
Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi

Automated Security Testing for Identity Management
of Large-scale Digital Infrastructures

by

Andrea Bisegna

Theses Series DIBRIS-TH-2023-XX

DIBRIS, Università di Genova
Via Opera Pia, 13 16145 Genova, Italy https://www.dibris.unige.it/

Università degli Studi di Genova

Dipartimento di Informatica, Bioingegneria,

Robotica ed Ingegneria dei Sistemi

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

Automated Security Testing for Identity
Management

of Large-scale Digital Infrastructures

by

Andrea Bisegna

May, 2023

Dottorato di Ricerca in Informatica ed Ingegneria dei Sistemi
Indirizzo Informatica

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università degli Studi di Genova

DIBRIS, Univ. di Genova
Via Opera Pia, 13

I-16145 Genova, Italy
https://www.dibris.unige.it/

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

(S.S.D. INF/01)

Submitted by Andrea Bisegna
DIBRIS, University of Genoa, Genoa (Italy)
Center for Cybersecurity, FBK, Trento (Italy)

Date of submission: May 2023

Title: Automated Security Testing for Identity Management of Large-scale Digital
Infrastructures

Advisor: Silvio Ranise
Director, Center for Cybersecurity, FBK, Trento (Italy)

Full professor, Department of Mathematics, University of Trento, Trento (Italy)

Co-Advisor: Roberto Carbone
Head of Unit Security and Trust, Center for Cybersecurity, FBK, Trento (Italy)

Ext. Reviewers: Luca Compagna?, Jorge Cuéllar�
? Dr., Senior Scientist / Research Architect
SAP Security Research, Mougins (France)

� Professor, Department of Informatics and Mathematics
Universität Passau, Bavaria (Germany)

Abstract

Ensuring the security of an organization’s digital assets against cyber threats is critical
in today’s technology-driven world. Regular security testing is one of the measures
that can help assess the effectiveness of security controls, identify vulnerabilities, and
strengthen the overall cybersecurity posture. Identity Management (IdM) protocols
such as Security Assertion Markup Language 2.0, OpenID Connect, and OAuth 2.0
play a crucial role in protecting against identity theft, fraud, and security breaches.
Also, following the Best Current Practices introduced by the standards to enhance the
security of IdM protocols is essential to minimize the risk of unauthorized access,
data breaches, and other security threats and to maintain compliance with regula-
tory requirements, and build trust with users and stakeholders. However, deploying
these protocols can be challenging due to the complexity in designing, developing and
implementing cryptographic mechanisms. The implementation of IdM protocols en-
counters three significant obstacles: fragmented security information, rapidly evolving
threat environment, and the need for a controlled testing environment. Security testers
must stay up-to-date with emerging threats and establish an appropriate testing infras-
tructure to guarantee the security and robustness of IdM implementations, while also
minimizing the possibility of security incidents that could adversely affect operations.
Automated security testing plays a crucial role in addressing security concerns, partic-
ularly as the intricate functional aspects of IdM solutions contribute to their complex-
ity. It is essential to prioritize automation to bridge the cybersecurity skills gap among
IT professionals.

In this thesis, we propose Micro-Id-Gym (MIG), a framework that offers (i) an easy
way to configure and reproduce the IdM production environment in a sandbox, al-
lowing hands-on experiences with potentially impactful security tests that may winder
availability of services and (ii) automatic security testing of IdM implementations to-
gether with suggestions for mitigations to avoid identified vulnerabilities. MIG pro-
vides a set of security testing tools for creating, executing, and analyzing security
test cases through MIG-L, a declarative test specification language. We have evalu-

1

ated the effectiveness of MIG by conducting experiments to assess the accuracy in
supporting detection of relevant vulnerabilities in the implementation of IdM proto-
cols. We utilized MIG to conduct security analyses across various corporate scenarios
and projects, identifying vulnerabilities and responsibly disclosing them through bug
bounty programs. Our findings were recognized by the providers, who awarded us
both monetary compensation and public recognition. Overall, MIG can help orga-
nizations establish a robust and agile security testing strategy, supported by suitable
infrastructure and testing procedures, that can ensure the security and resilience of
their IdM implementations.

2

Contents

List of Figures 7

List of Listings 9

List of Tables 11

Glossary 12

Chapter 1 Introduction 13

1.1 Context and Motivations . 13

1.2 Goals and Contributions . 16

1.3 Thesis Structure . 18

Chapter 2 Background 21

2.1 Security and Penetration Testing . 21

2.2 Threat Model . 22

2.3 Identity Management Protocols . 23

2.3.1 SAML v2.0 Web Browser SSO Profile 23

2.3.2 OAuth 2.0 . 24

2.3.3 OpenID Connect . 26

Chapter 3 A Declarative Approach to Security Testing of IdM Protocols 27

3

3.1 Suggesting mitigations of automated security testing of IdM protocols based on
standards . 27

3.2 Overview of the proposed approach . 29

3.3 MIG-L: a declarative language for Security Testing 34

3.3.1 Session Example . 35

3.3.2 Session Details . 38

3.3.3 MIG-L Syntax . 40

3.3.4 MIG-L Semantics . 49

3.3.5 Machine Readable Specification of Testsuite 63

Chapter 4 Micro-Id-Gym Design 67

4.1 Overview . 67

4.2 MIG Backend . 68

4.3 Dashboard . 69

4.4 MIG Frontend . 70

4.4.1 Proxy . 71

4.4.2 MIG Tool . 71

4.4.3 MIG Drawer . 72

4.4.4 MIG STIX Visualizer . 73

4.5 MIG in DevSecOps . 74

Chapter 5 Micro-Id-Gym Implementation 76

5.1 Overview . 76

5.2 MIG Backend . 77

5.2.1 Client and Identity Provider repositories 77

5.2.2 STIX Repositories . 78

5.3 Dashboard . 80

5.4 MIG Frontend . 82

5.4.1 Proxy . 82

4

5.4.2 MIG MSC Drawer . 86

5.4.3 MIG STIX Visualizer . 88

5.4.4 MIG Tool . 90

5.5 Usage of MIG . 92

5.6 MIG in DevSecOps . 92

Chapter 6 Experiments 94

6.1 User Validation of MIG Drawer . 94

6.1.1 Evaluation of the Effectiveness . 94

6.1.2 Experimental definition and Context . 95

6.1.3 Results . 99

6.2 Security Testing in the Lab using MIG . 103

6.2.1 OIDC for CIE deployment . 104

6.2.2 OIDC for Developers Italia deployment 106

6.3 Security Testing in the Wild using MIG . 108

6.3.1 OAuth for PSD2 deployment . 108

6.3.2 SAML deployment . 110

6.3.3 SSO-based account linking process . 112

Chapter 7 Related Work 123

7.1 State of the art . 123

7.2 Methodology . 124

7.3 Automated tools . 126

7.3.1 General purpose tools . 126

7.3.2 Tools for OAuth and OpenID implementations 128

7.3.3 Tools for SAML implementations . 131

7.3.4 Tools for OAuth/OIDC and SAML . 132

7.3.5 Sandboxing and education . 133

5

7.3.6 Considerations . 134

Chapter 8 Conclusions and Future Work 137

Appendix A Survey Questionnaires’ Content 139

Appendix B Mapping between MIG-L and Machine Readable Specification 140

Bibliography 148

6

List of Figures

2.1 MSC of the SAML SSO protocol [Ale13]. 24

2.2 OAuth Authorization Code Flow (simplified view). 25

2.3 OIDC flow (simplified view). 26

3.1 Generic threat model. 29

3.2 The extended threat model used in our approach. 31

3.3 High level view of the architecture of our approach. 35

4.1 Overview of MIG. 68

4.2 MIG Backend. 70

4.3 MIG Frontend. 71

4.4 MIG-D components. 73

4.5 High Level Architecture of MIG in DevSecOps. 74

5.1 Details of technology used in MIG. 77

5.2 Dashboard user interface. 81

5.3 Interface to add a new filter. 82

5.4 MIG-D login page. 88

5.5 Button to look up CTI information. 88

5.6 MIG-S search result. 89

5.7 Example of an MSC draw by MIG-D. 89

5.8 Test results example. 90

7

5.9 MIG-T user interface. 91

6.1 OWASP ZAP visualization. 98

6.2 MIG-D visualization. 99

6.3 Number of correct and wrong answers by vulnerability and tool. 100

6.4 Number of correct and wrong answers by question. 101

6.5 Active Test results of CIE OIDC deployment. 104

6.6 Passive Test results of CIE OIDC deployment. 105

6.7 Active Test results of Developers Italia OIDC deployment. 107

6.8 Passive Test results of Developers Italia OIDC deployment. 107

6.9 Acknowledgment received by Developers Italia. 108

6.10 Entry (excerpt) from [Moh18]. 116

8

List of Listings

3.1 Login at Dailymail - example. 36

3.2 Link accounts - Dailymail with Facebook. 37

3.3 Assert - Dailymail with Facebook. 37

3.4 Unlink accounts - Dailymail with Facebook. 38

3.5 Examples of using the assert action. 40

3.6 Example of a Session with assert action. 40

3.7 Example of a Test. 41

3.8 Example of regex operation. 43

3.9 Example of check operation on Passive Test. 43

3.10 Example of validate operation. 45

3.11 Example of validate operation with regex. 46

3.12 An example illustrating the usage of the precondition. 46

3.13 Example of Testsuite. 50

3.14 Passive Test creation example. 51

3.15 Example of adding operations in a Passive Test. 52

3.16 Example of the Proxy API used. 52

3.17 Structure of an Active Test. 54

3.18 Example of session operation. 56

3.19 Example of operations on Test. 58

3.20 Example of using the decode param. 61

9

3.21 Example of a SAML Test in JSON Format. 64

3.22 Example of an OIDC Test in JSON Format. 65

3.23 Example of an OAuth Test in JSON Format. 66

5.1 Example of the Dockerfile of a Client implementing SAML. 78

5.2 Example of STIX JSON Object. 80

5.3 Example of MSC Logger configuration. 85

5.4 Example of an API call for adding a new message to a session. 87

5.5 Deletion of all messages in the session test. 87

6.1 Test procedure for SSOLinking Account Hijack with inference procedure. 113

6.2 IdP metadata for Facebook. 118

10

List of Tables

5.1 Collection of Clients and IdP instances. 79

6.1 Experimental design. 96

6.2 Summary of correct and wrong answers. 99

6.3 Analysis of co-factors. 100

6.4 Answers to feedback questionnaire. 102

6.5 IdPs candidates. 117

6.6 Clients selection per IdP. 118

6.7 Overview of the Client test results per IdP. 121

6.8 Overview of the Client disclosure procedure. 122

7.1 Comparison between MIG and the other state-of-the-art tools. 135

A.1 Post-experiment survey questionnaire. 139

B.1 Mapping between MIG-L and JSON. 140

11

Glossary

Digital Identity A digital identity is as a set of attributes that uniquely describe a user in a
specific context (e.g., a payment service).

HTTP Message An HTTP message is a message that follows the HTTP protocol. There are
two types of HTTP messages: requests and responses. An HTTP request is a message sent
by a Client, such as a web browser, to a server in order to request specific information.
The request message typically includes a request method, such as GET or POST, a request
URI (Uniform Resource Identifier), and other headers and data (such as request body). An
HTTP response is a message sent by a server to a Client in response to an HTTP request.
The response message typically includes a status code, such as 200 OK or 404 Not Found,
a response body, and other headers.

Operation An object that represents a specific instruction definable in a Test.

Proxy An intermediate interface that intercepts and manages the flow of HTTP messages ex-
changed between a browser and a server. It is used to improve performance, filter content.

Proxy API A collection of interfaces and functions provided by the Proxy that are necessary for
MIG-T to operate properly. It allows to interact with the Proxy to control the interception
and modification of HTTP messages.

Session A list of user actions which can be seen as a UI integration test that testers use to create
for web applications and which inherits the Selenium engine and its primitives.

Test An object representing a single test executable in MIG-T composed by a list of operations.
Test Suite An object containing a collection of Tests that are executable in MIG-T.

12

Chapter 1

Introduction

1.1 Context and Motivations

In today’s rapidly evolving digital landscape, cybersecurity has become a crucial issue for or-
ganizations of all sizes and industries. With the increasing sophistication and frequency of web
cyber threats, companies must ensure that their information systems and digital assets are se-
cure from potential vulnerabilities and attacks. Effective cybersecurity measures are essential
to protect against data breaches, loss of confidential information, financial damage, and repu-
tational harm. Protecting sensitive data and preventing unauthorized access are crucial aspects
that require the implementation of strong security controls. One crucial aspect of ensuring that
security controls are effective is conducting regular security testing. Security testing involves
assessing the effectiveness of security controls, identifying weaknesses or vulnerabilities, and
providing recommendations for improvement. Maintaining a robust cybersecurity posture is crit-
ical for organizations with large-scale digital infrastructure, as it ensures operational continuity
and safeguards against potential cyber threats. Regularly security testing enables organizations
to proactively address potential threats and improve their overall cybersecurity posture.

Digital identity and security testing are crucial aspects of any effective management strategy in
today’s technology-driven world. It is essential to ensure that individuals and organizations are
identified correctly, and sensitive information is kept secure. Digital identity management in-
volves creating and managing unique identities for users, granting appropriate access levels, and
monitoring their activities. Security testing, on the other hand, involves evaluating the strength
and effectiveness of an organization’s security measures through various assessments and anal-
yses. These fundamental components of management help to safeguard against potential cyber
threats and mitigate risks associated with digital transactions. By implementing strong digi-
tal identity and security testing protocols, individuals and organizations can protect themselves
against identity theft, fraud, and other security breaches.

13

Multi-Party Web Applications (MPWA)[Avi16] are a common component of many digital iden-
tity systems for many online applications and plays a crucial role in building trust in current
and future digital ecosystems by adopting Identity Management (IdM) protocols to secure their
systems. These protocols involve three entities: the User (through a web browser), the web ap-
plication (playing the role of Client), and a trusted third party known as an Identity Provider
(IdP). IdM protocols refer to web applications that employ authentication assertions from IdPs to
authenticate users via Single Sign-On (SSO) protocols. IdM protocol standards—including the
Security Assertion Markup Language 2.0 (hereafter SAML) [Con08], OpenID Connect (OIDC)
[Nat14], and OAuth 2.0 (OAuth) [Har]—handle user requests for access to services and deliver
responses based on the information a user provides. If the authentication methods, such as a
password or a biometric identifier, are correct, the protocol allows the level of access assigned
to the user within the service. IdM protocols exchange authentication assertions and consist of
a series of messages in a preset sequence designed to protect information as it travels through
networks or between servers. By using third-party authentication, IdM protocols eliminate the
necessity of storing authentication information within the services for which they are used, pro-
viding a solution that helps private and public organizations prevent the misuse or abuse of login
credentials and reduce the risk of data breaches. Existing IdM protocols support policies (such
as allowing password authenticated users to only read financial data while permitting also to per-
form payments to those authenticated by using two authentication factors) by securing assertions
and ensuring their integrity during transfer. They include standards for security to simplify ac-
cess management, aid in compliance, and create a uniform user experience. For instance, both
SAML and OIDC support SSO experience whereby one set of credentials allows users to access
multiple services.

Despite being used on a large scale and for many years, the deployment of these IdM pro-
tocols has proved to be difficult and fraught with pitfalls. This is so mainly because such
protocols inherit the difficulties of designing, implementing, and deploying the cryptographic
mechanisms on top of which they are built. Even assuming that the design of IdM protocols
is secure, implementations add complexity by specifying functional details (such as message
formats and session state) while deployments include further aspects (such as programming
interfaces) that are absent at the design level. These additions may bring low-level threats
(such as missing checks of the content in certain message fields and vulnerabilities of func-
tions imported from third party libraries) thereby significantly enlarging the attack surface of
deployed IdM protocols. There is a long line of papers devoted to the identification of vulnera-
bilities and attacks in deployed IdM protocols at design, implementation, and deployment level
see, e.g., [Car23, Nil18, Dim19, Ale08, Jen17, Blo, Dan16, Dim19, MSP18]. Indeed, prevent-
ing such varied attacks on large IdM solutions that use complex cryptographic mechanisms is
a daunting task that requires deep and automated security testing activities to mitigate security
issues.

Following the compliance with the standard is extremely important for having a robust secu-
rity in an IdM implementation, as it is related not only to the security policies defined in stan-

14

dards and certified in Best Current Practices (BCPs), but also to legal aspects when it comes to
national-level infrastructure. The former refers to the implementation of BCPs [Rob10, Nil18] as
a mechanism for reducing the impact of attacks on applications and verified by Security Testers
(STs), whereas non-compliance with the standards defining the IdM implementations can lead
to significant security problems [Yue19, Jia19, Rob20]. The latter requires to ensure compliance
with both the technical and legal rules defined in the regulations for both national and inter-
national infrastructures for digital identity such as in “Sistema Pubblico di Identità Digitale”
(SPID) [Dig] which is the Public Digital Identity System in Italy based on SAML [oED13], in
“Entra con CIE” (CIE) [Dev23] which is the authentication scheme that allows access to digital
services provided on the public administration based on the Italian electronic identity card (CIE
3.0 - Carta d’Identita’ Elettronica) [AGI] and similarly the “Electronic Identification, Authen-
tication and Trust Services” (eIDAS) framework for identity portability across Member States
(also based on SAML) [Uni14].

From the aforementioned scenario of security testing for IdM implementation based on stan-
dards, we identify three challenges (C1, C2 and C3).

[C1] Scattered security information. It is non-trivial for a Security Tester to have the skills
and technical knowledge to perform all the security testing activities required to ensure proper
security posture for IdM protocols. Several tools for automatic security testing exist, but they
usually target specific vulnerabilities, few of them are able to spot a set of relevant vulnerabilities
for IdM protocols [PS18, Pie, MMGS15] without the possibility of being easily customized or
extended even if they are open source. In addition, in case a vulnerability has been detected, the
burden of finding adequate mitigation measures is completely left on the Security Tester who
must also collect information about the identified problem and related fixes [Dan17]. Typically,
such information is distributed in several sources ranging from the official standards and related
security considerations to scientific papers addressing specific novel vulnerabilities.

[C2] Fast evolving threat landscape. The fast-evolving threat landscape requires continuous
updating of security testing techniques and the ability to repeat similar test suites with each
configuration change in IdM implementations. This means that Security Testers must keep pace
with the latest threats and be able to adapt their testing approach accordingly. It is crucial to
have a robust and agile security testing strategy that can quickly identify vulnerabilities and
weaknesses to ensuring the security and resilience of IdM implementations.

[C3] Controlled testing environment. Ensuring traceability, reproducibility, and business conti-
nuity requires the establishment of a suitable infrastructure for security testing that guarantees
these properties. In many cases it is not possible to perform a security testing of a IdM pro-
tocols in the wild in the production environment due to several attacks with high impact like
DoS or identity theft with serious legal implications. Therefore it is desirable to reproduce the
production solution in a controlled environment with well-defined testing procedures and tools
that enable Security Testers to easily reproduce tests and track the results. Unfortunately, the
steps to reproduce in the laboratory the production environment are complicated and it is not

15

always possible to create the right conditions to be able to spot the same vulnerabilities as in
the production environment. Moreover, it should support the integration of testing activities into
the development lifecycle, allowing for early detection of vulnerabilities and defects in the IdM
implementations. Such an infrastructure can help organizations ensure that their security posture
is always up-to-date and in line with their business goals, while reducing the risk of security
incidents that could negatively impact their operations.

1.2 Goals and Contributions

This thesis focuses on the security of IdM protocols, both in controlled environments such as in
the lab, and in production deployment in the wild. Our objective is to bridge the gap between
advanced research and system administrators who may benefit from it but face challenges ac-
cessing the information directly due to either lack of time or expertise. This is particularly true
for Security Testers who require extensive knowledge of protocols and their implementation in
digital identity scenarios. The work starts by noting that information related to vulnerabilities in
IdM implementations is fragmented, lacking a complete and consolidated catalog. This makes it
difficult for Security Testers to conduct thorough analyses. We aimed to tackle this inadequacy
by providing a framework which returns actionable hints that would assist system administrators
in deploying secure IdM instances. The framework adopts a declarative specification language
to assist Security Testers in creating test cases and provide them with a fully expandable security
testing tool. Finally, to showcase the efficiency and practicality of the framework, we assess its
impact in few real-world scenarios and both in the wild and in the lab.

To summarize, this work provides the following main contributions:

• a comprehensive study was conducted on the state-of-the-art security tools that provide
sandboxing, learning capabilities to increase security awareness such as training simula-
tions environment and cyber threat intelligence, perform compliance analysis, and automate
vulnerability detection for IdM solutions. To fulfill C1, the study includes the collection of
BCPs, vulnerabilities, and attacks associated with IdM protocols with the aim of devel-
oping a test plan with detailed specifications for comprehensive testing using a declarative
language, particularly for SAML and OAuth/OIDC. The test plan will be executed automat-
ically in different use cases using a developed tool as part of a contribution to this thesis.

• the design and development of an approach for security testing of IdM protocols which
takes into account attacks and BCPs introduced by IdM protocol standards. It is based
on a threat model that (i) subsumes the web attacker capability and provides actionable
hints for (ii) mitigating the discovered issues and (iii) making informed decisions for risk
management. We do this by defining a declarative language namely MIG Test Specifica-
tion Language (MIG-L)–indeed to satisfy the C2–for the unambiguous specification of two
types of test cases: (i) test cases checking whether the security controls associated with the

16

BCPs described in standards (such as OIDC or OAuth) are correctly implemented (auto-
mated compliance testing) and (ii) test cases implementing attacks to exploit vulnerabilities
(automated pentesting). The first type of test cases identifies recurring vulnerabilities with
high risk while the second type mounts specific (known) attacks.

• the design and development of Micro-Id-Gym (MIG), a flexible and extendable framework
that can assist system administrators and Security Testers in the deployment and security
testing of IdM protocols instances. In the lab, MIG provides various IdM protocols in-
stances which can federate them in a local network and thus to satisfy C3. Additionally, the
tool comprises security testing tools that can automatically analyze the security of IdM de-
ployment. The tool is designed to be easily expandable by allowing third-party and internal
contributors the integrations of new IdM deployments and security testing tools. The tool’s
advantages lie in its capacity to report actionable suggestions that offer precise and brief
details. These suggestions can be put into action to address identified vulnerabilities and
guarantee compliance with the given standard. In the wild, MIG offers a collection of secu-
rity testing tools aimed at carrying out automated security analysis of IdM protocols. The
tools comprise of three components: (i) MIG-Tool (MIG-T), which runs automated tests
specified in MIG-L, (ii) MIG-MSC Drawer (MIG-D), which provides users with an intu-
itive way to view and evaluate security testing results through graphical displays, and (iii)
MIG-STIX Visualizer (MIG-S), which simplifies the process of generating and exchanging
cyber threat intelligence data.

• the effectiveness of MIG by conducting an experiment to demonstrate its accuracy in as-
sisting with the detection of relevant vulnerabilities in the implementation of IdM proto-
cols. Moreover the application of MIG and MIG-T across various corporate scenarios and
projects describing its impact and the lessons learned from its vulnerability assessment. In
particular, we identified security issues (i) in the implementations of the CIE OIDC and
of the SPID/CIE OIDC Federation deployments in the context of the Italian digital iden-
tity, (ii) in a PSD2 (Second Payment Services Directive) service provided by an important
Italian IdP based on OAuth and, (iii) in several SSO-based account linking (SSOLinking
in short) procedures of online services. With SSOLinking we refers to the process of con-
necting or linking a user’s account on a Client website to their existing account on an IdP
website, so that the user can use their IdP credentials to log in to the Client website. In
this process we found an attack called SSOLinking Account Hijack which exploits two
CSRF vulnerabilities (i) Authentication CSRF (known as Login CSRF) and (ii) CSRF on
the button triggering SSOLinking. We designed the test cases in MIG-L and conducted
an experimental analysis on 40 popular websites with major IdPs, finding that 19 of them
(47.5%) had SSOLinking vulnerabilities (e.g., Medium, Asos, Workable). By submitting
our findings to various bug bounty programs for responsible disclosure, we were recognized
by the affected vendors who awarded us both monetary rewards and public recognition for
our identified vulnerabilities.

17

1.3 Thesis Structure

The thesis is structured as follows.

Chapter 2 - Background

This chapter introduces the foundational concepts and definitions of this work. It focuses on the
security and penetration testing, including threat model and IdM protocols.

Chapter 3 - A Declarative Approach to Security Testing of IdM Protocols

This chapter introduces a declarative approach for automated security testing of IdM solutions.
The approach uses a domain-specific language called MIG-L to define test cases that replicate
attack scenarios and check for the adoption of Best Current Practices (BCPs) from standards
like OIDC or OAuth. MIG-L is interpreted by an automated security testing tool called MIG-T,
which identifies vulnerabilities in IdM solutions and suggests mitigations. The chapter provides
a high-level overview of the approach and then delves into the syntax and semantics of MIG-L.

Chapter 4 - Micro-Id-Gym Design

This chapter discusses the design of MIG, a tool that helps system administrators and testers
in the deployment and security testing of instances of the IdM protocol. The tool automates
many of the tasks involved in the setup and configuration of IdM protocol instances, making it
easier for administrators to deploy and manage copies of these systems on which it is possible
to perform extensive and aggressive security testing activities. It also provides a range of tools
for security testing to identify and exploit vulnerabilities in IdM protocol instances, along with
automated remediation of vulnerabilities. Some of its features include automated installation of
IdM protocols, easy configuration of security settings, automated penetration testing, and auto-
mated vulnerability remediation. With MIG, administrators and testers can confidently deploy
and manage instances of IdM protocols, knowing that their systems are secure.

Chapter 5 - Micro-Id-Gym Implementation

This chapter focuses on the implementation of MIG and its integration into a DevSecOps scenario
as part of the CI/CD pipeline. It begins by introducing the tool and its features, followed by a
detailed explanation of the implementation process, including configurations and settings. The
chapter also discusses the integration of MIG into a DevSecOps scenario, highlighting how it
can improve the security of software applications. By the end of this chapter, readers will have a
clear understanding of how to integrate MIG into their own development process and the benefits
it can provide in terms of security.

18

Chapter 6 - Experiments

This chapter assesses the effectiveness of MIG by performing an experiment to showcase its
precision in aiding the identification of vulnerabilities in IdM protocol implementation. Fur-
thermore, the chapter delves into the specific security assessments that were conducted across
various corporate scenarios. Specifically, the chapter covers the security assessments across dif-
ferent corporate scenarios . The chapter describes security issues in the implementations of the
CIE OIDC [Dev23] and SPID/CIE OIDC Federation deployments [Dev] in the context of the
Italian digital identity, a PSD2 service provided by an important Italian IdP based on OAuth,
the deployments based on SAML and several SSO-based account linking procedures of online
services.

Chapter 7 - Related Work

In this chapter, we present the related work in different aspects of security testing tools.

Chapter 8 - Conclusions and Future Work

In this chapter, we conclude the thesis work and offer some insight into potential future direc-
tions.

19

The content of this thesis is based on the following peer-reviewed international conference and
journal articles:

1. Andrea Bisegna, Roberto Carbone, Ivan Martini, Valentina Odorizzi, Giulio Pellizzari and
Silvio Ranise. 2019. Micro-Id-Gym: Identity Management Workouts with Container-Based
Microservices. In International Journal of Information Security and Cybercrime (IJISP),
Volume 8, Issue 1. [And19]

2. Andrea Bisegna, Roberto Carbone, Mariano Ceccato, Salvatore Manfredi, Silvio Ranise,
Giada Sciarretta, Alessandro Tomasi, and Emanuele Viglianisi. 2020. 6. Automated Assis-
tance to the Security Assessment of API for Financial Services. In Cyber-Physical Threat
Intelligence for Critical Infrastructures Security: A Guide to Integrated Cyber-Physical Pro-
tection of Modern Critical Infrastructures. Now Publishers. [BCC+20]

3. Sergio Manuel Nóbrega Gonçalves, Alessandro Tomasi, Andrea Bisegna, Giulio Pellizzari
and Silvio Ranise. 2020. Verifiable Contracting: A Use Case for Onboarding and Contract
Offering in Financial Services with eIDAS and Verifiable Credentials. In 25th European
Symposium on Research in Computer Security (DETIPS2020). [GTB+20]

4. Andrea Bisegna, Roberto Carbone, Giulio Pellizzari and Silvio Ranise. 2020. Micro-Id-
Gym: a Flexible Tool for Pentesting Identity Management Protocols in the Wild and in the
Laboratory. In 3rd International Workshop on Emerging Technologies for Authorization
and Authentication (ETAA2020). [And20]

5. Andrea Bisegna, Roberto Carbone and Silvio Ranise. 2021. Integrating a Pentesting Tool
for IdM Protocols in a Continuous Delivery Pipeline. In 4th International Workshop on
Emerging Technologies for Authorization and Authentication (ETAA2021). [And22]

This thesis draws upon the work of several students whom I co-supervised, and incorporates ma-
terial from their Bachelor’s and Master’s theses. In writing Chapter 3, the Bachelor’s Thesis of
Matteo Bitussi from the University of Trento, submitted in 2022 with the title Declarative Speci-
fication of Pentesting Strategies for Browser-based Security Protocols: the Case Studies of SAML
and OAuth/OIDC has been considered, along with a preliminary work for Bachelor Thesis con-
ducted by Alessandro Biasi. In Chapters 4, 5, and 7, it has been considered the Master’s Thesis of
Giulio Pellizzari from the University of Trento, submitted in 2020 with the title Micro-Id-Gym:
A Tool to Support Sandboxing and Automated Pentesting of Identity Management Protocols. In
Chapter 6, it has been considered the Bachelor’s Thesis of Giulio Pellizzari from the University
of Trento, submitted in 2018 with the title Design and Implementation of a Tool to Detect Login
Cross-Site Request Forgery in SAML SSO: G Suite Case Study, as well as the Bachelor’s Thesis
of Sofia Zanrosso from the University of Trento, submitted in 2022 with the title Enlarging the
Pen-Test Coverage of SAML Single Sign-On Solutions with Cyber Threat Intelligence.

20

Chapter 2

Background

This chapter presents the fundamental concepts and definitions upon which this work is founded.
Specifically, it covers the differences between Security Testing and Pentesting, Threat Modeling,
Digital Identity, and IdM Protocols, including SAML and OAuth/OIDC.

2.1 Security and Penetration Testing

Security Testing and Penetration Testing are two critical processes used to evaluate the security
of software systems and applications. Penetration Testing aims to identify and mitigate vulner-
abilities before they can be exploited, while Security Testing aims to understand the potential
risks posed by a system and evaluate the effectiveness of existing security controls.

In [Mic16] Security Testing is defined as a process that aims to identify vulnerabilities and se-
curity weaknesses in a software system or application. This process is carried out by evaluating
the system’s security features, such as access controls, encryption, and input validation, against
security requirements and industry standards. Security Testing is often performed as part of the
software development life cycle (SDLC) to catch security issues before the system is deployed.
The goal of security testing is to find and fix vulnerabilities before they can be exploited by at-
tackers. Security Testing is usually performed by security experts or software testers who use
automated tools, manual testing techniques, and/or a combination of both. The results of se-
curity testing are used to improve the system’s security posture and to ensure that it meets the
organization’s security requirements.

In [Bra05] Penetration Testing, also known as “pentesting”, is defined as a process that aims to
identify and exploit vulnerabilities in a software system or application. This process simulates
an attack on the system by an external or internal attacker to uncover weaknesses and security
risks. Penetration Testing is often performed by professional pentesters who have the skills and

21

knowledge necessary to identify and exploit vulnerabilities. The goal of pentesting is to provide
organizations with an understanding of the potential risks posed by their systems and to help
them prioritize security investments. Penetration Testing is usually performed after the system
has been deployed, although it can also be performed during the SDLC to catch security issues
early. The results of pentesting are used to identify and prioritize areas for improvement, to
evaluate the effectiveness of existing security controls, and to develop an action plan to reduce
security risks.

2.2 Threat Model

After completing the security testing, it is important to introduce threat modeling, which is a
formalized process of identifying, analyzing, and mitigating security risks that might have been
missed during the testing phase. It is an essential step to ensure the security of the system and pro-
tect critical assets from potential attacks. The Open Web Application Security Project (OWASP)
Threat Modeling1 documentation defines threat modeling as “the process of identifying and ana-
lyzing potential threats to the security of a system, application, or organization in order to inform
decisions about security controls and mitigations”. This definition is similar to the one provided
in [Sho14, Bur05]. Finally, the goal of threat modeling is to identify potential attackers, their
motivations, and the methods they might use to exploit vulnerabilities, in order to prioritize the
implementation of security controls.

It is also important to consider the OWASP threat modeling for several reasons:

• Identify and prioritize risks: OWASP threat modeling helps to identify and prioritize
potential vulnerabilities and threats in a system, which allows organizations to focus their
security efforts on the most critical areas.

• Improve communication: OWASP threat modeling provides a common framework for
identifying and communicating security risks, which can improve communication between
security teams, development teams, and management.

• Early detection: By identifying potential vulnerabilities and threats early in the develop-
ment process, OWASP threat modeling can help organizations to detect and prevent security
issues before they become major problems.

• Cost-effective: OWASP threat modeling is a cost-effective way to improve security, as it
helps organizations to focus their resources on the most critical areas and avoid spending
money on unnecessary security controls.

• Industry standard: OWASP is a well-known and respected organization in the field of
information security, and their threat modeling methodology is widely accepted as a indus-
try standard. Adopting OWASP threat modeling can help organizations to ensure that their

1https://owasp.org/www-community/Threat_Modeling

22

security practices are in line with industry best practices.
• Compliance: in addition, it is important for organizations to ensure their systems are com-

pliant with security protocols such as SAML, OAuth, OIDC. Many regulatory frameworks
like PCI-DSS, HIPAA, and ISO 27001 require compliance with these protocols to prevent
security breaches. OWASP threat modeling provides a valuable approach for organizations
to identify and mitigate potential vulnerabilities and risks in their systems, which can help
them meet these compliance requirements.

2.3 Identity Management Protocols

An IdM protocol allows a Client to authenticate users through a trusted third-party server called
IdP. The purpose of IdM protocol is to provide a secure and efficient way for a Client to verify
the identity of its users. The IdP acts as a central repository of user information and authenti-
cation credentials, and enables users to access multiple applications or services using a single
set of login credentials, thereby providing Single Sign-On (SSO) functionality. This stream-
lines the user experience, increases security by reducing the number of passwords required, and
simplifies the management of user identities. Security Assertion Markup Language v2.0 Web
Browser SSO Profile (hereafter SAML) [HM05] and OAuth 2.0 (OAuth) [Har] / OpenID Con-
nect (OIDC) [Nat14] are two of the most known protocols providing this authentication pattern
despite the fact that different names may be used to refer to the aforementioned entities.

