msg1*)

in(c,(=ServSsResp, m1:bitstring)); (*msg2*)

let (gpsi:id, spid:id, pksp:pkey, hostS: host) = decrypt(m1, kamf) in

let ServReq = (servname, sid) in

out (c, aencrypt(ServReq, pksp)); (*msg3*)

in(c,(=ReqId, at_any_id:bitstring)); (*msg4*)

out(c,(ResId, gpsi)); (*msg5*)

in(c,(at_rand: nonce, at_autn: bitstring, at_mac: bitstring, at_kdf:bitstring,

at_kdf_input:bitstring )); (*msg6*)

let at_kdf_input = (dnn) in

new rand:nonce;

let at_rand = (rand) in

let ak = f5(k, at_rand)in

let at_autn = (xor (sqn,ak),amf, at_mac) in

let ck = f3(k, at_rand) in

let ik = f4(k, at_rand)in

let mac = f1 (k, (sqn, at_rand))in

let ik’ = at_kdf_ik1(ik, ck, dnn, xor(sqn,ak)) in

let ck’ = at_kdf_ck1(ik, ck, dnn, xor(sqn,ak)) in

let kausf = at_kdf_ausf (PRF(ck’,ik’,eap_aka,gpsi)) in

let k_aut = PRF(ck’,ik’,eap_aka,gpsi) in

let k_enc = PRF(ck’,ik’,eap_aka,gpsi) in

if at_mac = HMAC_SHA_256(k_aut,(at_rand,at_autn)) &&

at_autn = (xor (sqn,ak),amf, at_mac) then

let at_res = f2(k, at_rand) in

let at_mac2 = HMAC_SHA_256(k_aut, at_res)in

event beginUE(u,a,at_rand, k_aut);

out(c, (at_res, at_mac2)); (*msg7*)

new eid:id;

new kue3a:key;
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in (c, (= Success, kue3a:key, eid:id, k_enc:key)); (*msg8*)

let kue3a = at_kdf_ue3a(eid,spid) in

if a = hostA then

out(c, encrypt(secretUE, k_aut))).

let procSMF(s: host, kamf:key, pksp:pkey)=

new gpsi:id;

new sid:id;

new spid:id;

new eid:id;

in (c, (=ServSsReq, m:bitstring)); (*msg1*)

let (servname:id, sid:id, hostU: host) = decrypt(m, kamf) in

let ServSsResp = (gpsi, spid, pksp) in

out(c,encrypt(ServSsResp, kamf)); (*msg2*)

in(c, (=ServReq, m2:bitstring)); (*msg3*)

out (c, (ServReq)); (*msg3*)

in(c, (=ReqId, at_any_id:bitstring)); (*msg4*)

out(c, (ReqId, at_any_id)); (*msg4*)

in(c, (=ResId, gpsi: id)); (*msg5*)

out(c, (ResId, gpsi)); (*msg5*)

let kue3a = at_kdf_ue3a(eid,spid) in

in (c, (= Success, kue3a:key, eid:id, k_enc:key)); (*msg8*)

out (c, (kue3a, eid, k_enc)); (*msg8*)

in (c, (=Success, eid:id)). (*msg9*)

let procAAA(a: host, sksp:skey) =

new at_any_id:bitstring;

in(c, (=ServReq, m2:bitstring)); (*msg3*)

let (servname:id, sid:id, hostU: host) = adecrypt(m2, sksp) in

out (c, (ReqId, at_any_id)); (*msg4*)

in(c, (=ResId, gpsi:id, u: host)); (*msg5*)

get keys(=u, =hostA, k) in

new gpsi:id;

new at_rand: nonce;

new sqn: bitstring;

new amf: bitstring;

new eap_aka:bitstring;

new dnn:id;

new spid:id;

new sid:id;

new eid:id;

let ck = f3(k, at_rand) in

let ik = f4(k, at_rand) in

let ak = f5(k, at_rand) in

let mac_sp = f1 (k, (sqn, at_rand))in

let ik’ = at_kdf_ik1(ik, ck, dnn, xor(sqn,ak)) in
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let ck’ = at_kdf_ck1(ik, ck, dnn, xor(sqn,ak)) in

let autn = (xor (sqn,ak),amf, mac_sp) in

let kausf = at_kdf_ausf (PRF(ck’,ik’,eap_aka,gpsi)) in

let k_aut = PRF(ck’,ik’,eap_aka,gpsi) in

let k_enc = PRF(ck’,ik’,eap_aka,gpsi) in

let at_kdf_input = (dnn) in

let at_autn = (autn) in

let at_kdf = (kdf) in

let at_mac = HMAC_SHA_256(k_aut, (at_rand, at_autn)) in

out(c, (at_rand, at_autn, at_mac, at_kdf, at_kdf_input)); (*msg6*)

in(c, (at_res: bitstring, at_mac2: bitstring)); (*msg7*)

if at_mac2 = HMAC_SHA_256(k_aut, at_res) &&

at_res = f2(k, at_rand) then

let kue3a = at_kdf_ue3a(eid,spid) in

out(c, (Success, kue3a, eid)); (*msg8*)

out (c, (Success, eid)); (*msg9*)

if u = hostU then

out(c, encrypt(secretAAA, k_aut)); (*msg*)

event endAAA(u, a, at_rand, k_aut).

let keyRegistration =

in(c, (h1: host, h2: host, k: key));

if (h1, h2) <> (hostU, hostA) then

insert keys(h1, h2, k).

process

new sksp: skey;

new kamf: key;

new kue3a: key;

insert keys(hostU, hostS, kamf);

insert keys(hostU, hostA, kue3a);

let pksp = pk(sksp) in out (c, pksp);

((!procUE(hostU, kamf))|(!procAAA(hostA, sksp))|(!procSMF (hostS, kamf, pksp))|

(!keyRegistration))
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Appendix D

D.1 NS-FId Protocol

(*This file is part of a PhD ProVerif Simulation**Author: Ed Kamya Kiyemba Edris*)

(*Network Service Federated Identity Protocol*) (*UE-SMF-IdP-SPAAA-SS*)

(*Federated Authentication and Authorization*)

free c: channel.

(*types*)

type host.

type key.

type pkey.

type skey.

type spkey.

type sskey.

type nonce.

type id.

(*Functions*)

fun nonce_to_bitstring(nonce): bitstring [data, typeConverter].

fun bitstring_to_key(bitstring): key [data, typeConverter].

fun bitstring_to_id (bitstring): id [data, typeConverter].

(*Hash Function*)

fun h(bitstring) : bitstring.

fun SHA256(nonce,bitstring) : bitstring.

fun hash(bitstring, bitstring) : bitstring.

(* Public key encryption *)

fun pk(skey): pkey.

fun aencrypt(bitstring, pkey): bitstring.

reduc forall x: bitstring, y: skey; adecrypt(aencrypt(x,pk(y)),y) = x.

(*Shared Encryption*)

fun encrypt(bitstring, key): bitstring.

reduc forall x: bitstring, k: key; decrypt(encrypt(x,k),k) = x.
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(* Signatures *)

fun spk(sskey): spkey.

fun sign(bitstring, sskey): bitstring.

reduc forall x: bitstring, k: sskey; getmess(sign(x,k)) = x.

reduc forall x: bitstring, k: sskey; checksign(sign(x,k), spk(k)) = x.

(*table*)

table keys(host, host, key).

(*Msg Headers*)

const ServReq: bitstring [data].

const RedSp: bitstring [data].

const AuthzReq: bitstring [data].

const RedIdP: bitstring [data].

const IDTokenReq: bitstring [data].

const IDTokenResp: bitstring [data].

const AccessReq: bitstring [data].

const AccessResp: bitstring [data].

const GrantAccessReq: bitstring [data].

const GrantAccessResp: bitstring [data].

(* events *)

event begin().

event end().

event beginUE(host, host, pkey).

event endUE(host, host, pkey).

event beginSS(host, host, key).

event endSS(host, host, key).

event beginIDP(host, host, pkey).

event endIDP(host, host, pkey).

event beginAAA(host, host, key).

event endAAA(host, host, key, key).

(* free names *)

free hostU, hostF, hostA, hostI, hostS, hostSS: host.

free secretUE_AAA: bitstring [private].

free secretSS_UE: bitstring [private].

free secretIDP_UE: bitstring [private].

free kue3a:key [private].

free kuess:key [private].

free eid:id [private].

free fid:id [private].

free serv:bitstring [private].

(* queries *)

query attacker(secretUE_AAA).
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query attacker(secretSS_UE).

query attacker(secretIDP_UE).

query attacker(kue3a).

query attacker(kuess).

query attacker(eid).

query attacker(fid).

query attacker (serv).

query U: host, I: host, K: pkey;

event(endUE(U, I, K)) ==> event(beginIDP(U, I, K)).

query U: host, I: host, K: pkey;

event(endIDP(U, I, K)) ==> event(beginUE(U, I, K)).

query U: host, I: host, K: pkey;

inj-event(endUE(U, I, K)) ==> inj-event(beginIDP(U, I, K)).

query U: host, I: host, K: pkey;

inj-event(endIDP(U, I, K)) ==> inj-event(beginUE(U, I, K)).

(* processes *)

let procUE(U:host, pkue:pkey, skue:skey, A:host, I:host, pkidp:pkey, pksidp:spkey,

pksp:pkey, pksaaa:spkey, SS:host, pksss:spkey)=

in(c, A’: host);

new idpid:id;

new gpsi:id;

new spid:id;

new sid:id;

new kamf:key;

new kue3a’:key;

new servname:bitstring;

let ServReq = (servname,sid) in

out (c,encrypt(ServReq, kamf)); (*msg1*)

in(c,(=RedSp, m:bitstring));(*msg2*)

let (gpsi’:id, spid’:id, pksp:pkey, hostS’: host) = adecrypt(m, skue) in

let AuthzReq’ =(servname, sid, gpsi, spid) in

out(c,aencrypt(AuthzReq, pksp)); (*msg3*)

in(c,(=RedIdP, m1:bitstring)); (*msg4*)

new Ts_1:bitstring;

let (AGr:bitstring, hm1:bitstring, hostA’: host) = adecrypt(m1, skue) in

let (pksaaa’:spkey, =hostA)= checksign(hm1,pksaaa)in

let hm1’ = h(AGr)in

new AGrcode:bitstring;

let AGr’= (AGrcode, eid, idpid, Ts_1) in

new rand_1:nonce;

let IDTokenReq’ = (AGr,rand_1)in

out(c, aencrypt(IDTokenReq,pkidp)); (*msg5*)

in(c,(=IDTokenResp, m3:bitstring)); (*msg6*)

let (IdT:bitstring, fid’:id, rand_1’:nonce,hm3:bitstring, hostI’: host) =

adecrypt(m3, skue) in
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let (pksidp’:spkey, =hostI)= checksign(hm3,pksidp)in

new Exp_1:bitstring;

new Ts_2:bitstring;

let h3 = h(m3) in

let IdT’ = (fid, idpid, rand_1, Ts_2, Exp_1) in

let AccessReq’= (IdT) in

out(c, aencrypt(AccessReq, pksp));(*msg7*)

in(c,(=AccessResp,m5:bitstring, hm5:bitstring)); (*msg8*)

let (AcT:bitstring, hact:bitstring,kuess’:key, hostA:host) = decrypt(m5, kue3a) in

let (pksaaa:spkey, =hostA)= checksign(hm5,pksaaa)in

new asid:id;

new dcap:bitstring;

new ucap:bitstring;

let label = (ucap,dcap) in

new Ts_3:bitstring;

new Exp_2:bitstring;

let AcT’ = (fid, asid, label, Ts_3, Exp_2) in

let hact’= h(AcT)in

event beginIDP(U, I, pkidp);

let GrantAccessReq’ = (AcT, hact)in

out(c, encrypt(GrantAccessReq, kuess));(*msg9*)

in(c, (=GrantAccessResp, m7:bitstring)); (*msg10*)

let (serv’:bitstring, hserv:bitstring, hostSS’:host) = decrypt(m7, kuess) in

let (pksss’:spkey, =hostSS)= checksign(hserv,pksss)in

new csid:id;

new Exp_3:bitstring;

new Ts_4:bitstring;

new d1:id;

new data:bitstring;

let serv = (fid, d1, data, csid, label, Ts_4, Exp_3) in

let hserv’= h(serv)in

event endUE(U,I, pkidp);

event end().

let procSMF(S:host, U:host, pkue:pkey, pksp:pkey)=

new gpsi:id;

new spid:id;

new servname:id;

new kamf:key;

in (c, (=ServReq, m0:bitstring)); (*msg1*)

let (servname:id, sid:id, hostU: host) = decrypt(m0, kamf) in

let RedSP =(gpsi, spid, pksp)in

out(c, aencrypt(RedSp, pkue)); (*msg2*)

event end().

let procIDP(I:host, pkidp: pkey, skidp: skey,sksidp:sskey, U:host, pkue:pkey,
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A:host, pksaaa:spkey)=

new gpsi:id;

new spid:id;

new sid:id;

new idpid:id;

new Exp_1:bitstring;

new Ts_2:bitstring;

event beginUE(U, I, pkidp);

in(c, (=IDTokenReq, m2:bitstring, hm2:bitstring)); (*msg5*)

let (AGr:bitstring, rand_1:nonce, hostA’: host) = adecrypt(m2, skidp) in

let (pksaaa’:spkey, =hostA)= checksign(hm2,pksaaa)in

let hm2’ = h(AGr)in

new AGrcode:bitstring;

new Ts_1:bitstring;

new eid’:id;

let AGr’ = (AGrcode, eid, idpid, Ts_1)in

let IdT = (fid, idpid, rand_1, Ts_2, Exp_1) in

new fid’:id;

let IDTokenResp’=(IdT,fid, rand_1) in

out(c,aencrypt(IDTokenResp, pkue)); (*msg6*)

event endIDP(U, I, pkidp);

event end().