2.3.1 SAML v2.0 Web Browser SSO Profile

SAML [OAS08] involves three entities: a user agent (UA), an IdP, and a Client. UA is a web
browser with which a user interacts; the user’s goal is to have access to a service or a resource
provided by the Client. IdP authenticates UA and issues authentication assertions that are trusted
by Client - the SSO trust relationship is depicted with a handshake icon in Figure 2.1. Client
uses the assertions generated by the IdP to decide on UA’s entitlement to the requested service or
resource.

Figure 2.1 shows a Message Sequence Chart (MSC) where each vertical line in an MSC repre-
sents an entity, and horizontal arrows represent messages from one component to another. IdM
protocols are often expressed as MSC to identify any flaws. The main steps of the SAML proto-
col are briefly described as follows:

S1 UA asks Client to provide the resource at URI.
A1-2 Client sends UA an HTTP redirect response (status code 302) for IdP, containing an au-

thentication request AuthReq(ID,Client), where ID is a randomly generated string uniquely

23

SAML Authentication Protocol

UA IdP C
S1. GET URI

A1. HTTP302 IdP?SAMLRequest=AuthReq(ID,C)&RelayState=URI

A2. GET IdP?SAMLRequest=AuthReq(ID,C)&RelayState=URI

IdP builds an authentication assertion
AA = AuthAssert(ID,UA, IdP,C)A3. HTTP200 Form(. . .)

A4. POST C?SAMLResponse=Response(ID,C, IdP, {AA}K−1
IdP

)&RelayState=URI

S2. HTTP200 Resource(URI)

Figure 2.1: MSC of the SAML SSO protocol [Ale13].

identifying the request (steps A1 and A2). A frequent implementation choice is to use the
RelayState field to carry the original URI that UA has requested (see [OAS08]).

↔ IdP challenges UA to provide valid credentials (dotted double arrows in the figure): this is not
specified in the standard of the SAML in order to accommodate any authentication process
offered by IdP.

A3-4 If the authentication succeeds, IdP builds an authentication assertion as the tuple AA =
AuthAssert(ID, UA, IdP, Client) and embeds it in a response message Resp = Response(ID,
Client, IdP, {AA}K−1

IdP
) where {AA}K−1

IdP
is the assertion signed with IdP’s private key (the

key icon in Figure 2.1). IdP places Resp and the value of RelayState received from Client
into an HTML form and sends the result back to UA in an HTTP response (step A3) together
with some script that automatically posts the form to Client (step A4).

S2 Finally, the Client sends UA an accepted HTTP response (status code 200) containing the
requested resource.

2.3.2 OAuth 2.0

OAuth [Har] is an authorization standard allowing a user (Resource Owner, RO)—which interact
with a user agent (UA), typically a web browser—is to delegate to a Client the access to his
resources stored on another web server controlled by an Authorization Server (AS or IdP). The
aim of the user which interacts with UA is to get access to a service provided by Client, leveraging
AS as IdP. Figure 2.2 shows a MSC providing a simplified view of the OAuth Authorization Code
flow. A brief description of the protocol is as follows:

1 Client initiates the flow by directing RO’s UA (typically a web browser) to the authorization
endpoint. Client includes its identifier (client_id), requested scope (scope), local state

24

Figure 2.2: OAuth Authorization Code Flow (simplified view).

(state), and a redirection URI (redirect_uri) to which the AS will send UA back
once access is granted (or denied).

2 The AS authenticates the RO (via the UA) and establishes whether the RO grants or denies
the Client’s access request.

3 Assuming RO grants access, AS redirects UA back to Client using the redirection URI
provided earlier (in the request or during Client registration). The redirection URI includes
an authorization code and any local state provided by Client earlier.

4 Client requests an access token from AS’s token endpoint by including the authorization
code received in the previous step. When making the request, Client authenticates with AS.
Client includes the redirection URI used to obtain the authorization code for verification.

5 AS authenticates Client, validates the authorization code, and ensures that the redirection
URI received matches the URI used to redirect Client in step 3. If valid, AS responds back
with an access token and, optionally, a refresh token.

The description of OAuth abstracts away several details that are crucial for security. A trust
relationship between Client and AS must be established before running the protocol by distribut-
ing appropriate meta-data between the two entities. The user must possess credentials to access
AS. The configurations of auxiliary modules must be properly performed, and the format of the
messages must be properly set and checked.

25

2.3.3 OpenID Connect

OIDC [Ope14a] is an authentication layer developed on top of the OAuth standard. The problem
that has led to introduce OIDC is the fact that the OAuth protocol is often abused to imple-
ment authentication by major web/mobile native applications, while its main purpose is access
delegation.

Figure 2.3: OIDC flow (simplified view).

In [Eri14], the authors studied several vulnerabilities that arise when using OAuth for authentica-
tion. Furthermore, the aforementioned study highlights the main demands that an authentication
protocol should satisfy. OIDC adds two main features into the OAuth standard: the id token
and the userInfo endpoint. The id token is a structured JSON token [Mic15] that contains
information about the token issuer (the OIDC provider), the subject (user identifier) and
the audience (the intended Client web/mobile native application), all signed by the OIDC
provider (called also OP or IdP). This token enables Client to safely verify that the received to-
ken is issued as a result of its previous token request. While the userInfo endpoint is
used to obtain identity-related attributes (e.g., the email and address).

OIDC protocol, in abstract, follows the following steps and illustrated in the Figure 2.3.

1. The Relying Party (RP or in general Client) sends a request to the OpenID Provider (OP or
in general IdP).

2. The IdP authenticates the End-User and obtains authorization.
3. The IdP responds with an id token and usually an access token.
4. The Client can send a request with the access token to the UserInfo Endpoint.
5. The UserInfo Endpoint returns Claims about the End-User.

26

Chapter 3

A Declarative Approach to Security Testing
of IdM Protocols

The purpose of this chapter is to introduce our declarative approach based on MIG-L, a (domain)
language used for unambiguously defining test cases that replicate not only attack scenarios but
also check the adoption of BCPs described in standards (such as OIDC or OAuth) to avoid re-
curring vulnerabilities with high risk for automated security testing of IdM solutions. To achieve
this, we follow to identify and suggest mitigations of vulnerabilities in IdM protocol solutions.
Then we provide a comprehensive explanation of the syntax and semantics of MIG-L. The se-
mantics of MIG-L is defined by translation to a JSON formatted machine-readable language,
which serves as the input language for MIG-T.

3.1 Suggesting mitigations of automated security testing of
IdM protocols based on standards

Identity management is an essential aspect of online services, but it can be a complex and chal-
lenging task for developers of a Client web application. IdM protocols provide a solution to this
challenge by delegating the task of managing digital identities to the IdP. Some of the benefits of
delegating IdM include increased security, improved user experience, cost savings, and scalabil-
ity. IdM protocols provide a secure way to manage digital identities, reducing the risk of identity
theft and other cyber threats. IdPs often implement advanced security measures such as multi-
factor authentication and encryption to protect user identities and prevent unauthorized access.
Improved user experience is another advantage of delegating IdM. By using IdPs to manage dig-
ital identities, Clients can offer a seamless and user-friendly experience to their customers. Users
can use a single set of credentials to access multiple services, eliminating the need to remember

27

multiple usernames and passwords. Delegating identity management can also result in cost sav-
ings. Implementing and maintaining a robust IdM system can be expensive and time-consuming
for Clients. By delegating this task to IdPs, Clients can save on the costs of developing and
maintaining their own IdM solution. Finally, delegating IdM offers scalability. IdM protocols
offer a scalable solution to managing digital identities. As more users and services are added,
IdPs can easily handle the increased demand without affecting performance or security.

Despite all these advantages, the design and implementation of IdM protocols can be prone
to errors and vulnerabilities, as shown by a number of reported vulnerabilities in recent years
[Car23, Nil18, Dim19]. This problem is further compounded by the high number of deploy-
ments, such as over 20% of the top 20,000 Alexa websites in the US having a vulnerable im-
plementation of Facebook SSO [ZE14]. The complexity of these protocols can make it difficult
for developers to implement them correctly and securely, and the reliance on third parties can
introduce additional points of failure and potential security risks. Overall, it is important to con-
sider these challenges when implementing IdM protocols. Trust is an important consideration
when discussing IdM protocols. The use of IdM protocols can also raise concerns about privacy
and data protection. The collection and sharing of personal data by trusted third parties, as well
as the potential for data breaches and leaks, are all significant issues that must be considered
when assessing IdM protocols. To ensure that users’ personal data is protected and the risk of
privacy violations is kept to a minimum, it is crucial to consider these issues and implement IdM
protocols in a way that respects user privacy and protects personal data.

The information related to an IdM protocol is fragmented and spread across various sources,
making it challenging for IT professionals tasked to deploy such solutions to identify a compre-
hensive and coherent source of information. For instance, when examining OAuth/OIDC, it is
important to note that the BCPs and considerations are dispersed across various documents (e.g.,
[Har, Ope, IET12, Har, Ope14a, Ope14b, IET14]). Despite the acknowledged weaknesses and
vulnerabilities present in IdM systems, administrators may not possess the necessary knowledge
to patch these vulnerabilities, leading to a situation where the implementation remains unsecured.
Furthermore, there is a lack of advancements in technology that provides support for remediation
methods or evaluation plans for IdM systems. This exacerbates the issue and leaves IdM systems
vulnerable to potential attacks.

Moreover, while there are numerous penetration testing tools available [Chr12, MMGS15, PS18,
ZE14, BLM+13, PPJ22], they frequently concentrate solely on specific vulnerabilities such as a
single IdM protocol or on a limited number of weaknesses. Additionally, the existing tools may
not be suitable for IdM systems. This results in a lack of a centralized source of security analysis
results about the IdM protocols. Furthermore, despite the existence of recognized vulnerabil-
ities in IdM systems, administrators may not possess the knowledge to patch them, leading to
an unsecure implementation. Suppose an IdM solution uses a JSON Web Token (JWT) as its
authentication mechanism. A JWT consists of three parts: a header, a payload, and a signature.
The signature is used to ensure the integrity of the token and to prevent tampering. We assume

28

Figure 3.1: Generic threat model.

that an attacker discovers a vulnerability in the signature verification process that allows them
to bypass the authentication check and gain access to a user’s account [Pau17, Jos21]. The vul-
nerability could be due to a weak cryptographic algorithm used to generate the signature or a
flawed implementation of the signature verification process. Fixing this vulnerability would re-
quire advanced knowledge in cryptography because the solution would likely involve changing
the cryptographic algorithm used to generate the signature or improving the implementation of
the signature verification process. For example, the solution may require using a stronger cryp-
tographic algorithm, such as the SHA-256 hashing algorithm, to generate the signature. This
would require knowledge of cryptographic hash functions and their properties. Additionally, the
solution may require implementing a more robust signature verification process, such as using
digital signatures or certificate-based authentication, which would require understanding of digi-
tal signature algorithms and public key infrastructure. Doing any of this for an average IT expert
is prone to be challenging.

3.2 Overview of the proposed approach

To automate the process of providing a coherent and actionable account of the heterogeneous
information available on the security issues of IdM protocols, and enable the easy incorporation
of future results, we propose the use of a declarative security testing tool, i.e. a tool able to
execute test cases specified in a high level language capable of expressing the capabilities of
standard (e.g., web) attackers or the checks for verifying the proper implementation of BCPs.
The tool is based on a refinement of a well-known threat model (see e.g., [KM06]) allows for
automated analysis and reporting of security issues. By using automation, we can save time
and increase the accuracy of the returned results, ensuring that we are able to provide the most
up-to-date and comprehensive information possible.

In [oST12], a threat model is defined as “a systematic approach to identifying and evaluating
the threats to an information system or application. The process includes identifying potential
threats, identifying the vulnerabilities that could be exploited by those threats, and assessing the

29

likelihood and potential impact of an exploitation”. The model is reported in Figure 3.1 which
includes (i) identifying the security controls to apply (e.g., such as best current practices), (ii)
identifying potential attackers and their motivations, and (iii) spotting potential vulnerabilities
that could be exploited. By identifying and analyzing these potential threats, appropriate (iv)
security controls can be put in place to mitigate the impact. In the realm of security, a security
control refers to a protective measure implemented to reduce the likelihood or impact of security
risks, as defined in [oST12]. These controls can come in various forms, such as physical, ad-
ministrative, or technical safeguards, and are designed to safeguard information and information
systems from a range of threats. These threats can either be intentional or unintentional, and can
originate from both internal and external sources. Examples of threats include hackers, viruses,
natural disasters, and human errors. A vulnerability, on the other hand, is a weakness or flaw
within a system or its security controls that could be exploited by a threat. Such vulnerabilities
can arise in hardware, software, or the design and implementation of security controls. Exam-
ples of vulnerabilities include weak passwords, unpatched software, and misconfigured systems.
Understanding the concepts of likelihood and impact is crucial for assessing and managing risk,
both qualitatively and quantitatively. Various methodologies, such as OWASP, can be used to
measure risk in terms of the likelihood of an event occurring and the potential impact it would
have. However, cyber threats can be particularly complex and dynamic, making it challenging
to stay ahead of potential risks. This is where Cyber Threat Intelligence (CTI) comes in. One
of the main benefits of CTI is its ability to help organizations identify and prioritize potential
risks. By analyzing data from a variety of sources, including dark web forums, social media, and
other online forums, organizations can gain a better understanding of the types of threats they
are likely to face and the potential impact of those threats on their business operations. Another
important benefit of CTI is its ability to help organizations develop more effective risk manage-
ment strategies. By using CTI to identify potential threats, organizations can develop targeted
risk management plans that are tailored to their specific needs and vulnerabilities. This can help
to minimize the potential impact of cyber threats and improve overall security posture. While
CTI offers unprocessed data and information related to threats, MIG-S provides a consistent
structure for explaining and distributing that data including their characteristics, indicators, and
relationships to other threats and entities [JPD]. With this, cybersecurity professionals can orga-
nize and communicate threat intelligence in a way that is consistent and machine-readable. This
allows risk evaluation to more easily consume and process the information, and make informed
decisions about how to allocate resources and respond to potential threats. Risk is also a critical
component of the threat modeling process which is typically expressed as a combination of the
likelihood of a threat occurring, and the impact or consequences if it does.

In this study, we recognize that the threat model of Figure 3.1 needs to be adapted and extended
to better address the specific needs of our approach. Therefore, we introduce a new threat model,
as reported in Figure 3.2, which expands on the standard approach and in particular takes into
account attacks and BCPs introduced by IdM protocol standards.

The basis of our approach is a threat model that incorporates the capabilities of web attackers

30

Figure 3.2: The extended threat model used in our approach.

and offers actionable guidance for mitigating discovered issues and making informed decisions
regarding risk management. We accomplish this by introducing a declarative language, called
MIG-L, for the unambiguous specification of two types of test cases. The first type of test cases
checks the correct implementation of security controls associated with BCPs described in stan-
dards such as OIDC or OAuth, i.e. automated compliance testing. The second type implements
attacks to exploit vulnerabilities, i.e. automated pentesting. By using these test cases, we can
identify recurring vulnerabilities with high risk and mount specific, known attacks to assess the
security posture of the system.

A BCP aims to identify an important vulnerability (with high risk) together with a structured
recipe for its mitigation, i.e. Security Controls. A Security Tester is responsible for specifying
test cases to assess the proper implementation of the Security Controls associated with BCPs.
These test cases can include verifying the effectiveness of the controls in mitigating the identified
vulnerabilities. One of the BCPs provided by the OAuth standard is the use of Proof Key for Code
Exchange (PKCE) [Bra19]. The impact of not implementing PKCE can be high, as it can lead to
the exposure of the authorization code and potentially result in unauthorized access to protected
resources. PKCE is designed to mitigate this risk by adding an additional layer of security to
the authorization flow. PKCE involves the use of a code verifier and a code challenge, which are
used to generate and validate the authorization code. The code verifier is a randomly generated
value that is used to create a code challenge, which is then sent to the authorization server along
with the authorization request. The authorization server then compares the code challenge to the
code verifier to validate the authorization code. By implementing PKCE, web applications can
reduce the risk of unauthorized access to protected resources.

By playing the role of an Attacker, Security Tester can implement attacks that exploit the vul-
nerabilities to assess their potential impact and provide valuable insights through the Common
Vulnerabilities and Exposures (CVE) into the level of risk associated with a given vulnerability,
which can help inform decision-making around further mitigation strategies. An example of at-

31

tack is the “token replay” attack [Sah16], which involves an attacker intercepting a valid access
token and replaying it to gain unauthorized access to protected resources. For example, suppose
a user has authorized a client application to access their protected resources, and the authoriza-
tion server issues an access token to the client application. If an attacker is able to intercept this
token, they could use it to gain access to the user’s protected resources without going through the
authorization flow. To mitigate this attack [Ric15], OAuth implementers can use measures such
as token expiration and revocation, which ensure that access tokens are only valid for a limited
period of time and can be revoked if they are compromised. Implementing additional security
measures such as rate limiting and IP address filtering can also help prevent token replay attacks.

The proposed approach, which incorporates and extends the one in [oST20], recognizes the need
for BCPs and the attacks to evolve over time and the importance of having an easy way to express
and include new ones given the rapidly evolving threat landscape. To address this, our approach
employs a declarative language based on MIG-L. Our security framework is based on a rigorous
and formal representation of security concepts, which enables the expression of BCPs and attacks
in a concise and clear manner. By leveraging this approach, our proposed security framework
ensures that BCPs and attacks can easily be expressed, understood, and adapted, as the security
landscape continues to evolve over time.

We can distinguish test cases specified in MIG-L w.r.t. two main different classifications namely
syntactic or semantic. In the former, we can distinguish test cases according to the types of
language constructs and, in the latter, to the semantics of the constructs occurring in them. The
syntactic class contains two subclasses, namely Passive and Active whereas the semantics class
comprises three, i.e. Web [Ste18a], Network [Ste17] and Powerful attacker [PPJ22]. We discuss
each class in detail below.

One of the BCP in OAuth [Har] that requires a web attacker capability is the implementation of
OAuth 2.0’s state parameter for preventing cross-site request forgery (CSRF) attacks [Har18].
The state parameter is a random value that is generated by the client and included in the autho-
rization request sent to the authorization server. The authorization server then includes this same
value in the response to Client, allowing it to verify that the response came from the same server
that it sent the request to. This prevents an attacker from intercepting the authorization request
and sending a fake response that could trick the client into revealing its access token. However,
if an attacker can perform a successful Cross-Site Request Forgery (CSRF) attack on the client’s
web application, they can still trick the client into sending an authorization request with a fake
state value. To prevent this, the client should include the state value in a hidden form field or
a cookie, in addition to including it in the authorization request. This way, the value cannot be
easily obtained by an attacker attempting a CSRF attack.

Another OAuth BCP [Har] reports the use of the token binding protocol extension to prevent
token interception attacks [Eli19] which requires a network attacker capability. Token binding is
a security protocol extension that ensures that an access token is bound to a specific client device
or user agent. This means that if an attacker intercepts the token in transit, they will not be able to

32

use it on another device or user agent. The protocol extension achieves this by binding the token
to a cryptographic key that is unique to the client device or user agent. However, if an attacker
is able to intercept network traffic between the client device or user agent and the authorization
server, they could potentially intercept the token binding information and use it to generate a fake
token. To prevent this, the client device or user agent should use a secure connection protocol
such as Transport Layer Security (TLS) to protect the token binding information in transit.

In the OAuth standard [IET14] we also find an attack which requires a powerful attacker–with
powerful attacker we assume that the eavesdropper with limitless resources can intercept all
communication between parties involved in the OAuth protocol, and in addition, two of the three
parties have the potential to collude and launch an attack against the third party– capability like
in the “token leakage” attack. In this case, the attacker is able to compromise either the Client
or the authorization server, or both, and gain access to the client’s OAuth access token. With
this access token, the attacker can impersonate the Client and access protected resources on the
resource server. To carry out this attack, the attacker may collude with either the Client or the
authorization server. For example, the attacker could trick the Client into installing a malicious
app that steals the access token, or they could compromise the authorization server and modify its
behavior to leak an access token to the attacker. Once the attacker has the access token, they can
use it to access resources on the resource server without the knowledge or consent of the Client.
This can lead to the exposure of sensitive information or the unauthorized modification of data
on the resource server. To prevent this type of attack, it is important to implement strong security
measures, such as using HTTPS for all communications, enforcing token expiration policies, and
regularly auditing the behavior of all parties involved in the OAuth protocol. Additionally, it is
important to implement robust authentication and access control mechanisms on the resource
server to limit the damage that can be done by an attacker with a stolen access token.

Mastering the technical aspects of BCPs and security issues in general requires a significant
amount of expertise and can be a daunting task especially for IT professionals not trained in
cybersecurity. To help with this, we can rely on automated support to automate the checks for
BCPs and attacks, including both Passive Test (detailed and expressed in MIG-L) and Active Test
that involve implementing attacks. By utilizing MIG-T, we can even receive actionable hints for
mitigating any issues that are discovered during these tests. By relying on automated support,
we can ensure that our security practices are being handled correctly, while also freeing up time
for experts to focus on more complex issues that require their attention. Ultimately, the use of
automated support is an essential tool for ensuring that our security practices are up-to-date and
effective.

In the semantic class and based on the test case, we have identified two distinct capabilities
related to the abilities of an attacker or Security Tester in a security testing scenario. The first
capability is relevant in cases where we need to verify the BCPs. In such scenarios, we can infer
that the attacker can be a network attacker [CMP17] or web attacker [CMP18], or a powerful
attacker [PPJ22]. There may be BCPs that require the capability of a web attacker, while others

33

may require the capability of a powerful or network attacker. The specific capabilities required
will depend on the particular BCPs being tested. For example, if the BCP being tested is related
to redirect URI attacks in OAuth [Yan16], it may be more appropriate to assume the capabilities
of a web attacker while others may require the capability of a powerful or network attacker like
in the security of the OAuth token exchange process which involves the exchange of access and
refresh tokens between the OAuth client and the authorization server [Rya14].

The second capability is relevant in cases where we need to implement attacks. In such situ-
ations, we can infer that the attacker has the capability of a web attacker as it happens in the
authorization code interception attack [Ryu16]. In this attack, the attacker intercepts the autho-
rization code returned by the authorization server to the OAuth client during the authorization
flow. The attacker may do this by means of phishing attacks or exploiting vulnerabilities in the
OAuth client application. Once the attacker has intercepted the authorization code, the attacker
can use it to obtain access and refresh tokens, which can be used to access the user’s protected
resources. This attack can be particularly effective if the OAuth client is not properly securing
the authorization code, or if the authorization code is transmitted over an insecure channel.

3.3 MIG-L: a declarative language for Security Testing

In our approach, a Security Tester tasked to develop two sets of test cases. The former to check
whether the BCPs are present, while the latter to implement certain attacks. To define these
test cases, we use MIG-L. This language provides a formal and concise way of specifying the
test cases. We then use an automated security testing tool called MIG-T to execute these test
cases. By using an automated tool, we can quickly and accurately assess the security posture of
the System Under Test (SUT). Overall, our approach allows for efficient and effective security
testing of software systems.

The architecture of our approach, which incorporates the extended threat model in Figure 3.2, is
illustrated in Figure 3.3. In our approach, a Security Tester inputs a Session–a list of user actions
which can be seen as a UI integration test that testers use to create for web applications and
which inherits the Selenium1 engine and its primitives–and Test, and receives an Output from the
MIG-T. MIG-T replicates the user actions within the Session using a Browser that communicates
to multiple servers, and all HTTP messages are stored through a Proxy. The main components
of MIG-T are:

• The Test Handler is responsible for interpreting the Test provided as input and specified in
MIG-L. The Test Handler performs the operations listed in the Test and executes it. The
Test Handler also communicates with the Session Handler via the Session API and with
reporting and Proxy Interaction without API.

1https://www.selenium.dev/

34

Figure 3.3: High level view of the architecture of our approach.

• The Session Handler requires the Session as input and some commands from the Test Han-
dler. The Session Handler communicates with the browser using some browser API. This
component ensures that the Test is executed in the proper environment.

• The Proxy Interaction component is responsible for communicating with the Proxy using
some Proxy API. The Proxy Interaction ensures that the Test is executed under the specified
conditions.

• Finally, the Reporting component provides the output of the executed test. This includes
any vulnerabilities that were identified and any security controls that were properly imple-
mented. This component is essential in helping the Security Tester and other stakeholders
understand the results of the Test and take the necessary steps to improve the security of the
system.

We identify three distinct APIs defined as primitives, which can be accessed by individual com-
ponents, regardless of their underlying technology. The three APIs available in MIG-T are the
Browser API, Proxy API, and Session API. The Browser API allows for the automated execution
of user actions reported in a Session. For example, it provides the driver.get(URL) method
to open a specific URL in the browser. The Proxy API is used to intercept and manipulate an
HTTP Message. The HttpRequestResponse.getRequest() method can retrieve inter-
cepted messages. Finally, the Session API manages Session executions. The start(Session
s1) method creates a new thread object to run a specified Session s1 and returns it as a result.

3.3.1 Session Example

In the following example we report a Session (s1) which shows the SSO-based account linking
process (SSOLinking, in short) and allows users to link their Client accounts on a website to a

35

SSO account they own at an IdP. Using this process, users can log in on Client by leveraging
popular IdPs for the authentication, while keeping their existing profiles on the Client. This
ensures a SSO experience, besides the traditional form-based login. Indeed, (s1) just comprises
the user actions to functionally execute with the Browser the entire SSOLinking process in an
automated way at anytime so to be certain the process is working as expected. We can decompose
(s1) in 4 main parts: Login at Client, Link accounts, Assert, and Unlink accounts. Let us discuss
each one of them, also presenting some real examples where commands are presented in red,
macros in purple, and comments in blue.

Login at Client. This comprises the user actions to login a testing user at the Client. We illustrate
an example for the Dailymail2 website in Listings 3.1. The Dailymail login page is opened and
the cookie policy accepted. Then email and password are filled-in and the login button clicked.

1 open | https://www.dailymail.co.uk/registration/login.html |
//opens login page

2 click | xpath=/html/.../div/button[2] | //accepts the cookie
policy

3 click | xpath=/html/.../div[2]/input | //clicks on email text
field

4 type | xpath=/html/.../div[2]/input | john@example.com //
types the email

5 click | xpath=/html/.../div[3]/input | //clicks on password
text field

6 type | xpath=/html/.../div[3]/input | 12345678 //types the
password

7 click | xpath=/html/.../div[5]/button | //clicks the login
button

Listing 3.1: Login at Dailymail - example.

Link accounts. This includes the user actions to link the testing user account as authenti-
cated at the Client with the one at the IdP. We continue the example for the Dailymail web-
site (Client) when linking accounts with Facebook (IdP) in Listings 3.2. The user actions
are identical to the ones in the previous listing and the comments describe each user action.

2https://www.dailymail.co.uk/

36

1 open | https://www.dailymail.co.uk/registration/profile/edit.
html | //opens account page

2 click | xpath=/html/.../li[1]/a | //clicks on Facebook link
account button

3 click | xpath=/html/.../button[2] | //accepts Facebook
cookies

4 click | id=email | //clicks on email text field
5 type | id=email | john@abcd.com //types the email of user on

Facebook) <email>
6 click | id=pass | //clicks on password text field
7 type | id=pass | abcdefgh //types the password on Facebook <

password>
8 click | id=loginbutton | //clicks the login button
9 click | xpath=/html/.../div | //clicks to give consent to

link accounts

Listing 3.2: Link accounts - Dailymail with Facebook.

Assert. Now that the linking between accounts should have been done, the Tester wants to be
sure this was completed successfully. Assertions provide an easy way to set the expectations
for the UI test. Listing 3.3 presents the assertions for our example on linking accounts between
Dailymail (Client) and Facebook (IdP). The idea is very simple: the account profile is accessed
and the fact that the linking button with Facebook is not there allows to derive that the linking
was already done.

1 open | https://www.dailymail.co.uk/registration/profile/edit.
html | //re-opens account page for @assertion purposes

2 assert not clickable | xpath=/html/.../div/a | //verifies the
not availability of the linking button

Listing 3.3: Assert - Dailymail with Facebook.

Unlink accounts. If the test is not completed with a reset process to unlink the accounts, then the
test would not be repeatable. Listing 3.4 completes our example and illustrates the user actions
to unlink the user account at Dailymail from the account on Facebook.

37

1 open | https://www.dailymail.co.uk/registration/profile/edit.
html | //re-opens account page

2 click | xpath=/html/.../div/a | //clicks unlink account
button for Facebook

3 click | xpath=/html/.../span/a[2] | //confirm to unlink the
accounts

Listing 3.4: Unlink accounts - Dailymail with Facebook.

3.3.2 Session Details

In this section, we will explain the syntax used for defining a Session. A Session is a list of
user actions that a browser automatically performs to initiate the HTTP messages required for
a Test, enabling the MIG-T to simulate user interactions and collect information about the web
application’s behavior in response. A Session can include assert statements which can be
used to check whether a specific condition is true, such as validating that the flow is proceeding
as intended. Additionally, a Session can include a variety of actions such as opening a URL,
clicking a link or button, typing text into input fields, and also asserting. An example of a basic
Session may involve opening a browser at a specific URL, clicking a Login button, inputting a
username and validating with an assert by verifying the existence of specific HTML element.
The syntax utilized in the Session is derived from the Katalon framework,3 but we have expanded
upon it by adding new commands. The Katalon framework itself inherits the Selenium engine
and its primitives. The Session is able to handle standard commands as dictated by the frame-
work, but also includes additional ad-hoc commands defined by us such as wait, assert,
and clear cookies to offer greater flexibility. It is possible to specify defined properties,
referred to later as indicator, of an HTML page and CSS (which is used to define the style for a
single HTML page)4 in commands such as type, click, and assert by providing them as
key-value pairs.

The allowed key properties for indicator include:

• name: is the name of the tag used to create the HTML element.
• class: refers to the value assigned to the class attribute of the HTML element.
• id: refers to the value assigned to the id attribute of the HTML element.
• xpath: refers to the XPath expression used to locate an element within the HTML docu-

ment.
• link: refers to the HTML element that creates a hyperlink to another webpage or resource.

3https://katalon.com/
4https://www.w3.org/Style/CSS/Overview.en.html

38

Details of standard commands are listed below:

• open | http://www.website.com: opens a web browser at the specified URL (in
this example http://www.website.com).

• type | indicator | text: types the string text at the location identified by indicator.
• click | indicator: clicks the element on the page identified by indicator.

A list of ad-hoc commands along with their details is provided below:

• wait t: this delays the execution of the Session by a specified amount of time t millisec-
onds. It can be added manually in the Session to give the Security Tester time to solve a
captcha or additionally automatically added by the Test to ensure that a request is properly
processed.

• clear cookies: this results in the browser associated with the session clearing all the
cookies stored within it. This can be useful in a Session for instance to test the login feature.
Additionally, it can also be initiated by the Test as needed.

• assert actions |...: verifies whether a particular condition specified in actions is valid.

A list of assert statements are provided below, along with the details of allowed actions:

• assert clickable | indicator: ensures that the HTML object identified by indicator is
clickable.

• assert not clickable | indicator: ensures that the HTML object identified by indi-
cator is not clickable.

• assert visible | indicator: ensures that the HTML object identified by indicator is
visible.

• assert not visible | indicator: ensures that the HTML object identified by indicator
is not visible.

• assert element content is | indicator | <content>: ensures that the HTML
object identified by indicator is <content>.

• assert element content has | indicator | <content>: ensures that the HTML
object identified by indicator contains <content>.

• assert element class is | indicator | <content>: ensures that the class at-
tribute of the HTML object identified by indicator is <content>.

• assert element class has | indicator | <content>: ensures that the class at-
tribute of the HTML element identified by indicator includes the class <content>.

• assert element has attribute | indicator | <content>: ensures that one of
the attributes of the HTML object identified by indicator is as specified in <content>.

• assert element not has attribute | indicator | <content>: ensures that the
HTML object identified by indicator does not have the attribute specified in <content>.

39

In Listing 3.5 we report some examples of usage of assert.

1 assert clickable | xpath=/body/.. | //check that the element
identified by the xpath "/body/.." is interactive

2 assert not visible | id="elem" | //check that the element
with the id "elem" is not visible on the page

3 assert element content is | xpath=/body/div/label | text to
match //check that the element identified by the xpath "/
body/div/label" has the text "text to match" as its
content

4 assert element class has | xpath=/body/... | class_to_match
//check that the element identified by the xpath "/body
/..." has the class "class_to_match" in its classList

Listing 3.5: Examples of using the assert action.

The Listing 3.6 reports an example of a Session. This Session specifies the steps taken to log in
to the website www.example.com/login by loading the login page, entering the email and
password, clicking the login button, and verifying the presence of the logout button.

1 open | http://www.example.com/login // opens login page
2 type | email=username | bob@email.com // types the email
3 type | pwd=password | password // types the password
4 click | id=loginBtn // clicks on the login button
5 assert clickable | id=logoutBtn | // verifies the

availability of the logout button

Listing 3.6: Example of a Session with assert action.

3.3.3 MIG-L Syntax

A declarative approach to security testing of IdM protocol solutions involves describing how the
testing is performed. In the following sections, we will delve into the details of the syntax by
providing a comprehensive explanation of all available instructions. In MIG-L, a Test would
involve utilizing the various built-in functions and capabilities of MIG-T’s three distinct APIs
mentioned in Section 3.3. Using these APIs, in MIG-L, it is possible to manage and manipulate
HTTP messages, handle and manipulate sessions, and integrate an oracle as a criterion against
which the outcome of a test can be evaluated.

40

3.3.3.1 Test Suite Definition

A Testsuite is an object that contains a collection of Tests. To define a Testsuite, the follow-
ing syntax should be used: define_suite(name, description, filter). The instruction takes
three parameters, all of which are required:

• name - the name to assign for the Testsuite.
• description - the description to assign for the Testsuite.
• filter - a boolean value parameter, which is optional and has a default value of true. If the

value of this parameter is set to false, all HTTP messages will not be filtered. If the value
is set to true, all HTTP messages will be filtered. The filter discards images, fonts, and
other unwanted messages.

3.3.3.2 Test Definition

Each Test is represented as an object which contains a list of operations that are executed
when the Test is run. To initialise a Test, the tag start_test(name, description, type, s1, . . . ,
sn, result) should be used and the parameters are:

• name - the name of the Test.
• description - a description of the Test.
• type - can be either active or passive.
• s1, s2, . . . - all the sessions involved in the Test.
• result - mandatory only with active tests. It specifies when a Test should be consid-

ered successfully accomplished.