let ProcSPAAA(A:host, sksaaa: sskey, skaaa:skey, U:host, pkue:pkey, pksue:spkey)=

get keys(=U, =A, kue3a’) in

new gpsi:id;

new spid:id;

new sid:id;

new eid’:id;

new asid:id;

new idpid:id;

new spid’:id;

new sid’:id;

new Exp_1:bitstring;

new Ts_1:bitstring;

new AGr:bitstring;

in(c,(=AuthzReq, m:bitstring)); (*msg3)

let (servname:id, sid:id, gpsi:id, spid:id, hm: bitstring, hostU: host) =

adecrypt(m, skaaa) in

let (pksue:spkey, =hostU)= checksign(hm,pksue)in

let hm = h(m)in

let AGr = (AGrcode, eid, idpid, Ts_1)in

let RedIdP = (AGr)in

out(c,aencrypt(RedIdP, pkue)); (*msg4*)

new dcap:bitstring;

new ucap:bitstring;
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let label = (ucap,dcap) in

let IdT = (fid, label, Ts_1, Exp_1) in

in(c, (=AccessReq, m4:bitstring)); (*msg7*)

let (IdT’:bitstring, hm4:bitstring, hostU’: host) =decrypt(m4, kue3a) in

let (pksue’:spkey, =hostU)= checksign(hm4,pksue)in

let hm4’ =h(m4)in

new kuess’:key;

new dcap’:bitstring;

new ucap’:bitstring;

let label’ = (ucap,dcap) in

new Exp_2:bitstring;

new Ts_3:bitstring;

let AcT = (fid, asid, label, Ts_3, Exp_2) in

let hact= h(AcT)in

let AccesResp = (AcT, sign(hact, sksaaa),kuess) in

out(c,aencrypt(AccessResp,pkue)); (*msg8*)

event beginAAA(U, A, kue3a);

event begin();

event end().

let procSS(SS:host, pkss:spkey, U:host, A:host, pkue:pkey, pksp:spkey,

sksss:sskey) =

get keys(=U, =SS, kuess’) in

new csid:id;

new idpid:id;

new spid:id;

new sid:id;

event begin();

event beginSS(U, SS, kuess);

in(c, (=GrantAccessReq, m6:bitstring));(*msg9*)

let (AcT:bitstring, hact:bitstring, hostU’: host) = decrypt(m6, kuess) in

let (pkue’:spkey, =hostA)= checksign(hact,pksp)in

new Exp_1:bitstring;

new Ts_1:bitstring;

new dcap:bitstring;

new ucap:bitstring;

new asid:id;

let label = (ucap,dcap) in

let AcT’ = (fid, asid, label, Ts_1, Exp_1) in

let hact’= h(AcT)in

new Exp_2:bitstring;

new Ts_2:bitstring;

new d1:id;

new data:bitstring;

let serv’ = (fid, d1, data, csid, label, Ts_2, Exp_2) in

let hserv= h(serv)in
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let GrantAccessResp’ = (serv, sign(hserv,sksss))in

out(c, encrypt(GrantAccessResp, kuess)); (*msg10*)

event endSS(U, SS, kuess);

event end().

let keyRegistration =

in(c, (h1: host, h2: host, k: key));

if (h1, h2) <> (hostU, hostSS) then

insert keys(h1, h2, k).

process

new skue: skey;

new sksue:sskey;

new sksss: sskey;

new skaaa: skey;

new sksaaa: sskey;

new sksp:sskey;

new skidp: skey;

new sksidp: sskey;

insert keys(hostU, hostSS, kuess);

let pkue = pk(skue) in out(c, pkue);

let pksp = pk(skaaa) in out(c, pksp);

let pkidp = pk(skidp) in out(c, pkidp);

let pksss = spk(sksss) in out(c, pksss);

let pksue = spk(sksue) in out(c, pksue);

let pksaaa = spk(sksaaa) in out(c, pksaaa);

let pksidp = spk(sksidp) in out(c, pksidp);

((!procUE(hostU, pkue, skue, hostA, hostI, pkidp, pksidp, pksp, pksaaa,hostSS,

pksss))|(!procSMF(hostS, hostU, pkue, pksp))|

(!procIDP(hostI, pkidp, skidp, sksidp, hostU, pkue, hostA, pksaaa))|

(!ProcSPAAA(hostA, sksaaa, skaaa, hostU, pkue, pksue))|

(!procSS(hostSS, pksss, hostU, hostA, pkue, pksaaa, sksss))|

(!keyRegistration))
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Appendix E

E.1 DCSS Protocol

(*This file is part of a PhD ProVerif Simulation**Author: Ed Kamya Kiyemba Edris*)

(*Data Caching and Sharing Protocol*) (*UE-SPAAA-SS*)

(*5G Federated Caching and Sharing Authorization*)

free c: channel.

(*types*)

type host.

type key.

type pkey.

type skey.

type spkey.

type sskey.

type nonce.

type id.

(*Functions*)

fun nonce_to_bitstring(nonce): bitstring [data, typeConverter].

fun bitstring_to_key(bitstring): key [data, typeConverter].

fun bitstring_to_id (bitstring): id [data, typeConverter].

(*Hash Functions*)

fun h(bitstring) : bitstring.

fun SHA256(nonce,bitstring) : bitstring.

fun hash(bitstring, bitstring) : bitstring.

(* Public key encryption *)

fun pk(skey): pkey.

fun aencrypt(bitstring, pkey): bitstring.

reduc forall x: bitstring, y: skey; adecrypt(aencrypt(x,pk(y)),y) = x.

(*Shared Encryption*)

fun encrypt(bitstring, key): bitstring.

reduc forall x: bitstring, k: key; decrypt(encrypt(x,k),k) = x.
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(* Signatures *)

fun spk(sskey): spkey.

fun sign(bitstring, sskey): bitstring.

reduc forall x: bitstring, k: sskey; getmess(sign(x,k)) = x.

reduc forall x: bitstring, k: sskey; checksign(sign(x,k), spk(k)) = x.

(*table*)

table keys(host, host, key).

(*Constant*)

const CachTokenReq: bitstring [data].

const CachTokenResp: bitstring [data].

const CachReq: bitstring [data].

const CachAck: bitstring [data].

const ShaTokenReq: bitstring [data].

const ShaTokenResp: bitstring [data].

const ShaReq: bitstring [data].

const ShaAck: bitstring [data].

(* events *)

event end().

event beginUE(host, host, key).

event endUE(host, host, key).

event beginSS(host, host, key).

event endSS(host, host, key).

(* free names *)

free hostU, hostA, hostSS: host.

free secretUE_AAA: bitstring [private].

free secretSS_UE: bitstring [private].

free kuess:key [private].

free kue3a:key [private].

free fid:id [private].

free d1:id [private].

(* queries *)

query attacker(secretUE_AAA).

query attacker(secretSS_UE).

query attacker (kue3a).

query attacker (kuess).

query attacker (fid).

query attacker (d1).

query U: host, SS: host, K: key;

event(endSS(U, SS, K)) ==> event(beginUE(U, SS, K)).

query U: host, SS: host, K: key;

event(endUE(U, SS, K)) ==> event(beginSS(U, SS, K)).
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query U: host, SS: host, K: key;

inj-event(endSS(U, SS, K)) ==> inj-event(beginUE(U, SS, K)).

query U: host, SS: host, K: key;

inj-event(endUE(U, SS, K)) ==> inj-event(beginSS(U, SS, K)).

(* Processes *)

let procUE(U:host, pkue:pkey, A:host, pkaaa:spkey, SS:host, pkss:spkey)=

in(c, A’: host); (**)

get keys(=U, =A, kue3a) in

new skue:skey;

new d1:id;

new dataname:id;

new fid:id;

new spid:id;

new ssid:id;

new Exp_2:bitstring;

new Ts_3:bitstring;

new dcap:bitstring;

new ucap:bitstring;

let label = (ucap,dcap) in

let AcT = (fid, ssid, label, Ts_3, Exp_2) in

let hact= h(AcT)in

get keys(=U, =SS, kuess’) in

let CachTokenReq =( fid, dataname, AcT) in

out(c, encrypt(CachTokenReq,kue3a)); (*msg1*)

in(c, (=CachTokenResp, m1:bitstring)); (*msg2*)

let (m1:bitstring, ChT:bitstring, hChT:bitstring, hostA’: host) =

decrypt(m1, kue3a) in

let (pkaaa’:spkey, =hostA)= checksign(hChT,pkaaa)in

let m1 = (spid, ChT, hChT) in

new Exp_3:bitstring;

new Ts_4:bitstring;

let CachReq = (fid, ChT, hChT) in

let ChT’ = (fid, ssid, d1, label, Ts_4, Exp_3) in

let hChT’= h(ChT)in

out(c, encrypt(CachReq, kuess)); (*msg3*)

in (c, (=CachAck, m3:bitstring)); (*msg4*)

let (ssid:id, Ack_1: bitstring, hack_1:bitstring, hostSS: host) =

decrypt(m3, kuess) in

let m3 =(ssid, Ack_1, hack_1) in

let (pkss’:spkey, =hostSS)= checksign(hack_1,pkss)in

new cach_d1: bitstring;

let Ack_1’ =(cach_d1) in

let hack_1’ = h(Ack_1)in

let Hack_1 = h(Ack_1)in

let ShaTokenReq =(fid, d1, Ack_1, Hack_1) in
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out(c, encrypt(ShaTokenReq, kue3a)); (*msg5*)

in(c, (=ShaTokenResp, m5:bitstring)); (*msg6*)

let (ShT:bitstring, hsht:bitstring, hostA: host) = decrypt(m5, kue3a) in

let (pkaaa:spkey, =hostA)= checksign(hsht,pkaaa)in

let m5 = (ShT, hsht) in

let ShT’= (fid, d1, label, Ts_3, Exp_3) in

let hsht’ = h(ShT) in

event beginSS(U, SS, kuess);

let ShaTokenReq =(ShT, hsht)in

out(c, encrypt(ShaTokenReq,kuess)); (*msg7*)

in (c, (=ShaAck, m7:bitstring)); (*msg8*)

let (AcK_2:bitstring, Hack_2:bitstring, hostSS: host) = decrypt(m7, kuess) in

let (pkss:spkey, =hostSS)= checksign(Hack_2,pkss)in

let m7 = (AcK_2, Hack_2) in

new Ack_2:bitstring;

let Hack_2’ = h(Ack_2)in

event endUE(U, SS, kuess);

event end().

let procAAA(A:host, skaaa: sskey, U:host, SS:host, pkss:spkey)=

new spid:id;

new dataname:id;

new ssid:id;

get keys(=U, =A, kue3a’) in

new kuess:key;

new Ts_3:bitstring;

new Exp_2:bitstring;

new ucap:bitstring;

new dcap:bitstring;

new AcT: bitstring;

let label = (ucap, dcap) in

let hact= h(AcT)in

let AcT = (fid, ssid, label, Ts_3, Exp_2) in

in(c, (=CachTokenReq, m0:bitstring)); (*msg1*)

let (dataname:id, fid:id, AcT’:bitstring, hostU’: host) = decrypt(m0, kue3a) in

let m0=(dataname, fid, AcT)in

new Exp_3:bitstring;

new Ts_4:bitstring;

let ChT = (fid, ssid, d1, label, Ts_4, Exp_3) in

let hChT= h(ChT)in

let CachTokenResp = (ChT, sign(hChT, skaaa)) in

out(c, encrypt(CachTokenResp, kue3a)); (*msg2*)

new ShT:bitstring;

let label’= (ucap,dcap) in

in(c, (=ShaTokenReq, m4:bitstring)); (*msg5*)

let (Ack_1:bitstring, fid’:id, d1:id, Hack_1:bitstring,hostU’: host) =
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decrypt(m4, kue3a) in

let (pkss’:spkey, =hostSS)= checksign(Hack_1,pkss)in

let m=(Ack_1, fid’, d1, Hack_1) in

let Hack_1’ = h(Ack_1)in

let ShT’ = (fid, d1,label, Ts_4, Exp_3) in

let hsht = h(ShT)in

let ShaTokenResp = (ShT, sign(hsht,skaaa)) in

out(c, encrypt(ShaTokenResp, kue3a)); (*msg6*)

event end().

let procSS(SS:host, pkss:spkey, U:host, pkaaa:spkey, pkue:pkey, skss: sskey) =

get keys(=U, =SS, kuess’) in

new dataname:id;

new ucap:bitstring;

new dcap:bitstring;

let label = (ucap,dcap) in

new AcT: bitstring;

let hact= h(AcT)in

let (pkaaa’:spkey, =hostA)= checksign(hact,pkaaa)in

new Ts_3:bitstring;

new Exp_2:bitstring;

new ssid:id;

let AcT’ = (fid, ssid, label, Ts_3, Exp_2) in

event beginUE(U, SS, kuess);

in(c, (=CachReq, m2:bitstring)); (*msg3*)

let (ChT:bitstring, hChT:bitstring, hostU’: host) = decrypt(m2, kuess) in

let m3=(ChT, hChT) in

new Ts_4:bitstring;

new Exp_3:bitstring;

let ChT’ = (fid, ssid, d1, label, Ts_4, Exp_3) in

new Ts_3’:bitstring;

new cach_d1: bitstring;

let Ack_1 =(cach_d1) in

let hack_1 = h(Ack_1) in

let CachAck = (ssid, Ack_1, sign(hack_1, skss)) in

out(c, encrypt(CachAck, kuess)); (*msg4*)

in(c, (=ShaTokenReq, m7:bitstring)); (*msg7*)

let (ShT:bitstring, hsht:bitstring, hostA’: host) = decrypt(m7, kuess) in

let (pkaaa:spkey, =hostA)= checksign(hsht,pkaaa)in

let m7 = (ShT, hsht) in

let hsht’ = h(ShT) in

new Exp_3’:bitstring;

let ShT’ = (fid, d1, label, Ts_3, Exp_3) in

new Ack_2:bitstring;

new Hack_2:bitstring;

let Hack_2’ = h(Ack_2) in
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let ShaAck =(Ack_2, sign(Hack_2, skss)) in

out(c, encrypt(ShaAck, kuess)); (*msg8*)

event endSS(U, SS, kuess);

event end().

let keyRegistration =

in(c, (h1: host, h2: host, k: key));

if (h1, h2) <> (hostU, hostSS) then

insert keys(h1, h2, k).

process

new skue: skey;

new skss: sskey;

new skaaa: sskey;

insert keys(hostU, hostSS, kuess);

let pkue = pk(skue) in out(c, pkue);

let pkss = spk(skss) in out(c, pkss);

let pkaaa = spk(skaaa) in out(c, pkaaa);

((!procUE(hostU, pkue, hostU, pkaaa, hostSS, pkss))|

(!procAAA(hostA, skaaa, hostU, hostSS, pkss))|

(!procSS (hostSS, pkss, hostU, pkaaa, pkue, skss))|(!keyRegistration))
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Appendix F

F.1 DDSec Protocol

(*This file is part of a PhD ProVerif Simulation**Author: Ed Kamya Kiyemba Edris*)

(*Device-to-Device Service Security Protocol*) (*UEA-UEB-gNB*)

(*Mutual Authentication, Caching and Sharing Authorization*)

(*With Network Assistance*)

free c: channel.

type host.

type nonce.

type key.

type pkey.

type skey.

type spkey.

type sskey.

type id.

const AdvMsg: bitstring [data].

const IntMsg: bitstring [data].

const DiscMsg: bitstring [data].

const LinkUpMsg: bitstring [data].

const PublMsg: bitstring [data].

const LookUp: bitstring [data].

const SendData: bitstring [data].

(*Funtions*)

fun nonce_to_bitstring(nonce): bitstring [data, typeConverter].

fun bitstring_to_key(bitstring): key [data, typeConverter].

fun bitstring_to_id (bitstring): id [data, typeConverter].

(*Hash Functions*)

fun h(bitstring) : bitstring.

fun SHA256(nonce,bitstring) : bitstring.
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fun hash(bitstring, bitstring) : bitstring.

fun hash1(pkey): bitstring.

(* Public key encryption *)

fun pk(skey): pkey.

fun aencrypt(bitstring, pkey): bitstring.

reduc forall x: bitstring, y: skey; adecrypt(aencrypt(x,pk(y)),y) = x.

(* Shared key encryption *)

fun sencrypt(bitstring,key): bitstring.

reduc forall x: bitstring, y: key; sdecrypt(sencrypt(x,y),y) = x.

(* Signatures *)

fun spk(sskey): spkey.

fun sign(bitstring, sskey): bitstring.

reduc forall x: bitstring, k: sskey; getmess(sign(x,k)) = x.

reduc forall x: bitstring, k: sskey; checksign(sign(x,k), spk(k)) = x.

(* events *)

event end().

event beginUEA(host, host, pkey, nonce, nonce).

event endUEA(host, host, pkey, nonce, nonce).

event beginUEB(host, host, pkey, nonce, nonce).

event endUEB(host, host, pkey, nonce, nonce).

(* Host names *)

free A, B, G: host.

(*Table*)

table keys(host, pkey).

(* Free names *)

free Secret: bitstring [private].

query attacker (Secret).

free rand_a:nonce [private].

query attacker (rand_a).

free rand_b:nonce [private].

query attacker (rand_b).

free skuea:skey [private].

query attacker (skuea).

free skueb:skey [private].

query attacker (skueb).

free ua:id [private].

query attacker (ua).

free ub:id [private].

query attacker (ub).

(* Queries *)

query A: host, B: host, K: pkey, rand_a:nonce, rand_b:nonce;
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event(endUEB(A, B ,K, rand_a, rand_b)) ==>

event(beginUEA(A, B, K, rand_a, rand_b)).

query A: host, B: host, K: pkey, rand_a:nonce, rand_b:nonce;

event(endUEA(A, B, K, rand_a, rand_b)) ==>

event(beginUEB(A, B, K, rand_a, rand_b)).

query A: host, B: host, K: pkey, rand_a:nonce, rand_b:nonce;

inj-event(endUEB(A, B, K, rand_a, rand_b)) ==>

inj-event(beginUEA(A, B, K, rand_a, rand_b)).

query A: host, B: host, K: pkey, rand_a:nonce, rand_b:nonce;

inj-event(endUEA(A, B, K, rand_a, rand_b)) ==>

inj-event(beginUEB(A, B, K, rand_a, rand_b)).

(*Processes*)

let processUEA(pkub:spkey, skuea:skey, skua:sskey, kgnba:key) =

let pkuea = pk(skuea) in

new ua:id;

new ub:id;

new dataname:bitstring;

new d1:bitstring;

new rand_na:nonce;

let d1 = SHA256(rand_a,dataname) in

new pkuea1:bitstring;

let hpkuea1 = h(pkuea1) in

let AdvMsg = (ua, rand_na, dataname, d1, pkuea, hpkuea1) in

out(c, sencrypt(AdvMsg, kgnba)); (*msg1*)

in (c, (=DiscMsg, m2:bitstring)); (*msg3*)

let (ub:id, rand_na:nonce, rand_nb:nonce, dataname:bitstring, pkueb:pkey,

hpkueb:bitstring, hostb: host) = sencrypt(m2, kgnba) in

new data:bitstring;

new rand_a:nonce;

new rand_b:nonce;

new Ts_1:bitstring;

let hPublmsg = h(PublMsg) in

let PublMsg = (ua, dataname, d1, rand_a, pkuea, Ts_1, sign(hPublmsg, skua)) in

out(c, aencrypt(PublMsg, pkueb)); (*msg5*)

event beginUEA(A,B, pkuea, rand_a, rand_b);

in (c, (=LookUp, m4:bitstring,hm4:bitstring)); (*msg6*)

let (ub:id, d1:bitstring, rand_a:nonce, rand_b:nonce, Ts_2:bitstring,

hm4:bitstring, hostB: host) = adecrypt(m4, skueb) in

let (pkub:spkey, =B)= checksign(hm4,pkub)in

new Ts_2:bitstring;

let m4 = (ub, d1, rand_a,rand_b, Ts_2) in

let hm4 = h(m4)in

let (pkueb: pkey, =B) = checksign(m4,pkub) in

new Ts_3:bitstring;

new Exp_1: bitstring;
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let Acap = (ua,ub, dataname, rand_a, rand_b, Ts_3, Exp_1) in

new data:bitstring;

new Kd1:key;

new rand_1:nonce;

let Kd1 = SHA256(rand_1, d1) in

let dm = (Kd1, Acap)in

let hdm =(dm)in

let SendData = (data, rand_b, Kd1, Acap, sign(hdm, skua)) in

out (c, aencrypt(SendData, pkueb)); (*msg7*)

event endUEA(A, B, pkueb, rand_a, rand_b);

event end().

let processgNB(G:host, kgnba: key, kgnbb:key, A:host, B:host)=

in(c, (=AdvMsg, (m0:bitstring))); (*msg1*)

let (ua:id, rand_na:nonce, dataname:bitstring, d1:bitstring, pkuea:pkey,

hapkuea:bitstring, hosta: host) = sdecrypt(m0, kgnba) in

in(c, (=IntMsg, m1:bitstring)); (*msg2*)

let (ub:id, rand_nb:nonce, dataname:bitstring, pkueb:pkey, hpkueb:bitstring,

hostb: host) = sdecrypt(m1, kgnbb) in

let DiscMsg = (ub, dataname, pkueb) in

let LinkUpMsg = (ua, dataname, pkuea) in

out(c, sencrypt(DiscMsg, kgnba)); (*msg3*)

out(c, sencrypt(LinkUpMsg, kgnbb)); (*msg4*)

event end().

let processUEB(pkua:spkey, skueb:skey, skub:sskey, kgnbb:key) =

new ua:id;

new ub:id;

new dataname:bitstring;

let pkueb = pk(skueb) in

new rand_nb:nonce;

let hpkueb = hash1(pkueb)in

let IntMsg = (ub, rand_nb, dataname, pkueb, hpkueb) in

out(c, sencrypt(IntMsg, kgnbb)); (*msg2*)

in (c, (=LinkUpMsg, mx:bitstring)); (*msg4*)

let (ua:id, dataname:bitstring, pkuea:pkey, hostb: host) = sencrypt(mx, kgnbb) in

in (c, (=PublMsg, m3:bitstring, hm3:bitstring)); (*msg5*)

let (ua:id, dataname:bitstring, d1:bitstring,rand_a:nonce, pkuea:pkey,

Ts_1:bitstring, hostA: host) = adecrypt(m3, skueb) in

let m3= (ua, d1, rand_a, pkuea, Ts_1) in

let hm3 = h(m3) in

let (pkuea: pkey, =A) = checksign(hm3,pkua) in

new rand_a:nonce;

new rand_b:nonce;

new d1:bitstring;

let d1 = SHA256(rand_a, dataname)in
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new Ts_2:bitstring;

let hLookup = h(LookUp)in

let LookUp = (ub, d1, rand_a, rand_b, Ts_2, sign(LookUp, skub)) in

out (c, aencrypt(LookUp, pkuea)); (*msg6*)

event beginUEB(A, B, pkueb, rand_a, rand_b);

in (c, (=SendData, (m5:bitstring, hm5:bitstring, pkueb:pkey))); (*msg7*)

let (data:bitstring, rand_b:nonce, Kd1:key, Acap:bitstring, hostA: host) =

adecrypt(m5, skueb) in

let (pkuea: pkey, =A) = checksign(hm5,pkua) in

new Exp_1: bitstring;

new Ts_3:bitstring;

let Acap = (ua,ub, dataname, rand_a, rand_b, Ts_3, Exp_1) in

new Data:bitstring;

let m5 = (data, rand_b, Kd1, Acap) in

let hm5= h(m5)in

event endUEB(A, B, pkueb, rand_a, rand_b);

event end().

let keyRegistration =

in(c, (h: host, k: pkey));

if h <> A && h <> B then insert keys(h,k).

process

new skuea: skey;

new skua: sskey;

new skueb: skey;

new skub: sskey;

new kgnba: key;

new kgnbb: key;

let pkuea = pk(skuea) in out(c, pkuea);

let pkua = spk(skua) in out(c, pkua);

let pkueb = pk(skueb) in out(c, pkueb);

let pkub = spk(skub) in out(c, pkub);

insert keys(A, pkuea);

insert keys(B, pkueb);

(!processUEA(pkub, skuea, skua, kgnba))|(!processUEB(pkua, skueb, skub, kgnbb))|

(!processgNB(G, kgnba, kgnbb, A, B))
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Appendix G

G.1 DDACap Protocol

(*This file is part of a PhD ProVerif Simulation**Author: Ed Kamya Kiyemba Edris*)

(*Device-to-Device Attribute and Capability Security Protocol*) (* UEB-UEC*)

(*Mutual Authentication, Caching and Sharing Authorization*)

(*Without Network Assistance*)

free c: channel.

type host.

type nonce.

type key.

type pkey.

type skey.

type spkey.

type sskey.

type id.

(*Constant*)

const AdvMsg: bitstring [data].

const IntMsg: bitstring [data].

const PublMsg: bitstring [data].

const LookUp: bitstring [data].

const SendData: bitstring [data].

(*Functions*)

fun nonce_to_bitstring(nonce): bitstring [data, typeConverter].

fun bitstring_to_key(bitstring): key [data, typeConverter].

fun bitstring_to_id (bitstring): id [data, typeConverter].

(*Hash Functions*)

fun h(bitstring) : bitstring.

fun SHA256(nonce,bitstring) : bitstring.

fun hash(bitstring, bitstring) : bitstring.
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fun hash1(pkey):bitstring.

(* Public key encryption *)

fun pk(skey): pkey.

fun aencrypt(bitstring, pkey): bitstring.

reduc forall x: bitstring, y: skey; adecrypt(aencrypt(x,pk(y)),y) = x.

(* Shared key encryption *)

fun sencrypt(bitstring,nonce): bitstring.

reduc forall x: bitstring, y: nonce; sdecrypt(sencrypt(x,y),y) = x.

(* Signatures *)

fun spk(sskey): spkey.

fun sign(bitstring, sskey): bitstring.

reduc forall x: bitstring, k: sskey; getmess(sign(x,k)) = x.

reduc forall x: bitstring, k: sskey; checksign(sign(x,k), spk(k)) = x.

(* events *)

event end().

event beginUEB(host, host, pkey, nonce, nonce).

event endUEB(host, host, pkey, nonce, nonce).

event beginUEC(host, host, pkey, nonce, nonce).

event endUEC(host, host, pkey, nonce, nonce).

(* Host names *)

free C, B: host.

(*Table*)

table keys(host, pkey).

(* Free names *)

free Secret: bitstring [private].

query attacker (Secret).

free rand_rc:nonce [private].

query attacker (rand_rc).

free rand_rb:nonce [private].

query attacker (rand_rb).

free skuec:skey [private].

query attacker (skuec).

free skueb:skey [private].

query attacker (skueb).

free ub:id [private].

query attacker (ub).

free uc:id [private].

query attacker (uc).

(* Queries *)

query C: host, B: host, K: pkey, rand_rc:nonce, rand_rb:nonce;

event(endUEC(C, B , K, rand_rc, rand_rb)) ==>
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event(beginUEB(C, B, K, rand_rc, rand_rb)).

query C: host, B: host, K: pkey, rand_rb:nonce, rand_rc:nonce;

event(endUEB(C, B, K, rand_rb, rand_rc)) ==>

event(beginUEC(C, B, K, rand_rc, rand_rb)).

query C: host, B: host, K: pkey, rand_rc:nonce, rand_rb:nonce;

inj-event(endUEC(C, B, K, rand_rc, rand_rb)) ==>

inj-event(beginUEB(C, B, K, rand_rc, rand_rb)).

query C: host, B: host, K: pkey, rand_rc:nonce, rand_rb:nonce;

inj-event(endUEB(C, B, K, rand_rc, rand_rb)) ==>

inj-event(beginUEC(C, B, K, rand_rc, rand_rb)).