This tag should be the first one because it initializes a new Test, and all the following instruc-
tions are considered instructions of this Test, until the end of the Test specified with the tag
end_test().

Listing 3.7 reports an example of a Test.

1 start_test(Modify the value of State parameter, This test
tries to modify the value of the State parameter, active,
s1, correct flow s1) // instruction to start a test

2 ... // other instructions of the test
3 end_test() // instruction to end the test

Listing 3.7: Example of a Test.

41

Result specifies the oracle of the Test, and the Security Tester can choose one of the following
values according to the expected result of the Test. It could have one of the following values:

• correct flow Session: The Test succeeds only if all the user actions specified in Ses-
sion are executed without errors.

• incorrect flow Session: The opposite of correct flow, the Test succeeds only if
there is an error.

• assert only: The Test result ignores the validation of the Session flow but gives a result
depending on the assertions defined in the Session. This means that if the execution of the
Session fails, the result will not take it into account.

When correct flow (or incorrect flow) is used without specifying a Session, it veri-
fies all the Sessions given as input. Additionally, the result of the Test may be changed whether
other conditions stated in preconditions and validate operations are defined in the Test.

3.3.3.3 Operation

In the following sections, we will report on all the available operations that can be used in Tests.
An operation refers to an object within a Test that represents a particular instruction. There are
certain operations that can only be used in Active Tests, while others are specific to Passive Tests.
A detailed list of all the operations together with the translation in machine readable format is
available in Appendix B.

3.3.3.4 Message Type

With the parameter message type, it has to be specified on which HTTP message the given
operation is applied. The following types are currently available but more could be defined:

• request - all requests.
• response - all responses.
• OAuth request - all the OAuth-related requests.
• OAuth response - all the OAuth-related responses.
• SAML request - all the SAML requests.
• SAML response - all the SAML responses.

3.3.3.5 Operation in Passive Test

The possible operations in a Passive Test are:

42

• regular expression - by using the instruction regex(regexToApply, message_section, mes-
sage_type) and passing the regular expression between quotation marks “. . . ”. An example
is listed in Listing 3.8. By using this operation, it is possible to apply a regular expression
in a specific section of a message and type. The required parameters are:

– regexToApply: a regex to be tested.

– message_section: which part of the HTTP message to apply the regular expression. It
assumes the values url or head or body.

– message_type: the type of message on which the operation should be applied.

• check list - it is possible to define a list of checks that allows to analyze the intercepted mes-
sages. All the checks need to be specified between by using (i) start_checks(message
_type) where message_type is the type of message on which the operation should be applied
and (ii) end_checks(). The available checks are:

– check(string, action, in) where (i) string is the string of the message, (ii) action is the
operation to perform with possible values is present or is not present and
(ii) in which defines the part of the message to apply the check and can assume the
value of url, head and body.

– check_parameter(param, in, action) where (i) param is name of the message pa-
rameter, (ii) in defines the part of the message to apply the check and can assume
the value of url, head and body and (iii) action is the operation to perform with
possible values is present, is not present, is value, is not value
contains value, not contains value .

1 regex("code_challenge_method\\s*=(?!/s*\\ plain)", head,
authorization_request)} // regular expression to
modify the code_challenge parameter

Listing 3.8: Example of regex operation.

An example of operations in Passive Test is listed in Listing 3.9.

1 start_checks(message_type) // starts the operation
2 check(code, is present, url) // verify the presence of

code in URL
3 check_parameter(id, head, contains value) // verify

whether the id in head contains $value
4 end_checks() // ends the operation

Listing 3.9: Example of check operation on Passive Test.

43

3.3.3.6 Operation in Active Test

In the following sections, we will report all the operations that can be used in Active Testing.
These operations are divided into operations on the Test and operations on the Session.

3.3.3.7 Operation on Session

The possible operations in a Session in Active Test on which sessionname is the name of the
Session to manage, are:

• start(sessionname) - starts a new session with the specified name.
• stop(sessionname) - stops the session with the specified name.
• pause(sessionname) - temporarily suspends the session with the specified name.
• resume(sessionname) - resumes a paused session with the specified name.
• clear_cookies(sessionname) - clears all cookies associated with the specified session.

The following operations are used to manipulate a Session:

• mark(marker_name, action, sessionname) - Instruction to mark a specific user action in
a Session. The required parameter are (i) marker_name the name to be given to the new
marker (ii) action the action to be marked and can assumes:

– last_action to mark the last performed user action.

– last_open to mark the last “open” performed user action
(e.g., open | url_example |).

– last_click to mark the last “click” performed user action
(e.g., click | link=login |).

– all_assert to mark all the assertion of the Session with the same marker.

(iii) sessionname is the name of the Session.
• save(variable_name, action, sessionname) - Instruction to save in a variable some data

about the user action of a Session. The required parameter are (i) variable_name is
the name to give to the new variable, (ii) action the operations to be saved and can
be followed by .elem to save only the element _elem_ inside the user action. If
.elem is followed by .parent, then only the parent div element is saved (e.g.,
last_action.elem.parent). It can assumes:

– last_action to save the last performed user action.

– last_open to save the last “open” performed user action.

– last_click to save the last “click” performed user action.

– last_url to save the the last url that was opened.

44

– all_assert to save in a variable all the user actions defined as assertion.

– track to save the user actions within a range where the interval limits are required
(i.e. save(variable_name, action, sessionname, [M0,M1])).

and (iii) sessionname is the name of the Session.
• add(string, marker_name) - Instruction to add string as a user action in a Session

at a position specified by marker_name (e.g., add(“type | id=login | me@email.com”,
marker_name)).

• delete(marker_name) - Instruction to delete a user action in a Session at a position spec-
ified by a marker_name where marker_name is the name of the marker.

3.3.3.8 Operation on Test

The possible operations in a Test can be:

• Validate Operation: they represent the way to execute checks and regex even in Active Tests.
All checks or regex need to be specified between the instruction start_validate
(message_type) end_validate()where message_type the type of message on
which the operation should be applied. All other possible instructions are the same as those
for the Passive Test (see Section 3.3.3.2). Two examples are reported in Listing 3.10 and
3.11.

1 start_validate(request) // begins the validation process
2 start_checks(message_type) // begins the checks
3 check(code, is present, url) // verifies if the given

code is present in url
4 check_parameter(id, head, contains "23") // verifies if

the specified ’id’ parameter is present
5 end_checks() // all the checks for the current message

type have been completed
6 end_validate() // the validation process for the given

request has been completed

Listing 3.10: Example of validate operation.

45

1 start_validate(request) // begins the validation
process

2 regex("code_challenge_method\\s*=(?!\\s*plain)", head,
request) // performs a regular expression match on the
request header, looking for the string "
code_challenge_method" followed by an equals sign and
any characters except "plain" (i.e. ensuring that the
code challenge method is not set to plain).

3 end_validate() // the validation process for the given
request has been completed

Listing 3.11: Example of validate operation with regex.

• Intercept Operation: operations to modify intercepted HTTP messages. All the instructions
related to the intercept must be declared between the instructions start_intercept
(message_type, from_session, then) and end_intercept() where (i) message_type is
the type of message on which the operation should be applied, (ii) from_session specifies
which Session has to be intercepted to search for the specific message and (iii) then defines
the action to be done on the intercepted message after the execution of the operation and
can assume forward also by default or drop. Inside the tags start_intercept
(message_type, from_session, then) and end_intercept() it is possible to add:
(i) save_message(variable) - Instruction to save an intercepted message in a new variable
where variable is the name of the variable created for the purpose of saving the message,
(ii) replace(saved_variable, isRequest) - Instruction to replace the intercepted HTTP
message request or response with a previously saved message where saved_variable is
the name of the variable which contains the HTTP request or response to replace and
isRequest is set to true if the HTTP message is a request, otherwise it is set to false
in case of a response.

• Preconditions: it is possible to define preconditions with regex or checklist in-
structions (same reported in Section 3.3.3.2) to be specified inside the tags
start_precondition() and end_precondition(). An example of using pre-
condition operations is shown in Listing 3.12.

1 start_precondition() // begin precondition
2 start_check(oauth request) // begin operation
3 check(param, is present, head) // verify if parameter is

present in header
4 end_check() // end operation
5 end_precondition() // end precondition

Listing 3.12: An example illustrating the usage of the precondition.

46

• Message Operations: these are operations that need to be performed on the intercepted
HTTP message in an operation. All instructions for executing message operations should
be defined between the tags start_msg_operation(message_section) and
end_msg_operation() where message_section can assume the values of url or
head or body. The possible instructions are:

– add_parameter(param_name, param_value, from) - Instruction to add a new
header or string to the intercepted HTTP message where (i) param_name is the name
of the header to add, (ii) param_value is the value of the header to add, (iii) from is the
HTTP message section with possible values url, head and body. This instruction
serves in two purposes (i) if from equals to head or url, a new header is added to
either the URL or the header section of the HTTP message, with param_name as the
name of the new header and param_value as its value and (ii) if from equals to body,
param_value is appended to the body section of the HTTP message, without taking
into consideration the param_name value.

– edit_parameter(param_name, new_value, from) - Instruction to edits the given
parameter’s value of the intercepted HTTP message where param_name is the name
of the parameter to edit, new_value is the new value of the parameter and from is the
message section with possible values url, head and body.

– edit_regex(regex, new_value, from) - Instruction to edit the content of the HTTP
message matched by the passed regex with a new value where regex is the regex to
apply passed between quotation marks “...”, new_value is the new value of the content
matched by the regex and from is the message section with possible values url, head
and body.

– remove_parameter(param_name, from) - Instruction to remove a parameter from
the intercepted HTTP message where param_name is the name of the parameter to
remove and from is the message section with possible values url, head and body.

– remove_match_word(word, from) - Instruction to remove occurrences of a string
from the HTTP message where word is the string to delete and from is the message
section with possible values url, head and body.

– save_parameter(param_name, variable, from) - Instruction to save the value of
an HTTP message parameter in a new variable where param_name is the name of
the parameter to save, variable is the name of the new variable in which to save the
parameter value and from is the message section with possible values url, head and
body.

– save_match(string, variable, from) - Instruction to save a string found in the HTTP
message in a new variable where string is the string to save, variable is the name of the
new variable in which to save the string value and from is the message section with
possible values url, head and body.

47

– gen_POC(pattern, name) - Instruction to generate and save as a name the HTML POC
with a HTML form of pattern.

– decode_param(param_name, from, encoding1,...,encodingN, type, remove signa-
ture, self-sign) - Instruction to decode a parameter of the intercepted HTTP message
where param_name is a mandatory parameter which reports the name of the parame-
ter to decode, from is a mandatory parameter which reports the message section with
possible values url, head and body, encoding1,...,encodingN is a list of encoding
standard with possible values url, deflate, jwt and base64, type is the type
of the parameter once decoded with possible values of xml, jwt and txt, remove
signature it means that the decoded parameter is a SAML request or response and
its signature is removed and self-sign it means that the decoded parameter is a
SAML request or response and its signature is resigned with a private key.
According to the chosen type, one of the following instructions can be used:

* if type equals to xml it means that the decoded parameter is an xml, then the
instruction is like xml_op(op_tag,...,op_tagN) and op_tag assumes:

· (remove tag, tag_name): the instruction allows to remove the tag
tag_name.

· (remove attribute, attr, tag_name): the instruction allows to remove
the attribute attr of the XML tag tag_name.

· (edit tag, tag_name, new_value): the instruction allows to set the value
of the tag tag_name to new_value.

· (edit attribute, attr, tag_name, new_value): the instruction allows to
substitute the value of the attribute attr of the XML tag_name with new_value.

· (add tag, new_tag, parent_tag, new_value): the instruction allows to in-
sert a new tag new_tag with value new_value as a child of the tag parent_tag.

· (add attribute, new_attar, tag_name, new_value): the instruction al-
lows to insert a new attribute new_attr with value new_value in the tag
tag_name as an attribute.

· (save tag, tag_name): the instruction allows to save the value of the tag
tag_name in a new variable created on purpose.

· (save attribute, attr_name, tag_name): the instruction allows to save
the value of the attribute attr_name of the tag_name in a new variable created
on purpose.

* if type equals to txt which means the decoded parameter is a plain text, then the
instruction is like txt_op(op_tag,...,op_tagN) and op_tag assumes:

· (txt remove, value): the instruction allows to remove all the values value
matched in the txt parameter.

· (txt edit, text, new_text): the instruction allows to substitute all the oc-
currences of text matched in the txt parameter with the string new_text.

48

· (txt add, text, new_text): the instruction allows to insert the string
new_text at the end of the string text matched in the txt parameter.

· (txt save, text, new_var): the instruction allows to save the string text in
a new variable called new_var, if the string text has matched at least once in
the txt parameter.

* if type equals to jwt which means the decoded parameter is a JWT, then the
instruction is like txt_op(op_tag,...,op_tagN) and op_tag assumes:

· (jwt remove, from, parameter): the instruction allows to remove the pa-
rameter parameter from the specific jwt section specified in from. If the sec-
tion is signature the entire signature is removed.

· (jwt edit, from, parameter, new_value): the instruction allows to sub-
stitute the value of the parameter parameter with a new value new_value in
the specific jwt section specified in from. If the section is signature then the
entire signature is edited.

· (jwt add, from, parameter, new_value): the instruction allows to add a
new parameter parameter to the specific jwt section (specified by from), with
value new_value.

· (jwt save, from, parameter, new_var): the instruction allows to save in a
new variable new_var the parameter parameter of the jwt. If the section is
signature then the entire signature is saved.

· (jwt sign): the instruction allows to sign the jwt with an invalid key.
Possible values of the field from are header, payload, signature
raw header, raw payload and raw signature.

3.3.4 MIG-L Semantics

In this section, we will present the semantics of MIG-L. We define the semantics of MIG-L
by translating it into a machine readable language, which is the low-level input language for
MIG-T. This language is in JSON format and leverages the primitives described in Section 3.3
(i.e. Browser API, Proxy API and Session API) and detailed in Section 3.3.4.3. A mapping
between MIG-L operations and machine readable format expressed in JSON is reported in in
Appendix B.

49

3.3.4.1 Translation of Testsuite

The translation of the object Testsuite defined in Section 3.3.3.1 is shown in Listing 3.13.

1 {"test suite": {
2 "name": "Testsuite for SAML", // assigned label of the

testsuite
3 "description": "Set of test to verify the SAML Request"

// define a description of the testsuite
4 "filter messages": "true" }// allows the proxy to

intercept the traffic by invoking a Proxy API
5 "tests": [...] } // list of tests

Listing 3.13: Example of Testsuite.

The ProxyListener interface is used to register a listener for the Proxy, which receives notifi-
cations of all requests and responses processed. The function registerProxyListener()
is invoked from the Proxy API to enable the Proxy to intercept HTTP messages and enable the
execution of the list of Test.

When the Testsuite is executed on the MIG-T, it follows a procedure where each Test is evaluated
independently and the outcome of each Test is reported (passed or failed or not applicable).

Different scenarios have been outlined based on the type of Test contained in the Testsuite:

• If the Testsuite only contains Passive Test, they will only be executed whether the previous
Session and its HTTP message flow is saved.

• If the Testsuite only contains Active Test, they will be executed one after another.
• If the Testsuite contains both Active Test and Passive Test, the Active Test will be executed

first, as they may modify the message flow of the Session. Once all Active Test are done,
the Passive Test will be run on the saved message flow.

3.3.4.2 Translation of Test

The translation of the object Test defined in Section 3.3.3.2 is different according to the value of
the type parameter (i.e. active or passive).

In the following paragraphs we specified the translations for Passive and Active Test, respec-
tively.

50

Passive Test. Passive Tests are executed on the saved flow of HTTP messages, thus the Session
identified with tag session in the Test associated with the Test must be run beforehand to save
the message flow.

If the Session has been executed, the Passive Test is carried out by iterating through the HTTP
messages. For each HTTP message, the execution of each operations is evaluated by com-
paring it to the specified types in the operation. The outcome of this comparison is then used
to determine the next step:

• If a match is found between the types and the HTTP message, and the operation results
in a fail, the entire test is considered a failure.

• If a match is found between the types and the HTTP message, and the operation results
in a pass, the iteration on the HTTP message continues as there may be other messages that
can be processed by the same operation.

• If no match is found between the types and the HTTP message, the iteration on the HTTP
message continues as a suitable message on which to apply the operation has not yet been
found.

The final outcome of the test can be one of the following:

• Failed: If the result of any operations is failed.
• Not applicable: If no messages were found to apply at least one operations.
• Passed: If the outcome of each operations is passed for every message of the flow it is

applicable to.

Listing 3.14 demonstrates how to create a Passive Test.

1 "test": {
2 "name": "Presence of state parameter",
3 "description": "Verify the presence of state parameter",
4 "type": "passive",
5 "operations": [//passive operations]}}
6 {//other test}]

Listing 3.14: Passive Test creation example.

51

Listing 3.15 provides an example of how operations can be used in a Passive Test.

1 {"operations": [{ //regex operation example
2 "message type": "Authorization request",
3 "regex": "code_challenge|code_challenge_method",
4 "message section": "body"}// check list operation example
5 { "message type": "authorization request",
6 "checks": [{
7 "in": "head",
8 "check": "response_type",
9 "is": "code"},{

10 "in": "head",
11 "check": "client_id"}]}]

Listing 3.15: Example of adding operations in a Passive Test.

When a HTTP Message stored matches a specified types, the operations is applied to that
HTTP Message. In scenario one, when an operations in a Passive Test is a regex, the
following considerations are made:

• The message section tag indicates which part of the message (url, headers, or body)
the regex should be applied to. In Listing 3.16 we report the Proxy API used.

1 //to get headers (interface AnalizeHttpMessage)
2 List<String> getHeaders(HttpRequestResponse message);
3

4 //to get body offset (interface AnalizeHttpMessage)
5 int getBodyOffset(HttpRequestResponse message);
6 //to get the entire message (request or response) as a

byte[] array
7 byte[] msg = HttpRequestRequest.getRequest()
8 byte[] msg = HttpRequestResponse.getResponse()
9 /*NB: then thanks to the offset and the entire byte[]

message, the byte[] body is retrieved with another
function.*/

10

11 //to get url (interface AnalizeHttpMessage)
12 String getUrl(HttpRequestResponse message);

Listing 3.16: Example of the Proxy API used.

• The relevant part of the HTTP Message is extracted as a string.

52

• The regex is applied to the string.

The result of the operations is then:

• Passed (true) if the regex matches at least one occurrence in the specified string.
• Failed (false) if the regex does not match any occurrences in the specified string.

In scenario two, when an operations in a Passive Test is a list of checks, the following
considerations are made for each check in the list of checks:

• Tag in is used to determine which part of the message (url, headers, body) should be
checked. The relevant part of the HTTP Message is then extracted as a string.

• Two main tags are considered, check and check parameter, each of which may be
associated with additional tags:

– The check tag with a value is specified, it verifies if the message string contains the
specified value; if the string is found, the check results is Passed.

– When the check parameter tag is specified with a value, the system checks if the
message string contains the specified value as a parameter. If the parameter is present
in the string, the check is considered Passed.

– Additional tags can modify the behavior of the check and check parameter
tags described previously. These tags include:

* is:value also used in conjunction with the check parameter tag.

* not is:value also used in conjunction with the check parameter tag.

* contains:value also used in conjunction with the check parameter tag.

* not contains:value also used in conjunction with the check parameter
tag.

* is present:true/false also used in conjunction with the check parameter
and check tags.

The outcome of the operations is:

• Passed (true) if all the checks are evaluated as true.
• Failed (false) if any of the checks are evaluated as false.

Active Test. Active Test is run in conjunction with the Session that are tagged to the Test, when
the MIG-T is instructed to execute the Testsuite. The execution of the associated Session must
be repeated for each Test. When running the Active Test, an iteration over the operations
begins. Each operations is evaluated sequentially, meaning that the next operations
will not be available until the previous operations has completed. Listing 3.17 provides an
example of the structure of an active test.

53

1 {"test": {
2 "name": "Replay SAML Response",
3 "description": "Replay an existing SAML Response",
4 "type": "active",
5 "sessions": [
6 "s1"],
7 "operations": [...]
8 "result": "incorrect flow s1"}}

Listing 3.17: Structure of an Active Test.

In an Active Test, the Proxy API is used to intercept HTTP Message. When an HTTP Message
is intercepted, the function ProxyListener.processProxyMessage
(HttpRequestResponse message) is called, and all the operations of the Active Test
are executed within this function.

Oracle definition The oracle is responsible for determining the outcome of Active Test and
takes into account the following three components of the language in the specified order:

• Evaluation of the preconditions.
• Evaluation of the full or partial execution of the Session.
• Evaluation the operations of validate.

Preconditions in an Active Test’s operations are defined using the
precondition:[...] tag, which contains a list of checks or a regex. If the list
of checks or regex evaluates to false, the entire Test is considered not supported and the
result of the entire Test is considered Not applicable. Even if an operation within an Active Test
is deemed Not applicable, the entire test will still be considered as Not applicable. The result
tag determines the outcome of the Test by evaluating the execution of the Session and if it is not
specified then the execution of all the Session are taken in consideration.

If the result is set to correct flow SessionName, then the Test will be considered:

• Passed: if all the user actions specified in the SessionName are executed without errors
• Failed: if there are errors in the execution of the user actions specified in the SessionName.

If the result is set to incorrect flow SessionName, then the Test will be considered:

• Passed: if there are errors in the execution of the user actions specified in the SessionName.
• Failed: if all the user actions specified in the SessionName are executed without errors.

54

If the result is set to assert_only, the execution of all the user actions specified in a
Session is skipped and the Test is evaluated based on the outcome of the operations in the
validate. The test is considered:

• Passed: if all the results of the operations in validate are passed.
• Failed: if all the results of the operations in validate are failed.

When operations in validate are present in a Test, the final outcome of the Test is evalu-
ated using the boolean operator AND:

• Passed: if (i) the result of the Test is Passed using the tag result:correct flow
SessionName or result:incorrect flow SessionName AND each operations
result in validate is passed and, (ii) if each operations result in validate is passed
and tag is result:assert_only.

• Failed: in all other cases, meaning if either the result of the test is failed or at least one
operations result in validate is failed or if tag result:assert_only and not
all operations result in validate is passed.

There are two types of operations in Active Test, the one for Session and one for Test.

Handle the Session The following are the operations used to manage the different Session
specified in an Active Test, identified by the tag sessions. It is important to note that each
Session runs on a separate thread and is associated with a unique port number to allow for distinct
message interceptions between Session. First, when it comes to Session Config Operations, the
tag session SessionName is used to specify the particular Session on which actions will be
performed. Then, based on the value of the tag action a specific action is executed:

• start: the Session is initiated. A new thread is created and the Session runs on it.
• stop: the Session is terminated. The Thread of the Session is interrupted.
• pause: the Session is temporarily suspended. The Thread of the Session is put on hold.
• resume: the Session resumes execution. The Thread of the Session is resumed.
• clear cookies: the cookies saved in the browser due to execution of the Session are

deleted.

55

In Listing 3.18, an example to handle Session with operations.

1 "operations": [{
2 "session": "s2",
3 "action": "start",
4 "session operation": [
5 {"session": "s2",
6 "insert top": "open | www.example.com"}]}]

Listing 3.18: Example of session operation.

Operations on Session The operations in the Session are executed sequentially. For each
operations, the session tag is used to indicate that all modifications will be carried out on
the specified Session. The specific action to be taken depends on the other tag used, which must
be one of the following options exclusively:

• If the tag mark is used in conjunction with a MarkerName, a new marker object with the
value MarkerName is created to identify the index of the user action specified by the tag
mark. The possible user actions that can be marked are:

– mark:last_action to mark the last user action performed.

– mark:last_open to mark the last open user action performed (i.e. open | URL |).
– mark:last_click to mark the last click user action performed (i.e. click |

link=login |).
– mark:all_assert to mark all the assertions of the Session with the same marker.

• If the tag save is used in conjunction with the tag aswith the value variable, a new variable
is created. If the action is followed by .elem only the element within the user action will
be saved. Furthermore, if .elem is followed by .parent only the parent div element will
be saved. The new variable will be used to save a specific user action or element based on
one of the following options:

– save:last_action saves the last user action performed.

– save:last_open saves the last open user action performed (e.g., open | exam-
ple.com |).

– save:last_url saves the last url that was opened.

– save:last_click saves the last click user action performed (e.g., click | id=login
|).

– save:all_assert in this case all the action of the Session, which are considered
assertion are saved as a concatenation in variable.

56

– save:track associated with the tag range:[M0,M1], in this case all the action
in a range defined with the use of markers are saved in variable.

• If the tag insert with Variable1 and Variable2 is used with the tag at, a new string is
created by concatenating the text and the content of each Variable specified with the tag
insert. This new string is then inserted into the Session at the location specified by the
marker indicated in the at tag as a new user action.

• If the tag remove with the value Marker is used, the user action located at the position
specified by the Marker is deleted within the Session.

Operations on Test In the case of an operations in a Test, the first step is to intercept
a message on which the operation will be applied. An example of operations in Active
Test is reported in Listing 3.19. If the tag types is used, the message must be of that specific
type. If not, the message must be of a default type such as request or response or oauth
request or oauth response. After intercepting the specific message, the tag action is
evaluated:

• If the tag action is set to validate the operations are equivalent to operations
in Passive Test (see Section 3.15).

• If the tag action is set to intercept, the execution proceeds with the following con-
sideration:

– if there are any preconditions specified in the preconditions, the execution will
continue only if these preconditions are met.

At this stage, all other optional tags are evaluated in a specific order:

– The from session is used to specify on which Session should be searched the
message. If an HTTP message is intercepted, the port number of the specified Session-
Name must match the port number of the Session where the message was intercepted
in the operations. If the port number does not match, the message will not be
considered. If from session is not used, the message will be searched by default
at port 8080.

– The then tag is used to specify the action that should be taken on an intercepted
message after the operations is executed. The options are:

* forward: in this case, after all operations have been performed on the HTTP
Message, it is sent to the server/client normally.

* drop: in this case, the HTTP Message is deleted and not forwarded to the clien-
t/server.

– replace request: Variable is used when the intercepted HTTP Message is a re-
quest and will be replaced by Variable. If the intercepted HTTP Message is not a

57

request or the Variable containing the HTTP Message is not found, then the operation
result is Not applicable. The HttpRequestResponse.setRequest(byte[]
message) method of the Proxy API is used to update the request of the HTTP Mes-
sage.

– replace response : Variable is used when the intercepted HTTP Message is a
response and will be replaced by Variable. If the intercepted HTTP Message is not a
response or the Variable containing the HTTP Message is not found, then the operation
result is Not applicable. The HttpRequestResponse.setResponse(byte[]
message) method of the Proxy API is used to update the request of the HTTP Mes-
sage.

– message operations: [...] All the specified operations to editing the HTTP
Message are executed.

– save An intercepted HTTP Message is stored in a new variable for use in future
operations. It utilizes the following Proxy API methods: (i) to save a response through
byte[] msg = HttpRequestResponse.getResponse() and, (ii) to save
a request byte[] msg = HttpRequestResponse.getRequest().

1 "operations": [{
2 "action": "intercept", // action to do
3 "then": "forward",
4 "message type": "authorization request",
5 "preconditions": [{
6 "check param": "state",
7 "is present": true}],
8 "message operations": [
9 // list of operations to do on message

10 { "from": "url",
11 "remove parameter": "code_challenge_method"}]}]

Listing 3.19: Example of operations on Test.

HTTP Message Operations If the tag message operations is present, a loop is started
to iterate over the list of message operations. For each operation, all the tags are evaluated.
When evaluating a specific message operation, the mandatory from tag is first considered, which
specifies the section of the message where the action should be performed.

The possible actions are then allowed:

• If the tag remove parameter is present with the ParameterToRemove, it removes the
ParameterToRemove from the specified section of the HTTP Message.

58

• If the tag add is present with the ParameterToAdd and its Value, it adds ParameterToAdd,
then:

– If the message section is url or head, a new header called ParameterToAdd is added
to the url or the head section of the HTTP Message with Value.

– If the message section is body, the Value is appended to the body.

• If the tag edit is present with the value of ParameterToEdit and the tag in is present with
the value NewParValue, then:

– If the message section is url or head, the parameter ParameterToEdit is searched
and its value is updated to NewParValue.

– If the message section is body, a regular expression is used to substitute every occur-
rence of ParameterToEdit in the body with the value NewParValue.

• If the tag edit regex with the value Regex is present, followed by the tag in with
the value NewContent, then a regex is used to replace any matching content in a specific
message section with newContent.

• If the tag remove match word with the value Word is present, then a regex is used to
remove the string Word from a specific message section.

• If the tags save with the value Variable1 and as with the value Variable2 are present, then
the following actions will be taken:

– If the message section is url or head, the save tag will be used to search for a
specific Variable1 and its value will be saved in Variable2.

– If the message section is body, the save tag will be used with a regex to save any
matching content in Variable1 and saves in Variable2.

• If the tag save matches with the value String is present, followed by the tag as with
the value Variable, then the specific message section is searched for String and if it is found,
it is saved in a new variable named Variable.

• If the tag decode param with the value Parameter is present, as shown in Listing 3.20
then the following actions will be taken:

– If the message section is head or url, the value of Parameter is extracted from the
specific message section and decoded using a list of encoding.

– If the message section is body, a regex is used to match content, and whatever is
matched is decoded using the list of encoding.

• The encoding tag, which includes a list of values, determines the encoding that can be
applied to the encoded parameter. The encoding are applied in the order they are listed, and
a unique function is utilized to decode the parameter for each encoding.

• If the remove signature tag is set to true, the signature is removed from the decoded
parameter.

59

• If the self-sign tag is set to true, the signature is removed and the decoded parameter
is re-signed with a private key.

• If the type tag is set to xml, the decoded parameter will be treated as an XML document.
The tags that specify the operations are:

– remove tag: Delete an existing tag by specifying its name in the XML parameter.

– remove attribute: Delete an existing attribute from a specific XML tag by spec-
ifying the attribute name and the tag name.

– edit tag: Change the value of an existing tag by specifying the tag name and the
new value.

– edit attribute: Change the value of an existing attribute in a specific XML tag
by specifying the attribute name, the tag name, and the new value.

– add tag: Add a new child tag to an existing parent tag by specifying the new tag
name, the parent tag, and the new value.

– add attribute: Add a new attribute to an existing XML tag by specifying the
new attribute name, the tag name, and the new value.

– save tag: Save the value of an existing tag in a new variable by specifying the tag
name.

– save attribute: Save the value of an existing attribute in a new variable by
specifying the attribute name and the XML tag name.

• If the type tag is set to txt, the decoded parameter is treated as a string and regex opera-
tions are applied. The following actions can be taken:

– txt remove: Remove specified value from the parameter.

– txt edit: Replace all occurrences of a specified text in the parameter with a new
text.

– txt add: Add a new text at the end of a specified text in the parameter string.

– txt save: Save a matched string text in a new variable with a specified name.

• If type tag is set to jwt is present, it is possible to decode a JWT token using the following
tags:

– jwt from: This tag is mandatory and is used to specify the section of the token
on which the action should be taken (possible values are: header, payload,
signature, raw header, raw payload, raw signature).

– jwt remove: Remove a specified parameter from a specific section of the JWT.

– jwt edit: Replace the value of a specified parameter in a specific section of the
JWT with a new value. (Note: If the section is the signature, the entire signature is
edited.)

60

– jwt add: Add a new parameter with a specified value to a specific section of the
JWT.

– jwt save: Save the value of a specified parameter in a new variable. (Note: If the
section is the signature, the entire signature is saved.)

– jwt sign: Sign the JWT with an invalid key.

• If type is set to gen_poc by providing the message type and the value is, it is possible to
generate an HTML Proof Of Concept as value of the HTTP message which corresponds to
the message type.

1 "message operations": [{
2 "from": "url",
3 "decode param": "SAMLRequest",
4 "encoding": [
5 "url",
6 "base64",
7 "deflate"],
8 "type": "xml",
9 "xml tag": "samlp:AuthnRequest",

10 "edit attribute": "ID",
11 "value": "newIDValue"}]

Listing 3.20: Example of using the decode param.

3.3.4.3 The Required APIs by MIG-T

As reported in Figure 3.3 we identified three different types of APIs (i) Proxy, (ii) Session and
(iii) Browser.

The Proxy API refers to a set of interfaces and functions offered by the Proxy, which are essential
for the proper functioning of MIG-T. These functions and interfaces are therefore necessary:

• Interface HttpRequestResponse: this interface is used to retrieve and update details
about the intercepted HTTP messages, providing functions to modify the content of the
message. The supported functions are:

– byte[] getRequest(): this function retrieves the HTTP request as a byte array.

– byte[] getResponse(): this function retrieves the HTTP response as a byte
array.

– setRequest(byte[] request): this function updates the HTTP request
passed as a byte[] array.

61

– setResponse(byte[] response): this function updates the HTTP response
passed as a byte[] array.

• Interface ProxyListener: this interface is used to register a Proxy listener. The listener
will be notified of requests and responses being processed by the Proxy tool.

– registerProxyListener(): this function enable the proxy to start intercepting
HTTP messages.

– processProxyMessage(HttpRequestResponse message): function
called when an HTTP message is being processed by the Proxy, all the information of
the intercepted HTTP message are saved in the passed HttpRequestResponse object.

• Interface AnalizeHttpMessage: This interface is used to provide function to retrieve
key details about an HTTP message.

– List<String> getHeaders(HttpRequestResponse message): this
function return the headers of an HTTP message.

– int getBodyOffset(HttpRequestResponse message): this function
return the offset within the HTTP message where the message body begins.

– String getUrl(HttpRequestResponse message): this function return
the url of the HTTP message in case of a request.

The Session API is a collection of functions utilized to manage the operation of sessions. Each
Session is an object functioning as a thread, and therefore, the APIs consist of functions for
thread management. The following APIs have been identified:

• Thread start(Session sessionName): this function run a specific Session as a
new thread object which is given in return.

• void sleep(Thread thread1, int time): this function pauses the thread on
which the Session is running, consequently pausing the execution of the Session.

• void notify(Thread thread1): this function resumes the thread on which the
Session is running, consequently resuming the execution of the Session.

• void interrupt(Thread thread1): this function stops the execution of the
thread on which the Session is running, consequently stopping the execution of the Ses-
sion.

The Browser API refers to a collection of functions utilized to facilitate automated execution of
user actions during a browser session. We identified the following functions:

• WebDriver driver = new ChromeDriver(options)/new
FireFoxDriver(options): this costructor initializes the browser according to the
chosen browser.