(*Processes*)

let ProcessUEB(pkuc:spkey, skueb:skey, skub:sskey) =

new ub:id;

new dataname:bitstring;

new d1:bitstring;

new uc:id;

let pkueb = pk(skueb) in

let hpkueb =hash1(pkueb) in

let d1 = SHA256(rand_rb, dataname) in

let AdvMsg = (ub, dataname, d1, pkueb, hpkueb) in

out(c, (AdvMsg)); (*msg1*)

in(c, (=IntMsg, m1:bitstring)); (*msg2*)

let (uc:id, dataname:bitstring, pkuec:pkey, hpkuec:bitstring, hostC: host) =

adecrypt(m1, skueb) in

let m1 = (uc, dataname, pkuec, hpkuec) in

let hpkuec =hash1(pkuec) in

new rand_rb:nonce;

new Ts_1:bitstring;

let hPublMsg= h(PublMsg)in

let PublMsg = (ub, d1, rand_rb, Ts_1, sign(hPublMsg, skub)) in

out(c, aencrypt(PublMsg, pkuec)); (*msg3*)

event beginUEB(C,B, pkueb, rand_rc, rand_rb);

in (c, (=LookUp, m3:bitstring,hm3:bitstring)); (*msg4*)

let (uc:id, d1:bitstring, rand_rb:nonce, rand_rc:nonce, Ts_2:bitstring,

hm3:bitstring, hostC: host) = adecrypt(m3, skueb) in

let (pkuc:spkey, =C)= checksign(hm3, pkuc)in

new Ts_2:bitstring;

new uec:id;

let m3 = (uc, d1, rand_rb,rand_rc, Ts_2) in

let hm3 = h(m3)in

new kd1:bitstring;

new Acap:bitstring;

new Ts_3:bitstring;

new Exp_1: bitstring;

let Acap = (uc,ub, dataname, rand_rc, rand_rb, Ts_3, Exp_1) in
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let dm = (kd1, Acap) in

let hdm= h(dm)in

new data:bitstring;

let SendData = (data, kd1, Acap, sign(hdm, skub)) in

out (c, aencrypt(SendData, pkuec)); (*msg5*)

event endUEB(C, B, pkuec, rand_rc, rand_rb);

event end().

let ProcessUEC(pkub:spkey, skuec:skey, skuc:sskey) =

let pkuec = pk(skuec) in

in (c, (=AdvMsg, m0:bitstring, hm0:bitstring)); (*msg1*)

new pkueb:pkey;

new ub:id;

new dataname:bitstring;

new d1:bitstring;

new uc:id;

let hpkueb = hash1(pkueb) in

let hpkuec = hash1(pkuec) in

let m0= (ub, dataname, d1, pkueb, hpkueb) in

let IntMsg = (ub, dataname, pkuec, hpkuec) in

out(c, aencrypt(IntMsg, pkueb)); (*msg2*)

in (c, (=PublMsg, m2:bitstring, hm2:bitstring)); (*msg3*)

let (ub:id, d1:bitstring,rand_rb:nonce, hm2:bitstring, Ts_1:bitstring, hostB:

host) = adecrypt(m2, skuec) in

let (pkueb: pkey, =B) = checksign(hm2,pkub) in

new rand_rb:nonce;

new rand_rc:nonce;

let m2 = (ub, d1, rand_rb, Ts_1) in

let hm2= h(m2)in

new Ts_2:bitstring;

let hLookUp= h(LookUp)in

let LookUp = (uc, d1, rand_rb, rand_rc, Ts_2, sign(hLookUp, skuc), pkueb) in

out(c, aencrypt(LookUp, pkueb)); (*msg4*)

new Acap:bitstring;

new kd1: key;

new rand_1: nonce;

let kd1 = SHA256(rand_1, d1)in

event beginUEC(C, B, pkuec, rand_rc, rand_rb);

in (c, (=SendData, (m4:bitstring, hm4:bitstring, pkuec:pkey))); (*msg5*)

let (Data:bitstring, ChT_2:bitstring,ShT_2:bitstring, hostC: host) =

adecrypt(m4, skuec) in

let (pkueb: pkey, =B) = checksign(hm4,pkub) in

new Ts_3:bitstring;

new Exp_1: bitstring;

let Acap = (uc,ub, dataname, rand_rc, rand_rb, Ts_3, Exp_1) in

new Data:bitstring;
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let m4 = (Data, kd1, Acap) in

let hm4= h(m4)in

event endUEC(C, B, pkuec, rand_rc, rand_rb);

event end().

let keyRegistration =

in(c, (h: host, k: pkey));

if h <> C && h <> B then insert keys(h,k).

process

new skuec: skey;

new skuc: sskey;

new skueb: skey;

new skub: sskey;

let pkuec = pk(skuec) in out(c, pkuec);

let pkuc = spk(skuc) in out(c, pkuc);

let pkueb = pk(skueb) in out(c, pkueb);

let pkub = spk(skub) in out(c, pkub);

insert keys(C, pkuec);

insert keys(B, pkueb);

(!ProcessUEB(pkuc, skueb, skub))|(!ProcessUEC(pkub, skuec, skuc))
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Appendix H

H.1 SAP-AKA Enhanced Labels

l1 = ⟨ϑUE({ServName, SID}KAMF
), ϑSMF (a

UE
enc)⟩ (msg1)

l2 = ⟨ϑ′
SMF (b

UE
ServName,SID)⟩

l3 = ⟨ϑSMF ({GPSI, SPID,PKSP }KAMF
), ϑ′

UE(c
SMF
enc )⟩ (msg2)

l4 = ⟨ϑ′
UE(d

SMF
GPSI,SPID,PKSP

)⟩
l5 = ⟨ϑUE({ServName, SID}PKSP

), ϑSPAAA(e
UE
enc⟩ (msg3)

l6 = ⟨ϑ′
SPAAA(f

UE
ServName,SID)⟩

l7 = ⟨ϑSPAAA({Identity}PKUE
), ϑUE(g

SPAAA
enc )⟩ (msg4)

l8 = ⟨ϑ′
UE(h

SPAAA
Identity)⟩

l9 = ⟨ϑUE({GPSI}PKSP
)), ϑSPAAA(i

UE
enc)⟩ (msg5)

l10 = ⟨ϑ′
SPAAA(j

UE
GPSI)⟩

l11 = ⟨ϑSPAAA({AT RAND,AT AUTN,AT MAC,AT KDF,AT KDF INPUT}KENC
),

ϑUE(k
SPAAA
enc )⟩ (msg6)

l12 = ⟨ϑ′
UE(l

SPAAA
AT RAND,AT AUTN,AT MAC,AT KDF,AT KDF INPUT )⟩

l13 = ⟨ϑUE({AT RES,AT MAC2}KENC
), ϑSPAAA(m

UE
enc)⟩ (msg7)

l14 = ⟨ϑ′
SPAAA(n

UE
enc)⟩

l15 = ⟨ϑSPAAA({SUCCESS,KUE3A, EID}KENC
), ϑ′

UE(o
SPAAA
enc )⟩ (msg8)

l16 = ⟨ϑ′
UE(p

SPAAA
SUCCESS,KUE3A,EID)⟩

l17 = ⟨ϑSPAAA(SUCCESS), ϑSMF (rEID)⟩ (msg9)

H.2 NS-FId Enhanced Labels

l1 = ⟨ϑUE({ServName, SID}KAMF ), ϑSMF (s
UE
enc)⟩ (msg1),

l2 = ⟨ϑ′
SMF (d

UE
ServName,SID)⟩

l3 = ⟨ϑSMF ({GPSI, SPID}KAMF ), ϑUE(t
SMF
enc )⟩ (msg2)

l4 = ⟨ϑ′
UE(u

SMF
GPSI,SPID)⟩

l5 = ⟨ϑUE({ServName, SID, SPID}PKSP
), ϑSPAAA(v

UE
enc⟩ (msg3)

l6 = ⟨ϑ′
SPAAA(x

UE
ServName,SID,SPID)⟩

l7 = ⟨ϑSPAAA({AuthzGrant,EID,KUE3A}PKUE
), ϑUE(y

SPAAA
enc )⟩ (msg4)

l8 = ⟨ϑ′
UE(z

SPAAA
AuthzGrant,EID,KUE3A

)⟩
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l9 = ⟨ϑUE({AuthzGrant,R1, GPSI}PKIDP
)), ϑIDP (a

UE
enc)⟩ (msg5)

l10 = ⟨ϑ′
IDP (b

UE
AuthzGrant,R1,GPSI)⟩

l11 = ⟨ϑIDP ({FID, IDT, (hash(IDT ), SKIDP ), R1, (hash(IDT, (hash(IDT ),
SKIDP ), R1), SKIDP )}PKUE

), ϑUE(c
IDP
enc )⟩ (msg6)

l12 = ⟨ϑ′
UE(d

IDP
FID,IDT,(hash(IDT ),SKIDP ),R1,(hash(IDT,(hash(IDT ),SKIDP ),R1),SKIDP

)⟩
l13 = ⟨ϑUE({IDT, (hash(IDT ), SKIDP )}KUE3A

), ϑSPAAA(e
UE
enc)⟩ (msg7)

l14 = ⟨ϑ′
SPAAA(f

UE
IDT,(hash(IDT ),SKIDP ))⟩

l15 = ⟨ϑSPAAA({(AcT, (hash(AcT ), SKAAA),KUESS , (hash(AcT,
(hash(AcT ), SKAAA),KUESS), SKAAA)}KUE3A

), ϑUE(g
SPAAA
enc )⟩ (msg8)

l16 = ⟨ϑ′
UE(h

SPAAA
(AcT,(hash(AcT ),SKAAA),KUESS ,(hash(AcT,(hash(AcT ),SKAAA),KUESS),SKAAA))⟩

l17 = ⟨ϑUE({AcT, (hash(AcT ), SKAAA)}KUESS
), ϑSS(i

UE
enc)⟩ (msg9)

l18 = ⟨ϑ′
SS(j

UE
AcT,(hash(AcT ),SKAAA))⟩

l19 = ⟨ϑSS({SERV, (hash(SERV ), SKSS)}KUESS
), ϑUE(k

SS
enc)⟩ (msg10)

l20 = ⟨ϑ′
UE(l

SS
SERV,(hash(SERV ),SKSS))⟩

H.3 DCSS Enhanced Labels

l1 = ⟨ϑUE({FID,DATANAME,AcT, (hash(AcT ), SKAAA)}KUE3A
),

ϑSPAAA(r
UE
enc)⟩ (msg1),

l2 = ⟨ϑ′SPAAA(s
UE
FID,DATANAME,AcT,(hash(AcT ),SKAAA

)⟩
l3 = ⟨ϑSPAAA({ChT, (hash(AcT ), SKAAA)}KUE3A

), ϑUE(t
SPAAA
enc ⟩ (msg2)

l4 = ⟨ϑ′UE(u
SPAAA
ChT,(hash(AcT ),SKAAA))⟩

l5 = ⟨ϑUE({ChT, (hash(ChT ), SKAAA)}KUESS
), ϑSS(v

SPAAA
enc )⟩ (msg3)

l6 = ⟨ϑ′
SS(w

UE
ChT,(hash(ChT ),SKAAA))⟩

l7 = ⟨ϑSS({Ack1, (hash(Ack1), SKAAA)}KUESS
), ϑUE(x

SS
enc)⟩ (msg4)

l8 = ⟨ϑ′
UE(y

SS
Ack1,(hash(Ack1),SKAAA))⟩

l9 = ⟨ϑUE({FID,DATANAME,Ack1, (hash(Ack1), SKAAA)}KUE3A
), ϑSPAAA(z

UE
enc)⟩ (msg5)

l10 = ⟨ϑ′
SPAAA(a

UE
FID,DATANAME,Ack1,(hash(Ack1),SKAAA))⟩

l11 = ⟨ϑSPAAA({ChT, (hash(AcT ), SKAAA)}KUE3A
), ϑUE(b

SPAAA
enc )⟩ (msg6)

l12 = ⟨ϑ′
UE(c

SPAAA
ChT,(hash(AcT ),SKAAA))⟩

l13 = ⟨ϑUE({ShT, (hash(ShT ), SKAAA)}KUESS
), ϑSS(d

UE
enc)⟩ (msg7)

l14 = ⟨ϑ′
SS(e

UE
ShT,(hash(ShT ),SKAAA))⟩

l15 = ⟨ϑSS({Ack2, (hash(Ack2), SKAAA)}KUESS
), ϑUE(f

SS
enc)⟩ (msg8)

l16 = ⟨ϑ′
UE(g

SS
Ack2,(hash(Ack2),SKAAA))⟩

H.4 DDSec Enhanced Labels

l1 = ⟨ϑUEB({UEB,DATANAME}KgNBb
), ϑgNB(x

UEB
enc )⟩ (msg1),

l2 = ⟨ϑ′
gNB(v

UEB
UEB,DATANAME)⟩

l3 = ⟨ϑgNB({UEB,DATANAME}KgNBa
), ϑUEA(x

UEB
enc )⟩ (msg2),

l4 = ⟨ϑ′
UEA(v

gNB
UEB,DATANAME)⟩
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l5 = ⟨ϑUEA({UEA,UA, d1, Randa, (hash(UEA,UA, d1, Randa), SKUEA)}PKUEB
),

ϑ′
UEB(s

UEA
enc )⟩ (msg3)

l6 = ⟨ϑ′
UEB(t

UEA
UEA,UA,d1,Randa,(hash(UEA,UA,d1,Randa),SKUEA))⟩

l7 = ⟨ϑUEB({UEB,UB, d1, Randa, Randb, T s6, (hash(UEB,UA, d1, Randa, Randb, T s6),
SKUEB)}PKUEA

), ϑ′UEA(u
UEB
enc ⟩ (msg4)

l8 = ⟨ϑ′
UEA(v

UEB
UEB,UB,d1,Randa,Randb,Ts6,(hash(UEB,UA,d1,Randa,Randb,Ts6),SKUEB

)⟩
l9 = ⟨ϑUEA({Ts7, Randb, (hash(Ts7, Rand2), SKUEA)}PKUEB

), ϑ′
UEB(w

UEA
enc )⟩ (msg5)

l10 = ⟨ϑ′
UEB(x

UEA
Ts7,Randb,(hash(Ts7,Rand2),SKUEA))⟩

l11 = ⟨ϑUEB({UA, d1, T s8, (hash(UA, d1, T s8), SKUEB)}PKUEA
)), ϑUEA(y

UE
enc)⟩ (msg6)

l12 = ⟨ϑ′
UEA(z

UEB
UA,d1,Ts8,(hash(UA,d1,Ts8),SKUEB))⟩

l13 = ⟨ϑUEA({DATA,Kd1, ACap, (hash(DATA,Kd1, ACap), SKUEA)}PKUEB
), ϑUEB(a

UEA
enc )⟩

(msg7)
l14 = ⟨ϑ′

UEB(b
UEA
DATA,Kd1,Acap,(hash(DATA,Kd1,Acap),SKUEA))⟩

H.5 DDACap Enhanced Labels

l1 = ⟨ϑUEC(UEC,DATANAME,PKUEC), ϑBr(pUEC,DATANAME,PKUEC
)⟩ (msg1),

l2 = ⟨ϑ′
UEB({UEB,UB, d1, Rand rb, PKUEB , (hash(UB, d1, Rand rb, PKUEB),

SKUEB)}PKUEC
), ϑ′

UEC(s
UEB
enc )⟩ (msg2)

l3 = ⟨ϑUEC(t
UEB
UEB,UB,d1,Rand rb,PKUEB ,(hash(UB,d1,Rand rb,PKUEB),SKUEB))⟩

l4 = ⟨ϑ′
UEC({UC, d1, Rand rb,Rand rc, Ts6, (hash(UEC,UC, d1, Rand rb,Rand rc, Ts6),

SKUEC)}PKUEB
), ϑ′

UEB(u
UEC
enc ⟩ (msg3)

l5 = ⟨ϑUEB(v
UEC
UC,d1,Randrb,Randrc,Ts6,(hash(UEC,UC,d1,Randrb,Randrc,Ts6),SKUEC))⟩

l6 = ⟨ϑ′
UEB({Ts7, Rand rc, (hash(Ts7, Rand rc), SKUEB)}PKUEC

),
ϑ′
UEC(w

UEB
enc )⟩ (msg4)

l7 = ⟨ϑUEC(x
UEB
Ts7,Rand rc,(hash(Ts7,Rand rc),SKUEB))⟩

l8 = ⟨ϑ′
UEC({UC, d1, T s8, (hash(UC, d1, T s8), SKUEC)}PKUEB

)), ϑ′
UEB(y

UEC
enc )⟩ (msg5)

l9 = ⟨ϑUEB(z
UEC
UC,d1,Ts8,(hash(UC,d1,T8)),SKUEC))⟩

l10 = ⟨ϑ′
UEB({DATA,Acap,Kd1, (hash(DATA,ACap,Kd1), SKUEB)}PKUEC

), ϑ′
UEC(a

UEB
enc )⟩

(msg6)
l11 = ⟨ϑUEC(b

UEB
DATA,ACap,Kd1,(hash(DATA,ACap,Kd1),SKUEB))⟩
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Appendix I

The graphical presentation of the square matrix Q of the CTMC of process (CTMC(P )) for each
protocol.

I.1 NS-FId Matrix

Q2 =



l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16 l17 l18 l19 l20

l1 −b b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l2 0 −2d 2d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l3 0 0 −b b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l4 0 0 0 −2d 2d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l5 0 0 0 0 −c c 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l6 0 0 0 0 0 −3d 3d 0 0 0 0 0 0 0 0 0 0 0 0 0
l7 0 0 0 0 0 0 −c c 0 0 0 0 0 0 0 0 0 0 0 0
l8 0 0 0 0 0 0 0 −3d 3d 0 0 0 0 0 0 0 0 0 0 0
l9 0 0 0 0 0 0 0 0 −c c 0. 0 0 0 0 0 0 0 0 0
l10 0 0 0 0 0 0 0 0 0 −3d 3d 0 0 0 0 0 0 0 0 0
l11 0 0 0 0 0 0 0 0 0 0 −g g 0 0 0 0 0 0 0 0
l12 0 0 0 0 0 0 0 0 0 0 0 −5d 5d 0 0 0 0 0 0 0
l13 0 0 0 0 0 0 0 0 0 0 0 0 −b b 0 0 0 0 0 0
l14 0 0 0 0 0 0 0 0 0 0 0 0 0 −2d 2d 0 0 0 0 0
l15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −f f 0 0 0 0
l16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4d 4d 0 0 0
l17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −b b 0 0
l18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2d 2d 0
l19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −b b
l20 2d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2d


(I.1)
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I.2 DCSS Matrix

Q3 =



l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16

l1 −f f 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l2 0 −4d 4d 0 0 0 0 0 0 0 0 0 0 0 0 0
l3 0 0 −b b 0 0 0 0 0 0 0 0 0 0 0 0
l4 0 0 0 −2d 2d 0 0 0 0 0 0 0 0 0 0 0
l5 0 0 0 0 b b 0 0 0 0 0 0 0 0 0 0
l6 0 0 0 0 0 −2d 2d 0 0 0 0 0 0 0 0 0
l7 0 0 0 0 0 0 −b b 0 0 0 0 0 0 0 0
l8 0 0 0 0 0 0 0 −2d 2d 0 0 0 0 0 0 0
l9 0 0 0 0 0 0 0 0 −f f 0. 0 0 0 0 0
l10 0 0 0 0 0 0 0 0 0 −4d 4d 0 0 0 0 0
l11 0 0 0 0 0 0 0 0 0 0 −b b 0 0 0 0
l12 0 0 0 0 0 0 0 0 0 0 0 −2d 2d 0 0 0
l13 0 0 0 0 0 0 0 0 0 0 0 0 −b b 0 0
l14 0 0 0 0 0 0 0 0 0 0 0 0 0 −2d 2d 0
l15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −b b
l16 2d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2d


(I.2)

I.3 DDSec Matrix

Q4 =



l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14

l1 −b b 0 0 0 0 0 0 0 0 0 0 0 0
l2 0 −2d 2d 0 0 0 0 0 0 0 0 0 0 0
l3 0 0 −b b 0 0 0 0 0 0 0 0 0 0
l4 0 0 0 −2d 2d 0 0 0 0 0 0 0 0 0
l5 0 0 0 0 −g g 0 0 0 0 0 0 0 0
l6 0 0 0 0 0 −5d 5d 0 0 0 0 0 0 0
l7 0 0 0 0 0 0 −i i 0 0 0 0 0 0
l8 0 0 0 0 0 0 0 −7d 7d 0 0 0 0 0
l9 0 0 0 0 0 0 0 0 −c c 0 0 0 0
l10 0 0 0 0 0 0 0 0 0 −3d 3d 0 0 0
l11 0 0 0 0 0 0 0 0 0 0 −f f 0 0
l12 0 0 0 0 0 0 0 0 0 0 0 −4d 4d 0
l13 0 0 0 0 0 0 0 0 0 0 0 0 −f f
l14 4d 0 0 0 0 0 0 0 0 0 0 0 0 −4d


(I.3)
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I.4 DDACap Matrix

Q5 =



l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

l1 −3s 3s 0 0 0 0 0 0 0 0 0
l2 0 −h h 0 0 0 0 0 0 0 0
l3 0 0 −6d 6d 0 0 0 0 0 0 0
l4 0 0 0 −h h 0 0 0 0 0 0
l5 0 0 0 0 −6d 6d 0 0 0 0 0
l6 0 0 0 0 0 −c c 0 0 0 0
l7 0 0 0 0 0 0 −3d 3d 0 0 0
l8 0 0 0 0 0 0 0 −f f 0 0
l9 0 0 0 0 0 0 0 0 −4d 4d 0
l10 0 0 0 0 0 0 0 0 0 −f f
l11 4d 0 0 0 0 0 0 0 0 0 −4d


(I.4)
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Appendix J

J.1 5G-AKA Attack Derivation and Trace

Starting query event(endSEAF(x1_80)) ==> event(beginSEAF(x1_80))

goal reachable: attacker(x1_4218) -> end(endSEAF(x1_4218))

1. The attacker has some term suci_4228.

attacker(suci_4228).

3. The attacker has some term rand_4227.

attacker(rand_4227).

The event endSEAF(a) is executed.

4. By 3, the attacker may know rand_4227.

By 2, the attacker may know x1_4230.

Using the function SHA256 the attacker may obtain SHA256(rand_4227,x1_4230).

attacker(SHA256(rand_4227,x1_4230)).

TRACE 1

event endSEAF(a) at {57} in copy a_4234 (goal)

The event endSEAF(a) is executed.

A trace has been found.

RESULT event(endSEAF(x1_80)) ==> event(beginSEAF(x1_80)) is false.

TRACE 2

event endSEAF(a_5801) at {57} in copy a_5800 (goal)

The event endSEAF(a_5801) is executed in session a_5800.

A trace has been found.

RESULT inj-event(endSEAF(x1_84)) ==> (inj-event(beginSEAF(x1_84)) &&

(inj-event(e3(x1_84)) ==> (inj-event(e2(x1_84)) ==> inj-event(e1(x1_84,x2_85)))))

is false.

J.2 SAP-AKA Attack Derivation and Trace

Starting query event(endAAA(u_121,a_122,r,k_124)) ==>
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event(beginUE(u_121,a_122,r,k_124))

goal reachable: attacker(gpsi_16360) && attacker(servname_16361)

&& attacker(sid_16362) && attacker(hostU_16363) ->

end(endAAA(hostU[],hostA[],at_rand_53[k_51 = kue3a_27[],u = hostU[]

1. The message pk(sksp[]) may be sent to the attacker at output {7}.

attacker(pk(sksp[])).

2. We assume as hypothesis that attacker(hostU_16401).

new sksp: skey creating sksp_16418 at {1}

new kue3a_27: key creating kue3a_16417 at {3}

out(c, ~M_16501) with ~M_16501 = pk(sksp_16418) at {7}

new at_any_id_45: bitstring creating at_any_id_16529 at {54} in copy a_16416

in(c, (ServReq,aencrypt((a_16413,a_16414,a_16415),~M_16501))) with

aencrypt((a_16413,a_16414,a_16415),~M_16501) =

aencrypt((a_16413,a_16414,a_16415),pk(sksp_16418)) at {55} in copy a_16416

out(c, (ReqId,~M_16589)) with ~M_16589 = at_any_id_16529 at {57} in copy a_16416

in(c, (ResId,a_16412,hostU)) at {58} in copy a_16416

get keys(hostU,hostA,kue3a_16417) at {92} in copy a_16416

Trace 1

A trace has been found.

RESULT event(endAAA(u_121,a_122,r,k_124)) ==>

event(beginUE(u_121,a_122,r,k_124)) is false.

Trace 2

A trace has been found.

RESULT inj-event(endAAA(u_130,a_131,r_132,k_134)) ==>

inj-event(beginUE(u_130,a_131,r_132,k_134)) is false.

J.3 NS-FId Attack Derivation Trace

Starting query event(endUE(U,I,K)) ==> event(beginIDP(U,I,K))

goal reachable: end(endUE(hostU[],hostI[],pk(skidp[])))

1. The attacker has some term A’_17951.

attacker(A’_17951).

2. The message A’_17951 that the attacker may have by 1 may be received at

input {25}.

So event endUE(hostU[],hostI[],pk(skidp[])) may be executed at {34}.

end(endUE(hostU[],hostI[],pk(skidp[]))).

new skue: skey creating skue_17958 at {1}

new sksidp: sskey creating sksidp_17964 at {8}
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out(c, ~M) with ~M = pk(skue_17958) at {11}

in(c, a) at {25} in copy a_17956

TRACE 1

event endUE(hostU,hostI,pk(skidp_17957)) at {34} in copy a_17956 (goal)

The event endUE(hostU,hostI,pk(skidp_17957)) is executed.

A trace has been found.

RESULT event(endUE(U,I,K)) ==> event(beginIDP(U,I,K)) is false.

TRACE 2

event endUE(hostU,hostI,pk(skidp_22772)) at {34} in copy a_22770 (goal)

The event endUE(hostU,hostI,pk(skidp_22772)) is executed in session a_22770.

A trace has been found.

RESULT inj-event(endUE(U_119,I_120,K_121)) ==>

inj-event(beginIDP(U_119,I_120,K_121)) is false.

RESULT (even event(endUE(U_22760,I_22761,K_22762)) ==>

event(beginIDP(U_22760,I_22761,K_22762)) is false.)

J.4 DCSS Attack Derivation and Trace

Starting query event(endUE(U_110,SS_111,K_112)) ==>

event(beginSS(U_110,SS_111,K_112))

goal reachable: end(endUE(hostU[],hostSS[],kuess[]))

1. The attacker has some term A’_15173.

attacker(A’_15173).

2. The attacker has some term kue3a_15172.

attacker(kue3a_15172).

3. The attacker initially knows hostU[].

attacker(hostU[]).

Using the function 3-tuple the attacker may obtain (hostU[],hostU[],kue3a_15172).

attacker((hostU[],hostU[],kue3a_15172)).

out(c, ~M) with ~M = pk(skue_15181) at {6}

out(c, ~M_15346) with ~M_15346 = spk(skss_15182) at {8}

out(c, ~M_15427) with ~M_15427 = spk(skaaa_15183) at {10}

in(c, a_15179) at {12} in copy a_15180

in(c, (hostU,hostU,a)) at {124} in copy a_15178

get keys(hostU,hostSS,kuess) at {56} in copy a_15180

TRACE 1

event endUE(hostU,hostSS,kuess) at {25} in copy a_15180 (goal)

The event endUE(hostU,hostSS,kuess) is executed.

A trace has been found.

RESULT event(endUE(U_110,SS_111,K_112)) ==>

event(beginSS(U_110,SS_111,K_112)) is false.
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TRACE 2:

event endUE(hostU,hostSS,kuess) at {25} in copy a_19431 (goal)

The event endUE(hostU,hostSS,kuess) is executed in session a_19431.

A trace has been found.

RESULT inj-event(endUE(U_116,SS_117,K_118)) ==>

inj-event(beginSS(U_116,SS_117,K_118)) is false.

J.5 DDSec Attack Derivation and Trace

TRACE 1:

Starting query not attacker(rand_a[])

goal reachable: attacker(rand_a[])

1. The attacker initially knows rand_a[].

attacker(rand_a[]).

new skuea_36: skey creating skuea_2040 at {1}

new skub: sskey creating skub_2043 at {4}

new kgnbb: key creating kgnbb_2045 at {6}

out(c, ~M) with ~M = pk(skuea_2040) at {8}

out(c, ~M_2190) with ~M_2190 = spk(skua_2041) at {10}

out(c, ~M_2262) with ~M_2262 = pk(skueb_2042) at {12}

insert keys(A,pk(skuea_2040)) at {15}

insert keys(B,pk(skueb_2042)) at {16}

The attacker has the message rand_a.

A trace has been found.

RESULT not attacker(rand_a[]) is false.

TRACE 2:

Starting query event(endUEB(A_107,B_108,K,rand_a_109,rand_b_110))

==> event(beginUEA(A_107,B_108,K,rand_a_109,rand_b_110))

goal reachable: end(endUEB(A[],B[],pk(skueb_37[]),rand_a[],

rand_b[]))

1. The attacker has some term hm3_7794.

attacker(hm3_7794).