62

• driver.getCurrentUrl(): this method retrieves the current url opened.
• driver.get(url): this method opens in the browser the passed url.
• driver.manage().deleteAllCookies(): this method explicitly deletes all the

cookies generated.
• driver.findElement(by): this method finds an element in a HTML page.
• WebDriverWait(driver, Duration.ofSeconds(TIMEOUT))
.until(ExpectedConditions.elementToBeClickable
(currentElement)) .click(): this method is called when a click user action is
read.

• WebDriverWait(driver, Duration.ofSeconds(TIMEOUT))
.until(ExpectedConditions.elementToBeClickable
(currentElement)) .sendKeys(action.content): this method is called
when a type user action is read.

3.3.5 Machine Readable Specification of Testsuite

We analyzed and collected existing BCPs, vulnerabilities, and attacks related to various sources
of IdM protocols, particularly SAML and OAuth/OIDC protocols. Based on our analysis, we
created testsuites defined in the machine readable specification described in previous section. In
the following sections, we provide an example of Test for SAML, OIDC and OAuth protocols.

63

3.3.5.1 SAML Testsuite

An excerpt of a SAML test from [Fre04] in machine readable specification is displayed in Listing
3.21.

1 "test": {
2 "name": "Missing check on OneTimeUse in Response",
3 "description": "Checks whether the OneTimeElement element is

present in the SAMLResponse",
4 "type": "passive",
5 "operations": [{
6 "message type": "saml response",
7 "decode param": "SAMLResponse",
8 "encoding": [
9 "url",

10 "base64",
11 "deflate"],
12 "checks": [{
13 "in": "url",
14 "check param": "SAMLResponse",
15 "contains": "OneTimeUse"}],
16 "message section": "body"}]}

Listing 3.21: Example of a SAML Test in JSON Format.

64

3.3.5.2 OIDC Testsuite

An excerpt of a OIDC tests from [Mic15] in machine readable specification is displayed in List-
ing 3.22.

1 "test":{
2 "name": "P1_a",
3 "description": "Authentication Request: client_id parameter

must be present in the JWT token",
4 "references": "OIDC CIE Core Web, Section 5, Table 6",
5 "violated_properties": "client_id parameter is required in

the JWT token",
6 "mitigations": "OP should validate the client_id parameter

in the JWT token",
7 "affected_entity": "OP",
8 "type": "passive",
9 "operations": [{

10 "message type": "authentication_request",
11 "message section": "url",
12 "decode param": "request",
13 "encoding": [
14 "jwt"],
15 "regex": "\"client_id\"\\s?:\\s?\".*\""}],
16 "result": "incorrect flow s1"}

Listing 3.22: Example of an OIDC Test in JSON Format.

65

3.3.5.3 OAuth Testsuite

An excerpt of a OAuth tests from [oaub] in machine readable specification is displayed in Listing
3.23.

1 "test": {
2 "name": "Parameter state is used",
3 "description": "check for the presence of the parameter state

in relevant messages",
4 "type": "passive",
5 "operations": [{
6 "message type": "authorization request",
7 "checks": [{
8 "in": "head",
9 "check": "state",

10 "is not": ""}]},{
11 "message type": "authorization response",
12 "checks": [{
13 "in": "head",
14 "check": "state",
15 "is not": ""}]},{
16 "message type": "token request",
17 "checks": [{
18 "in": "head",
19 "check": "state",
20 "is not": ""}]}]}

Listing 3.23: Example of an OAuth Test in JSON Format.

66

Chapter 4

Micro-Id-Gym Design

In this chapter, we present the design of MIG, a powerful and user-friendly tool that assists
system administrators and Security Testers in the deployment and security testing of instances
of IdM protocols. The tool is designed to streamline and automate many of the tasks involved
in the setup and configuration of IdM protocol instances, making it easier for administrators to
deploy and manage these systems. It also provides an extensive set of tools for Security Testers to
identify and exploit vulnerabilities in instances of IdM protocol. Some of its features include (i)
automatic and unattended installation of IdM protocol, (ii) easy configuration of security settings
(iii) automated security testing and, (iv) automated remediation of vulnerabilities, making it easy
to fix issues as they are identified. With MIG, system administrators and testers can confidently
deploy and manage instances of IdM protocol, knowing that their systems are secure.

4.1 Overview

To assist system administrators and testers in the deployment and security testing of IdM protocol
instances we propose MIG. In this section we provide an overview of the tool before giving the
details of the various components in the rest of this section.

The IdM protocols are designed specifically for the transfer of authentication information and
consist of a series of messages in a preset sequence designed to protect data as it travels through
networks or between servers. All the IdM protocols provide standards for security to simplify
access management, help in compliance, and create a uniform system for handling interactions
between users and systems.

Figure 4.1 shows a high level view of the architecture of MIG composed of three main compo-
nents, namely MIG Backend (that supports the creation of a sandbox), Dashboard (that assists
the users to set the tool) and, MIG Frontend (that supports security testing).

67

Figure 4.1: Overview of MIG.

Abstractly, MIG supports two main activities: security testing of IdM protocol deployments
and creating sandboxes with an IdM protocol deployment. The former can be carried out on
a deployment in the wild or one in a sandbox—say, in the laboratory—obtained by the second
activity. We observe that the capability of creating sandboxes is useful to perform attacks with
high impact like DoS or identity theft, the former dangerous for the service itself while the latter
for legal and compliance issues.

4.2 MIG Backend

The MIG Backend is used to recreate locally a sandbox as an instance of an IdP and a Client
and it can be done by uploading the own proprietary sandbox or by composing a new sandbox
choosing the instances of IdPs and Clients provided by the tool as depicted in Figure 4.1 in the
IdP and Client repositories. All the provided instances have been collected so far during our
experience of using MIG and they satisfy the requirements to be compatible with MIG namely
to have an instance of the IdP, at least one for the Client and to use SAML or OAuth/OIDC as
IdM protocols. The backend is also in charge to instantiate the selected instances, to federate
each other, to exchange the required metadata, to perform the deployment of the sandbox and to
set up the local network.

68

The MIG Backend provides also Cyber Threat Intelligence (CTI) information useful for assess-
ing vulnerabilities and threats related to the chosen instances. These data follow the Structured
Threat Information Expression (STIX) format proposed by OASIS CTI TC.1 This information is
very useful since it immediately makes the Security Testers aware of possible specific attacks of
that protocol known in the literature.

The goal of the MIG Backend is by construction to provide a test environment generator tailored
to IdM protocols and deploy the environment in the SUT. Given a set of available IdM protocol
implementations collected while using the tool for third parties, the SUT automatically sets-up a
working environment in a local network. The main reason is to allow system administrators to
recreate locally in the laboratory their production environments, being able to perform security
testing them in sandboxes. As depicted in Figure 4.2, the MIG Backend is composed by a set
of IdPs and Clients instances both for OAuth/OIDC and SAML, and a STIX notes repository.
The set of available instances is indeed a work in progress, and can be easily extended/updated
over the time. By design, the architecture allows continuous integration of newer and different
implementations.

4.3 Dashboard

The Dashboard serves as a central hub for managing the entire process of creating and configur-
ing sandboxes. It enables users to easily select the necessary components, such as the IdP and
Clients instances, from a set of available options in the Clients and IdPs repositories (Figure 4.1).
Once the selection and configuration of URLs and ports for the chosen instances is complete, the
tool automates the remainder of the process, including the instantiation, federation, and deploy-
ment of the SUT. The Dashboard also enables users to customize the sandbox by adding test
users.

Besides helping the creation of sandboxes, the Dashboard also facilitates the configuration of
tools in the MIG Frontend. The Dashboard provides users with the ability to specify the ports
and URLs at which the various tools of the MIG Frontend are running. This enables users to
easily configure the different tools and settings of the MIG Frontend, as well as monitor the
status of the tools and consult log files for troubleshooting any issues that may arise.

In summary, the Dashboard serves as a comprehensive and efficient means of managing the
creation, configuration, and customization of sandboxes, as well as the configuration of tools in
the MIG Frontend. The ability to specify the ports and URLs at which the various tools of the
MIG Frontend are running, ensures a smooth and accurate configuration process.

The component editor (i.e. the person in charge to configure the SUT) can select the IdM proto-
cols, an IdP instance and one or more Client instance(s) he wants the SUT to deploy, among the

1https://www.oasis-open.org/committees/cti/

69

Figure 4.2: MIG Backend.

ones available. At the moment of the selection, the Dashboard consults the STIX notes repos-
itory and shows which known security issues the selected entities might suffer (e.g., XSS and
CSRF in Figure 4.2). The user can also insert customized credentials to authenticate on the IdP
and configure the ports where Client and IdP will run. Once the selection has been completed
the SUT will (i) generate and deploy the sandbox, (ii) create a local network within the agents,
(iii) perform the federation of the entities and (iv) set the credentials for each IdP instance.

4.4 MIG Frontend

The MIG Frontend is designed to support various user security testing activities on the SUT. It
comprises of a set of tools that are tailored to meet the specific needs of Security Testers. These
tools include (i) a Proxy which allows for the interception and manipulation of network traffic
between the SUT and external systems, (ii) a MIG-T with a suite of security testing functions,
(iii) MIG-D which allows users to easily visualize and analyze the results of security testing
activities in the form of graphical representations and, (iv) MIG-S which facilitates the creation
and sharing of cyber threat intelligence information. All of these tools are integrated and can be
used together to provide a complete security testing solution for the SUT.

As depicted in Figure 4.3, the MIG Frontend is composed of MIG-T, MIG-D (consisting of MSC
Logger and MSC WebApp), MIG-S and a Proxy.

70

Figure 4.3: MIG Frontend.

4.4.1 Proxy

It is a web proxy tool used to intercept and manage the traffic between a user agent, such as a web
browser, and a SUT. It offers a comprehensive set of APIs that are utilized by security testing
tools to inspect, modify, replay, and drop intercepted messages.

4.4.2 MIG Tool

It supports a user to perform automatic security testing of an IdM protocol deployment, by pro-
viding instruments to automatically detect security issues. The MIG-T performs tests on both
the IdP and Client in automatic manner and it supports the following test categories in the IdM
protocol deployment: (i) performing general security web checks on any collected HTTP mes-
sage, not strictly related to the protocol implementations but more in general related to web
security, (ii) verifying the compliance with a given standard in terms of format of the messages,
and mandatory fields, and (iii) mounting specific attacks to spot any false positives among the
vulnerabilities reported by previous tests.

In addition, for every detected vulnerability, our tool returns the HTTP messages that may cause
the flaw and suggests mitigations so to allow users to understand how to (manually) fix the issue.

The tests executed by the MIG-T can be passive or active:

• Passive tests: tests done analyzing statically the intercepted HTTP messages without any
interaction/modification of the HTTP messages during execution of the IdM protocol.

• Active tests: tests that need an interaction during the execution of the IdM protocol. Af-
ter the initial execution, the user actions are stored and automatically re-executed while
intercepting/changing the content of the messages before sending them to the Client and
IdP.

Since passive tests perform a static analysis, they can be executed all at once on the traffic col-
lected when the authentication process is completed. This is not the case of active tests as each
of them runs independently because it performs some modifications to the messages related for
that test. Performing multiple modifications simultaneously would makes it more complex to
identify the root-cause of the failed test. For instance, an active test consists of checking if the

71

relaystate parameter used to prevent CSRF attacks can be tampered with during the authen-
tication flow. In case the authentication process is completed despite the modification, it means
the SUT does not manage correctly the relaystate parameter and it might expose the user to
CSRF attacks [And19]. In case the SUT notices the change, the test fails meaning that the SUT
performs adequate verification on the relaystate parameter.

4.4.3 MIG Drawer

The intercepted messages by the proxy are processed by the drawer, which illustrates their flow
using a Message Sequence Chart (MSC). MSCs can be utilized to depict the flow of messages
between entities in a system, and can aid in the analysis and identification of potential vulnerabil-
ities or attack scenarios. In particular, an MSC can be used to describe the various authentication,
authorization, and encryption protocols and their respective impact on the security of the system
and the exchanged messages. As such, the MSC can serve as a valuable tool for security an-
alysts and developers in identifying security issues and designing and implementing effective
countermeasures.

The MIG-D provides a graphical representation of the authentication flow and facilitates the
inspection of exchanged messages by utilizing the information collected by the proxy. For each
HTTP message, the Security Testers has the capability to examine headers, parameters, and
body. Standards for IdM protocols typically dictate the mandatory/optional messages and their
format, as well as the endpoints to be invoked. However, they generally do not specify the
interactions between subsequent requests to an endpoint. As a result, standard messages may be
interleaved with other non-essential messages. These “spurious” messages can make it a time-
consuming task for a Security Tester to extract information about the standard. While current
web proxy tools provide searching features, it can still be challenging to identify the relevant
standard messages among the spurious ones. The MIG-D allows a Security Tester to quickly
recognize whether the SUT adheres to the expected flow or not.

The Figure 4.4 depicts the main components of the MIG-D. The MSC Logger is a Proxy’s com-
ponent responsible to capture a selection of the HTTP messages, to filter and parse them ac-
cording to the specific configuration, and send them through API to the MSC WebApp, a web
application exposing a set of Restful API and responsible to draw a MSC.

The MSC Logger has indeed the following functionalities:

• Configuration: it allows to set a password not allowing to overwrite a MSC already drawn
and setup the URL of the MSC WebApp (the configuration information can be also provided
through a configuration file, generated through the Dashboard of the MIG Backend).

• Interceptor: it collects all the intercepted HTTP messages.
• Filter: it allows to add filters in terms of keywords of the HTTP messages that will be col-

lected and reported in the MSC. The keywords can refer to Host, Request Headers,

72

Interceptor Filter

MSC Logger MSC Webapp

Config
file

Parser Drawer
HTTP

message
HTTP

message

Figure 4.4: MIG-D components.

Request Parameters, Response Headers and Response Body.
• Parser: it allows to add rules for mapping keywords or sequence of keywords in new terms

in order to further improve the readability of the MSC. For instance, in a training context, it
is possible to provide a MSC closer to the abstract view of the protocol under test (e.g., by
mapping the actual URL of a Client).

The MIG-D offers pre-configured filtering and parsing rules for commonly used protocols such
as SAML and OIDC/OAuth. This allows for streamlined analysis of messages and identification
of potential vulnerabilities. Additionally, the Security Tester has the capability to create custom
rules, providing added flexibility and enabling the ability to analyze messages for protocols not
already covered by the pre-configured rules.

4.4.4 MIG STIX Visualizer

One of the key elements in identifying vulnerabilities is the collection and analysis of Cyber
Threat Intelligence (CTI) information. The MIG-S is a tool that provides a visual representation
of CTI information extracted from the STIX vulnerability repository in relation to the intercepted
authentication flow. This representation allows Security Testers to selectively examine CTI in-
formation at various levels of granularity, giving them greater flexibility in identifying vulner-
abilities. For example, when assessing a system utilizing the SAML protocol, Security Testers
are able to search for CTI information specific to the RelayState parameter or more broadly,
for CTI information related to a SAML IdP. This can be particularly useful in identifying vul-
nerabilities that may be unique to certain protocols or systems. The combination of the MIG-S

73

tool with other security testing tools can facilitate the process of identifying vulnerabilities and
conducting cyber risk assessments. This is particularly useful in identifying vulnerabilities that
may not be easily detectable through other means.

In conclusion, the MIG-S is an important tool that can provide valuable insights into CTI infor-
mation, and it can assist in identifying vulnerabilities and conducting cyber risk assessments. The
ability to selectively examine CTI information at various levels of granularity provides Security
Testers with greater flexibility in identifying vulnerabilities, in order to improve the security of a
system.

4.5 MIG in DevSecOps

In recent years, the use of DevSecOps has become increasingly popular as a way to improve
the security and reliability of software development pipelines. As part of this trend, the use of
specialized tools to integrate security into the development process has also gained traction. In
this section, we propose the design of a DevSecOps scenario that utilizes MIG as an integral part
of the CI/CD pipeline.

Figure 4.5: High Level Architecture of MIG in DevSecOps.

As depicted in Figure 4.5, the proposed solution is composed of two main components. The
former, located in the bottom of the figure, is in charge to handle the repository with the source

74

code of the entities (IdP and Client) and the CI/CD System and which was the starting point of a
classic CI.

The latter aims to perform the pentesting on the IdM deployment while increasing the security
awareness among the developers. Moreover the red arrows in the figure indicate the operations
which are automatically executed, while the black dashed arrows indicate that the operations
require a human intervention.

When the developer pushes new code in the repository, a notification will be sent to the Security
Team and the build and deployment phases will start.

The source code of the Client and IdP will be built, federated and both deployed in the SUT. The
sent notification notifies the Security Team that the automatic penetration testing on the SUT has
been executed and test reports are available.

The notification also contains some information needed to execute the MIG-T and to allow the
communication between the repository, the CI/CD system, the SUT and the Pentesting Tools.
Whether the Security Team decides to perform pentesting on the deployed solution, the MIG-T
will automatically create security feedback and a test report with all the discovered vulnerabilities
in a tool for team collaboration and accessible by both developers and Security Team. The tool for
the team collaboration will be used by the developers to retrieve information about mitigations
and by the Security Team to help the developers on the fixes. This stage is thus helpful to
increase security awareness on the developers. The test report contains different levels of content
accordingly to the role played in the Software Development Life Cycle. The developers will have
access to only a brief recap of the status of the vulnerabilities and mitigations while Security
Team all the details about mitigations.

75

Chapter 5

Micro-Id-Gym Implementation

This chapter will provide an in-depth description of the implementation of MIG1 and how it can
be integrated into a DevSecOps scenario as an integral part of the CI/CD pipeline. The chapter
will start by introducing MIG and its features, followed by a detailed explanation of the imple-
mentation process, including any necessary configurations and settings. The implementation of
a DevSecOps scenario introduced in Section 4.5 that utilizes MIG will also be discussed, pro-
viding readers with a clear understanding of how to integrate MIG into their own development
process and how it can improve the security of their software applications.

5.1 Overview

MIG supports two main activities: security testing of IdM protocol implementations and creating
sandboxes with an IdM protocol deployment. The former consists of tools with a GUI to support
security testing activities on SUT, namely a Proxy, a MIG-T, and two tools called MIG-D and
MIG-S. The latter can be carried out by recreating locally a sandbox of an IdM protocol imple-
mentation and it can be done by uploading the proprietary implementation or by composing a
new one choosing the instances provided by the tool. The capability of creating a local copy of
the SUT allows for performing security testing activities that may cause severe disruptions such
as Denial of Server (DoS) attacks.

Figure 5.1 illustrates a high-level overview of MIG, including the technology employed for each
of its components. In the following sections, we give an in-depth explanation of how MIG was
implemented. We will be covering the implementation of the MIG Backend, Dashboard, and
MIG Frontend separately.

1https://github.com/stfbk/micro-id-gym

76

Figure 5.1: Details of technology used in MIG.

5.2 MIG Backend

The MIG Backend consists of repositories for Clients, IdPs, and MIG-S objects that adhere to
the guidelines outlined in the MIG-S specification. In the upcoming sections, we will present the
technical details of each.

5.2.1 Client and Identity Provider repositories

All the IdM instances presented in Section 4.2 are Docker-based and the currently available
implementations are depicted in Table 5.1. For each instance, we report the version, the protocol
running on that implementation and the technology used.

The container is generated from a Dockerfilewhere the steps for the initialization, the config-
uration and deployment are listed. The Listing 5.1 represents an example of the Dockerfile of
a Client implementing SAML. In every Dockerfile, two important variables are set: C_PORT
and IDP_PORT. These variables will contain the values of the ports where Client and IdP will
run. Both are initialized using some arguments passed to the Dockerfile at the moment of
the creation of the container.

These arguments are those preceded by the keyword ARG in Listing 5.1. In addition to Client
and IdP ports, a third argument is passed to the Dockerfile which is c_version. Under

77

certain conditions, c_version specifies which version of the Client should be loaded in the
container. However, on the contrary of c_port and idp_port, it is not always present. A
similar configuration process has been also applied to OAuth/OIDC instances.

1 # load base image
2 FROM ubuntu:16.04
3

4 # initialize customized configuration parameters
5 ARG c_version
6 ARG c_port
7 ARG idp_port
8 ENV C_PORT=$c_port
9 ENV IDP_PORT=$idp_port

10

11 # install necessary packages
12 RUN apt-get update
13 RUN apt-get install -y default-jdk nano unzip curl
14

15 # copy chosen C implementation
16 COPY src/spring-security-saml-sp-1.0-$c_version.jar /spring-

security-saml-sp-1.0.jar
17

18 # add metadata
19 RUN mkdir /metadata
20 COPY src/idp-metadata.xml /metadata
21

22 # customize metadata
23 RUN sed -i ’s+localhost/idp/profile+localhost:’$IDP_PORT’/idp

/profile+g’ /metadata/idp-metadata.xml;
24

25 # deploy and run the C
26 CMD java -jar spring-security-saml-sp-1.0.jar --server.port=

$C_PORT

Listing 5.1: Example of the Dockerfile of a Client implementing SAML.

5.2.2 STIX Repositories

The CTI information provided in the MIG has been semantically mapped to STIX objects ac-
cording to the directives outlined in the STIX specification [JPD].

78

Table 5.1: Collection of Clients and IdP instances.

Version Protocol Technology Provider

Base S Spring C C

Supported c14n algorithm S Spring C C

DTD enabled S Spring C C

DTD disabled and c14nWithComments algorithm S Spring C C

RelayState validation enabled S Spring C C

RelayState validation disabled S Spring C C

Sample Webapp O KeyCloak C

Simple Webapp O MitreID C

3.3.x S Shibboleth IdP IdP

3.2.x S Shibboleth IdP IdP

3.3.3 with RelayState sanitization enabled S Shibboleth IdP IdP

1.3.3 without redirect_uri validation O MitreID IdP

1.3.3 with redirect_uri validation O MitreID IdP

10.0.1 without redirect_uri validation O Keycloak IdP

10.0.1 with redirect_uri validation O Keycloak IdP

Legenda: “S”: SAML, “O”: OAuth/OIDC

The four types of STIX objects used are:

• Identity: Representing actual individuals, organizations, or groups. For example, a univer-
sity can be classified as an identity.

• Vulnerability: Describing weaknesses or defects in the requirements, designs, or implemen-
tations of the computational logic in software and hardware components that can be directly
exploited.

• Course of action: Describing actions taken to prevent or respond to an attack, including
technical and non-technical responses.

• Attack pattern: Describing ways that adversaries attempt to compromise targets, including
specific attack methods such as spear phishing.

In the mapping process, vulnerabilities have been associated with the Vulnerability object type,
threats with the Attack pattern object type, and mitigations with the Course of action object type.
Each object contains a name, description, and external references for additional information. For
vulnerabilities, additional attributes have been included to describe the previously defined class
as outlined in Section 4.4.4. For threats, information about the risk level has been added. An
example of a vulnerability encoded in the STIX format can be found in Listing 5.2.

79

1 {"type": "vulnerability",
2 "id": "vulnerability--cc39a29-ee9f-428c-a5a3-d48659c343dd",
3 "created": "2020-02-27T14:41:29.544Z",
4 "modified": "2020-02-27T14:41:29.544Z",
5 "name": "XML External Entity (XXE) processing",
6 "description": "XML Parser allows XML External Entities

inside SAML Messages and is wrongly configured to enable
large XML document consumption. ",

7 "labels": ["Web Browser SAML/SSO Profile", "SAMLRequest"],
8 "external_references": [{
9 "source_name": "XXE Cheat Sheet",

10 "url": "https://web-in-security.blogspot.it/2016/03/xxe-
cheat-sheet.html"},{

11 "source_name": "Owasp XML External Entity",
12 "url": "https://www.owasp.org/index.php/

XML_External_Entity_(XXE)_Processing"}],
13 "x_FBK_vulnerabilityClass": "Missing XML Validation Class",
14 "x_FBK_vulnClass_description": "All the vulnerabilities

regarding a missing or an improper validation of the XML
message that may hide malicious content",

15 "x_FBK_provider": "IdP"}

Listing 5.2: Example of STIX JSON Object.

5.3 Dashboard

The Dashboard is designed as a component for establishing a local IdM instance within a sandbox
and configuring the MIG-D and MIG-S. The Dashboard is a web application developed using
NodeJS2 that provides two main pages: a form for configuring the components and a page with
instructions for setting up the MIG environment. The form displayed in Figure 5.2 enables the
user to personalize the following settings:

• Proxy port: the port on which the Proxy runs.
• MIG-D port: the port on which the MIG-D runs.
• MIG-S port: the port on which the MIG-S runs.
• Target: whether the user is testing an IdM instances within a sandbox or a real system in

the wild.
2https://nodejs.org/

80

https://nodejs.org/

• Protocol: the IdM protocol being analyzed.
• Scenario name: an identifier for the scenario being tested. The string entered in this field

will be used as the sessionId for accessing the MSC in the MIG-D webapp.
If the User chooses to target an IdM instance within a sandbox, the user have the option to
either test an instance that has been uploaded or select one from the instances available in MIG
Backend. If the User opts to upload their own IdM instance the User must provide the following
details:

Figure 5.2: Dashboard user interface.

• Identity Provider: select an IdP from the list of available instances.
• Identity Provider port: set the port on which the IdP runs.
• Client: select a Client from the list of available instances.
• Client port: set the port on which the Client runs.
• Tester credentials: insert customized credentials (username and password). The inserted

credentials will be automatically added to the ones available to authenticate at the selected
IdP.

The User can also upload their own IdM instance, which includes a pre-configured pair of IdP
and Client. However, for compatibility with MIG, the uploaded IdM instance must adhere to a
set of guidelines established by MIG.

81

5.4 MIG Frontend

The MIG Frontend is made up of a Proxy, an MIG-D, a MIG-S, and MIG-T. In the following
sections, we will provide technical details and the technologies used to develop each component.

5.4.1 Proxy

The Proxy adopted is Community Edition of Burp Suite (hereafter Burp)3, as it is compatible
with all operating systems and offers a set of user-friendly APIs that aid in the development of
security testing tools. The MSC Logger is an extension of Burp, utilized for communication
with the MIG-D, utilizes the Burp’s API to implement the features of Intercept, Filter, and Parse
outlined in Section 4.4.1.

When a message is intercepted by the Proxy, the processHttpMessage method from the
Proxy API is activated. This method takes the intercepted raw HTTP Message as input, which is
then examined and manipulated by MSC Logger. The raw data is then forwarded to the filter
that has been implemented. The filter operates using a white-list approach, and makes use
of the conditions specified by the User to determine whether the intercepted message should be
rendered in the MIG-D. These conditions are specified using the input form depicted in Figure
5.3. Burp manages messages as pairs of requests and responses, so the user can specify condi-
tions for the following fields: hostname, request headers, request parameters,
response headers and, response body. For example, if the user enters google into
the hostname field, all messages containing google in the hostnames will be rendered in the
MIG-D.

Figure 5.3: Interface to add a new filter.

Before pushing data to the MIG-D, the intercepted message must be parsed and formatted ap-
propriately if it meets the filter criteria. MSC Logger provides also the option to decode encoded
parameters, such as SAMLRequest and SAMLResponse, through the use of an external ser-
vice. Additionally, it is possible to define aliases to improve the readability of the MSC. For
example, the User can replace the name of the IdP with a custom name to better understand the

3https://portswigger.net/burp

82

https://portswigger.net/burp

flow being represented. Once the selected parameters have been decoded and the aliases applied,
MSC Logger formats the raw message and decoded data according to the MIG-D API specifi-
cation (as detailed in Section 5.4.2) before pushing it to the MIG-D webapp. To facilitate the
reuse of previously configured filter and aliases, MSC Logger allows for the export of
the configuration in a JSON4 file that can be imported for future use.

In order for MSC Logger to process the configuration file, it must include the following parame-
ters:

• host: The hostname where the MIG-D is running.
• port: The port where the MIG-D is running.
• protocol: The protocol supported by the MIG-D, which can be HTTP or HTTPS.
• sessionID: A string used to identify the MIG-D session where intercepted messages are

represented in the message sequence chart.
• readonly: A property that can be used to make the drawn messages persistent. It is intended

for sharing the message sequence chart among multiple users without the ability to modify
it. The value must be set to true in this case.

• filterItems: This field contains an array of JSON Objects that describe the filters. Each
JSON Object represents a filter entry and must be structured as follows:

– host: A list of strings separated by a semicolon (;) that represent the values that
need to be searched in the host of the intercepted message.

– request_header: A list of strings separated by a semicolon (;) that represent the
values that need to be searched in the headers of the intercepted request.

– request_params: A list of strings separated by a semicolon (;) that represent the
values that need to be searched in the parameters of the intercepted request.

– response_header: A list of strings separated by a semicolon (;) that represent
the values that need to be searched in the headers of the intercepted response.

– response_body: A list of strings separated by a semicolon (;) that represent the
values that need to be searched in the body of the intercepted response.

– draw: Indicates which messages should be drawn by the MIG-D. 0 stands for both
request and response, 1 for only the request, and 2 for only the response.

For example, if the host field contains the value google; facebook, MSC Logger will look
for messages containing either google or facebook in the host field because the semicolon
(;) represents the OR conjunction. Conversely, fields within the same JSON Object are
evaluated jointly as if there is an AND conjunction between them. This means that if we add
the string token to the request_param field in the previous filter, MSC Logger will

4https://www.json.org/json-en.html

83

https://www.json.org/json-en.html

match all messages containing either google or facebook in the host field and simultane-
ously having a request parameter containing the value token. Each JSON Object is
evaluated independently, so each message is tested against all filters and if it matches one
of them, it is drawn in the MIG-D webapp.

• aliasItems: it contains an array of JSON Objects that describe the aliases that can be applied
to improve the readability of the MSC. For example, the user can decide to rename the
hostname of the Client with a custom name. To do this, each alias entry must be a JSON
Object structured as follows:

– target: The string that needs to be replaced (i.e. Client).

– alias: The string that replaces the target value (i.e. IdP).

• parserItems: it defines the external services used to decode encoded parameters. It contains
an array of JSON Objects, each structured as follows:

– encoding: An identifier of the encoding format the service can decode (e.g.,
base64).

– encodingURL: The URL of the API endpoint providing the decoding service (e.g.,
www.example.com/decode).

– method: The method used to call the API endpoint providing the service, which can
be either GET or POST.

– paramName: The name of the parameter where the API service expects the string
that needs to be decoded (e.g., inputValue).

For instance, if we have the following values: encoding equal to base64, encodingURL
equal to www.example.com/decode, paramName equal to inputValue and method equal to
GET, this tells MSC Logger to decode in base64 strings by calling the API endpoint in the
following manner: GET www.example.com/decode?inputValue=StringToBeDecoded

84

1 {"host": "localhost",
2 "port": "5000",
3 "protocol": "HTTP",
4 "sessionId": "test-logger",
5 "readonly": false,
6 "filterItems": [{
7 "response_header": "",
8 "request_header": "",
9 "host": "",

10 "request_params": "redirect_uri; code;",
11 "response_body": "",
12 "draw": 0},{
13 "response_header": "",
14 "request_header": "",
15 "host": "",
16 "request_params": "",
17 "response_body": "code;",
18 "draw": 0}],
19 "aliasItems": [{
20 "target":"localhost:8888",
21 "alias":"Authorization Server"}],
22 "parserItems": [],
23 "parserMappingItems": []}

Listing 5.3: Example of MSC Logger configuration.

• parserMappingItems: it contains an array of JSON Objects that describe the parameters
that need to be decoded and the corresponding decoding format to be used. For example, in
a SAML deployment, we might find the mapping between the parameter SAMLRequest and
the encoding format base64. Each JSON Object describing a mapping must be structured
as follows:

– param: The name of the parameter that needs to be decoded (i.e. SAMLRequest).

– encoding: The encoding format that needs to be used (i.e. base64). Note that this
field takes the value from the list of encoding formats defined in the parserItems field.

For new users, configuring MSC Logger through the user interface or a JSON file can be chal-
lenging. To simplify the process of creating a MSC for IdM protocol, MSC Logger includes
pre-configured configuration files for OAuth/OIDC and SAML authentication flows. An exam-
ple of the OAuth/OIDC configuration file is shown in Listing 5.3.

85

5.4.2 MIG MSC Drawer

The MIG-D is a web application built in NodeJS that is responsible for displaying the MSC
of the flow intercepted by the MSC Logger. The MIG-D allows multiple MSC to be dis-
played simultaneously and is organized into sessions, each of which can be accessed using
a user-defined sessionId. All messages added to the MIG-D web application are stored
in a MongoDB-based database5. Given the lack of requirement for table joins and the need
for a large number of objects in a consistent format, we decided to utilize a non-relational
database that stores data in JSON-like documents. This approach is well-suited for integration
with NodeJS and offers a fast and comprehensive solution that satisfies the requirements of
the MIG-D. The web application offers two API endpoints to interact with the database. One
endpoint is used to add a new message to the MSC of a session, and the other is used to delete
all messages currently displayed in a session.

The MIG-D webapp has an API that allows messages to be added to a specific session by send-
ing a POST request to the following URL: http://MSC_DRAWER_HOST/api/message, with the
following body parameters:

• sessionId: the session identifier where the message will be displayed.
• from: the sender entity.
• to: the receiver entity.
• label: the text to be displayed on the arrow.
• headers: a JSON array of header objects, each with properties name and value.
• params: a JSON array of parameter objects, each with properties name, type (can be URL,

Body, or Cookie), and value.
• body: the body of the message.

An example of a call to the API for adding a new message is reported in Listing 5.4.

5https://www.mongodb.com/

86

https://www.mongodb.com/

1 Method: POST
2 URL: http://localhost:5000/api/message
3 Body:{
4 sessionId: test,
5 from: fbk.eu,
6 to: User Agent,
7 label: 1. HTTP/1.1 302 fbk.eu/idp/profile/SAML2/Redirect/

SSO,
8 headers:[{
9 name: HTTP/1.1,

10 value: 302 Found},{
11 name: Date,
12 value: Tue, 04 Feb 2020 15:30:17 GMT}],
13 params:[{
14 name: RelayState,
15 type: URL,
16 value: cookie%3efrw1580830217_305f},{
17 name: SAMLRequest,
18 type: URL,
19 value: <samlp:AuthnRequest>...</samlp:AuthnRequest>}],
20 body: ""}

Listing 5.4: Example of an API call for adding a new message to a session.

To delete all messages in a session, the API requires the following information:

• Method: DELETE.
• URL: http://MSC_DRAWER_HOST/api/message/sessionId.

Where <sessionId> is the session identifier from which all messages will be removed.

An example of using the API to delete all messages in a session is illustrated in Listing 5.5,
showing the deletion of all messages in a session identified as test.