2. The attacker has some term m3_7793.

attacker(m3_7793).

3. Using the function PublMsg the attacker may obtain PublMsg.

attacker(PublMsg).

Using the function 3-tuple the attacker may obtain (PublMsg,m3_7793,hm3_7794).

attacker((PublMsg,m3_7793,hm3_7794)).

5. The message (PublMsg,m3_7793,hm3_7794) that the attacker may have by 4 may be

received at input {63}.
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new ua_66: id creating ua_8130 at {57} in copy a_7802

new ub_67: id creating ub_8131 at {58} in copy a_7802

new dataname_68: id creating dataname_8132 at {59} in copy a_7802

out(c, ~M_8189) with ~M_8189 = sencrypt((ub_8131,dataname_8132,

pk(skueb_7803)),kgnbb_7808) at {62} in copy a_7802

in(c, (PublMsg,a_7800,a_7801)) at {63} in copy a_7802

event endUEB(A,B,pk(skueb_7803),rand_a,rand_b) at {64} in copy a_7802 (goal)

The event endUEB(A,B,pk(skueb_7803),rand_a,rand_b) is executed.

A trace has been found.

RESULT event(endUEB(A_107,B_108,K,rand_a_109,rand_b_110)) ==>

event(beginUEA(A_107,B_108,K,rand_a_109,rand_b_110)) is false.

TRACE 3:

event endUEB(A,B,pk(skueb_9980),rand_a,rand_b) at {64}

in copy a_9977 (goal)

The event endUEB(A,B,pk(skueb_9980),rand_a,rand_b) is

executed in session a_9977.

A trace has been found.

RESULT inj-event(endUEB(A_116,B_117,K_118,rand_a_119,rand_b_120))

==>inj-event(beginUEA(A_116,B_117,K_118,rand_a_119,rand_b_120))

is false.
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Appendix K

K.1 Protocols Transition
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UE|SMF|IDP|SPAAA|SS UE′|SMF′|IDP|SPAAA|SS UE′|SMF′|IDP|SPAAA|SS

UE′|SMF|IDP|SPAAA|SS

UE′|SMF|IDP|SPAAA|SS

UE′|SMF|IDP|SPAAA′|SS

UE′|SMF|IDP|SPAAA′|SS

UE′|SMF|IDP|SPAAA′|SS

UE′|SMF|IDP|SPAAA′|SS

UE′|SMF|IDP′|SPAAA′|SS

UE′|SMF|IDP′|SPAAA′|SSUE′|SMF|IDP|SPAAA′|SSUE′|SMF|IDP|SPAAA′|SS

UE′|SMF|IDP|SPAAA′|SS

UE′|SMF|IDP|SPAAA′|SS

UE′|SMF|IDP|SPAAA|SS

UE′|SMF|IDP|SPAAA|SS

UE′|SMF|IDP|SPAAA|SS′

UE′|SMF|IDP|SPAAA|SS′

UE′|SMF|IDP|SPAAA|SS

l1, l:UE→SMF l2, 1:SMF Decrypts

l3, 2:SMF→UE

l4, 2:UE Decrypts

l5, 3:UE→SPAAA

l6, 3:SPAAA Decrypts

l7, 4:SPAAA→UE

l8, 4:UE Decrypts

l9, 5:UE→IDP

l10, 5:IDP Decrypts

l11, 6:IDP→UEl12, 6:UE Decrypts

l13, 7:UE→SPAAA

l14, 7:SPAAA Decrypts

l15, 8:SPAAA→UE

l16, 8:UE Decrypts

l17, 9:UE→SS

l18, 9:SS Decrypts

l19, l0:SS→UE

l20, l0:UE Decrypts

Figure K.1: NS-FId State Transition System
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UE|SPAAA|SS UE′|SPAAA′|SS UE′|SPAAA′|SS UE′|SPAAA′|SS

UE′|SPAAA′|SS

UE′|SPAAA′|SS′

UE′|SPAAA′|SS′

UE′|SPAAA′|SS′

UE′|SPAAA′|SS′UE′|SPAAA′|SS′UE′|SPAAA′|SS′UE′|SPAAA|SS′

UE′|SPAAA|SS′

UE′|SPAAA|SS′

UE′|SPAAA|SS′

UE′|SPAAA|SS

l1, l:UE→SPAAA l2, 1:SPAAA Decrypts l3, 2:SPAAA→UE

l4, 2:UE Decrypts

l5, 3:UE→SS

l6, 3:SS Decrypts

l7, 4:SS→UE

l8, 4:UE Decrypts

l9, 5:UE→SPAAAl10, 5:SPAAA Decryptsl11, 6:SPAAA→UE

l12, 6:UE Decrypts

l13, 7:UE→SS

l14, 7:SS Decrypts

l15, 8:SS→UE

l16, 8:UE Decrypts

Figure K.2: DCSS State Transition System
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UEA|gNB|UEB UEA|gNB′|UEB
′ UEA|gNB′|UEB

′

UEA
′|gNB′|UEB

UEA
′|gNB|UEB

′

UEA
′|gNB|UEB

′

UEA
′|gNB|UEB

′

UEA
′|gNB|UEB

′UEA
′|gNB|UEB

′UEA
′|gNB|UEB

′

UEA
′|gNB|UEB

′

UEA
′|gNB|UEB

′

UEA
′|gNB|UEB

′

UEA|gNB|UEB
′

l1, l:UEA→ gNB l2, 1:gNB Decrypts

l3, 2:UEB→gNB

l4, 2:gNB Decrypts

l5, 3:gNB→UEA

l6, 3:UEA Decrypts

l7, 4:gNB→UEB

l8, 4:UEB Decryptsl9, 5:UEA→UEB

l10, 5:UEB Decrypts

l11, 6:UEB→UEA

l12, 6:UEA Decrypts

l13, 7:UEA→UEB

l14, 7:UEB Decrypts

Figure K.3: DDSec State Transition System
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UEB |UEC UEB
′|UEC

′ UEB
′|UEC

′

UEB
′|UEC

′

UEB
′|UEC

′

UEB
′|UEC

′UEB
′|UEC

′UEB
′|UEC

′

UEB |UEC′

l1, l:UEB→UEC l2, 2:UEC→UEB

l3, 2:UEB Decrypts

l4, 3:UEB→UEC

l5, 3:UEC Decrypts

l6, 4:UEC→UEBl7, 4:UEB Decrypts

l8, 5:UEB→UEC

l9, 5:UEC Decrypts

Figure K.4: DDACap State Transition System
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Appendix L

L.1 5G-AKA NS-3 Source Code

/*This file is part of a PhD NS-3 simulation experiment*/

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */

/* See GNU General Public License for more details.

*

* Author: Ed Kamya Kiyemba Edris

(Adapted from mmwave module.cc and authentictaion scheme)

* This program is distributed WITHOUT ANY WARRANTY.

*/

#include "ns3/core-module.h"

#include "ns3/point-to-point-module.h"

#include "ns3/network-module.h"

#include "ns3/applications-module.h"

#include "ns3/mobility-module.h"

#include "ns3/internet-module.h"

#include "ns3/netanim-module.h"

#include "ns3/flow-monitor-helper.h"

#include "ns3/mmwave-helper.h"

#include "ns3/point-to-point-helper.h"

#include "ns3/config-store-module.h"

#include "ns3/command-line.h"

#include "ns3/mmwave-point-to-point-epc-helper.h"

#include "ns3/ipv4-global-routing-helper.h"

#include "ns3/config-store.h"

#include "ns3/output-stream-wrapper.h"

using namespace ns3;

using namespace std;

using namespace mmwave;

static bool verbose = 0;

uint32_t M1 = 384, M2=448, M3 = 448, M4 = 1738, M5 = 928, M6=672, M7 = 256,
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M8 = 256, M9 = 192, M10=576, M11 = 512, M12 = 640;

char * stringbuilder( char* prefix, char* sufix){

char* buf = (char*)malloc(50);

snprintf(buf, 50, "%s%s", prefix, sufix);

return buf;

}

ApplicationContainer sendMessage(ApplicationContainer apps, double time,

Ptr<Node>source,Ptr<Node>sink, uint32_t packetSize){

Ipv4Address remoteAddress =sink->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal();

uint16_t port = 9; // well-known echo port number

uint32_t maxPacketCount = 1;

Time interPacketInterval = Seconds (20.);

UdpClientHelper client (remoteAddress, port);

client.SetAttribute ("MaxPackets", UintegerValue (maxPacketCount));

client.SetAttribute ("Interval", TimeValue (interPacketInterval));

client.SetAttribute ("PacketSize", UintegerValue (packetSize+12));

client.SetAttribute ("StartTime", TimeValue (Seconds (time)));

apps.Add(client.Install (source));

return apps;

}

ApplicationContainer authenticateA(ApplicationContainer appContainer, double time,

Ptr<Node> user, Ptr<Node> gateway ){

if (verbose){

std::cout<<"user:"<< user->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal ();

std::cout<<" gateway: "<< gateway->GetObject<Ipv4>()->GetAddress(1, 0).GetLocal();

}

return appContainer;

}

ApplicationContainer authenticateB(ApplicationContainer appContainer, double time,

Ptr<Node> user, Ptr<Node> gateway , Ptr<Node> gateway2 ){

if (verbose){

std::cout<<"user: "<< user->GetObject<Ipv4> ()->GetAddress(1, 0).GetLocal ();

std::cout<<" gateway:"<< gateway->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal();

std::cout<<"gateway2:"<< gateway2->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal

()<<std::endl;

}

return appContainer;

}

258



ApplicationContainer authenticateC(ApplicationContainer appContainer, double time,

Ptr<Node> UE, Ptr<Node> SEAF, Ptr<Node> AUSF, Ptr<Node> ARPF ){

if (verbose){

std::cout<<"UE:"<< UE->GetObject<Ipv4> ()->GetAddress(1, 0).GetLocal();

std::cout<<"SEAF: "<< SEAF->GetObject<Ipv4> ()->GetAddress(1, 0).GetLocal ();

std::cout<<" AUSF: "<< AUSF->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal

()<<std::endl;

std::cout<<" ARPF : "<< ARPF->GetObject<Ipv4>()->GetAddress (1, 0).GetLocal

()<<std::endl;

}

uint32_t M1 = 384, M2=448, M3 = 448, M4=1738, M5 = 928, M6=672, M7=256, M8=256,

M9 = 192, M10=576, M11 = 512, M12=640;

appContainer = sendMessage(appContainer, time, UE, SEAF, M1);

appContainer = sendMessage(appContainer, time, SEAF, AUSF, M2);

appContainer = sendMessage(appContainer, time, AUSF, ARPF, M3);

appContainer = sendMessage(appContainer, time, ARPF, AUSF, M4);

appContainer = sendMessage(appContainer, time, AUSF, SEAF, M5);

appContainer = sendMessage(appContainer, time, SEAF, UE, M6);

appContainer = sendMessage(appContainer, time, UE, SEAF, M7);

appContainer = sendMessage(appContainer, time, SEAF, AUSF, M8);

appContainer = sendMessage(appContainer, time, AUSF, SEAF, M9);

appContainer = sendMessage(appContainer, time, UE, SEAF, M10);

appContainer = sendMessage(appContainer, time, SEAF, AUSF, M11);

appContainer = sendMessage(appContainer, time, AUSF, ARPF, M12);

return appContainer;

}

NS_LOG_COMPONENT_DEFINE ("mmwaveMultipleHosts");

int

main (int argc, char *argv[])

{

LogComponentEnable ("mmwaveMultipleHosts", LOG_LEVEL_ALL);

LogComponentEnable ("UdpClient", LOG_LEVEL_INFO);

LogComponentEnable ("PacketSink", LOG_LEVEL_INFO);

LogComponentEnable ("BulkSendApplication", LOG_LEVEL_INFO);

uint16_t serverNode1 = 1;

uint16_t serverNode2 = 1;

uint16_t numberOfNodes = 2;

double interPacketInterval = 100;

double minDistance = 10.0; // eNB-UE distance in meters

double maxDistance = 150.0; // eNB-UE distance in meters

bool harqEnabled = true;

bool rlcAmEnabled = false;

uint32_t stopTime = 2400;

bool verbose = 0;
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bool enablePcap = 0;

bool enableAnim = 0;

bool verifyResults = 0; //used for regression

char saveFilePrefix[50] ;

bool tracing = true; // change to true if want pcap capture

// Command line arguments

CommandLine cmd;

cmd.AddValue("numberOfNodes", "Number of enbNodes + UE pairs", numberOfNodes);

cmd.AddValue

("interPacketInterval", "Inter-packet interval [us])", interPacketInterval);

cmd.AddValue ("harq", "Enable Hybrid ARQ", harqEnabled);

cmd.AddValue ("rlcAm", "Enable RLC-AM", rlcAmEnabled);

cmd.AddValue ("AUSF", "server node", serverNode1);

cmd.AddValue ("ARPF", "server node", serverNode2);

cmd.AddValue ("p", "Enable/disable pcap file generation", enablePcap);

cmd.AddValue ("a","Enable/disable xml gneration for netanim-module",enableAnim);

cmd.AddValue ("o", "Show output end of the siUElation", verifyResults);

cmd.AddValue ("v", "Verbose mode.", verbose);

cmd.AddValue ("s", "Define the prefix for .pcap anf .xml files. Default: 5GAKA ",

saveFilePrefix);

cmd.AddValue ("tracing", "Enable pcap tracing", tracing);

cmd.Parse(argc, argv);

if (stopTime < 2)

{

std::cout << "Use a simulation stop time >= 2 seconds" << std::endl;

exit (1);

}

std::cout << "UE="<< numberOfNodes <<", SEAF="<< numberOfNodes <<", AUSF="<<

serverNode1 << ", ARPF="<< serverNode2 <<std::endl;

if (verbose)

{

LogComponentEnable ("mmwaveMultipleHosts", LOG_LEVEL_ALL);

LogComponentEnable("UdpClient", LOG_LEVEL_INFO);

LogComponentEnable("UdpServer", LOG_LEVEL_INFO);

LogComponentEnable ("PacketSink", LOG_LEVEL_INFO);

Config::SetDefault ("ns3::MmWaveHelper::RlcAmEnabled",BooleanValue(rlcAmEnabled));

Config::SetDefault ("ns3::MmWaveHelper::HarqEnabled",BooleanValue (harqEnabled));