1 Method: DELETE
2 URL: http://localhost:5000/api/message/test

Listing 5.5: Deletion of all messages in the session test.

The process of adding or deleting messages to the MSC is handled automatically by MSC Log-
ger, making it easy for the User to view the HTTP Message intercepted. To access the MSC, the
User can visit the MIG-D webapp and log in using their chosen sessionId as shown in Fig-

87

ure 5.4. The sessionId is established when configuring MIG through the Dashboard. More
details can be found in Section 5.3.

Figure 5.4: MIG-D login page.

To view the message sequence chart, the User must visit the MIG-D webapp homepage and insert
the sessionId. The webapp uses the JS Sequence Diagrams library6 to convert the messages
into figures. MIG-D also includes two additional features: (i) the ability to inspect the message
content and, (ii) search for specific strings. The User can hover over an arrow to see a preview
of the message content, or click on the arrow to view all the information about the message.
The search feature allows users to look for specific strings in different fields such as the URL,
headers, and parameters.

The User can access this information in different ways from the MIG-D. When the User visits the
page displaying the details of a message, there is a button with the icon of a report beside each
parameter as depicted in Figure 5.5. Clicking the button initiates a search for CTI information
related to that parameter. If the search generates any results, they will be displayed by MIG-S as
depicted in Figure 5.6. If not, an error message will be returned.

Figure 5.5: Button to look up CTI information.

5.4.3 MIG STIX Visualizer

MIG-S is a web application that provides a graphical representation of MIG-S objects and the
relationships between them.

The User can access CTI information about the overall intercepted HTTP Message or a specific
entity by using the three red buttons located at the top of Figure 5.7. These buttons provide access
to CTI information at different levels:

6https://github.com/bramp/js-sequence-diagrams

88

https://github.com/bramp/js-sequence-diagrams

Figure 5.6: MIG-S search result.

Figure 5.7: Example of an MSC draw by MIG-D.

• Fully: by clicking the Complete button, it retrieves the CTI information related to all the
messages displayed.

• Related: by clicking the Host button, it retrieves CTI information related to the messages
generated from a specific host involved in the authentication flow.

• Custom: by clicking the Custom button allows the User to retrieve custom CTI informa-
tion based on a string input provided by the User.

MIG-S runs on NodeJS and uses the official library developed by OASIS to graphically represent
CTI information7.

7https://docs.oasis-open.org/cti/stix/v2.1/cs01/stix-v2.1-cs01.html

89

5.4.4 MIG Tool

MIG-T is a security testing tool designed as an extension for Burp. It allows for easy inspection
and manipulation of exchanged messages using Burp’s APIs.

MIG-T is developed in Java and uses Burp’s interface classes for interaction. Burp is typically
used by connecting a browser to its proxy, allowing for the interception, viewing, and editing of
packets. MIG-T automates this process, so the tester does not have to manually check or edit the
messages.

Figure 5.8: Test results example.

MIG-T’s interface is shown in Figure 5.9. In the top left corner, there is an input area where
users can paste the Session. To the right of this, there are several buttons that allow for different
configurations:

• Use Chrome or Use Firefox buttons allows User to select the browser to be used.
• Select driver button allows the user to choose the driver that will be used to automate

actions on the browser according to the browser that has been selected.
• Record button allows User to save the HTTP Message stored since now.
• Load messages button allows User to load previously saved messages for offline testing.
• Offline mode button allows the user to test previously loaded messages instead of live

ones.
• Execute track button allows the User to run a session without executing any tests,

which is useful when the original messages need to be saved.
• Test track button allows the User to test the Session without saving or executing any

test.

The interface includes multiple tabs that can be accessed at the bottom, including:

• Input JSON tab includes an input area where User can input Test written in MIG-L. It
also has three buttons located in the bottom right corner, including:

– Stop button, which is used to stop the current execution.

– Read JSON button, which is used to read and validate the syntax of the Testsuite.

– Execute Test Suite button, which is used to execute the reported tests.

• Test Suite Result tab contains the details of all the results of the executed tests.
• Test Result tab allows User to view the specific result of a test, including all the inter-

cepted messages related to it.

90

Figure 5.9: MIG-T user interface.

• Session Config tab allows User to configure the ports of the Session that will be used
in the tests.

MIG-T independently manages each Session as a separate browser instance that is launched when
a Session is started. Each Session corresponds to the tabs that are defined for it, and it runs in its
own separate thread, allowing for concurrent execution of multiple Sessions. Additionally, each
browser uses a unique proxy port, which allows for identifying and targeting specific Sessions
during the testing process.

Regarding the Tests, they must be specified using the MIG-L declarative language defined in
Chapter 3, which is a powerful language for describing the test scenario and its expected out-
comes. To ensure that the Test is valid and accurate, it is important to follow the rules specified
in the language and adhere to the correct syntax and structure when writing the Test. Concerning
the Passive Tests, they can be completed after the messages are saved and the Test are then run on
the saved HTTP Message while for the Active Test, since the HTTP Message need to be edited,
the execution of the Session must be repeated for each Test.

91

5.5 Usage of MIG

To use MIG, it is necessary to have NodeJs, Java, a web browser (such as Chrome or Firefox),
and Docker installed on the system. To download MIG, the user can clone the git repository by
running the command git clone https://github.com/stfbk/micro-id-gym/.
Once the framework has been downloaded, it can be used by opening a new terminal, navigating
to the dashboard folder, and running the command npm install to install the necessary
NodeJS packages. Then, the dashboard can be launched by using the command node app
and visiting localhost:2020 to configure the MIG tools. The Dashboard provides a con-
figuration interface, where the ports for the SUT and the tools can be customized. Once the
configuration is complete, the Download scenario and tools button can be clicked to
generate a folder with the customized SUT and tools. The instructions provided by the webapp
and available in the README file within the folder can then be followed to run the testing envi-
ronment.

When the Dashboard homepage is loaded, the User has the option to use MIG in either a real-
world scenario or a lab setting. To use the tool in a real-world scenario, the user must choose the
option wild in the Dashboard. On the other hand, to use MIG in a lab setting, the user must
choose the desired IdM protocol instance to be created by selecting one of the available IdP and
Client provided by the MIG Backend. In both cases, the user will have access to the MIG-D,
MIG-S, and MIG-T which are already set up and available for use.

5.6 MIG in DevSecOps

In this section, we will outline how we implemented MIG in the DevSecOps process. We adopted
GitLab CI/CD8 as a tool to support software development and CI/CD.

In the root of the repository in GitLab CI/CD, there is a configuration file that serves as
the foundation for creating a CD pipeline. This pipeline executes a series of jobs in distinct
stages. The configuration file enables the setup of the pipeline and specifies the jobs that
will run at each stage. By automating the process of releasing code changes, it ensures that the
code is thoroughly tested and deployed in a consistent and reliable manner. To fully support the
DevSecOps, we implemented the three operations written in red in Figure 4.5 by interpreting
three stages in the pipeline: (i) Send Notifications, (ii) Build, and (iii) Deploy. The first stage is
responsible for notifying the Security Team about changes in the repository by sending an email
containing the Session and parameters required by GitLab to create Issues, namely the Project
Id and Host URL. The second stage builds the source code of the IdM instance, and the third
stage sets up the webserver and deploys the solution in the SUT. These jobs are executed by the

8https://www.gitlab.com

92

https://www.gitlab.com

GitLab Runner agent, which is triggered by every push to the central repository.

Given the interoperability of MIG-T with any operating system we integrated it into our CI/CD
solution and use it to perform security testing activities in the SUT. The tool automatically cre-
ates GitLab issues in the repository for any vulnerabilities discovered. To grant MIG read and
write access to the GitLab Repository, a GitLab token, Project Id, and Host URL are
required. The User must retrieve the GitLab token from his GitLab profile.

MIG will also generate a report of the test results, which will be automatically added to a Slack
channel, a collaboration tool accessible by developers and Security Team.

93

Chapter 6

Experiments

This chapter focuses on evaluating the effectiveness of MIG-D in identifying vulnerabilities in
IdM protocol implementation by conducting an experiment that highlights its precision. The
chapter presents several use cases for IdM deployment, demonstrating how MIG can be used to
perform security assessments conducted in various corporate scenarios. Additionally, we con-
ducted security issues in the implementation of the Italian digital identity’s CIE OIDC and SPID/-
CIE OIDC Federation deployments, a PSD2 service provided by an important Italian IdP based
on OAuth, deployments based on SAML, and several SSO-based account linking procedures of
online services.

6.1 User Validation of MIG Drawer

In the following sections, we present the results of our assessment of the environment for security
testing and the effectiveness of the MIG-D in the laboratory experience. We create a realistic ex-
perience by incorporating vulnerable scenarios using MIG and evaluated the efficiency of MIG-D
in identifying potential vulnerabilities.

6.1.1 Evaluation of the Effectiveness

Accurate detection of relevant vulnerabilities in the implementation of IdM protocols should be
paired with effective presentation to enable security reviewers to work with ease when making
informed decisions on protocol implementations. In this section, we focus on the effectiveness
of MIG in presenting understandable results to Security Testers. This support their decision-
intensive tasks through informative and easy-to-understand visualizations. To this aim, we will
present and conduct a user study to empirically assess the effectiveness of the MIG-D component

94

of MIG in facilitating decision-intensive tasks of Security Testers, by comparing it with one of
the most popular mainstream alternative security tools, namely OWASP ZAP1.

A set of participants have been asked to play the role of a security analyst who performs security
testing. In particular, participants are presented with an execution trace (visualized either with
MIG-D or with OWASP ZAP) that was collected during the execution of a scenario that revealed
a vulnerability on the implementation of an IdM protocol. Supported by these trace visualization
tools, participants are asked to answer security related questions. Based on the ratio of correct
answers, we estimated their level of comprehension of the trace and we related their security
awareness about the IdM protocol implementation with the used trace visualization tool.

This experiment has been designed following the guidelines proposed by Wohlin et al. [Cla01].

6.1.2 Experimental definition and Context

To design this study, we formulate the following research question: How does MIG-D compare
to OWASP ZAP in supporting security awareness of analysts who conduct security testing on
vulnerable implementations of IdM protocols?

The goal of the study is to investigate the differences between MIG-D and OWASP ZAP, with
the purpose of evaluating how well they support security awareness of Security Testers, when
they are asked to review the implementation of IdM protocols. The quality focus regards how
MIG-D and OWASP ZAP affect the capability of Security Testers to correctly understand the
protocol execution traces. The results of the experiments are interpreted regarding two perspec-
tives: (i) a researcher interested in empirically validating MIG-D and (ii) a security analyst who
wants to understand which tool to adopt when security testing complex protocols such as those
for IdM.

The context of the study consists of the participants involved in the experiment and the software
systems to review.

Participants. We involved 42 participants in this study. They are 8 Bachelor and 34 Master stu-
dents from the Department of Information Engineering and Computer Science of the University
of Trento.

4 Bachelor students are attending the second year and 4 are attending the third year. They have
quite a broad background on information security, because they attended (among others) the
course Introduction to Computer and Network Security, that covered the OIDC protocol.

Most of the Master students (i.e, 25 of them) attend the first year and 9 of them attend the second
year. They already attended other courses about security, including the course Security Testing
that covered, in particular, attacks to OIDC implementations.

1OWASP ZAP https://www.zaproxy.org/

95

Only a small minority of participants (i.e. 8 of them) reported no prior knowledge of authoriza-
tion protocols such as OAuth, OIDC. Most of the participants (i.e. 29) reported an elementary
knowledge and 5 of them reported a good knowledge. For this reason, we planned a training
session to make sure that all the participants had a basic understanding of the protocol before
the actual experiment. 36 participants already used a proxy tool to intercept and inspect network
traffic, such as Burp Proxy, OWASP ZAP or Fiddler. 27 participants already used the OAUTH
protocol and 6 of them actually implemented such protocol.

We are aware that the expertise of students may be different than professionals. However, finding
professionals available to conduct a demanding experiment as the one we designed is not easy.
We mitigated this limitation by considering students with different levels of education and by
making sure that participants had enough knowledge on OIDC protocols and its related vulner-
abilities. All in all, the use of undergraduate students as a proxy of junior developers to draw
conclusions is a common practice in empirical software engineering that is largely accepted and
validated [Mar00, SAW08, SMJ15].

System. The software systems used in this study are two different deployments of the OIDC
protocol:

• S1 is an OIDC implementation that is vulnerable to a vulnerability related to a missing
sanitization of the redirect_uri parameter.

• S2 is an OIDC implementation that us vulnerable to a vulnerability related to a not adequate
protection of the state parameter.

The selected systems are similar in terms of their complexity and in terms of the implemented
IdM protocol. Moreover, their vulnerabilities are also comparable in terms of complexity and in
terms of the operations required to be revealed. The attacks to exploit these vulnerabilities are de-
scribed in Section 6.3.1. It is important to note that systems and vulnerabilities are representative
of real world OIDC implementations.

Experiment Design and Procedure. We adopt a counter-balanced experimental design intended
to fit two lab sessions. Participants are randomly assigned to four groups (despite they work
alone), each one working in two labs on different systems with different tools, according to the
schema summarized in Table 6.1. This design allows for experimenting with different combina-
tions of Systems and Tools in different order across the two Labs.

Table 6.1: Experimental design.

Group A Group B Group C Group D

Lab 1 S1 with TRmig S2 with TRzap S2 with TRmig S1 with TRzap

Lab 2 S2 with TRzap S1 with TRmig S1 with TRzap S2 with TRmig

Before our experiment, participants were properly trained with lectures and exercises on OIDC
protocol, on MIG-D and on OWASP ZAP, to cover and recall the required background. The

96

purpose of training is to make participants confident about the kind of tasks they are going to
perform and the environment they will have available.

The pre-experiment profiling survey collects background knowledge about the participants, such
as their previous experience with Proxy tool and their knowledge of OIDC protocol.

The experiment was carried out according to the following procedure. Participants had to (i)
complete a pre-experiment profiling survey questionnaire, (ii) perform the comprehension tasks
for their first system with their first tool (first lab), (iii) perform the comprehension tasks on
their second tool with their second tool (second lab), and (iv) complete a post-experiment survey
questionnaire.

To perform the experimental tasks, subjects received the following material:

• An initial questionnaire to gather data for grouping based on participants’ knowledge.
• A document guide with theoretical concepts, explanations of vulnerabilities, and compre-

hension questions.
• Task instructions presented in a Google Form.
• Questionnaires that participants had to fill out in a Google Form.

According to the design, each participant has been involved in two experimental sessions (labs),
each lasting approximately 2 hours. The comprehension task involved answering 9 questions
about the assigned System, consisting of 2 closed-ended and 4 open-ended questions.

Comprehension tasks involve tasks that require the comprehension of specific information or
concepts. These tasks are designed to simulate realistic scenarios, and can include tasks such as
identifying parameters or searching for key URLs in an OAuth/OIDC flow. These tasks are based
on real-world scenarios, and can help identify potential security issues if read and interpreted
correctly. To answer these tasks, participants may need to utilize tools such as OWASP ZAP or
read MSC from the MIG-D, and may be asked to provide information such as the URL of the
request sent from the user-agent to the authorization endpoint. Visualizations of the task may be
used to aid in answering these questions.

Most of the questions refer to realistic program understanding scenarios. In fact, the questions
are designed to test the participant’s ability to comprehend and analyze code in practical settings,
such as identifying errors or vulnerabilities in software systems. By using real-world examples
and scenarios, participants are challenged to apply their understanding of security testing con-
cepts to practical problem-solving situations. These questions may require the use of security
testing tools and techniques, and may involve analyzing code snippets or larger software sys-
tems to identify issues and suggest solutions. Overall, the goal of these questions is to assess the
participant’s ability to apply programming knowledge in practical settings. To answer the ques-
tions, participants had the possibility of looking at the document guide with theoretical concepts,
explanations of vulnerabilities, and comprehension questions.

Post-experiment survey questionnaire (reported in Appendix A) deals with the clarity of the tasks,

97

cognitive effects of the treatments on the behavior of the participants and perceived usefulness
of the trace visualization tools.

Variables Selection. The main factor of the experiment, that acts as an independent variable, is
the particular trace visualization Tool used during the execution of the comprehension tasks. The
base case TRzap consists of using OWASP ZAP; and the treatment case TRmig consists of using
MIG-D, that includes not only the list of the HTTP intercepted messages, but also generates a
MSC of the intercepted traffic.

Figure 6.1 depicts the visualization of OWASP ZAP while the Figure 6.2 shows the visualization
of MIG-D.

Figure 6.1: OWASP ZAP visualization.

The main outcome observed in the study was the level of security awareness. To evaluate it, the
subjects were asked to answer some questions and the correctness of their answers was assessed.
The evaluation was objective, as an URL reported was either correct or incorrect.

Other than the Tool, we can also measure the influence of other factors:

• Lab: whether the is any learning effect across consecutive labs, so that the experience gained
working with the first tool in the first lab could improve the performance when working with
the other tool in the second lab.

• System: if security assessment is intrinsically easier on a system than in the other system.
• Question: if there are specific questions that are harder to answer.

98

Figure 6.2: MIG-D visualization.

6.1.3 Results

Table 6.2: Summary of correct and wrong answers.

Correct answers Wrong answers
TRmig 298 80
TRzap 236 142

Main factor: The evaluation participant answers is reported in Table 6.2. The trend seems
to suggest that MIG-D better supports decision-intensive security tasks, because participants
who work with MIG-D formulate a larger number of correct answers than those working with
OWASP ZAP. To evaluate if this trend is statistically significant and not due to random error, we
apply the Fisher exact test [Dev11]. This test is more accurate than the χ2 test for small sample
sizes, which is another possible alternative to test the presence of differences in categorical data.
The same analysis was conducted in other controlled experiments [Mar14].

As a common practice, we assume a 95% significance level, which corresponds to accepting a
5% probability of committing a Type I error in drawing our conclusions. Type I error, in our
case, means that we accept a 5% probability of assessing that the difference is significant when
it is actually due to random error. Practically, this setting defines the threshold α = 0.05, for
attaching significance to the result of a statistical test. Thus, when the p-value computed by a test
is < 0.05, we claim that the difference in the dependent variable is caused by a difference in the
independent variable.

The trend observed in the experimental data is statistically significant according to the Fisher
exact test, whose p-value is very low (i.e. < 0.01).

Other factors: We, then, study if other factors have influenced the correctness of tasks. To
this aim, we use another statistical test, called Generalized Linear Models [Tre17] (GLMs for

99

Table 6.3: Analysis of co-factors.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.6357 0.0662 9.61 0.0000

Tool -0.1345 0.0340 -3.96 0.0001
Lab 0.0402 0.0340 1.18 0.2369

System -0.0693 0.0340 -2.04 0.0420
Question 0.0202 0.0065 3.09 0.0021

short). This consists of fitting a model of the dependent output variables (answer correctness) as
a function of the independent input variables (all the factors, including the main factor, i.e. the
used tool). A general linear model allows to test the statistical significance of the influence of all
factors on the correctness and time of corrective tasks. Also for this test, we assume the threshold
α = 0.05.

0

50

100

150

200

MSCDrawer
redirect_uri

MSCDrawer
state

ZAP
redirect_uri

ZAP
state

Tool & Vulnerability

co
un

t Result

Wrong

Correct

Figure 6.3: Number of correct and wrong answers by vulnerability and tool.

Table 6.3 shows the results of the GLM analysis, with p-values for statistical significant factors
highlighted in boldface. First of all, we observe that the Tool has a insignificant impact on the
correctness of answers, and this result is consistent with the previous analysis.

We can observe that also the System under analysis has a significant influence on the correctness
of comprehension tasks. Figure 6.3 can be used to interpret this fact. When MIG-D is used

100

the system with the vulnerability related to redirect_uri seems to be easier to understand than
the system with the vulnerability related to state. However, the two vulnerabilities look equally
different when OWASP ZAP is used instead.

0

20

40

60

80

1 2 3 4 5 6 7 8 9
Question #

co
un

t Result

Wrong

Correct

Figure 6.4: Number of correct and wrong answers by question.

The other significant factor is the question that was asked during the labs. Figure 6.4 visualize
this trend. Question 3 seems to be the most hard to answer correctly. In fact, while the other
questions just required a local understanding on a single message or message parameter in the
trace, question 3 required to acquire a more global understanding of the trace, that involved
multiple messages. For this reason, it was harder to answer question 3 correctly.

Feedback questionnaire: The answers to feedback questionnaire are reported on Table 6.4.
While questions Q1-Q4 have been asked twice (once per lab), questions Q5-Q10 have been
asked only once, at the end of the experiment.

Most of the participants consider that they have had enough time to complete the task (Q1),
thus confirming the correctness of the experimental procedure. However, answers to Q2 support
our speculation that security testing an IdP protocol is hard, in fact the majority of participants
experienced difficulty on it. Additionally, the tools used to visualize the protocol traces were
quite clear, because answers could be formulated in large majority using these tools, and only
few participants had to look for information on other sources (Q4) e.g., on the Internet.

101

Most of the participants consider MIG-D the most useful tool to answer the comprehension tasks
(Q5). Additionally, MIG-D was considered the most intuitive to use. OWASP ZAP, conversely,
was considered the most difficult to use when finding relevant information (Q6).

When asked what tool would participants potentially use in their work (Q7), 4 participants pre-
ferred MIG-D and 4 participants preferred OWASP ZAP, while the majority might use both of
them.

Most of the participants do not know alternative tools (Q8), few participants mentioned relevant
alternative, such as Burp or Wireshark.

On question Q9, participants did not find any serious limitation on the compared tools, however
they suggested to add the possibility to copy-paste from the GUI, because it could be useful to fill
a security report. One participant suggested to support a textual search feature on the visualized
trace.

On question Q10, participants suggested not to add more information to the visualization, be-
cause it would risk to compromise its simple and clean presentation. In fact, participant identi-
fied the main advantage of MIG-D as its simple and clear presentation of the protocol flow, that
makes it easy to identify and go straight to the needed information.

Table 6.4: Answers to feedback questionnaire.

Question Yes No/Uncertain

Q1 66 12
Q2 25 53
Q4 6 72

Question MIG-D OWASP ZAP

Q5 32 4
Q6.a 32 4
Q6.b 5 31

Question MIG-D OWASP ZAP Both None

Q7 4 4 16 1

Question No Burp Wireshark (Others)

Q8 25 3 3 2

Considering these results, we can answer the initial research question as follows: MIG-D is more
effective than the state-of-the-art competitor OWASP ZAP in supporting security awareness of
analysts who conduct security testing on vulnerable implementations of IdM protocols. In fact,

102

participants who visualized execution traces with MIG-D delivered 262 correct answers and 80
wrong answers, while those who visualized traces with OWASP ZAP could deliver only 236
correct answers and 142 wrong answers.

Threats to Validity. The main threats to the validity of this experiment belong to the internal,
construct, conclusion and external validity threat categories. We discuss each one of them in the
following.

Internal validity threats concern external factors that may affect the independent variable. The
chosen design allowed us to control a number of factors, namely participants background, sys-
tem and learning across experimental sessions. Participants were not aware of the experimental
hypotheses, participants were not rewarded for the participation in the experiment and they were
not evaluated on their performance in doing the experiment.

Construct validity threats concern the relationship between theory and observation. They are
mainly due to how we measure the correctness of tasks. We considered real vulnerabilities and
we used a sound procedure to objectively evaluate whether the answers were correct.

Conclusion validity threats concern the relationship between treatment and outcome. We used
statistical tests (Fisher exact test and General Linear Models) to draw our conclusions.

External validity concerns the generalization of the findings. In our experiments we considered
two major vulnerabilities against IdM protocols, related to redirect_uri and state parameters.
Although different vulnerabilities might occur, the results obtained with these vulnerabilities,
already support well our interpretations.

Our experiment involved execution traces collected on real-world implementations of Identity
Provider Protocols. Despite we consider that these implementations are representative of other
Identity services, in principle different results could be obtained for different implementations.

The study was performed in an academic environment, which may differ substantially from an
industrial setup. However, we mitigate this threat by using subjects with different seniority,
including bachelor and master students.

6.2 Security Testing in the Lab using MIG

In the following sections, we present two use cases from our lab that demonstrate the usage
of MIG in a controlled environment. In both scenarios, we performed an analysis of an OIDC
deployment based on the Italian electronic identity card (CIE 3.0 - Carta d’Identità Elettronica)
(CIE).2 These use cases showcase the capability of MIG to effectively detect vulnerabilities in a
secure and efficient manner.

2https://www.cartaidentita.interno.gov.it/

103

6.2.1 OIDC for CIE deployment

In a joint collaboration between FBK (acronym for “Fondazione Bruno Kessler”) [FBK] and
IPZS (acronym for “Istituto Poligrafico e Zecca dello Stato”) [Pol], which is the Italian state
printing office and mint, we have designed a web authentication mechanism based on the CIE
[Min] and developed by a private company. The security analysis involves conducting a subset of
tests, specifically those related to OIDC as outlined in Section 3.3.5.2, with the aim of evaluating
the implementation of an OIDC Provider (OP) and a mocked RP provided by IPZS using MIG-
T and determining their compliance with the specifications outlined in CIE OpenID Connect
[Dev23]. The results of the tests provide valuable insights into the capabilities of the MIG-T and
the implementation of the OP. These results are further described in detail. Overall, the tests were
successful in providing an understanding of the performance and functionality of the MIG tool
and the OP implementation, which will help guide future development efforts. We performed
both Passive and Active tests on that scenario using the MIG-T tool.

The Figure 6.5 reports the Active Test results on the OP and RP obtained by running MIG-T.
The following is a description of each column:

• Test ID: A unique identifier for each individual test case.
• Description: A brief description of the purpose or objective of the test.
• References: Any related documentation or resources that were used in the testing process.
• Statement in the References: The specific statement or requirement being tested from the

referenced document.
• Affected Entity: The component or system that was tested and impacted by the test results.
• Mitigations: Any actions taken to address or resolve any issues discovered during the testing

process.
• Results: The outcome of the test, including any observed behavior, failures, or pass condi-

tions.

Figure 6.5: Active Test results of CIE OIDC deployment.

Concerning the OP test results, MIG-T reports that:

• The test T1_f failed because when the test removed the scope parameter in the
Authentication Request as query parameter the OP did not return any error and the

104

authentication process continued successfully. The presence of the scope parameter in the
Authentication Request as query parameter is cited in [Dev23], “The parameter
scope MUST be sent both as a parameter in the HTTP call, and inside the request object.
The two values MUST be the same”.

About the mocked RP test results, MIG-T reports that:

• The test T2_b failed because the RP must validate the iss parameter in the
Authentication Response. The test edited the iss parameter with an arbitrary
value and the RP accepted the modified iss value.

• The test T2_c failed because the RP did not check that the state parameter in the
Authentication Response has the same value of the
Authentication Request as reported in [Dev23]. The test changed the state pa-
rameter in the Authentication Response with an arbitrary value and the RP did not
report an error in the authentication process.

• The test T2_d failed because as reported in [Dev23], the RP must validate the state query
parameter in the Authentication Response. The test removed the state query
parameter in the Authentication Response and the RP did not trigger an error.

In Figure 6.6, the results of Passive Test on both the OP and RP are presented, obtained through
the execution of MIG-T.

Figure 6.6: Passive Test results of CIE OIDC deployment.

The test results for OP are presented as follows:

• The test P1_v failed but it was a false positive because the definition of the test was not
correct. After fixing the test, the test result was passed.

• The test P1_z failed because the OP accepted a state parameter in the JWT token in
the Authentication Request with the character “-”. The [Dev23] reports that the
state parameter in the JWT token in the Authentication Request should be at
least 32 alphanumeric characters.

105

• The test P1_k failed because the aud parameter in the JWT token in the
Authentication Request is not equal to https://login.interno.gov.it/
as reported in [Dev23]. The result is a false positive because the actual production differs
from the one being analyzed and the aud value assumed has changed.

Concerning the RP, MIG-T reports:

• The test P2_d failed because the RP accepted a value of the state URL query parameter
in the Authentication Response containing the character “-”. According to the
[Dev23], the stateURL query parameter in the Authentication Response should
only contain alphanumeric characters.

• The test P2_e failed because the iss parameter in the Authentication Response
did not match the expected value of https://login.interno.gov.it/ as indi-
cated in [Dev23]. This result is considered false positive because the value of the iss
parameter was determined based on the analyzed OP.

6.2.2 OIDC for Developers Italia deployment

We conducted a security analysis of the SPID and CIE OIDC Federation,3 which are Django ap-
plications designed to simplify the construction of an OIDC Federation, in a collaborative effort
between FBK and IPZS. These applications are offered by Developers Italia,4 a joint initiative
between AgID (Agenzia per l’Italia Digitale)5 and the Italian Department for Digital Transfor-
mation (Dipartimento per la Trasformazione Digitale).6 The security analysis covered a set of
tests, particularly those associated with OIDC as described in Section 3.3.5.2, with the aim of
conducting a comprehensive assessment of the OP and RP implementation using MIG-T, and
verifying their adherence to the specifications outlined in CIE OpenID Connect [Dev23]. The
test results offer valuable insights into the capabilities of MIG-T. The purpose of this analysis
was directed towards the Authentication endpoint, where Active and Passive tests were carried
out. The Passive Test results are presented in Figure 6.8 and the Active Test results are depicted
in Figure 6.7.

Figure 6.7 depicts the Active Test results on the OP and RP obtained by running MIG-T. Regards
the OP test results we noticed that:

• The tests T1_A, T1_B, T1_C, T1_D, T1_E and T1_F failed because the implementation is
not reflecting the specification reported in [Dev23].

3https://github.com/italia/spid-cie-oidc-django
4https://developers.italia.it/
5https://www.agid.gov.it/
6https://innovazione.gov.it/

106

Figure 6.7: Active Test results of Developers Italia OIDC deployment.

• The tests T1_A, T1_B, T1_C and T1_D edited and removed client_id and
response_type parameters and failed in all the cases because the OP did not return an
error since the [Dev23] stated “The parameters client_id and response_type SHOULD be
sent both as parameters in the HTTP call, and inside the request object”.

• The tests T1_E and T1_F verify the presence and correctness of the parameter scope in the
URL stated as mandatory. The tests respectively edited the scope parameter with a random
value and removed it. In both cases the OP did not return an error even if the [Dev23] stated
“The parameter scope MUST be sent both as a parameter in the HTTP call, and inside
the request object. The two values MUST be the same”. We noticed that the JWT request
object suppresses the values contained in the URL.

Figure 6.8: Passive Test results of Developers Italia OIDC deployment.

About the RP test result, one issue emerged:

• The test T2_A failed because the iss parameter has been removed from the
Authentication Response and the RP did not return any error. During the test-
ing activities, we found that editing the iss parameter in the Authentication

107

Response sent by the OP to the RP with an arbitrary value did not trigger an error, the
RP did not correctly validate the iss parameter as reported in [Dev23]. The issue has been
promptly fixed by Developers Italia in the release version 0.7.1 and an acknowledgment of
the finding has been received as reported in Figure 6.9.

Figure 6.9: Acknowledgment received by Developers Italia.

6.3 Security Testing in the Wild using MIG

The following sections highlight three real-world examples of security testing in a production
environment. The first scenario involves the evaluation of a PSD2 service provided by a promi-
nent Italian IdP. The second scenario focuses on the analysis of SAML deployments. The third
scenario demonstrates the detection of a CSRF vulnerability in an SSO-based account linking
process. These use cases aim to evaluate the feasibility and efficacy of MIG as a means to assess
the security and reliability of production systems.

6.3.1 OAuth for PSD2 deployment

In the context of an European project we had to assess a PSD2 service provided by an impor-
tant Italian identity provider. PSD2 is the second Payment Services Directive, designed by the
countries of the European Union [Off15]. Strong Customer Authentication (SCA) is one of the
fundamental building blocks for building secure PSD2 deployments composed by Multi Factor
Authentication and dynamic linking. The best solution to implement this scenario (such as pro-
posed by many like the Berlin group) can be done by adopting OAuth which allows delegation
to third parties to access resources. It could revolutionize the payments industry, affecting every-
thing from the way we pay online, to what information we see when making a payment. Security
of electronic payments is fundamental for ensuring the protection of users and all payment ser-
vices offered electronically should be carried out in a secure manner, adopting technologies able
to guarantee secure user authentication.

108

We conducted a security analysis performing a specific set of tests, which pertain to OAuth as de-
scribed in Section 3.3.5.3, with the objective of assessing the implementation of the IdP and ver-
ify the compliance with the OAuth standard stated in [oaub]. To perform the security assessment,
we leveraged MIG, and we were able to identify some vulnerabilities and a misconfiguration of
the OAuth protocol. In particular, we followed the following two steps:

• Being the SUT an OAuth implementation, we set the MIG-D on the OAuth mode, in such a
way to collect all the relevant traffic concerning OAuth. We have been thus able to spot very
quickly the differences between the expected OAuth flow and the one shown by the MIG-D
in terms of the intercepted HTTP messages. Thanks to MIG-D we were able to identify two
HTTP messages exchanged between entities not encrypted using Transport Layer Security
(TLS). The usage of HTTPS protects against man-in-the-middle attacks, eavesdropping and
tampering. Thus this provides a reasonable assurance that one is communicating with the
intended website without interference from attackers.

• Then, a finer-grained security analysis has been conducted by using MIG-T. The details of
the tests automatically executed are reported in [Anda].
About the compliance, some required parameters according to the OAuth standard were
not present in the protocol. On the contrary, some parameters which are not expected in
the OAuth standard have been included in the protocol. In detail the tool detected that
redirect_uri and state parameters were not set properly and both were not verified
in different steps of the process by the IdP.
Regards the vulnerability in the redirect_uri parameter, AS, authorization endpoint,
and client redirection endpoint can be improperly configured and operate as open redirects.
An open redirect is an endpoint using a parameter to automatically redirect a user-agent to
the location specified by the parameter value without any validation. Open redirects can
be used in phishing attacks, or by an attacker to get end-users to visit malicious sites by
using the URI authority component of a familiar and trusted destination. In addition, if
AS allows Client to register only part of the redirection URI, an attacker can use an open
redirect operated by Client to construct a redirection URI that will pass the authorization
server validation but will send the authorization code or access token to an endpoint under
the control of the attacker [Mik08].
Regards the state parameter, it is a recommended parameter in OAuth [LBLF]. It is
an opaque value used by Client to maintain state between the request and callback. The
AS includes this value when redirecting the user-agent back to the Client. The state
parameter is set by Client in the Authorization Request, in step 1 in Figure 2.2, and it is
checked by Client when Client receives it in step 3. If the integrity of the state parameter
field is not adequately protected, it may allow hackers to mount CSRF attacks [Wan14]. To
exploit these vulnerabilities an attacker causing the target browser to send the target site a
request containing the attacker’s own authorization code or access token. As a result, the
target site might associate the attacker’s protected resources with the target user’s current
session; possible undesirable effects could include saving user credit card details or other

109

sensitive user data to an attacker-controlled location.
These results pointed out the need of tools, like MIG-T, capable to support developers
in order to properly implement, configure and test the OAuth implementations. Another
interesting consideration emerges from our assessment. Some parameters were included
in the protocol, meaning that we could detect them while checking the HTTP traffic. Yet,
some of them were not used in end. For instance, the values of some parameters were
not checked at all by the IdP. This highlights the need of active tests to check whether the
parameters are indeed used properly.