Config::SetDefault ("ns3::MmWaveFlexTtiMacScheduler::HarqEnabled", BooleanValue

(harqEnabled));

Config::SetDefault ("ns3::LteRlcAm::ReportBufferStatusTimer", TimeValue

(MicroSeconds (100.0)));
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Config::SetDefault ("ns3::LteRlcUmLowLat::ReportBufferStatusTimer", TimeValue

(MicroSeconds (100.0)));

Ptr<MmWaveHelper> mmwaveHelper = CreateObject<MmWaveHelper> ();

mmwaveHelper->SetSchedulerType ("ns3::MmWaveFlexTtiMacScheduler");

Ptr<MmWavePointToPointEpcHelper>epcHelper = CreateObject

<MmWavePointToPointEpcHelper> ();

mmwaveHelper->SetEpcHelper (epcHelper);

mmwaveHelper->SetHarqEnabled (harqEnabled);

ConfigStore inputConfig;

inputConfig.ConfigureDefaults ();

// parse again so you can override default values from the command line

cmd.Parse(argc, argv);

// Create remote hosts and install Internet Stack

NodeContainer remoteHosts;

remoteHosts.Create (numberOfNodes);

InternetStackHelper internetStack;

internetStack.Install (remoteHosts);

NodeContainer ueNodes;

NodeContainer enbNodes;

enbNodes.Create(1);

ueNodes.Create(numberOfNodes);

//Create a router

Ptr<Node> router = CreateObject<Node> ();

internetStack.Install (router);

// Create the PGW

Ptr<Node> pgw = epcHelper->GetPgwNode ();

// Create p2p links

PointToPointHelper p2ph;

p2ph.SetDeviceAttribute ("DataRate", DataRateValue (DataRate ("100Gb/s")));

p2ph.SetDeviceAttribute ("Mtu", UintegerValue (1500));

p2ph.SetChannelAttribute ("Delay", TimeValue (Seconds (0.010)));

//Install link between PGW and Router

NetDeviceContainer pgwRouterDevices = p2ph.Install (pgw, router);

NetDeviceContainer remoteHostsDevices;

NetDeviceContainer routerDevices;

for (uint16_t u = 0; u < numberOfNodes; u++)

{
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NetDeviceContainer c = p2ph.Install (router, remoteHosts.Get (u));

routerDevices.Add (c.Get(0));

remoteHostsDevices.Add (c.Get(1));

}

// Assigning Ipv4 Addresses

Ipv4InterfaceContainer routerInterfaces;

Ipv4InterfaceContainer remoteHostsInterfaces;

Ipv4AddressHelper pgwRouterIpv4 ("192.168.0.0", "255.255.0.0");

Ipv4InterfaceContainer pgwRouterInterfaces=pgwRouterIpv4.Assign(pgwRouterDevices);

Ipv4AddressHelper internetIpv4 ("1.0.0.0", "255.0.0.0");

for (uint16_t r = 0; r < remoteHosts.GetN(); ++r)

{

NetDeviceContainer ndc;

ndc.Add (remoteHostsDevices.Get (r));

ndc.Add (routerDevices.Get (r));

//ndc.Add (pgwDevices.Get (r));

Ipv4InterfaceContainer ifc = internetIpv4.Assign (ndc);

remoteHostsInterfaces.Add (ifc.Get (0));

routerInterfaces.Add (ifc.Get (1));

}

Ipv4StaticRoutingHelper ipv4RoutingHelper;

Ptr<OutputStreamWrapper> stream =Create<OutputStreamWrapper> (&std::clog);

uint16_t j = 2;

for (uint16_t u = 0; u < numberOfNodes; u++)

{

stringstream ss;

ss << u + j;

string addr = "1.0.0." + ss.str();

Ptr<Ipv4StaticRouting>remoteHostStaticRouting = ipv4RoutingHelper.GetStaticRouting

(remoteHosts.Get(u)->GetObject<Ipv4>());

remoteHostStaticRouting->AddNetworkRouteTo (Ipv4Address ("7.0.0.0"),Ipv4Mask

("255.0.0.0"), Ipv4Address(addr.c_str()), 1);

remoteHostStaticRouting->PrintRoutingTable(stream);

j++;

}

Ptr<Ipv4StaticRouting> routerStaticRouting = ipv4RoutingHelper.GetStaticRouting

(router->GetObject<Ipv4> ());

routerStaticRouting->AddNetworkRouteTo (Ipv4Address ("7.0.0.0"), Ipv4Mask

("255.0.0.0"), Ipv4Address("192.168.0.1"), 1);

routerStaticRouting->PrintRoutingTable(stream);

Ptr<Ipv4StaticRouting> pgwStaticRouting = ipv4RoutingHelper.GetStaticRouting

(pgw->GetObject<Ipv4> ());

pgwStaticRouting->AddNetworkRouteTo(Ipv4Address ("1.0.0.0"),Ipv4Mask("255.0.0.0"),
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Ipv4Address("192.168.0.2"), 2);

pgwStaticRouting->PrintRoutingTable(stream);

Ptr<Ipv4> ipv4 = pgw->GetObject<Ipv4>();

uint32_t ifaces = ipv4->GetNInterfaces();

for (uint32_t u = 0; u < remoteHosts.GetN (); ++u)

{

ipv4 = remoteHosts.Get (u)->GetObject<Ipv4>();

ifaces = ipv4->GetNInterfaces();

for (uint32_t i = 0; i < ifaces; i++)

{

Ipv4InterfaceAddress iaddr = ipv4->GetAddress(i,0);

NS_LOG_INFO("AUSF"<< "\t iface:" <<i << "\tip:" <<iaddr.GetLocal());

NS_LOG_INFO("ARPF"<< "\t iface:" <<i << "\tip:" <<iaddr.GetLocal());

}

}

ipv4 = router->GetObject<Ipv4>();

ifaces = ipv4->GetNInterfaces();

for (uint32_t i = 0; i < ifaces; i++)

{

Ipv4InterfaceAddress iaddr = ipv4->GetAddress(i,0);

NS_LOG_INFO("Router \t iface:" << i << "\tip:" << iaddr.GetLocal());

}

ipv4 = pgw->GetObject<Ipv4>();

ifaces = ipv4->GetNInterfaces();

for (uint32_t i = 0; i < ifaces; i++)

{

Ipv4InterfaceAddress iaddr = ipv4->GetAddress(i,0);

NS_LOG_INFO("SEAF \t iface:" << i << "\tip:" << iaddr.GetLocal());

}

// Install Mobility Model

Ptr<ListPositionAllocator> enbPositionAlloc=CreateObject<ListPositionAllocator>();

enbPositionAlloc->Add (Vector (0.0, 0.0, 0.0));

MobilityHelper enbmobility;

enbmobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");

enbmobility.SetPositionAllocator (enbPositionAlloc);

enbmobility.Install (enbNodes);

MobilityHelper uemobility;

Ptr<ListPositionAllocator> uePositionAlloc=CreateObject<ListPositionAllocator>();

Ptr<UniformRandomVariable> distRv=CreateObject<UniformRandomVariable>();

for (unsigned i = 0; i < numberOfNodes; i++)

{

double dist = distRv->GetValue (minDistance, maxDistance);

uePositionAlloc->Add (Vector (dist, 0.0, 0.0));

}

uemobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");

uemobility.SetPositionAllocator (uePositionAlloc);
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uemobility.Install (ueNodes);

// Install mmWave Devices to the nodes

NetDeviceContainer enbmmWaveDevs = mmwaveHelper->InstallEnbDevice (enbNodes);

NetDeviceContainer uemmWaveDevs = mmwaveHelper->InstallUeDevice (ueNodes);

// Install the IP stack on the UEs

internetStack.Install (ueNodes);

Ipv4InterfaceContainer ueIpIface;

ueIpIface = epcHelper->AssignUeIpv4Address (NetDeviceContainer (uemmWaveDevs));

for (uint32_t u = 0; u < ueNodes.GetN (); ++u)

{

Ptr<Ipv4StaticRouting> ueStaticRouting = ipv4RoutingHelper.GetStaticRouting

(ueNodes.Get (u)->GetObject<Ipv4> ());

ueStaticRouting->SetDefaultRoute (epcHelper->GetUeDefaultGatewayAddress (), 1);

ueStaticRouting->PrintRoutingTable(stream);

}

for (uint32_t u = 0; u < ueNodes.GetN (); ++u)

{

Ptr<Ipv4> ipv4 = ueNodes.Get (u)->GetObject<Ipv4>();

uint32_t ifaces = ipv4->GetNInterfaces();

for (uint32_t i = 0; i < ifaces; i++)

{

Ipv4InterfaceAddress iaddr = ipv4->GetAddress(i,0);

NS_LOG_INFO("UE " << "\t iface:" << i << "\tip:" << iaddr.GetLocal());

}

}

for (uint16_t i = 0; i < numberOfNodes; i++)

{

//mmwaveHelper->AttachToClosestEnb (uemmWaveDevs.Get(i), enbmmWaveDevs.Get(0));

mmwaveHelper->AttachToClosestEnb (uemmWaveDevs, enbmmWaveDevs);

}

uint16_t port = 9;

ApplicationContainer clientApps;

ApplicationContainer serverApps;

UdpServerHelper dlClientHelper(port);

for (uint16_t u = 0; u < remoteHosts.GetN (); ++u){

serverApps.Add(dlClientHelper .Install (remoteHosts.Get (u)));

}

for (uint16_t u = 0; u < remoteHosts.GetN (); ++u){

serverApps.Add(dlClientHelper .Install (remoteHosts.Get (u)));

}

for (uint16_t u = 0; u < enbNodes.GetN (); ++u){

serverApps.Add(dlClientHelper.Install (enbNodes.Get (u)));

}

double time = 1;
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for (uint16_t i = 0; i < ueNodes.GetN (); ++i){

Ptr<Node> user = ueNodes.Get (i);

for (uint16_t u = i; u < serverNode1; u+=numberOfNodes

){

Ptr<Node> UE = ueNodes.Get (u);

Ptr<Node> ARPF = remoteHosts.Get (u);

Ptr<Node> SEAF = enbNodes.Get (u);

Ptr<Node> AUSF = remoteHosts.Get (u);

if(u == 0){

clientApps = authenticateA(clientApps, time , user, SEAF);

}else{

clientApps = authenticateB(clientApps, time , user, enbNodes.Get (0), SEAF);

}

clientApps = authenticateC(clientApps, time, UE, SEAF, ARPF, AUSF);

}

serverApps.Add( dlClientHelper.Install (user));

}

serverApps.Start (Seconds (0.0));

serverApps.Stop (Seconds (stopTime+1));

//started induvugualy

clientApps.Stop (Seconds (stopTime+1));

std::cout <<"Setup Complete."<<std::endl;

if (verbose){

std::cout <<"servers stops at "<<stopTime+1<<std::endl;

std::cout <<"final transmission scheduled at "<<(time-.33)<<std::endl;

std::cout << "server apps installed till now :"<<serverApps.GetN ()<< std::endl;

std::cout << "client apps installed till now :"<<clientApps.GetN ()<< std::endl;

}

snprintf(saveFilePrefix, 50, "5GAKA_%dx%dx%dx%d_", numberOfNodes, numberOfNodes,

serverNode1, serverNode2);

mmwaveHelper->EnableTraces ();

if (tracing == true)

{

p2ph.EnablePcap ("5gaka", uemmWaveDevs.Get (0));

p2ph.EnablePcap ("5gaka", enbmmWaveDevs.Get (0));

p2ph.EnablePcap ("5gaka", remoteHostsDevices.Get (0),true);

}

//Trace file

AsciiTraceHelper ascii;

p2ph.EnableAsciiAll(ascii.CreateFileStream("5gaka.tr"));
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//Animation

if(enableAnim) {

AnimationInterface anim (stringbuilder(saveFilePrefix,(char*)"-animation.xml"));

// Mandatory

for (uint16_t i = 0; i < ueNodes.GetN (); ++i)

{

anim.UpdateNodeDescription (ueNodes.Get (i), "UE"); // Optional

anim.UpdateNodeColor (ueNodes.Get (i), 255, 0, 0); // Optional

}

for (uint16_t i = 0; i < remoteHosts.GetN (); ++i)

{

anim.UpdateNodeDescription (remoteHosts.Get (i), "ARPF"); // Optional

anim.UpdateNodeColor (remoteHosts.Get (i), 255, 255, 0); // Optional

}

for (uint16_t i = 0; i < enbNodes.GetN (); ++i)

{

anim.UpdateNodeDescription (enbNodes.Get (i), "Gateway"); // Optional

anim.UpdateNodeColor (enbNodes.Get (i), 0, 255, 0); // Optional

}

anim.EnablePacketMetadata (); // Optional/

anim.EnableWifiMacCounters (Seconds (0), Seconds (10)); //Optional

anim.EnableWifiPhyCounters (Seconds (0), Seconds (10)); //Optional

}

Ptr<FlowMonitor> flowMonitor;

FlowMonitorHelper flowHelper;

flowMonitor = flowHelper.InstallAll();

Simulator::Stop (Seconds (stopTime+1));

NS_LOG_INFO("Starting...");

Simulator::Run();

Simulator::Destroy();

flowMonitor->SerializeToXmlFile(stringbuilder(saveFilePrefix,(char*)"

_flowMonitor.xml"), true, true); //true, true

uint32_t bytes_received = 0, totalPacketsThrough;

for (uint32_t i = 0; i < serverApps.GetN(); ++i){

totalPacketsThrough=DynamicCast<UdpServer> (serverApps.Get(i))->GetReceived();;

bytes_received += totalPacketsThrough;

}

std::cout <<"Total packets received ("<< "UE="<< numberOfNodes <<", SEAF="<<

numberOfNodes <<", AUSF="<< serverNode1 << ", ARPF="<< serverNode2 << ") : "<<

bytes_received << std::endl;

NS_LOG_INFO("\ndone!");

return 0;

}
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L.2 SAP-AKA NS-3 Code Excerpt

static bool verbose = 0;

uint32_t M1 = 224, M2=512, M3 = 352, M4 = 32, M5 = 64, M6=1104, M7 = 592, M8=224,

M9 = 32;

ApplicationContainer authenticateC(ApplicationContainer appContainer, double time,