All the discovered issues were notified to the company and fixed by their developers. In detail,
about the HTTP messages exchanged not over TLS, the developers reviewed all the URL inside
the application and modified the web server so that all messages will pass in HTTPS. Regards the
missing sanitization of the redirect_uri parameter, the developers implemented a method
inside the application to sanitize the parameter and do not allow any manipulation from an at-
tacker. For the not adequately protection of the state parameter, the developers added some
code to adequate protect the parameter. Lastly, about the redundant parameters not included in
the protocol, the developers removed all of them from the flow.

6.3.2 SAML deployment

In the context of a collaboration with an important Italian IdP, we present the results of our
analysis in this Section. Our study focused on 6 SAML-based scenarios, with 5 of them based
on SPID. We involved two distinct IdP and six Client, utilizing MIG-T for the analysis. The
results of our analysis are thoroughly outlined in this Section, providing clear insights into the
security levels provided by the IdP and Clients. This study serves as a valuable resource for
understanding the effectiveness of the security measures in place and identifying potential areas
for improvement.

We carried out a security analysis that involved performing a specific set of tests related to SAML
as described in Section 3.3.5.1. Our aim was to assess the implementation of both the IdP and
Client by verifying their compliance with the SAML standard stated in [HPM] and identifying
the presence of specific vulnerabilities. To perform the security assessment, we utilized MIG,
which allowed us to identify several vulnerabilities.

In our analysis, we also identified some false positives, in particular:

• Canonicalization form: in all scenarios, the usage of a canonicalization algorithm that may
lead to a canonicalization attack [Blo]. In all of the scenarios analyzed, an unsafe algorithm
was used, but additional protections were in place so that they were not vulnerable.

• NotOnOrAfter: in a specific scenario the NotOnOrAfter test failed even if, examining
the message, the attribute was set to the recommended value and was found both in the
SubjectConfirmationData element and in the Conditions element, so no risk of

110

Replay Attack [Avi16] has been detected.
• OneTimeUse: all scenarios results vulnerable to a Replay Attack because of the failed
OneTimeUse test [Avi16]. However the browser Session Protection’s active test showed
that other protections for this vulnerability were involved.

• RelayState protection: in a particular scenario, a vulnerability to RelayState tampering was
found due to the absence of the RelayState element. Upon testing this vulnerability,
we were able to alter the value of the RelayState in the request. The response included
the manipulated value without any error, but the authentication process still followed the
original path, indicating that additional measures were in place to disregard the tampered
value [And19].

• Signature: according to the guidelines stated in the SAML core document [Con08], all mes-
sages transmitted through insecure channels (e.g., the user’s browser) must be signed, while
messages that pass through secure channels (such as SSL/TLS) do not have to be signed.
To demonstrate this, a XML Signature Exclusion test was conducted and the scenario was
found to be not vulnerable.

The experimental analysis has led also to important results and revealed the following attacks:

• Certificate Faking attack resulting in Impersonation attack [Vla]: this attack consists in
removing the Signature element in the SAML Response, modifying some user’s per-
sonal information, signing the assertion again with a locally generated private key and ap-
plying a self-signed certificate derived from the original. The modified SAML Response
is then sent by the browser to the Client. If the Client does not carry out the checks described
above, the attacker is authenticated as the victim on the Client. A Client that behaves in this
way does not verify correctly the digital signature that guarantees the integrity and authen-
ticity of the SAML Response, therefore being vulnerable to an attack of Impersonation
type. In relation to the severity and the type of breaches that can be made by changing
personal information, a potential very high risk is estimated.

• SAML Response Cross Site Request Forgery: this attack consists in intercepting and copy-
ing the SAML Response, dropping the request and closing the browser [Avi16]. In a new
browser session we have to create another request and replace it with the replayed message
previously intercepted. So the tester is logged into his/her account in a new browser ses-
sion, unrelated to the original. It is important to notice that the replayed message can be
forwarded with or without cookies, the result is the same. In a real world scenario,the victim
may believe they are using their own account when they are actually using the attacker’s.

We encountered some issues in the crucial task of responsible disclosure of discovered vulnera-
bilities, particularly in regards to its complexity in Italy.

Unlike overseas realities, although reporting vulnerability is considered a good rule, Italian laws
do not include responsible disclosure, indeed it is often ethical hackers who are condemned
for abusive access to computer systems. The commitment of American government companies

111

in the field of vulnerability research (also thanks to Bug Bounty Programs), demonstrates the
importance of keeping high attention on cyber-security in all areas that are increasingly subject
to attacks [Age19].

Some of the stakeholders in the Italian digital transformation firmly believe in responsible disclo-
sure as the primary tool for communication with ethical hackers, particularly when the security,
privacy, and personal information of citizens are at risk. A responsible disclosure program can
also facilitate the prompt resolution of security issues with the goal of minimizing risks. Timely
resolution of vulnerabilities is crucial for reducing exposure to malicious attackers [BV16].

Even if AgID reserved an important place to the cataloguing of IT vulnerabilities through the
implementation of the National Vulnerability Database financed by the Triennial Plan for IT
2019-2021, in Italy much progress is yet to be made in this area, primarily by developing a crit-
ical and result-oriented approach and secondly by regularizing a national responsible disclosure
policy.

6.3.3 SSO-based account linking process

This analysis, derived from a collaboration with SAP and Meta, focuses on the SSOLinking and
on an overlooked CSRF attack vector for SSO which was introduced by Rich Lundeen at the
BlackHat conference in 2013 [Lun]. SSOLinking allows users to link their accounts at Client
websites, to their IdP account. This enables them to authenticate at Clients through an IdP
account, thereby eliminating the need to maintain separate set of credentials for each Client.
This added advantage encourages Client to support the SSOLinking process.

112

1 define_suite(SSOLinking Testsuite, Testsuite to verify the
vulnerability in SSOLinking, true) // Testsuite defines

2 start_test(SSOLinking Account Hijack, Test to mount the
SSOLinking Account Hijack attack, active, s1, s2, correct
flow s2) // Test defines

3 start($s1) // Session (s1) runs
4 // Inference begins
5 start_intercept($C_acc, s1, forward)
6 start_msg_operations()
7 mark($L,<IdP_redirection>,s1)
8 save($C_login_act,[1,index($L)),s1)
9 save(<IdP_redirection>,$C_acc)

10 gen_poc($C_acc,$POC)
11 mark($A,contains{assert, @assertion})
12 save($C_assert,$A)
13 end_msg_operations()
14 start_session_operations()
15 add($C_login_act,$s2)
16 add(instance_credentials(<IdP_login_act>),$s2)
17 add("open | http://localhost/"+$POC,$s2)
18 add("click | id=SSOLinking",$s2)
19 add("wait | 2000",$s2)
20 add($C_assert,$s2)
21 end_session_operations()
22 end_intercept()
23 // Inference ends
24 start($s2) // Session (s2) runs
25 end_test() // Test ends

Listing 6.1: Test procedure for SSOLinking Account Hijack with inference procedure.

Exploiting the SSOLinking Account Hijack relies on two vulnerabilities: a Authentication CSRF
on the IdP side and a SSOLinking-Init-CSRF on the SSO-based account linking process on the
Client side.

The Authentication CSRF has been studied in various works [Ada08, Avi17, Mic21] and many
of such vulnerabilities have been reported, also to IdPs. However, in most of the cases the IdP
opted to not fix such a vulnerability to allow users to make use of the one-click login feature.
If Authentication CSRF vulnerabilities are not fixed, then investing further effort in develop-
ing testing techniques for this is not so worth. We validated these two hypothesis—(I1) IdPs
tend to be vulnerable to Authentication CSRF and (I2) IdPs tend to be reluctant to fix these

113

vulnerabilities—in a specific experiment over the four major IdPs identified in [Moh18]. The
results of this experiment are detailed in Section 6.3.3.8 and confirm our hypothesis.

In our approach we thus assume that websites and, more specifically, IdPs can be vulnerable
to Authentication CSRF. Under this assumption we design a testing technique to detect the
SSOLinking Account Hijack on the Client side.

While the Session (s1) reported in Section 3.3.1 is executed, MIG-T infers the attack steps to
be run to detect the SSOLinking Account Hijack at a specific Client and saves them in a new
Session (s2). Listing 6.1 reports the Test written in MIG-L to perform the entire SSOLinking
Account Hijack at any Client: commands are presented in red, macros in purple, and comments
in blue.

The first define_suite action just indicates that the Testsuite (SSOLinking Testsuite) is ex-
ecuted. Then, the procedure starts and proceeds as following line by line:

Line 2. The Test (SSOLinking Account Hijack) is defined and proceed to execute the following
operations.

Line 3. The first start action just indicates that the Session (s1) is executed.

Line 7. At first, the inference procedure observes the HTTP messages and marks with L
the user action of (s1) whose corresponding HTTP messages comprise the value of the macro
<IdP_redirection>. The macro is extracted from the IdPs metadata database that is de-
scribed in the next section.

Line 8. All the user actions in (s1) from the first till the one marked with L are saved into the
variable $C_login_act. Note that closing round bracket indicates that the action marked with
L is excluded. All these actions capture the Client login activity.

Lines 9-10. The first HTTP message request whose HTTP response comprises the macro
<IdP_redirection> is saved into variable $C_acc and then an HTML POC is generated
by the “HTML POC Generator” module (details provided below) to enable later on the sending
of a cross-site request to that URL. The path to the HTML POC is saved into $POC.

Lines 11-12. All user actions in (s1) that contain any of the keywords assert or @assertion
as a comment are marked with A and then saved in variable $C_assert.

Lines 15-20. The new Session (s2) is now built. First, all the user actions related to Client login
(saved into $C_login_act) are added. Then, the user actions related to IdP login that are
stored in the IdP metadata as macro <IdP_login_act> are added upon proper instantiation
of the testing user credentials at the IdP. Indeed, <IdP_login_act> comprises itself two
macros about the user credentials that are automatically instantiated by fetching the real values
from (s1). Then three actions are added into (s2): the first will open the HTML POC local page
(notice that the path depends on $POC), the second will run the cross-site request, and the third
just add some waiting time to ensure the request is properly processed. Last, but not least, the

114

assertions collected in $C_assert are added to (s2).

Now that the inference is completed and (s2) is created, the test procedure simply proceeds in
running (s2) in line 16 and inspecting the results of that execution in line 17 to output the verdict
to the tester.

6.3.3.1 IdPs metadata

Our approach relies on few IdP-related metadata. This is an offline activity that requires little
effort and can be shared among few researchers to collect metadata for many IdPs. The procedure
to support new IdPs is straightforward and amount to append in the IdPs metadata database the
following two IdP information.

IdP Redirection signature. This is the signature that our approach expects to find in the redirec-
tion response that the Client generates to reach a specific IdP. In most of the cases, this metadata
entry will be something like v2/dialog/oauth or v1/dialog/oauth. It is referred as
macro <IdP_redirection> in Listing 6.1.

IdP Login. This comprises the list of user actions to perform the login at the IdP. It is referred as
macro <IdP_login_act> in Listing 6.1. The user credentials are not hardcoded, but they are
rather specified as macros that will be instantiated by our approach as in Listing 6.1 by fetching
the right credentials for the IdP from (s1).

6.3.3.2 Generate the HTML POC

The aim of the operation gen_poc is to to generate a proof-of-concept to exploit the SSOLink-
ing for a given request to be processed during the execution of s2 and to provide to the Client
to verify the vulnerability. In details, it creates a HTML page with the HTML form to send
the HTTP request in $C_acc properly changed. Indeed, according to the HTTP method of
$C_acc, the module builds the page and the HTML form. In case of a GET message, only the
url has been sent in the form while for a POST message the content-type, url and body are sent.

6.3.3.3 Output

The output of our testing approach comprises two elements. The first element is the test result
that provides the verdict whether the attack was successful or not. In rare cases our approach
can return a not applicable result when one or more conditions built-in in our commands are
not satisfied. For instance, if the marking operation in line 3 of Listing 6.1 is not finding the
<IdP_redirection>, then the process is simply not executed as expected. If all the user
actions in (s1) and those created for (s2) are successfully executed, then the attack is successful.

115

If some user actions of (s2) were unsuccessful (e.g., an unexpected page is displayed, an element
which should be clicked is not present in the page), then the attack is unsuccessful.

The second element of the output is the HTML POC useful to reproduce the attack (when the
attack was reported). The last element is a log file with all the HTTP messages saved during the
execution of the test.

6.3.3.4 Experimental analysis

We demonstrated the effectiveness of our approach and the pervasiveness of the SSOLinking Ac-
count Hijack against a selection of 40 popular websites featuring the SSO-based account linking
process with major IdPs. In doing so our approach discovered 19 vulnerable web sites over 40
analyzed. In the rest of this section, we detail the selection of the major IdPs and popular web-
sites (see Section 6.3.3.5) we used in our experiments, the methodology used for our experiments
(see Section 6.3.3.6), and the results obtained (see Section 6.3.3.7).

6.3.3.5 Dataset selection

We selected 4 major IdPs and for each of them 10 Clients supporting the SSO-based account
linking process. Our selection leverages on the dataset released by [Moh18] in 2018, where the
authors crawled the most popular one million websites to infer whether they integrate the SSO
login process. This is very valuable information for our study as websites featuring the the SSO-
based account linking process are clearly a subset of those having SSO login. Even if some of
the data from [Moh18] is clearly outdated, this did not impact our study and we were able to
select our candidates easily.

Figure 6.10 reports an example of an entry of the dataset from [Moh18]. Each entry specifies
in the field sso which IdPs that website is using (if any). For this example workable.com is
inferred to have SSO login with Google and Linkedin IdPs.

Figure 6.10: Entry (excerpt) from [Moh18].

For each IdP mentioned in the dataset we counted how many websites were making usage of
them in the 2018 dataset and and selected the 4 IdPs with the highest number of occurrences.

116

We targeted the first 6 IdPs in order of appearance in the 2018 dataset and then we counted how
many websites were having SSO login with them. We selected the four IdPs used by the highest
number of websites. Table 6.5 presents the IdPs candidates and the number of occurrences
reported for each of them. The selected IdPs for our experimental analysis are then Facebook,
Google, Twitter and Linkedin.

Table 6.5: IdPs candidates.

IdP Name Occurrences

Facebook 43,333
Google 26,186
Twitter 12,465
Linkedin 3,939
Amazon 1,459
Yahoo 1,924

For each one of the selected IdP, we then proceeded in selecting 10 Clients having SSO-based
account linking with the IdP. We considered one by one the website entries in their ranking
order from the 2018 dataset for which one of our selected IdP occurred. We manually checked
whether the SSO-based account linking process was implemented by that website with the IdP.
As shown in Table 6.6 we manually analyzed a corpus of 462 Clients to discover 59 websites
supporting the SSO-based account linking process with the selected IdPs. Among the 59 Clients,
we discarded 19 websites due to web issues that occurred in the execution of the process (15)
and automation detection issues (4). With web issues, we refer to issues in the Client website
that leads to e.g., broken pages and links during the account linking or unlinking processes.
For automation detection issues we mean those Clients that e.g., identify the use of Selenium
libraries to automate browser actions as a bot issue, which denies access to the website. The
Clients selection procedure is successfully finished by obtaining 10 fully working Clients for
each selected IdP. Some of these Clients are used in our dataset for more than one IdP. For
instance, the Nicovideo website occurs in our dataset as paired with Facebook, Google, and
Twitter IdPs. The number of unique Clients is 16.

6.3.3.6 Methodology

Here we describe the methodology we followed to perform the experiments on our selected
dataset.

We manually analyzed the four IdPs in our dataset against the Authentication CSRF and discov-
ered that three of them are vulnerable and that they do not plan to fix the problem. More details
are given in Section 6.3.3.8.

117

Table 6.6: Clients selection per IdP.

Clients per IdP Clients with SSOLinking Clients with issues

Web Autom.

Facebook 59 16 4 2
Google 117 10 0 0
Twitter 35 11 1 0

Linkedin 251 22 9 3

Total 462 59 14 5

While analyzing the IdPs we also collected the few IdPs metadata required for our approach.
Listing 6.2 provides a concrete example of the IdP metadata for Facebook.

Note that the user credentials are specified as macros that are automatically instantiated by our
approach for the specific testing user and Client. We make available the other IdPs metadata for
Google, Twitter and Linkedin in [Andb].

1 {"facebook": {
2 "<IdP_redirection>": "dialog/oauth/?\\?",
3 "<IdP_login_act>": [
4 "open | https://facebook.com/login.php",
5 "click | xpath=/html/.../button[2] |",
6 "click | id=email |", "type | id=email | <email>",
7 "click | id=pass |", "type | id=pass | <password>",
8 "click | id=loginbutton |"]}}

Listing 6.2: IdP metadata for Facebook.

The last step in our methodology aims to evaluate the pervasiveness of SSOLinking Account
Hijack. In this respect, we run our MIG-T against the 40 pairs of Clients and IdPs in our dataset.
For each pair of Client and IdP, we played the role of a tester at the Client and we created the
Selenium script to execute the SSO-based account linking process. In doing so we followed the
steps described in Section 3.3.1. All the scripts are available in [Andb]. Our MIG-T detected
the account hijack in almost 50% of our dataset. More details are given in Section 6.3.3.9, while
responsible disclosures and confirmations from vulnerable Clients are discussed later. All in all,
our results indicate that this attack may really be overlooked by the web community.

Ethical considerations and disclosure. We make sure that our tests did not cause any harm
to the tested websites. For instance, we neither injected any code in the HTTP requests nor
tried to have unauthorized access to user accounts that are not under our control. All tests were

118

performed using test accounts created on the websites by ourselves. Since we considered only
authentication and identity management processes and replayed only HTTP messages (belonging
to the user accounts we created), our testing is different from that of [PB14]. Additionally, when
we conducted further tests with the plugin, we made sure that the MIG-T did not send too many
HTTP requests, to avoid a potential denial of service.

We contacted all the 15 vendors of all the vulnerable web sites through bug bounty platforms like
Hackerone7 and Bugcrowd8 if available, otherwise through the contact information available on
the corresponding web sites.

On web sites having well-defined communication channels to report security vulnerabilities (pre-
cisely websites including Workable, Naver), we filed vulnerability reports. To contact the others,
we used the information available on their web sites for general enquiry.

The communication with the vendors was difficult in terms of explaining them the complexity
of the attack and the impact, since it involved two different vulnerabilities. We received some
positive responses for our reports. For instance, the Naver Client patched the vulnerability and
pay us a bug bounty of up to 100$. Another Client, Goodreads owns by Amazon, has confirmed
the vulnerability, which has already been patched, and confirmed a reward of 200$. Workable
acknowledged the problem, and offered us non-monetary rewards for our findings.

However, no information regarding these vulnerabilities is publicly available. For all other ven-
dors, we are either waiting for the acknowledgments or working closely with them to fix the
issues. This is mainly due to the fact that the experiments concluded recently and it has not been
long since we reported our findings to the affected vendors. For this reason, we will use aliases
instead of the real names of the Clients.

For now, 46% of vendors responded, and from the one that responded, 43% did acknowledged
the vulnerability. The results of the disclosure procedure can be found in Table 6.8.

6.3.3.7 Results

We report here the results obtained by following the experiments described in our methodology.

6.3.3.8 Manual testing of the IdPs

We analyzed manually the four IdPs in our dataset to validate our two hypothesis:

• (I1) IdPs tend to be vulnerable to Authentication CSRF.
• (I2) IdPs tend to be reluctant to fix these vulnerabilities.

7https://hackerone.com/
8https://bugcrowd.com/

119

We detected the vulnerability in 3 over 4 of our IdPs, namely Facebook, Google and Linkedin.
The details are below for each vulnerable IdP. We reported the vulnerability to the vendors, but
even if they recognize the vulnerability they do not plan to fix the issue.

Facebook. The following steps enable the exploitation of Authentication CSRF in Facebook (let
<FB> be the url https://www.facebook.com/recover):

1. the attacker opens the link <FB>/initiate/ in a browser.
2. the attacker provides his facebook account email.
3. the attacker enters the code received by email.
4. the attacker presses the “continue” button.
5. the attacker intercepts and drops the HTTP GET request to this url <FB>/password/
?u={UCODE}&n={CODE}&fl=default_recover&sih=0&msgr=0 saving the pa-
rameter’s value <UCODE> and <CODE> respectively.

6. the attacker forges the following URL <FB>/password/?<QS> where the query string
<QS> comprises u=<UCODE>, n=<CODE>, ars=one_click
_login, fl=one_click_login, spc=1, ocl=1, sih=0, and msgr=0.

7. the attacker lures the victim to click on the link created at step 6.
8. the victim is now authenticated in Facebook as the attacker.

Google. Calzavara et al. [Ste18b] managed to mount an attack against Google that allows a
web attacker to authenticate any user on Google under the attacker’s account. Once accessed, a
malicious web page can then cause a victim’s browser to issue the attacker’s request to the Google
assertion of SAML consumer service, thus forcing the victim inside the attacker’s controlled
authenticated session. The vulnerability can be exploited by any attacker with a valid account on
a third party IdP that uses Google as Client. We leveraged this vulnerability to gain access to the
victim Google account which plays the role of the IdP in our scenario. We tested this scenario
and the vulnerability is still exploitable.

Linkedin. To exploit the vulnerability in Linkedin the following steps are sufficient:

1. the attacker opens in a browser the following link https://www.linkedin.com.
2. the attacker performs login using his credentials.
3. the attacker clicks “Sign Out” button on the profile page.
4. the attacker opens the URL https://www.linkedin.com/
login?trk=homepage-basic_intl-segments-login and clicks the button
“Sign in with one-time link”.

5. an email with a link has been sent from Linkedin to the attacker email account to login with
one click.

6. the URL to login is https://www.linkedin.com/e/v2?e=...&lipi=...
&a=checkpoint-otp-submit&midToken=...&ek=email_

120

https://www.facebook.com/recover
<FB>/initiate/
<FB>/password/?u={UCODE}&n={CODE}&fl=default_recover&sih=0&msgr=0
<FB>/password/?u={UCODE}&n={CODE}&fl=default_recover&sih=0&msgr=0
<FB>/password/?<QS>

security_one_time_sign_in_link_checkpoint&sig=...&loginToken=
...&submissionId=...&sessionRedirect=...&fromSignIn=....

7. the attacker lures the victim to click on the link created at step 6.
8. the victim is now authenticated in Linkedin as the attacker.

Table 6.7: Overview of the Client test results per IdP.

Clients per IdP Tranco range
Vulnerable Not Vulnerable First-Last

Facebook 5 5 32-322
Google 4 6 32-399

Linkedin 5 5 3312-32779
Twitter 5 5 32-666
Total 19 21 -

6.3.3.9 Testing of the Clients

By experimenting our MIG-T against our dataset, 19 web sites out of the 40 analyzed (47.5%)
were reported vulnerable. For two Clients, namely Naver and Nicovideo, our MIG-T required
manual intervention to overcome a captcha and a two-factor authentication check. These classical
obstacles to automated testing that are normally present in the productive systems (the one we
could analyze), but not in the testing systems that a tester at the Client would deal with. We
solved those obstacles manually, assuming that in the testing systems of those websites the testing
automation obstacles would not be there. Table 6.7 details the results per IdP, indicating how
many Clients are vulnerable and their popularity ranges in the Tranco list [Vic18] as reported
in [Moh18].

We analyzed the results of our MIG-T manually, as a tester at the Client would do to be certain
of the outcomes. This allowed us to ensure the correctness of our approach in the dataset.

Though the severity of the attack strongly depends on the vulnerable web site, these results are
quite alarming. For instance, in the case of Barchart, a Client which supports electronic futures
trading, the attacker can sniff the trading strategies of the victim. In the case of Workable, a
world’s leading hiring platform, the attacker can hire talents on behalf of the victim.

121

Table 6.8: Overview of the Client disclosure procedure.

Client Name responded vuln confirmed issue fixed reward

workable.com yes yes yes no
naver.com yes yes - yes

goodreads.com yes yes yes yes
leetcode.com no - - -
barchart.com no - - -

statusbrew.com no - - -
annualreviews.org no - - -

nicovideo.jp no - - -
dailymail.co.uk no - - -

9gag.com no - - -
medium.com yes waiting - -
kaskus.co.id yes waiting - -

myanimelist.net no - - -
premierleague.com yes waiting - -

asos.com yes waiting - -
Total 7 3 2 2

122

Chapter 7

Related Work

This Chapter provides an overview of related work of IdM protocols and their associated security
risks. The methodology used in the study is a qualitative approach that reviews literature to
understand the methods used to evaluate the security of IdM protocols and identify vulnerabilities
in the systems. The study leverages the diverse design choices presented in the literature and the
valuable insights provided to improve the security of IdM systems. In the last section we provide
a comparison between MIG and the other state-of-the-art tools.

7.1 State of the art

The widespread adoption of authentication schemes by numerous websites on the Internet was
facilitated by the improved usability brought about by IdM protocols. Allowing users to access
multiple services with a single username and password streamlined their browsing experience.
However, this improved usability also introduced certain security risks that must be taken into
account. Having a single set of credentials for multiple services makes it easier for attackers to
access sensitive information if they were to obtain a user’s login information. This is only the
tip of the iceberg, as many IdM systems also have implementation vulnerabilities that can lead
to significant harm if exploited. As a result, security experts have conducted analyses of IdM
protocols and identified several weaknesses. The following sections outline the methodology
employed and the different approaches used to analyze IdM protocols.

123

7.2 Methodology

The research we conducted employed a qualitative approach to gain a thorough understanding of
the different methods used to analyze IdM protocols. A quantitative approach based on numerical
data would not have been appropriate for our goals as we did not require statistical data about
IdM protocols, but rather sought to gather in-depth information on the most common methods,
their benefits and limitations, and recommendations from prior researchers who have studied this
topic.

Thus, we began our analysis by reviewing literature. We used Google Scholar [goob] as a search
engine to compile an initial list of papers that studied IdM protocols. However, as our definition
of IdM protocols did not match the identity management definition commonly used in literature,
we had to start with a broader scope. Our aim was to find studies that analyzed IdM protocols,
resulting in the identification of unnoticed or uncovered vulnerabilities. To this end, we started
by examining general vulnerability scanners reported in literature, then refined our results by
selecting those that aligned with our research focus.

To determine if an article was relevant to our research, we read its abstract and evaluated if it
concerned IdM protocols. Specifically, we focused on methods that evaluated the security of
IdM protocols and reported new vulnerabilities in IdM systems. To obtain the most relevant
information, we ordered the results by relevance, according to Google Scholar. Relevance takes
into account factors such as the full text of the article, where it was published, the authors, and
its citation frequency by other scholarly literature. These criteria were deemed reasonable by
Google Scholar to order the articles and provide the most relevant works.

To begin, a search was conducted using Google Scholar [goob], with initial keywords
“vulnerability scanner” and “web scanner”. However, the results obtained were
too general and broad. To refine the search, we modified the keywords to “vulnerability
scanner sso”, and out of the 4000 pages obtained, the first twelve pages were analyzed,
yielding nine relevant results. Further refinement was done by expanding the acronym sso to
single sign-on, which resulted in 10000 pages and six additional relevant articles. We also
searched with the keywords “black box web vulnerability scanner”, with four
potentially useful results obtained from ten pages analyzed. Finally, we tried the keywords
“vulnerability scanner” with the names of specific IdM protocols, such as “saml
vulnerability scanner”, “oauth vulnerability scanner” and “openid
vulnerability scanner”, which produced no significant results, five and seven articles
respectively, within our scope.

With approximately thirty papers found, the research was continued by reading the articles. The
cross-referencing of articles allowed us to identify additional relevant information and eventually,
the cited works in different papers were already in our list, marking a reasonable termination
point for our paper review.

124

The literature on the topic was further enhanced by contributions from Github [git], the premier
software development platform, and an international conference on security [oauc]. The exten-
sive research on the security of IdM protocols highlights the importance of our study. Over the
years, various aspects of IdM protocols have been investigated, with a common consensus that
the implementation of these protocols is often prone to errors. Thus, finding innovative solutions
to improve the security of IdM systems continues to be a challenge for the research community.
The wealth of research provides valuable insights and helps us understand the crucial aspects to
consider when analyzing IdM protocols. We leverage the diversity of design choices presented
in the literature as the foundation for our solution. The conducted review is discussed in detail in
the following sections.

There are several methods for evaluating the security of IdM protocols, but we decided to not
use formal analysis because formal analysis involves using mathematical techniques to model
the protocol’s behavior and identify potential vulnerabilities or attacks. Formal analysis allows
for a thorough and comprehensive evaluation of the protocol’s security properties, such as confi-
dentiality, integrity, and availability, and can uncover subtle or complex security flaws that might
be missed by other evaluation methods.

Such analysis has uncovered hidden vulnerabilities in various IdM protocols, including SAML
Web Browser SSO Profile, OpenID, and OAuth.

In 2008, Armando et al. found a significant vulnerability in the scheme used by Google services
after conducting a formal analysis of SAML Web Browser SSO Profile [Ale08]. This vulner-
ability allowed a malicious Client to impersonate a user at another Client. In 2013, Armando
et al. used the model checker from [Ale07] to identify another vulnerability in SAML SSO
flow [Ale13]. This vulnerability arose from the lack of a specification mandating that the initial
authentication request and the relative assertion be transmitted over the same SSL connection,
leaving room for attackers to redirect victims or launch XSS or CSRF attacks. The same check
was applied to OpenID and the vulnerability was also present in that protocol.

Fett et al. presented a formal analysis of OIDC in [Dan17]. They formalized the OIDC proto-
col and included security measures to prevent previously discovered attacks and their variants,
demonstrating that their guidelines are effective in ensuring central security properties for OIDC.

Pai et al. used the Alloy framework to discover vulnerabilities in OAuth in 2011 [Suh11] and
identified a vulnerability in the client credential flow. In the same year, Chari et al. introduced the
Universal Composability Security Framework to study OAuth security [Sur11]. They focused on
the authorization code flow and proved that to ensure the security of OAuth, all communications
must be over an SSL channel.

125

7.3 Automated tools

The studies outlined in Section 7.2 all rely on formal models that abstractly examine the IdM
protocol. Although the specification of an IdM protocol may be labeled as secure in theory,
in practice, developers must contend with various nuances such as different technologies and
heterogeneous scenarios that are not considered by formal models. This often results in IdM
systems being prone to errors, even if security experts are involved in the development process,
leading to the discovery of numerous vulnerabilities (as documented in [San12, ZE14, Kar19,
Wan19, Ale08, Avi17]). Additionally, identifying these flaws is a time-consuming process, as
testers have to spend a significant amount of time manually checking the IdM system for potential
vulnerabilities. This is prone to mistakes by the testers, which can have serious consequences
such as non-compliance with regulations like PSD2 [Off15]. Hence, testers must possess expert
knowledge and skills to ensure a proper security assessment of the IdM solution. In light of these
challenges, researchers have started developing automatic and semi-automatic tools to speed up
pentesting and ensure proper implementation flaw detection in IdM systems.

7.3.1 General purpose tools

The initial automated tools centered on web applications where users authenticate to access ser-
vices. However, these tools are not designed to detect vulnerabilities specific to IdM protocols
like SAML or OAuth/OIDC. Instead, they identify common implementation issues in authenti-
cation mechanisms.

One of the first tools in this category is BLOCK [Xia11], introduced in 2011. Developed by
Li and Xue, it operates as a proxy and aims to detect state violation attacks by comparing web
traffic generated by the tester machine with a set of expected behaviors, called invariants. If
an anomaly is detected, BLOCK discards the suspicious message. During the training phase,
the tester performs multiple authentications to let BLOCK learn the authentication pattern and
establish the reference invariants. The testing phase can then commence on the target system,
however, this process must be performed manually. The authors confirmed the effectiveness of
the tool through tests, but it has limitations. It can only test PHP web applications and search for
specific session-targeted attacks, and the completeness and accuracy of the inferred invariants
cannot be guaranteed, potentially rendering the tool ineffective.

In 2013, Xing et al. introduced InteGuard [Luy13] which follows the footsteps of BLOCK
[Xia11]. Like BLOCK, InteGuard acts as a proxy that inspects web traffic and compares inter-
cepted messages against a set of invariants. However, unlike BLOCK which analyzes communi-
cation between a user agent and a PHP website, InteGuard faces a higher level of complexity as
it tests IdM systems involving three entities (user agent, Client and IdP). To generate the invari-
ants, InteGuard requires four different test accounts and four distinct authentication flows to be

126

created, with the aim of generating as much diversity as possible in the flows. The HTTP traffic
observed during these flows is analyzed, message parameters are extracted, and used to establish
rules that can distinguish legitimate messages from illegitimate ones. These invariants are then
used to form a set of security policies, and in case of any violations, InteGuard raises an alarm to
notify the user of any suspicious activity in their system.

The analysis of web traffic generated by a user’s browser has been a popular approach in other
tools, with BRM Analyzer [Rui12] being one such example. This tool specifically focuses on
IdM systems and extracts protocol specifications from messages produced during the authenti-
cation flow. It does this by treating a SSO authentication process as a series of browser-relayed
messages (BRM) exchanged between the Client and IdP. Upon analysis of these messages, the
key elements (parameters) of the IdM system being tested are identified, labeled with a type and
semantic, and used to generate a report for the user. While the extraction of specifications is au-
tomated, the tester still needs to manually examine the generated report to identify any potential
vulnerabilities in the analyzed IdM solution.

A year later, Wang et al. introduced AUTHSCAN [BLM+13]. This tool obtains information
from analyzing HTTP traces and client-side Javascript code to create an initial abstraction of the
protocol specification, which is then refined through both black and white box techniques until
no further information can be inferred. The refined protocol specifications are represented using
an abstract language called Target Model Language and then converted to applied pi-calculus for
automated verification against a set of attack candidates. If an attack is detected, it is verified
against an oracle using real HTTP traffic to avoid false positives. Using this tool, the authors dis-
covered 7 vulnerabilities in real-world applications. However, it should be noted that the authors
point out the need for manual effort to check inconsistencies between the actual implementation
and the extracted formal model due to the issue of false positives. In contrast, our approach does
not have such a strong requirement.

Prior to examining tools specifically designed for pentesting a particular IdM protocol, literature
suggests the use of CSRF-checker [Avi17] for performing a general vulnerability assessment of
an IdM system. The authors of the study conducted a large-scale analysis of websites with iden-
tity management capabilities to determine their susceptibility to authentication CSRF attacks.
These types of attacks occur when an attacker logs into a victim’s account or the victim is logged
into an attacker-controlled account. The authors first manually analyzed the patterns of these
attacks, and then developed testing strategies to detect the vulnerabilities causing authentication
CSRF. These strategies were integrated into CSRF-checker, a semi-automated tool that operates
as an extension of the OWASP ZAP open-source penetration testing tool [zap]. CSRF-checker
leverages the API provided by ZAP to identify candidate messages, make necessary modifi-
cations, and verify the success of the tests. The results indicate that CSRF-checker is almost as
efficient as manual testing, but it only reduces manual effort to a certain extent. The tool’s general
approach, not targeting a specific protocol, requires a minimum amount of manual operations.
As stated by the authors, if a tool for general scenarios is to be developed, automation cannot be

127

as advanced as for a tool targeting a specific protocol. This is why the following tools concentrate
on a specific IdM protocol and aim to uncover vulnerabilities related to its implementation.

7.3.2 Tools for OAuth and OpenID implementations

Starting with OAuth, the first tool to analyze IdM systems using this protocol is Impersonator
[San12]. Impersonator checks the feasibility of impersonation attacks by sending a stolen or
guessed credential to the Client’s sign-in endpoint. It does so by exploiting the GeckoFX library
[Sof] to simulate a browser, monitor, and modify HTTP messages. Impersonator creates a cus-
tom message for the Client being tested and sends it. If the Client does not generate an error,
it is considered vulnerable to impersonation attacks. The authors found that 64 out of 96 tested
sites were vulnerable, proving the tool’s effectiveness in discovering such vulnerabilities. How-
ever, Impersonator’s limited scope to only one vulnerability makes it less practical for real-world
applications.

SSOScan [ZE14] made great strides in 2014, providing a better solution for testing OAuth im-
plementations. SSOScan is an open-source tool available as a web service that performs a vul-
nerability scan on Clients using Facebook IdP for SSO. In this work, tha authors focus only
on Facebook SSO, but their approach could be used to check SSO integrations using other IdP
or other protocols. The approach simulates attacks and monitors traffic to verify if authenti-
cation is successful. SSOScan performs five different attacks, including access_token and
signed_request misuse, app_secret parameter leakage, and user credentials leakage
through referer headers or third-party scripts. The first two attacks are performed through crafted
requests, while the last three are deduced from the authentication process traffic analysis. The
first two attacks can only be performed if the authorization code flow is not used. The other three
attacks exploit vulnerabilities that give the attacker access to the victim’s confidential informa-
tion. SSOScan is fully automated and protects user privacy, as it automatically generates test
accounts. However, while SSOScan is able to automatically synthesize basic user interactions
and analyze traffic patterns, this approach is not suitable for detecting all types of vulnerabil-
ities, especially those involving deep server-side scanning or complicated interactions, such as
the leakage of app secrets, which requires program analysis techniques.

OAuth Detector [Eth15] focuses on all IdM scenarios using OAuth, searching for vulnerabilities
leading to CSRF. The tool is a web crawler that examines website source code to discover OAuth
URL links, defined as those containing the parameters client_id and grant_type. The
links are analyzed to determine if they use the authorization code flow, and if so, whether the
state parameter is present. If state is not present, the website is considered vulnerable to
CSRF. If no OAuth URL is found, links are followed up to two redirections, with the detection
process repeated each time. The authors found that 25% of the domains in the Alexa top 10000
list [ale] using OAuth did not properly implement CSRF protection mechanisms. However,
their estimate is considered conservative as the tool does not consider OAuth URLs called via

128

Javascript and some websites might have non-conventional CSRF protection mechanisms.

The approach taken by OAuthTester [Ron16] is similar to those of [Rui12, BLM+13]. It starts
by constructing a model based on the OAuth RFC [Har] that abstracts and defines the expected
behavior of the IdM under test. The model is refined using network traces to better fit the ac-
tual behavior of the IdM system. Test cases generated by OAuthTester are then submitted to the
real system and the responses are compared with the expected behavior to identify any anoma-
lies and deviations. These deviations are reported as warnings to the user and used to further
refine the testing model. Unlike [Rui12] and [BLM+13] that only build their models based on
network traffic analysis, OAuthTester incorporates the protocol specification in constructing a
more comprehensive system model. However, the effectiveness of OAuthTester is limited by the
granularity of the model, for example, it does not take into consideration the implementation of
SSL or detailed HTTP headers such as cookies, potentially leading to missed vulnerabilities in
those areas.

In recent times, two tools for pentesting the OAuth protocol have been introduced: OAuthGuard
[Wan19] and OVERSCAN [Kar19]. OAuthGuard is a vulnerability scanner and protector for
OAuth and OIDC systems that use Google as the IdP. It focuses on the authorization code grant
and implicit grant and is the first solution capable of blocking potential attacks in real-time. OAu-
thGuard works as a Google Chrome extension and protects or warns the user from five different
attacks, including CSRF attacks, impersonation attacks, authorization flow misuse, unsafe token
transfer, and privacy leaks. All of these attacks are detected through the analysis of messages
exchanged through the browser. However, it is important to note that there are certain limitations
in the analysis. Specifically, the analysis only focuses on OAuth and OIDC and is limited to the
authorization code grant and implicit grant. This means that other authorization protocols and
grant types are not covered by the analysis.

OVERSCAN is a tool that is meant to be compatible with any OAuth implementation and serves
as a Burp proxy [bur] extension that scans web traffic to identify missing parameters or HTTP
headers that might lead to security issues. Using the API provided by Burp, it analyzes mes-
sages to identify those that belong to the OAuth protocol. OVERSCAN supports both the OAuth
implicit and authorization code grant. The headers and parameters of these messages are then
checked to ensure that fields that might allow attackers to perform certain types of attacks are
not missing. Based on the analysis results, vulnerable messages are logged in the extension and
color-coded to indicate the severity of the identified vulnerability. OVERSCAN does not pro-
vide real-time protection, but instead summarizes the results in a report. However, due to its
limitations in analyzing the message directly sent between the Client and authorization server,
OVERSCAN is unable to provide real-time protection and warnings, instead presenting a com-
prehensive technical report of any detected vulnerabilities.

The most recent tool for testing OAuth implementation is OAuch [Pie], a tool introduced at the
2020 OAuth Security Workshop [oauc]. OAuch is a web application that acts as a malicious client

129

to find security weaknesses. Each test performed corresponds to one security-related requirement
of the OAuth specification, at any requirement level. This means that each MUSTs, SHOULDs,
and MAYs present in the OAuth specifications represents a test case. Once basic information is
entered into the OAuch interface, the tests are automatically executed. The results of the tests
are then displayed in a report, which shows information about each test. For each test, the user
can inspect a log with detailed information. However, it is important to acknowledge that the
analysis has certain limitations. One such limitation is that it is limited to the examination of
OAuth and OIDC, and does not cover other types of authorization protocols.

Regarding OpenID [Ope14a], the initial tool for automated pentesting reported in the literature is
OpenID Attacker [Chr16a]. As OpenID is an open system, each Client can choose its own IdP,
leading the authors to examine a set of attacks that target a malicious IdP. They manually tested
four novel attacks on existing OpenID systems, then developed OpenID Attacker to automate
the pentesting process. OpenID Attacker operates as a malicious IdP and runs in three modes:
analysis, manual attack, and fully automated attack. In the analysis mode, OpenID Attacker
functions as an honest IdP creating valid tokens and gathers information about the Client, such
as the OpenID version and parameters used. The manual attack mode enables the user to con-
trol the malicious IdP and manipulate messages to observe the outcome. The recorded manual
attacks can be reused to test other OpenID systems in the future. In the fully automated mode,
OpenID Attacker executes the recorded manual attacks and four provided by the tool, including
token recipient confusion, ID spoofing, discovery spoofing, and key confusion. These attacks
exploit the malicious IdP to impersonate the victim at an honest IdP. The authors tested OpenID
Attacker against existing OpenID systems, discovering vulnerable Client on popular services like
Sourceforge and Drupal. However, it should be noted that the analysis has certain limitations.
In particular, it is focused exclusively on OAuth and OIDC, and does not cover other types of
authorization protocols. Furthermore, the analysis only considers a limited number of specific
attacks, which means that it may not provide a comprehensive understanding of the full range of
security issues and vulnerabilities that could arise in the use of these protocols.

However, OpenID Attacker must be downloaded and manually configured. Mainka et al. pro-
posed PrOfESSOS [Chr16b] as an alternative, which is an open-source, fully automated testing
tool for IdM systems using OIDC provided as a web service, eliminating the need for config-
uration. Similar to OpenID Attacker, PrOfESSOS acts as a malicious IdP and performs two
types of attacks: single-phase and cross-phase. Single-phase attacks exploit an insufficient or
missing verification step on a security-relevant parameter, while cross-phase attacks require the
manipulation of messages during multiple phases of the SSO authentication flow. PrOfESSOS
is ideal for testing OIDC scenarios, but not intended for large-scale analysis like Alexa top sites
[ale]. However, it is important to recognize that the tool has certain limitations. One of these
limitations is that it is restricted to the examination of OIDC and does not cover other types of
authorization protocols. Additionally, it is important to note that the tool was not intended for
large-scale analysis, which means that its applicability may be limited in certain scenarios.

130

FAPI conformance suite [fapb] is an automated tool for compliance testing of Financial-grade
API (FAPI) [fapa], a high-security profile built on OAuth and OIDC for financial scenarios.
FAPI is supported by the OpenID Foundation [Ope] and companies like Microsoft and Nomura
Research Institute. The OpenID Foundation offers FAPI certification to systems that successfully
pass the FAPI conformance suite’s compliance tests, which also verify compliance with OAuth
and OIDC standards. This suite is designed for testing FAPI implementations but can also be
used to assess compliance with OAuth and OIDC standards. However, it is important to note that
the tool has some limitations. In particular, it is restricted to the examination of OIDC and does
not cover other types of authorization protocols.

The MoScan tool [Han21] is designed for software testers and security analysts to detect and
report security vulnerabilities in SSO implementations. It works by analyzing network traces and
incrementing a state machine, which is then used to generate payloads for testing the protocol
participants. However, it is essential to recognize that while the tool was able to identify three
known weaknesses and one new logic fault, there may be additional vulnerabilities that it was
not able to detect.

OAuthShield [Tam21] is an automated static analyzer for finding logical flaws and vulnerabil-
ities in OAuth authorization server libraries. It checks the security of service provider imple-
mentations for OAuth authorization. However, it is essential to recognize that the tool has some
limitations. One of the significant limitations is that it is restricted to the evaluation of OAuth
and does not cover other types of authorization protocols.

OCSRF [Mic21] is a Python-Selenium tool for automatically testing different OAuth CSRF
scenarios. It has a repeatable methodology for discovering and validating OAuth CSRF vulner-
abilities in targeted sites, and presents the most comprehensive set of test cases to exploit these
vulnerabilities, including novel attack strategies. It complements and integrates guidelines for
OAuth developers to mitigate implementation mistakes. However, it is crucial to recognize that
the tool has certain limitations, and one of these limitations is that it is limited to examining
OAuth.

S3KVetter [Ron18] (Single-Sign-on SDK Vetter) is an automated, efficient testing tool for
checking the logical correctness and identifying vulnerabilities of SSO SDKs. However, it is
essential to recognize that the tool has certain limitations, and one of these limitations is that it
may produce false negatives in certain scenarios.

7.3.3 Tools for SAML implementations

Automated pentesting tools for IdM systems implementing SAML have been developed. The
first such tool was WS-Attacker presented by Mainka et al. in 2012 [Chr12]. The authors
described a framework for testing various XML-specific vulnerabilities, but the automated tool
they implemented only checks for SOAPAction spoofing and WS-Addressing spoofing, which

131

are based on vulnerabilities in the SOAP protocol. The tool requires a WSDL [wsd] file as input
and generates two requests – one correct and one tampered – to compare and present the results to
the user. However, WS-Attacker is limited in that it is not useful for testing current IdM systems
using SAML, as they mostly use HTTP to transfer authentication messages.

In contrast, SAML Raider [PS18] and EsPReSSO [MMGS15] are both Burp extension tools
that test for XML-specific vulnerabilities. SAML Raider verifies if the target SAML IdM system
is vulnerable to XML Signature Wrapping (XSW) attacks, which allow an attacker to modify
XML messages and inject malicious information. SAML Raider also allows the user to remove,
edit, and resign XML signatures. EsPReSSO, on the other hand, identifies and decodes messages
belonging to IdM protocols (such as SAML and OAuth), and tests for vulnerabilities leading to
XML External Entities (XXE) attacks. A similar tool, SAMLyze [Jon], is not currently available.
However, these tools provide pre-compiled attack vectors, but manual testing is still required, as
the user must manually select the attack vector and determine the outcome of the authentication
flow.

7.3.4 Tools for OAuth/OIDC and SAML

If we search for comprehensive automated penetration testing tools for OAuth/OIDC and SAML
vulnerabilities, we find only one option: WPSE [Ste18b]. WPSE is a security monitor imple-
mented as a Google Chrome extension designed to ensure compliance with the intended protocol
flow and the confidentiality and integrity properties of messages. It requires a protocol flow
specification and a security policy as inputs to evaluate traffic generated by the user’s browser
and block navigation in case of anomalies. The tool can detect attacks that cause protocol flow
deviations, secrecy violations, and integrity violations. Protocol flow deviations occur when the
user’s browser skips required messages or processes messages in the wrong order (e.g., in some
CSRF attacks, the victim completes an authentication flow that wasn’t initiated in their browser).
Secrecy violations occur when confidential information is leaked (e.g., via third-party code), and
integrity violations occur when the integrity constraints of the protocol are not satisfied (e.g., the
redirect_uri being modified during the authentication flow). The authors acknowledge that
WPSE still needs improvement, for instance, it blocks all solutions for CSRF causing protocol
flow deviation in OAuth that do not use the state parameter, even if the website implements
other countermeasures. Improving the way of detecting CSRF (as proposed in [Wan19]) or pro-
viding a warning and letting the user decide whether to proceed could be potential solutions.
However, it is important to acknowledge that the current prototype of WPSE is limited by the
Google Chrome extension APIs.

Sudhodanan et al. proposed BLAST [Avi16] a tool that aims to improve the security of MPWAs
by automatically testing them for security vulnerabilities. The authors were motivated by the
prevalence of attacks against MPWAs and the lack of a general-purpose technique to support
their discovery. The tool is based on attack patterns and uses a black-box testing approach

132

to target six different replay attacks, a login CSRF attack, and a persistent XSS attack. The
proposed methodology allows security experts to create attack patterns from known attacks, and
the framework automatically generates test cases for security testing. However, the approach
heavily relies on predefined attack patterns inspired by known attacks, limiting its ability to
detect attacks that do not fit into these patterns and it is also subject to false positives.

7.3.5 Sandboxing and education

All the tools discussed so far share a common characteristic: they have validated their proposed
solutions through tests conducted on real-world identity management (IdM) systems. This is to
show that the solutions are effective both theoretically and in practice. Major companies such
as Google, Facebook, and Microsoft run bug bounty programs [gooc, fac, mic] where rewards
are offered to individuals who discover and report security flaws in their systems. However,
pentesting real-world applications may raise legal and safety concerns, especially for companies
like banks or public organizations who may not appreciate unauthorized access to their systems,
and for attacks like Denial of Service that may cause serious harm to the impacted business. To
address this, it’s crucial to have a secure environment for assessing the security of IdM systems,
such as sandboxing the tested environment on a local machine to keep it isolated.

Dashevskyi et al. proposed TESTREX [Sta14] as a testbed for repeatable exploits with fea-
tures like packing and running applications with their environments, injecting exploits, moni-
toring their success, and generating security reports. Instead of using heavy virtual machines,
TESTREX uses Docker [doc], a software that provides virtualization at the OS level using con-
tainers, to isolate the application being tested. The user writes the exploits using a reference
class, which are then executed using Selenium Web Driver [sel]. The results are recorded in a re-
port that the user can examine. TESTREX is suitable for both industrial and educational use and
provides a set of vulnerable web applications for various web programming languages, partly
developed by the authors and partly sourced from existing environments like BugBox [Gar13]
and WebGoat [web]. However, it is important to note that the tool has certain limitations, and
one of these limitations is that it is not designed to focus on IdM protocols.

BugBox [Gar13] is a framework for collecting, sharing, and experimenting with vulnerabilities,
and for educating users on common vulnerabilities. It provides environments with each vulner-
ability coupled to an automated exploit executed using Selenium, and the full source code of
the vulnerable applications is provided. However, it is important to note that the solution being
discussed is limited to PHP web applications.

WebGoat [web] is an insecure web application for learning and testing common web vulner-
abilities. The user can choose a vulnerability to learn and is guided through the process with
descriptions and instructions. However, it is worth noting that the solution being discussed has
limitations when it comes to real environments. While it may work well in controlled testing

133

conditions, there could be unforeseen challenges or performance issues when the solution is
implemented in a real-world setting.

For educational purposes, two online services for learning the IdM protocol are worth mention-
ing: Okta OAuth Playground [oaua] and Google OAuth Playground [gooa]. Okta OAuth
Playground provides practical examples to learn OAuth grant types, while Google OAuth Play-
ground offers a sandbox for playing with OAuth and Google APIs supporting it. However, it is
worth highlighting that the tools being discussed have certain limitations. Specifically, they focus
solely on OAuth authentication and do not include the capability to perform security testing on
production environments.

7.3.6 Considerations

We have conducted a thorough examination of the state of the art and organized the gathered
information in Table 7.1. The tools have been categorized into three distinct sub-groups, namely,
General purpose, which refers to tools utilized for testing web applications with user authenti-
cation, OAuth/OIDC, which pertains to tools specifically designed for OAuth/OIDC implemen-
tations, and SAML, which includes tools intended for SAML implementations. The following
features were selected for comparison:

• (Semi) Automated: automatic or semi-automatic testing with limited user interaction.
• Common Vulnerability: tests for vulnerabilities commonly found in web applications.
• Compliance: verification of compliance with the standards specified in the identity man-

agement (IdM) protocol.
• IdM protocol: testing for vulnerabilities specific to IdM protocol implementation.
• Active tests: modifying messages to examine system reactions.
• Passive tests: analyzing authentication flow traffic to detect anomalies.
• MSC: provision of message sequence charts and/or lists of messages exchanged during

authentication flow.
• Vulnerable instances: provision of instances for pentesting and learning.
• Automatic Deploy: ease of deployment of vulnerable instances through simple commands

or scripts.
• Learning Information: provision of information to enhance understanding of IdM proto-

cols and improve security awareness.

134

Table 7.1: Comparison between MIG and the other state-of-the-art tools.

Pentesting
Sandboxing &

Education

(S
em

i)
A

ut
om

at
ed

W
eb

A
pp

lic
at

io
n

Se
cu

ri
ty

C
om

pl
ia

nc
e

Id
M

pr
ot

oc
ol

A
ct

iv
e

te
st

s

Pa
ss

iv
e

te
st

s

M
SC

V
ul

ne
ra

bl
e

in
st

an
ce

s

A
ut

om
at

ic
de

pl
oy

L
ea

rn
in

g
in

fo
rm

at
io

n

General purpose

AUTHSCAN [BLM+13] n n - n n - - - - -
BLAST [Avi16] n n - n n - - - - -
BLOCK [Xia11] n n - - - n - - - -
BRM Analyzer [Rui12] - - - - - - n - - -
BugBox [Gar13] n n - - - - - n - -
CSRF-checker [Avi17] n - - - n - - - - -
InteGuard [Luy13] n n - - - n - - - -
TESTREX [Sta14] n n n - - n - n n -
WebGoat [web] - - - - - - - n - n

OAuth/OIDC

Google Playground [gooa] - - - - - - - - - n
FAPI conformance suite [fapb] n - n - - n - - - -
Impersonator [San12] n - - n n - - - - -
OAuch [Pie] n - n - n n - - - -
OAuth Detector [Eth15] n - - n - n - - - -
OAuthGuard [Wan19] n - - n - n - - - -
OAuthTester [Ron16] n n - - - n - - - -
Okta Playground [oaua] - - - - - - - - - n
OpenID attacker [Chr16a] n - - n n - - - - -
OVERSCAN [Kar19] n - - n - n n - - -
PrOfESSOS [Chr16b] n - - n n - - - - -
SSOScan [ZE14] n - - n n n - - - -
WPSE [Ste18b] n n n - - n - - - -
OCSRF [Mic21] n n n n n - - - - -
MoScan [Han21] n n n - n - - - - -
OAuthShield [Tam21] n n n n n - - - - -
S3kVetter [Ron18] n n n n n - - - - -

SAML

EsPReSSO [MMGS15] n - - n n - n - - -
SAMLyze [Jon] n - - n n - - - - -
SAML Raider [PS18] n - - n n - - - - -
WPSE [Ste18b] n n n - - n - - - -
WS-Attacker [Chr12] n - - n - - - - - -

Micro Id Gym n n n n n n n n n n

n = provided feature; - = feature not provided

135

From the table’s results, it is clear that there is no tool that offers all the features that MIG pro-
vides. To ensure compatibility with future works, MIG was designed and developed with three
concepts in mind: modularity, flexibility, and usability. Modularity ensures each component of
MIG is independent, so components can be added or removed without affecting others. Flexi-
bility allows MIG components to adapt to different environments and run on both Windows and
Unix systems. Usability focuses on making MIG easy to use with straightforward configuration,
automatic deployment and execution, and user-friendly interaction. In the subsequent chapters,
MIG’s features are described in detail.

136

Chapter 8

Conclusions and Future Work

Ensuring the security of an organization’s digital assets has become increasingly important in
today’s technology-driven world, with the proliferation of cyber threats. To secure against data
breaches, loss of confidential information, financial damage, and reputational harm, organiza-
tions must implement effective cybersecurity measures. Regular security testing is one such
measure that can help assess the effectiveness of security controls, identify vulnerabilities, and
make recommendations for improvement. By conducting security tests on a regular basis, or-
ganizations can proactively address potential threats and strengthen their overall cybersecurity
posture. In addition to regular security testing, digital IdM is also crucial in protecting against
identity theft, fraud, and other security breaches. MPWA are commonly used in digital identity
systems and play a crucial role in building trust in current and future digital ecosystems. IdM
protocols such as SAML, OIDC, and OAuth provide policies for securing assertions and ensuring
their integrity during transfer, while also eliminating the need to store authentication information
within services. This solution can help public and private organizations prevent the misuse or
abuse of login credentials and reduce the risk of data breaches.

However, implementing IdM protocols can be challenging due to the complexity involved in de-
signing, implementing, and deploying cryptographic mechanisms. Automated security testing is
crucial in mitigating security issues, especially as the functional details of implementations and
deployments add to the complexity of IdM solutions. Compliance with security standards is also
critical for robust security in IdM implementation, as it is related not only to security policies but
also to legal aspects related to national-level infrastructure. The implementation of IdM protocols
which include standards requires robust security testing to ensure their proper functioning and
protect against potential threats. However, this process is not without its challenges. The first
challenge is the scattered nature of security information, which makes it difficult for Security
Testers to access and gather all relevant information required for testing. The second challenge
is the fast-evolving threat landscape, which requires continuous updates to security testing tech-
niques and approaches to keep pace with the latest threats. Finally, the need for a controlled

137

testing environment that guarantees traceability, reproducibility, and business continuity further
adds to the complexity of security testing. To address these challenges, organizations need to es-
tablish a robust and agile security testing strategy, supported by suitable infrastructure and testing
procedures, that can ensure the security and resilience of their IdM implementations.

For this, we proposed Micro-Id-Gym (MIG), offering on the one hand (in the laboratory) an easy
way to configure and reproduce the production environment in a sandbox. This can be done
by choosing instances built in the framework or allowing users to upload new ones. Security
Testers can then develop hands-on experiences on how IdM solutions work and also use a set of
security testing tools to perform attacks with high impact and better understand the underlying
security issues. On the other hand (in the wild), MIG provides a set of security testing tools for
the automatic security analysis of IdM protocols as reported in Chapters 4 and 5. These tools
include: (i) MIG-T, which is designed to automatically execute test cases specified in MIG-L (see
Chapter 3), (ii) MIG-D, which allows users to easily visualize and analyze the results of security
testing activities in the form of graphical representations, and (iii) MIG-S, which facilitates the
creation and sharing of cyber threat intelligence information. As reported in Chapter 6, we first
evaluated the effectiveness of MIG by conducting an experiment to demonstrate its accuracy in
assisting with the detection of relevant vulnerabilities in the implementation of IdM protocols.
Secondly, we utilized MIG and MIG-T to conduct security analyses across various corporate
scenarios and projects, identifying security concerns in multiple areas such as the implementation
of IdM protocol in the Italian digital identity system supporting OIDC and SAML, a PSD2
service provided by a prominent Italian IdP based on OAuth, and the SSO-linking. During
our analysis we identified that 19 out of 40 Clients analyzed were vulnerable to a CSRF on
the action initiating the SSO-Linking process at the Client where the attacker will be able to
authenticate to the victim’s Client account by executing the SSO login at the Client through the
attacker’s IdP account. As part of our commitment to security, we participated in various bug
bounty programs to responsibly disclose the vulnerabilities we identified and collaborating with
the security researchers to further enhance their systems. Our findings were recognized by the
providers, who awarded us both monetary compensation and public recognition.

As future work, we plan to design and integrate in MIG a security chatbot designed to assist in
the implementation of IdM protocols in complex and dynamic environments, providing real-time
feedback on security threats and vulnerabilities. Our aim is to create a user-friendly, effective,
and reliable security chatbot that will improve the security posture of organizations, reduce the
workload of Security Testers, enable developers to easily integrate IdM protocols and make a
significant contribution to the field of IdM.

138

Appendix A

Survey Questionnaires’ Content
Table A.1 shows the content of the post-experiment survey questionnaire mentioned in Sec-
tion 6.1.2. It deals with object clarity of the tasks, cognitive effects of the treatments on the
behavior of the subjects and perceived usefulness of MIG-D. The first set of questions (Q1-Q6)
needs to be answered twice (one answer for each performed lab) while the remaining set only
needs to be answered once as it refers to the overall session.

Table A.1: Post-experiment survey questionnaire.

ID Applies to Question

Q1 Each lab I had enough time to perform the tasks. (1-5).
Q2 Each lab I experienced no difficulty in detecting the vulnerability. (1-5).
Q3 Each lab Which operations (e.g., mouse over steps, open tab, search, . . .) did you

perform to understand whether the protocol was vulnerable to the men-
tioned vulnerability?

Q4 Each lab Did you consult internet to find help to answer the questionnaire? If
yes, which online queries did you search(e.g., keywords used)? Which
content was helpful?

Q5 Overall Which tool did you find more useful to answer the questions? (Report
Lab 1-2).

Q6 Overall Which tool did you find more intuitive? For which tool was more diffi-
cult to find the proper information about the protocol in order to answer
the questions? (Report of Lab 1-2).

Q7 Overall Which tool would you use for your work? Motivate your answer (to the
previous question). (open question).

Q8 Overall Do you know any tool that performs similar tasks? (open question).
Q9 Overall Do you have any suggestion related to the tool usage? (open question).
Q10 Overall What do you think is the main advantage using MIG-D? Would you add

more information to the MIG-D? (open question).

139

Appendix B

Mapping between MIG-L and Machine
Readable Specification

The mapping between the operations in MIG-L and their corresponding translations in the ma-
chine readable JSON specification is presented in Table B.1.

Table B.1: Mapping between MIG-L and JSON.

MIG-L JSON

Testsuite definition

define_suite($name,
$description, $filter)
list of tests

1 {
2 "test suite":{
3 "name":"$name",
4 "description":"$description",
5 "filter messages":"$filter" },
6 "tests":list of tests
7 }

Table Continues →

140

List of Tests

Passive Test definition

start_test($name, $description,
passive)
list of operations (See List of
Operations for Passive Test)
end_test()

1 {
2 "test": {
3 "name": "$name",
4 "description": "$description",
5 "type": "passive",
6 "operations":

list of operations
7 }
8 }

Active Test definition

start_test($name, $description,
active, $sx, $result)
list of operations (See List of
Operations for Active Test)
end_test()

1 {
2 "test": {
3 "name": "$name",
4 "description": "$description",
5 "type": "active",
6 "sessions": ["$sx"],
7 "operations": list of

operations
8 "result": "$result"
9 }

10 }

List of Operations for Passive Test

regex($regexToApply,
$message_sec, $message_type)

1 {
2 "message type": "$message_type",
3 "regex": "($regexToApply)",
4 "message section": "$message_sec"
5 }

start_checks($message_type)
list of checks
end_checks()

1 {
2 "message type": "message_type",
3 "checks": list of checks
4 }

Table Continues →

141

List of Checks

check($string, $action, $in) 1 {
2 "in": "$in",
3 "check": "$string",
4 "$action": "$action"
5 }

check_parameter($param,
$action, $in, $value)

1 {
2 "in": "$in",
3 "check parameter": "$param",
4 "$action": "$value"
5 }

List of Operations for Active Test

start($session_name) 1 {
2 "session": "$session_name",
3 "action": "start"
4 }

stop($session_name) 1 {
2 "session": "$session_name",
3 "action": "stop"
4 }

pause($session_name) 1 {
2 "session": "$session_name",
3 "action": "pause"
4 }

resume($session_name) 1 {
2 "session": "$session_name",
3 "action": "resume"
4 }

clear_cookies($session_name) 1 {
2 "session": "$session_name",
3 "action": "clear cookies"
4 }

start_validate()
list of checks
end_validate()

1 {
2 "action": "validate",
3 "checks": list of checks
4 }

Table Continues →

142

start_intercept
($message_type, $from_session,
$then)
start_preconditions
list of preconditions (see List of
Operations for Passive Test)
end_preconditions
start_msg_operations
list of message operations
end_msg_operations
start_session_operations
list of session operations
end_session_operations
end_intercept()

1 {
2 "action": "intercept",
3 "then": "$then",
4 "message type": "$message_type",
5 "from session": "$session_name",
6 "preconditions": list of

preconditions,
7 "message operations": list of

message operations,
8 "session operations": list of

session operations,
9 }

save_message($variable) 1 {
2 "save": "$variable"
3 }

replace($saved_variable,
$is_request)

1 {
2 "$is_request": "$saved_variable"
3 }

List of Session Operations

mark($marker_name, $action,
$session_name)

1 {
2 "session": "$session_name",
3 "mark": "$action",
4 "name": "$marker_name"
5 }

save($variable_name, $action,
$session_name)

1 {
2 "session": "$session_name",
3 "save": "$action",
4 "as": "$variable_name"
5 }

add($insert, $marker_name,
$session_name)

1 {
2 "session": "$session_name",
3 "insert": "$insert",
4 "at": "$marker_name"
5 }

Table Continues →

143

remove($marker_name,
$session_name)

1 {
2 "session": "$session_name",
3 "remove": "$marker_name"
4 }

List of Message Operations

gen_poc($pattern, $name) 1 {
2 "pattern": "$pattern",
3 "name": "$name"
4 }

add_parameter($param_name,
$param_value, $from)

1 {
2 "from": "$from",
3 "add": "$param_name",
4 "this": "$param_value"
5 }

edit_parameter($param_name,
$new_value, $from)

1 {
2 "from": "$from",
3 "edit": "$param_name",
4 "in": "$new_value"
5 }

edit_regex($regex, $new_value,
$from)

1 {
2 "from": "$from",
3 "edit regex": "$regex",
4 "in": "$new_value"
5 }

remove_parameter
($param_name, $from)

1 {
2 "from": "$from",
3 "remove parameter": "$param_name"
4 }

remove_match_word($word,
$from)

1 {
2 "from": "$from",
3 "remove match word": "$word"
4 }

save_parameter($param_name,
$variable, $from)

1 {
2 "from": "$from",
3 "save": "$param_name"
4 "as": "$variable"
5 }

Table Continues →

144

save_match($string, $variable,
$from)

1 {
2 "from": "$from",
3 "save matches": "$string"
4 "as": "$variable"
5 }

decode_param($param_name,
$from, $encoding, $type,
$remove_sign, $self_sign)

1 {
2 "from": "$from",
3 "decode param": "$param_name",
4 "encodings": $encoding,
5 "type": "$type",
6 "remove-sign": "$remove_sign"
7 "self-sign": "$self_sign"
8 }

remove_tag($tag_name) 1 {
2 "type": "xml",
3 "remove tag": "$tag_name"
4 }

remove_attribute($attribute,
$tag_name)

1 {
2 "type": "xml",
3 "remove attribute": "$attribute"
4 "xml tag": "$tag_name"
5 }

edit_tag($tag_name,
$new_value)

1 {
2 "type": "xml",
3 "edit tag": "$tag_name"
4 "value": "$new_value"
5 }

edit_attribute($attribute,
$tag_name, $new_value)

1 {
2 "type": "xml",
3 "edit attribute": "$attribute",
4 "xml-tag": "$tag_name",
5 "value": "$new_value"
6 }

add_tag($new_tag, $parent_tag,
$new_value)

1 {
2 "type": "xml",
3 "add tag": "$new_tag",
4 "xml-tag": "$parent_tag",
5 "value": "$new_value"
6 }

Table Continues →

145

add_attribute($new_attr,
$tag_name, $new_value)

1 {
2 "type": "xml",
3 "add attribute": "$new_attr",
4 "xml-tag": "$tag_name",
5 "value": "$new_value"
6 }

save_tag($tag_name) 1 {
2 "type": "xml",
3 "save-tag": "$tag_name"
4 }

save_attribute
($attr_name, $tag_name)

1 {
2 "type": "xml",
3 "save-attribute": "$attr_name",
4 "xml-tag": "$tag_name"
5 }

txt_remove($value) 1 {
2 "type": "txt",
3 "txt remove": "$value"
4 }

txt_edit($text, $new_text) 1 {
2 "type": "txt",
3 "txt edit": "$text",
4 "value": "$new_text"
5 }

txt_add($text, $new_text) 1 {
2 "type": "txt",
3 "txt add": "$text",
4 "value": "$new_text"
5 }

txt_save($text, $new_var) 1 {
2 "type": "txt",
3 "txt save": "$text",
4 "as": "$new_var"
5 }

jwt_remove($from, $parameter) 1 {
2 "type": "jwt",
3 "from": "$from",
4 "jwt remove": "$parameter"
5 }

Table Continues →

146

jwt_edit($from, $parameter,
$new_value)

1 {
2 "type": "jwt",
3 "from": "$from",
4 "jwt edit": "$parameter",
5 "value": "$new_value"
6 }

jwt_add($from, $parameter,
$new_value)

1 {
2 "type": "jwt",
3 "from": "$from",
4 "jwt add": "$parameter",
5 "value": "$new_value"
6 }

jwt_save($from, $parameter,
$new_value)

1 {
2 "type": "jwt",
3 "from": "$from",
4 "jwt save": "$parameter",
5 "as": "$new_value"
6 }

jwt_sign 1 {
2 "type": "jwt",
3 "from": "$from",
4 "jwt sign": "true"
5 }

147

Bibliography

[Ada08] Adam Barth, Collin Jackson, and John C. Mitchell. Robust Defenses for Cross-Site
Request Forgery. In Proceedings of the 15th ACM Conference on Computer and Com-
munications Security, CCS ’08, pages 75–88, New York, NY, USA, 2008. Association
for Computing Machinery.