Ptr<Node> UE, Ptr<Node> SMF, Ptr<Node> SPAAA, Ptr<Node> SS ){

if (verbose){

std::cout<<"UE: "<< UE->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal ();

std::cout<<"SMF: "<< SMF->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal ();

std::cout<<" SPAAA: "<< SPAAA->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal

()<<std::endl;

std::cout<<" SS: "<< SS->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal

()<<std::endl;

}

uint32_t M1 = 224, M2=512, M3 = 352, M4 = 32, M5 = 64, M6=1104, M7 = 592, M8=224,

M9 = 32;

appContainer = sendMessage(appContainer, time, UE, SMF, M1);

appContainer = sendMessage(appContainer, time, SMF, UE, M2);

appContainer = sendMessage(appContainer, time, UE, SPAAA, M3);

appContainer = sendMessage(appContainer, time, SPAAA, UE, M4);

appContainer = sendMessage(appContainer, time, UE, SPAAA, M5);

appContainer = sendMessage(appContainer, time, SPAAA, UE, M6);

appContainer = sendMessage(appContainer, time, UE, SPAAA, M7);

appContainer = sendMessage(appContainer, time, SPAAA, UE, M8);

appContainer = sendMessage(appContainer, time, SPAAA, SMF, M9);

return appContainer;

}

int

main (int argc, char *argv[])

{

uint32_t numUe = 1;

uint32_t numEnb = 1;

uint32_t serverNodes = 4;

CommandLine cmd;

cmd.AddValue ("UE", "number of UEs", numUE);

cmd.AddValue ("SMF", " number of functions", numEnb);

cmd.AddValue ("SPAAA", "number of server nodes", serverNodes);

cmd.AddValue ("s", "Define the prefix for .pcap anf .xml files. Default:SAPAKA ",

saveFilePrefix);

snprintf(saveFilePrefix, 50, "SAPAKA_%dx%dx%d_", numUe, numEnb, serverNodes);
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//Enable Pcap File

if (tracing == true)

{

phy.EnablePcap ("sapaka", uemmwaveDevs.Get (0));

phy.EnablePcap ("sapaka", enbmmwaveDevs.Get (0));

phy.EnablePcap ("sapaka", remoteHostsDevices.Get (0),true);

}

//Creating trace file

AsciiTraceHelper ascii;

phy.EnableAsciiAll(ascii.CreateFileStream("sapaka.tr"));

std::cout <<"Total packets received ("<< "UE="<< mnumUe <<", SMF="<< numEnb <<",

SPAAA="<< serverNodes << ") : "<< bytes_received << std::endl;

return 0;

}

L.3 NS-FId NS-3 Code Excerpt

static bool verbose = 0;

uint32_t M1 = 224, M2=448, M3 = 416, M4 = 480, M5 = 480, M6= 1088, M7=512, M8=896,

M9 = 512, M10 = 416;

ApplicationContainer authenticateC(ApplicationContainer appContainer, double time,

Ptr<Node> UE, Ptr<Node> SMF, Ptr<Node> SPAAA, Ptr<Node> IDP, Ptr<Node> SS ){

if (verbose){

std::cout<<"UE: "<< UE->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal ();

std::cout<<"SMF: "<< SMF->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal ();

std::cout<<" IDP: "<< IDP->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal

()<<std::endl;

std::cout<<" SPAAA: "<< SPAAA->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal

()<<std::endl;

}

uint32_t M1 = 224, M2=448, M3 = 416, M4=480, M5 = 480, M6= 1088, M7=512, M8=896,

M9 = 512, M10 = 416;

appContainer = sendMessage(appContainer, time, UE, SMF, M1);

appContainer = sendMessage(appContainer, time, SMF, UE, M2);

appContainer = sendMessage(appContainer, time, UE, SPAAA, M3);

appContainer = sendMessage(appContainer, time, SPAAA, UE, M4);

appContainer = sendMessage(appContainer, time, UE, IDP, M5);

appContainer = sendMessage(appContainer, time, IDP, UE, M6);

appContainer = sendMessage(appContainer, time, SPAAA, UE, M7);

appContainer = sendMessage(appContainer, time, SPAAA, UE, M8);

appContainer = sendMessage(appContainer, time, UE, SS, M9);

appContainer = sendMessage(appContainer, time, SS, UE, M10);

return appContainer;
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}

int

main (int argc, char *argv[])

{

uint32_t numUe = 1;

uint32_t numEnb = 1;

uint32_t serverNodes = 3;

CommandLine cmd;

cmd.AddValue ("UE", "number of UE", numUe);

cmd.AddValue ("SMF", "number of functions", numEnb);

cmd.AddValue ("IDP", "number of servers nodes", serverNodes);

cmd.AddValue ("SPAAA", "number of server nodes", serverNodes);

cmd.AddValue ("SS", "number of server nodes", serverNodes);

std::cout << "UE="<< numUe <<", SMF="<< numEnb <<", IDP="<< serverNodes << ",

SPAAA="<< serverNodes << ", SS="<< serverNodes <<std::endl;

snprintf(saveFilePrefix, 50, "NSFID_%dx%dx%d_", numUe, numEnb, serverNodes);

//Enable pcap file

if (tracing == true)

{

phy.EnablePcap ("nsfid", uemmwaveDevs.Get (0));

phy.EnablePcap ("nsfid", remoteHostDevs_SPAAA.Get (0));

phy.EnablePcap ("nsfid", remoteHostsDevices_IDP.Get (0));

phy.EnablePcap ("nsfid", remoteHostsDevicess_SS.Get (0));

phy.EnablePcap ("nsfid", enbmmwaveDevs.Get (0),true);

}

//Trace file

AsciiTraceHelper ascii;

phy.EnableAsciiAll(ascii.CreateFileStream("nsfid.tr"));

std::cout <<"Total packets received ("<< "UE="<< numUe <<", SMF="<< numEnb <<",

IDP="<< serverNodes << ", SPAAA="<< serverNodes << ",SS="<< serverNodes << ") :

"<< bytes_received << std::endl;

return 0;

}

L.4 DCSS NS-3 Code Excerpt

static bool verbose = 0;

uint32_t M1 = 736, M2=576, M3 = 576, M4 = 480, M5=288, M6= 512, M7 = 512, M8=416;

ApplicationContainer authorize(ApplicationContainer appContainer, double time,

Ptr<Node> UE, Ptr<Node> SMF, Ptr<Node> SPAAA, Ptr<Node> SS ){
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if (verbose){

std::cout<<"UE : "<< UE->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal ();

std::cout<<"SMF : "<< SMF->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal ();

std::cout<<" SPAAA : "<< SPAAA->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal

()<<std::endl;

std::cout<<" SS : "<< SS->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal

()<<std::endl;

}

uint32_t M1 = 736, M2=576, M3 = 576, M4=480, M5 = 288, M6= 512, M7 = 512, M8=416;

appContainer = sendMessage(appContainer, time, UE, SPAAA, M1);

appContainer = sendMessage(appContainer, time, SPAAA, UE, M2);

appContainer = sendMessage(appContainer, time, UE, SS, M3);

appContainer = sendMessage(appContainer, time, SS, UE, M4);

appContainer = sendMessage(appContainer, time, UE, SPAAA, M5);

appContainer = sendMessage(appContainer, time, SPAAA, UE, M6);

appContainer = sendMessage(appContainer, time, UE, SS, M7);

appContainer = sendMessage(appContainer, time, SS, UE, M8);

return appContainer;

}

int

main (int argc, char *argv[])

{

uint16_t numEnb = 1;

uint16_t numUe = 1;

uint32_t serverNode1 = 1;

uint32_t serverNode2 = 1;

// Command line arguments

CommandLine cmd;

cmd.AddValue ("SEAF", "Number of functions", numEnb);

cmd.AddValue ("UE", "Number of UEs", numUe);

cmd.AddValue ("SPAAA", "number of server nodes", remoteHostServer);

cmd.AddValue ("SS", "number of server nodes", remoteHostServer1);

cmd.AddValue ("s", "Define the prefix for .pcap anf .xml files. Default: DCSS ",

saveFilePrefix);

std::cout << "UE="<< numUe <<", SPAAA="<< serverNode1 << ", SS="<< serverNode2

<<std::endl;

// Enable PCAP tracing

if (tracing == true)

{

p2ph.EnablePcap ("dcss", uemmWaveDevs.Get (0));

p2ph.EnablePcap ("dcss", enbmmWaveDevs.Get (0));
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p2ph.EnablePcap ("dcss", remoteHostsDevices.Get (0), true);

}

// Trace file

AsciiTraceHelper ascii;

p2ph.EnableAsciiAll(ascii.CreateFileStream("dcss.tr"));

std::cout <<"Total packets received ("<< "UE="<< numUe <<", SEAF="<< numEnb <<",

SPAAA="<< serverNode1<< ", SS="<< serverNode2<< "): "<< bytes_received<<std::endl;

return 0;

}

L.5 DDSec NS-3 Code Excerpt

static bool verbose = 0;

uint32_t M1 = 1312, M2=1056, M3 = 800, M4 = 1056, M5 = 1200, M6=1296, M7 = 1184;

ApplicationContainer authenticateC(ApplicationContainer appContainer, double time,

Ptr<Node> UEA, Ptr<Node> gNB, Ptr<Node> UEB){

if (verbose){

std::cout<<"UE: "<< UEA->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal ();

std::cout<<"gNB: "<< gNB->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal ();

std::cout<<" UEB: "<< UEB->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal

()<<std::endl;

}

uint32_t M1 = 1312, M2=1056, M3 = 800, M4 = 1056, M5 = 1200, M6=1296, M7 = 1184;

appContainer = sendMessage(appContainer, time, UEA, gNB, M1);

appContainer = sendMessage(appContainer, time, UEB, gNB, M2);

appContainer = sendMessage(appContainer, time, gNB, UEA, M3);

appContainer = sendMessage(appContainer, time, gNB, UEB, M4);

appContainer = sendMessage(appContainer, time, UEA, UEB, M5);

appContainer = sendMessage(appContainer, time, UEB, UEA, M6);

appContainer = sendMessage(appContainer, time, UEA, UEB, M7);

return appContainer;

}

int

main (int argc, char *argv[])

{

uint32_t numUe = 2;

uint32_t numEnb = 1;

uint32_t serverNodes = 1;

CommandLine cmd;

cmd.AddValue ("UEA", "number of UE", numUe);

cmd.AddValue ("UEB", "number of UE", numUe);
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cmd.AddValue ("gNB", "number of eNB", numEnb);

cmd.AddValue ("SN1", "number of server nodes", serverNodes);

std::cout << "UEA="<< numUe <<", gNB="<< numEnb <<", UEB="<< numUe <<std::endl;

snprintf(saveFilePrefix, 50, "DDSEC_%dx%dx%d_", numUE, numEnb, serverNodes);

// Enable Pcap capture

if (tracing == true)

{

phy.EnablePcap ("ddsec", uemmmwaveDevs.Get (0));

phy.EnablePcap ("ddsec", enbmmwaveDevs.Get (0));

phy.EnablePcap ("ddsec", remoteHostsDevices.Get (0),true);

}

// Trace file

AsciiTraceHelper ascii;

phy.EnableAsciiAll(ascii.CreateFileStream("ddsec.tr"));

}

std::cout <<"Total packets received ("<< "UEA="<< numUe <<", gNB="<< numEnb <<",

UEB="<< serverNodes << ") : "<< bytes_received << std::endl;

return 0;

}

L.6 DDACap NS-3 Code Excerpt

static bool verbose = 0;

uint32_t M1 = 1056, M2=1056, M3 = 1168, M4 = 1296, M5 = 1184;

ApplicationContainer authenticateC(ApplicationContainer appContainer,double time,

Ptr<Node> UEB, Ptr<Node> gNB, Ptr<Node> UEC){

if (verbose){

std::cout<<"UE: "<< UEB->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal ();

std::cout<<"gNB: "<< gNB->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal ();

std::cout<<" UEC: "<< UEC->GetObject<Ipv4> ()->GetAddress (1, 0).GetLocal

()<<std::endl;

}

uint32_t M1 = 1056, M2=1056, M3 = 1168, M4 = 1296, M5 = 1184;

appContainer = sendMessage(appContainer, time, UEB, UEC, M1);

appContainer = sendMessage(appContainer, time, UEC, UEB, M2);

appContainer = sendMessage(appContainer, time, UEB, UEC, M3);

appContainer = sendMessage(appContainer, time, UEC, UEB, M4);

appContainer = sendMessage(appContainer, time, UEB, UEC, M5);
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return appContainer;

}

int

main (int argc, char *argv[])

{

uint32_t numUe = 2;

uint32_t numEnb = 1;

uint32_t serverNodes = 1;

CommandLine cmd;

cmd.AddValue ("UE", "number of UEs", numUE);

cmd.AddValue ("gNB", "number of eNB", numEnb);

cmd.AddValue ("SN1", "number of server nodes", serverNodes);

cmd.AddValue ("s", "Define the prefix for .pcap anf .xml files. Default: DDACAP ",

saveFilePrefix);

snprintf(saveFilePrefix, 50, "DDACAP_%dx%dx%d_", numUe, numEnb, serverNodes);

//Enable Pcap capture

if (tracing == true)

{

phy.EnablePcap ("ddacap", uemmWaveDevs.Get (0));

phy.EnablePcap ("ddacap", enbmmWaveDevs.Get (0));

phy.EnablePcap ("ddacap", remoteHostsDevices.Get (0),true);

}

std::cout <<"Total packets received ("<< "UEB="<< numUe <<",

UEC="<< serverNodes << ") : "<< bytes_received << std::endl;

return 0;

}
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Appendix M

M.1 NS-3 Simulation Output

Figure M.1: 5G-AKA simulation results

Figure M.2: SAP-AKA simulation results

Figure M.3: DCSS simulation results
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Figure M.4: DDSec simulation results

Figure M.5: DDACAp simulation results
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Appendix N

N.1 NS-3 Simulation Performance Results

(a) Throughput (b) Latency

Figure N.1: Communication Cost for SAP-AKA Protocol
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(a) Throughput (b) Latency

Figure N.2: Communication Cost for DCSS Protocol

(a) Throughput (b) Latency

Figure N.3: Communication Cost for DDSec Protocol

(a) Throughput (b) Latency

Figure N.4: Communication Cost for DDACap Protocol
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