[Age19] Agenda Digitale. Sicurezza PA, tempo di responsible disclosure e bounty pro-
gram anche in Italia. https://www.agendadigitale.eu/sicurezza/
sicurezza-pa-tempo-di-responsible-disclosure-e-bounty-
program-anche-in-italia/, 2019.

[AGI] AGID and Team Digitale. Art. 64-bis. Accesso telematico ai servizi della pub-
blica amministrazione. https://docs.italia.it/italia/piano-
triennale-ict/codice-amministrazione-digitale-docs/it/
v2017-12-13/_rst/capo5_sezione3_art64-bis.html.

[ale] The top 500 sites on the web. https://www.alexa.com/topsites. Last
access on May 21, 2023.

[Ale07] Alessandro Armando, Roberto Carbone and Luca Compagna. LTL Model Check-
ing for Security Protocols. In 20th IEEE Computer Security Foundations Symposium
(CSF’07), pages 385–396, 2007.

[Ale08] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuéllar and Llanos
Tobarra . Formal Analysis of SAML 2.0 Web Browser Single Sign-on: Breaking
the SAML-Based Single Sign-on for Google Apps. In Proceedings of the 6th ACM
Workshop on Formal Methods in Security Engineering, FMSE ’08, pages 1–10, New
York, NY, USA, 2008. Association for Computing Machinery.

[Ale13] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuéllar, Giancarlo
Pellegrino and Alessandro Sorniotti. An authentication flaw in browser-based single
sign-on protocols: Impact and remediations. Computers & Security, 33:41 – 58, 2013.

[Anda] Andrea Bisegna and Matteo Bitussi. MIG-L Tests. https://drive.google.
com/file/d/1d0HHjOyYL0L3SqahTgd3AGNqYntZ4GZC/view?usp=
share_link.

148

https://www.agendadigitale.eu/sicurezza/sicurezza-pa-tempo-di-responsible-disclosure-e-bounty-program-anche-in-italia/
https://www.agendadigitale.eu/sicurezza/sicurezza-pa-tempo-di-responsible-disclosure-e-bounty-program-anche-in-italia/
https://www.agendadigitale.eu/sicurezza/sicurezza-pa-tempo-di-responsible-disclosure-e-bounty-program-anche-in-italia/
https://docs.italia.it/italia/piano-triennale-ict/codice-amministrazione-digitale-docs/it/v2017-12-13/_rst/capo5_sezione3_art64-bis.html
https://docs.italia.it/italia/piano-triennale-ict/codice-amministrazione-digitale-docs/it/v2017-12-13/_rst/capo5_sezione3_art64-bis.html
https://docs.italia.it/italia/piano-triennale-ict/codice-amministrazione-digitale-docs/it/v2017-12-13/_rst/capo5_sezione3_art64-bis.html
https://www.alexa.com/topsites
https://drive.google.com/file/d/1d0HHjOyYL0L3SqahTgd3AGNqYntZ4GZC/view?usp=share_link
https://drive.google.com/file/d/1d0HHjOyYL0L3SqahTgd3AGNqYntZ4GZC/view?usp=share_link
https://drive.google.com/file/d/1d0HHjOyYL0L3SqahTgd3AGNqYntZ4GZC/view?usp=share_link

[Andb] Andrea Bisegna and Matteo Bitussi. SSOLinking MIG-L Tests. https://drive.
google.com/file/d/1-iFMb0al-ieQWXfH1A8nMCXffKxxhdOZ/
view?usp=share_link.

[And19] Andrea Bisegna, Roberto Carbone, Ivan Martini, Valentina Odorizzi, Giulio Pellizzari
and Silvio Ranise. Micro-Id-Gym: Identity Management Workouts with Container-
Based Microservices. Int. J. Inf. Secur. Cybercrime, 8(1):45–50, 2019.

[And20] Andrea Bisegna, Roberto Carbone, Giulio Pellizzari and Silvio Ranise. Micro-Id-
Gym: a flexible tool for pentesting identity management protocols in the wild and in
the laboratory. In Emerging Technologies for Authorization and Authentication: Third
International Workshop, ETAA 2020, Guildford, UK, September 18, 2020, Proceed-
ings 3, pages 71–89. Springer, 2020.

[And22] Andrea Bisegna, Roberto Carbone and Silvio Ranise. Integrating a Pentesting Tool for
IdM Protocols in a Continuous Delivery Pipeline. In Emerging Technologies for Au-
thorization and Authentication: 4th International Workshop, ETAA 2021, Darmstadt,
Germany, October 8, 2021, Revised Selected Papers, pages 94–110. Springer, 2022.

[Avi16] Avinash Sudhodanan, Alessandro Armando, Roberto Carbone and Luca Compagna.
Attack Patterns for Black-Box Security Testing of Multi-Party Web Applications. In
NDSS, 2016.

[Avi17] Avinash Sudhodanan, Roberto Carbone, Luca Compagna, Nicolas Dolgin, Alessandro
Armando and Umberto Morelli. Large-scale analysis & detection of authentication
Cross-Site Request Forgeries. In 2017 IEEE European symposium on security and
privacy (EuroS&P), pages 350–365. IEEE, 2017.

[BCC+20] Andrea Bisegna, Roberto Carbone, Mariano Ceccato, Salvatore Manfredi, Silvio
Ranise, Giada Sciarretta, Alessandro Tomasi, and Emanuele Viglianisi. 6. Auto-
mated Assistance to the Security Assessment of API for Financial Services. In Cyber-
Physical Threat Intelligence for Critical Infrastructures Security: A Guide to Inte-
grated Cyber-Physical Protection of Modern Critical Infrastructures. Now Publishers,
2020.

[BLM+13] Guangdong Bai, Jike Lei, Guozhu Meng, Sai Sathyanarayan Venkatraman, Prateek
Saxena, Jun Sun, Yang Liu, and Jin Song Dong. AUTHSCAN: Automatic Extraction
of Web Authentication Protocols from Implementations, 2013.

[Blo] The Duo Blog. Duo Finds SAML Vulnerabilities Affecting Multiple Implementa-
tions. https://duo.com/blog/duo-finds-saml-vulnerabilities-
affecting-multiple-implementations. Last access on May 21, 2023.

[Bra05] Brad Arkin, Scott Stender and Gary McGraw. Software penetration testing. IEEE
Security & Privacy, 3(1):84–87, 2005.

[Bra19] John Bradley. PKCE: The OAuth 2.0 Extension That Solves Mobile and Native App
Authorization. OAuth, 2019(1):8–15, 2019.

[bur] Burp Suite. https://portswigger.net/burp. Last access on May 21, 2023.

149

https://drive.google.com/file/d/1-iFMb0al-ieQWXfH1A8nMCXffKxxhdOZ/view?usp=share_link
https://drive.google.com/file/d/1-iFMb0al-ieQWXfH1A8nMCXffKxxhdOZ/view?usp=share_link
https://drive.google.com/file/d/1-iFMb0al-ieQWXfH1A8nMCXffKxxhdOZ/view?usp=share_link
https://duo.com/blog/duo-finds-saml-vulnerabilities-affecting-multiple-implementations
https://duo.com/blog/duo-finds-saml-vulnerabilities-affecting-multiple-implementations
https://portswigger.net/burp

[Bur05] Steven F. Burns. Threat modeling: A process to ensure application security. GIAC
security essentials certification (GSEC) practical assignment, 2005.

[BV16] Giovanni Bajo and Gianluca Varisco. Perché la sicurezza informatica non è
una questione di bianco e nero. https://medium.com/team-per-la-
trasformazione-digitale/sicurezza-informatica-policy-
responsible-disclosure-hacker-etici-52a174d44c49, 2016.

[Car23] Aviad Carmel. Traveling with OAuth - Account Takeover on Book-
ing.com. https://salt.security/blog/traveling-with-oauth-
account-takeover-on-booking-com, 2023.

[Chr12] Christian Mainka, Juraj Somorovsky and Jörg Schwenk. Penetration testing tool for
web services security. In 2012 IEEE Eighth World Congress on Services, pages 163–
170. IEEE, 2012.

[Chr16a] Christian Mainka, Vladislav Mladenov and Jörg Schwenk. Do not trust me: Using
malicious IdPs for analyzing and attacking Single Sign-On. In 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 321–336. IEEE, 2016.

[Chr16b] Christopher Späth, Christian Mainka, Vladislav Mladenov and Jörg Schwenk. SoK:
XML Parser Vulnerabilities. In 10th USENIX Workshop on Offensive Technologies
(WOOT 16), Austin, TX, August 2016. USENIX Association.

[Cla01] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell and
Anders Wesslén. Experimentation in Software Engineering. Softw. Test., Verif. Reliab.,
2001.

[CMP17] Stefano Calzavara, Andrea Marin, and Alessandro Palù. Network attacker capabilities
modeling in security risk assessment. In 2017 IEEE 16th International Symposium on
Network Computing and Applications (NCA), pages 1–8. IEEE, 2017.

[CMP18] Stefano Calzavara, Andrea Marin, and Alessandro Palù. Web attacker capabilities
modeling in security risk assessment. In 2018 IEEE 26th International Conference on
Network Protocols (ICNP), pages 1–10. IEEE, 2018.

[Con08] OASIS Consortium. SAML V2.0 Technical Overview. http://wiki.oasis-
open.org/security/Saml2TechOverview, March 2008.

[Dan16] Danfeng Yao, Songqing Lian and Xiao Feng Wang. How to Break XML-based Se-
curity in Real World: A Study of XML Signature Wrapping Attacks in SAML Single
Sign-on Systems. IEEE Transactions on Dependable and Secure Computing, 13(1):1–
14, 2016.

[Dan17] Daniel Fett, Ralf Küsters and Guido Schmitz. The Web SSO Standard OpenID Con-
nect: In-depth Formal Security Analysis and Security Guidelines. In 2017 IEEE 30th
Computer Security Foundations Symposium (CSF), pages 189–202, 2017.

[Dev] Developers Italia. SPID/CIE OIDC Federation SDK. https://github.com/
italia/spid-cie-oidc-django.

[Dev11] Jay L. Devore. Probability and Statistics for Engineering and the Sciences, 2011.

150

https://medium.com/team-per-la-trasformazione-digitale/sicurezza-informatica-policy-responsible-disclosure-hacker-etici-52a174d44c49
https://medium.com/team-per-la-trasformazione-digitale/sicurezza-informatica-policy-responsible-disclosure-hacker-etici-52a174d44c49
https://medium.com/team-per-la-trasformazione-digitale/sicurezza-informatica-policy-responsible-disclosure-hacker-etici-52a174d44c49
https://salt.security/blog/traveling-with-oauth-account-takeover-on-booking-com
https://salt.security/blog/traveling-with-oauth-account-takeover-on-booking-com
http://wiki.oasis-open.org/security/Saml2TechOverview
http://wiki.oasis-open.org/security/Saml2TechOverview
https://github.com/italia/spid-cie-oidc-django
https://github.com/italia/spid-cie-oidc-django

[Dev23] Developers Italia. SPID/CIE OpenID Connect, 2023. Commit
372212cde768ae344e3cb3187d5c11fc329e6598 in https://github.com/italia/spid-
cie-oidc-docs.

[Dig] Agenzia Per L’Italia Digitale. SPID - Regole Tecniche. https:
//docs.italia.it/italia/spid/spid-regole-tecniche/it/
stabile/index.html.

[Dim19] Dimitrina Hristova, Michael Backes, Sascha Fahl, Thomas Meyer and Oscar Nier-
strasz. Breaking and Fixing SAML: An Evaluation of the OpenSAML Library. ACM
Transactions on Privacy and Security (TOPS), 22(3):1–38, 2019.

[doc] Docker: Empowering App Development for Developers. https://www.docker.
com/. Last access on May 21, 2023.

[Eli19] Elisa Bertino, Md. Nazrul Islam and Shaghayegh Vakilinia. Security Analysis of
OAuth 2.0 Authorization Framework. In 2019 IEEE 5th World Conference on Infor-
mation Systems and Technologies (WorldCIST), pages 313–322, 2019.

[Eri14] Eric Y. Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher and Patrick Tague.
OAuth demystified for mobile application developers. In Proceedings of the 2014
ACM SIGSAC conference on computer and communications security, pages 892–903,
2014.

[Eth15] Ethan Shernan, Henry Carter, Dave Tian, Patrick Traynor and Kevin Butler. More
guidelines than rules: CSRF vulnerabilities from noncompliant OAuth 2.0 implemen-
tations. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 239–260. Springer, 2015.

[fac] Facebook Whitehat. https://www.facebook.com/whitehat. Last access
on May 21, 2023.

[fapa] Financial-grade API (FAPI). https://fapi.openid.net/. Last access on May
21, 2023.

[fapb] OpenID FAPI conformance suite. https://gitlab.com/openid/
conformance-suite. Last access on May 21, 2023.

[FBK] FBK. Fondazione Bruno Kessler. https://www.fbk.eu/en/. Last access on
May 21, 2023.

[Fre04] Frederick Hirsch, Rob Philpott and Eve Maler. Security and Privacy Considerations
for the OASIS Security Assertion Markup Language (SAML) V2. 0. Committee Draft,
1, 2004.

[Gar13] Gary Nilson, Kent Wills, Jeffrey Stuckman and James Purtilo. BugBox: A Vulnera-
bility Corpus for PHP Web Applications. In 6th Workshop on Cyber Security Experi-
mentation and Test (CSET 13), 2013.

[git] GitHub - The world’s leading software development platform. https://github.
com/. Last access on May 21, 2023.

151

https://docs.italia.it/italia/spid/spid-regole-tecniche/it/stabile/index.html
https://docs.italia.it/italia/spid/spid-regole-tecniche/it/stabile/index.html
https://docs.italia.it/italia/spid/spid-regole-tecniche/it/stabile/index.html
https://www.docker.com/
https://www.docker.com/
https://www.facebook.com/whitehat
https://fapi.openid.net/
https://gitlab.com/openid/conformance-suite
https://gitlab.com/openid/conformance-suite
https://www.fbk.eu/en/
https://github.com/
https://github.com/

[gooa] Google OAuth 2.0 Playground. https://developers.google.com/
oauthplayground/. Last access on May 21, 2023.

[goob] Google Scholar. https://scholar.google.com/. Last access on May 21,
2023.

[gooc] Google Vulnerability Reward Program (VRP). https://www.google.com/
about/appsecurity/reward-program/. Last access on May 21, 2023.

[GTB+20] Sérgio Manuel Nóbrega Gonçalves, Alessandro Tomasi, Andrea Bisegna, Giulio Pel-
lizzari, and Silvio Ranise. Verifiable contracting-a use case for onboarding and con-
tract offering in financial services with eidas and verifiable credentials. In DETIP-
S/DeSECSys/MPS/SPOSE@ ESORICS, pages 133–144, 2020.

[Han21] Hanlin Wei, Behnaz Hassanshahi, Guangdong Bai, Padmanabhan Krishnan and
Kostyantyn Vorobyov. MoScan: a model-based vulnerability scanner for web Single
Sign-On services. In Proceedings of the 30th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pages 678–681, 2021.

[Har] Dick Hardt. The OAuth 2.0 Authorization Framework. https://tools.ietf.
org/html/rfc6749. Last access on May 21, 2023.

[Har18] Dick Hardt. The OAuth 2.0 Authorization Framework: Improving Security and Us-
ability. IEEE Security & Privacy, 16(4):46–53, 2018.

[HM05] John Hughes and Eve Maler. Security assertion markup language (SAML) v2.0 tech-
nical overview. OASIS SSTC Working Draft sstc-saml-tech-overview-2.0-draft-08,
pages 29–38, 2005.

[HPM] Frederick Hirsch, Rob Philpott, and Eve Maler. Security and Privacy
Considerations for the OASIS Security Assertion Markup Language (SAML)
V2.0. https://docs.oasis-open.org/security/saml/v2.0/saml-
sec-consider-2.0-os.pdf. Last access on May 21, 2023.

[IET12] IETF. The OAuth 2.0 Authorization Protocol: Bearer Tokens. Technical report, RFC
6750, 2012.

[IET14] IETF. The OAuth 2.0 Threat Model and Security Considerations. Technical report,
RFC 6819, 2014.

[Jen17] Jennifer Jurreit, Patrik Fehrenbach and Friedbert Kaspar. Analysis of Security Vulner-
abilities in Microsoft Office 365 in Regard to SAML. informatikJournal, page 127,
2017.

[Jia19] Jiawei Zhang, Xinyu Wang, Qiaoyan Wen and Jun Gao. Security Analysis of Redirect
URI in OAuth 2.0. In 2019 IEEE International Conference on Computational Sci-
ence and Engineering (CSE) and IEEE International Conference on Embedded and
Ubiquitous Computing (EUC), pages 375–381. IEEE, 2019.

[Jon] Jon Barber. SAMLyze. https://www.blackhat.com/us-15/arsenal.
html#jon-barber. Last access on May 21, 2023.

152

https://developers.google.com/oauthplayground/
https://developers.google.com/oauthplayground/
https://scholar.google.com/
https://www.google.com/about/appsecurity/reward-program/
https://www.google.com/about/appsecurity/reward-program/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
https://www.blackhat.com/us-15/arsenal.html#jon-barber
https://www.blackhat.com/us-15/arsenal.html#jon-barber

[Jos21] Josep Alonso, Frederic Aymerich, Jordi Herrera-Joancomartí and Xavier Franch. A
Systematic Literature Review of JSON Web Token (JWT) Security. Journal of Infor-
mation Security and Applications, 58:102859, 2021.

[JPD] Bret Jordan, Rich Piazza, and Trey Darley. STIX Version 2.1 - Committee Specifica-
tion. https://docs.oasis-open.org/cti/stix/v2.1/cs01/stix-
v2.1-cs01.html. Last access on May 21, 2023.

[Kar19] Karin Sumongkayothin, Pakpoom Rachtrachoo, Arnuphap Yupuech and Kasidit Siri-
porn. OVERSCAN: OAuth 2.0 Scanner for Missing Parameters. In International
Conference on Network and System Security, pages 221–233. Springer, 2019.

[KM06] Muhammad N. Khan and Qutaibah Malluhi. Information security risk assessment: A
practical approach. Journal of Information Privacy & Security, 2(2):35–54, 2006.

[LBLF] Torsten Lodderstedt, John Bradley, Andrey Labunets, and Daniel Fett. Security
Considerations OAuth (accessed june 23, 2020). https://tools.ietf.org/
id/draft-bradley-oauth-jwt-encoded-state-08.html#rfc.
section.6.

[Lun] Rich Lundeen. The Deputies are Still Confused. https://www.youtube.com/
watch?v=_LEvuF_1O5A.

[Luy13] Luyi Xing, Yangyi Chen, Xiaofeng Wang and Shuo Chen. InteGuard: Toward Auto-
matic Protection of Third-Party Web Service Integrations. In NDSS, 2013.

[Mar00] Martin Höst, Björn Regnell and Claes Wohlin. Using students as subjects—a compar-
ative study of students and professionals in lead-time impact assessment. Empirical
Software Engineering, 5(3):201–214, 2000.

[Mar14] Mariano Ceccato, Massimiliano Di Penta, Paolo Falcarin, Filippo Ricca, Marco
Torchiano and Paolo Tonella. A family of experiments to assess the effectiveness and
efficiency of source code obfuscation techniques. Empirical Software Engineering,
19(4):1040–1074, 2014.

[mic] Microsoft Bug Bounty Program. https://www.microsoft.com/en-us/
msrc/bounty. Last access on May 21, 2023.

[Mic15] Michael B. Jones, John Bradley and Nat Sakimura. JSON web token (JWT). RFC
7519. Internet Engineering Task Force, 2015.

[Mic16] Michael Felderer, Matthias Büchler, Martin Johns, Achim D Brucker, Ruth Breu and
Alexander Pretschner. Security testing: A survey. In Advances in Computers, volume
101, pages 1–51. Elsevier, 2016.

[Mic21] Michele Benolli, Seyed Ali Mirheidari, Elham Arshad and Bruno Crispo. The Full
Gamut of an Attack: An Empirical Analysis of OAuth CSRF in the Wild. In In-
ternational Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 21–41. Springer, 2021.

153

https://docs.oasis-open.org/cti/stix/v2.1/cs01/stix-v2.1-cs01.html
https://docs.oasis-open.org/cti/stix/v2.1/cs01/stix-v2.1-cs01.html
https://tools.ietf.org/id/draft-bradley-oauth-jwt-encoded-state-08.html#rfc.section.6
https://tools.ietf.org/id/draft-bradley-oauth-jwt-encoded-state-08.html#rfc.section.6
https://tools.ietf.org/id/draft-bradley-oauth-jwt-encoded-state-08.html#rfc.section.6
https://www.youtube.com/watch?v=_LEvuF_1O5A
https://www.youtube.com/watch?v=_LEvuF_1O5A
https://www.microsoft.com/en-us/msrc/bounty
https://www.microsoft.com/en-us/msrc/bounty

[Mik08] Mikael Svahnberg, Aybüke Aurum and Claes Wohlin. Redirect URI attack. In Pro-
ceedings of the Second ACM-IEEE international symposium on Empirical software
engineering and measurement, pages 288–290, 2008.

[Min] Ministero Dell’Interno. Carta di identitá elettronica. https://www.
cartaidentita.interno.gov.it.

[MMGS15] Christian Mainka, Vladislav Mladenov, Tim Guenther, and Jörg Schwenk. Auto-
matic Recognition, Processing and Attacking of Single Sign-On Protocols with Burp
Suite. In Open Identity Summit 2015. Gesellschaft für Informatik eV, 2015.

[Moh18] Mohammad Ghasemisharif, Amrutha Ramesh, Stephen Checkoway, Chris Kanich and
Jason Polakis. O Single Sign-Off, Where Art Thou? An Empirical Analysis of Single
Sign-On Account Hijacking and Session Management on the Web. In 27th USENIX
Security Symposium (USENIX Security 18), pages 1475–1492, 2018.

[MSP18] Shreya Malviya, Naveen Saxena, and Dongwon Park. Exploiting oauth 2.0 implicit
grant: A case study. In 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), pages 79–84. IEEE, 2018.

[Nat14] Nat Sakimura, John Bradley, Mike Jones, Breno De Medeiros and Chuck Mortimore.
OpenID Connect Core 1.0 incorporating errata set 1. The OpenID Foundation, speci-
fication, 335, 2014.

[Nil18] Nils Engelbertz, Nurullah Erinola, David Herring, Juraj Somorovsky, Vladislav
Mladenov and Jörg Schwenk. Security Analysis of eIDAS–the Cross-Country Au-
thentication Scheme in Europe. In 12th USENIX Workshop on Offensive Technologies
(WOOT 18), 2018.

[OAS08] OASIS. SAML V2.0 Tech. Overview. http://www.oasis-open.org/
committees/download.php/27819/sstc-saml-tech-overview-2.
0-cd-02.pdf, March 2008.

[oaua] OAuth 2.0 Playground. https://www.oauth.com/playground/. Last ac-
cess on May 21, 2023.

[oaub] OAuth 2.0 Security Best Current Practice. https://datatracker.ietf.
org/doc/html/draft-ietf-oauth-security-topics-08. Last access
on May 21, 2023.

[oauc] OAuth Security Workshop. https://oauth.secworkshop.events/. Last
access on May 21, 2023.

[oED13] Italian Ministry of Economic Development. Decreto del presidente del consiglio dei
ministri 3 aprile 2013, 2013.

[Off15] Official Journal of the European Union. PSD2. https://eur-lex.europa.
eu/legal-content/EN/TXT/?uri=CELEX:32015L2366, December 2015.
Last access on May 21, 2023.

[Ope] OpenID (OIDF). OpenID foundation. https://openid.net/foundation.
Last access on May 21, 2023.

154

https://www.cartaidentita.interno.gov.it
https://www.cartaidentita.interno.gov.it
http://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
https://www.oauth.com/playground/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-08
https://oauth.secworkshop.events/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015L2366
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015L2366
https://openid.net/foundation

[Ope14a] OpenID Foundation. OpenID Connect Core 1.0, 2014.
[Ope14b] OpenID Foundation. OpenID Connect Discovery 1.0, 2014.
[oST12] National Institute of Standards and Technology. Risk Management Guide for Infor-

mation Technology Systems. U.S. Department of Commerce, 2012.
[oST20] National Institute of Standards and Technology. Security and Privacy Controls for

Federal Information Systems and Organizations. NIST Special Publication 800-53,
Revision 5, 2020.

[Pau17] Paul Koppen, Martin Stepanek, Tomas Rybar and Dusan Klinec. Your Single Sign-
On Service Might Be Leaving You Logged In To Sites You Never Knew You Had
An Account With. In Proceedings of the 26th USENIX Security Symposium, pages
1023–1038, 2017.

[PB14] Giancarlo Pellegrino and Davide Balzarotti. Toward black-box detection of logic flaws
in web applications. In NDSS, volume 14, pages 23–26, 2014.

[Pie] Pieter Philippaerts. OAuch: Analyzing the Security Best Practices in the OAuth 2.0
Ecosystem. https://www.youtube.com/watch?v=eaFQFm1K5yI/. Last
access on May 21, 2023.

[Pol] Poligrafico e Zecca dello Stato Italiano. https://www.ipzs.it.
[PPJ22] Davy Preuveneers Pieter Philippaerts and Wouter Joosen. OAuch: Exploring Security

Compliance in the OAuth 2.0 Ecosystem. In Proceedings of the 25th International
Symposium on Research in Attacks, Intrusions and Defenses, pages 460–481, 2022.

[PS18] Vikrant Prasad and Sachin Shukla. SAML Raider: A Burp Suite Extension for SAML
Security Testing. In 2018 17th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/12th IEEE International Conference On
Big Data Science And Engineering (TrustCom/BigDataSE), pages 1151–1156. IEEE,
2018.

[Ric15] Justin Richer. OAuth 2.0 Token Introspection. Technical report, Internet Engineering
Task Force (IETF), 2015.

[Rob10] Roberto Ortiz, Santiago Moral-García, Santiago Moral-Rubio, Belén Vela, Javier
Garzás and Eduardo Fernández-Medina. Applicability of security patterns. In On
the Move to Meaningful Internet Systems: OTM 2010: Confederated International
Conferences: CoopIS, IS, DOA and ODBASE, Hersonissos, Crete, Greece, October
25-29, 2010, Proceedings, Part I, pages 672–684. Springer, 2010.

[Rob20] Robert Krauthgamer, Jonathan Shapiro and Ariel Stein. OAuth 2.0: An Inside Look
at Missing Best Practices. In 2020 IEEE Symposium on Security and Privacy (SP),
pages 1075–1091. IEEE, 2020.

[Ron16] Ronghai Yang, Guanchen Li, Wing Cheong Lau, Kehuan Zhang and Pili Hu. Model-
based security testing: An empirical study on OAuth 2.0 implementations. In Pro-
ceedings of the 11th ACM on Asia Conference on Computer and Communications
Security, pages 651–662, 2016.

155

https://www.youtube.com/watch?v=eaFQFm1K5yI/
https://www.ipzs.it

[Ron18] Ronghai Yang, Wing Cheong Lau, Jiongyi Chen and Kehuan Zhang. Vetting Single
Sign-On SDK Implementations via Symbolic Reasoning. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1459–1474, 2018.

[Rui12] Rui Wang, Shuo Chen and XiaoFeng Wang. Signing me onto your accounts through
Facebook and Google: A traffic-guided security study of commercially deployed
Single-Sign-On web services. In 2012 IEEE Symposium on Security and Privacy,
pages 365–379. IEEE, 2012.

[Rya14] Ryan Holmes, Jörg Schwenk, Nitesh Kumar, Neeraj S. Jain and Jack Loftus. Se-
curity analysis of the OAuth 2.0 framework. In 2014 IEEE 27th Computer Security
Foundations Symposium, pages 280–294. IEEE, 2014.

[Ryu16] Ryuichi Hasegawa, Takuya Shimada and Yoshio Takatori. Exploiting OAuth 2.0 to
perform authorization code interception attacks. In 2016 IEEE Conference on Com-
munications and Network Security (CNS), pages 139–147. IEEE, 2016.

[Sah16] Sahil Garg, Prithvi Bisht, Sruthi Venkataraman and Pradeep Mohapatra. Countermea-
sures against Token Replay Attacks in OAuth 2.0. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, pages
1733–1744, 2016.

[San12] San-Tsai Sun and Konstantin Beznosov. The devil is in the (implementation) details:
an empirical analysis of OAuth SSO systems. In Proceedings of the 2012 ACM con-
ference on Computer and communications security, pages 378–390, 2012.

[SAW08] Mikael Svahnberg, Aybüke Aurum, and Claes Wohlin. Using students as subjects-an
empirical evaluation. In Proceedings of the Second ACM-IEEE international sympo-
sium on Empirical software engineering and measurement, pages 288–290, 2008.

[sel] Selenium WebDriver. https://www.selenium.dev/. Last access on May 21,
2023.

[Sho14] Adam Shostack. Threat modeling: Designing for security. John Wiley & Sons, 2014.
[SMJ15] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. Are students representatives

of professionals in software engineering experiments? In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages 666–676. IEEE,
2015.

[Sof] Skybound Software. GeckoFX. https://github.com/priyank/GeckoFX.
Last access on May 21, 2023.

[Sta14] Stanislav Dashevskyi, Daniel Ricardo Dos Santos, Fabio Massacci and Antonino Sa-
betta. TESTREX: a Testbed for Repeatable Exploits. In 7th Workshop on Cyber
Security Experimentation and Test (CSET 14), 2014.

[Ste17] Stefano Calzavara, Mauro Conti, Silvia Giordano and Michele Pagano. A Survey of
Network Anomaly Detection Techniques. IEEE Communications Surveys & Tutorials,
19(4):2393–2420, 2017.

156

https://www.selenium.dev/
https://github.com/priyank/GeckoFX

[Ste18a] Stefano Calzavara, Mauro Conti and Nicola Dragoni. Surviving the Web: A Journey
into Web Session Security. In International Conference on Availability, Reliability,
and Security, pages 1–12. Springer, 2018.

[Ste18b] Stefano Calzavara, Riccardo Focardi, Matteo Maffei, Clara Schneidewind, Marco
Squarcina and Mauro Tempesta. WPSE: Fortifying Web Protocols via Browser-Side
Security Monitoring. In 27th USENIX Security Symposium (USENIX Security 18),
pages 1493–1510, 2018.

[Suh11] Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M. Pai and Sanjay Singh. Formal
Verification of OAuth 2.0 Using Alloy Framework. In Proceedings of the 2011 Inter-
national Conference on Communication Systems and Network Technologies, CSNT
’11, pages 655–659, USA, 2011. IEEE Computer Society.

[Sur11] Suresh Chari, Charanjit Jutla and Arnab Roy. Universally Composable Security Anal-
ysis of OAuth v2.0. IACR Cryptology ePrint Archive, 2011:526, 01 2011.

[Tam21] Tamjid Al Rahat, Yu Feng and Yuan Tian. OAuthShield: Efficient Security Checking
for OAuth Service Provider Implementations. arXiv preprint arXiv:2110.01005, 2021.

[Tre17] Trevor J. Hastie and Daryl Pregibon. Generalized linear models. In Statistical models
in S, pages 195–247. Routledge, 2017.

[Uni14] European Union. Regulation (eu) no 910/2014 of the european parliament and of the
council of 23 july 2014 on electronic identification and trust services for electronic
transactions in the internal market and repealing directive 1999/93/ec, 2014.

[Vic18] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczyński
and Wouter Joosen. Tranco: A research-oriented top sites ranking hardened against
manipulation. arXiv preprint arXiv:1806.01156, 2018.

[Vla] Vladislav Mladenov, Christian Mainka and Florian Feldmann. Verification of SAML
Tokens - Traps and Pitfalls. https://web-in-security.blogspot.com/
2014/10/verification-of-saml-tokens-traps-and.html.

[Wan14] Wanpeng Li and Chris J. Mitchell. Security issues in OAuth 2.0 SSO implementations.
In International Conference on Information Security, pages 529–541. Springer, 2014.

[Wan19] Wanpeng Li, Chris J. Mitchell and Thomas Chen. OAuthGuard: Protecting User
Security and Privacy with OAuth 2.0 and OpenID Connect. In Proceedings of the 5th
ACM Workshop on Security Standardisation Research Workshop, pages 35–44, 2019.

[web] WebGoat. https://owasp.org/www-project-webgoat/. Last access on
May 21, 2023.

[wsd] Web Services Description Language (WSDL) 1.1. https://www.w3.org/TR/
wsdl.html. Last access on May 21, 2023.

[Xia11] Xiaowei Li and Yuan Xue. BLOCK: a black-box approach for detection of state vio-
lation attacks towards web applications. In Proceedings of the 27th Annual Computer
Security Applications Conference, pages 247–256, 2011.

157

https://web-in-security.blogspot.com/2014/10/verification-of-saml-tokens-traps-and.html
https://web-in-security.blogspot.com/2014/10/verification-of-saml-tokens-traps-and.html
https://owasp.org/www-project-webgoat/
https://www.w3.org/TR/wsdl.html
https://www.w3.org/TR/wsdl.html

[Yan16] Yanbin Wang, Xiaogang Wang and Pengwei Guo. Web Application Security Analysis
of OAuth 2.0 Framework. In 2016 IEEE 2nd International Conference on Collabora-
tion and Internet Computing (CIC), pages 377–384. IEEE, 2016.

[Yue19] Yue Wang, Pengfei Xie, Wenjuan Liu, Xiaofeng Zhang and Kai Lu. State Parameter
Pollution Vulnerability in OAuth 2.0. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE), pages 2061–2072. IEEE, 2019.

[zap] OWASP Zed Attack Proxy. https://www.zaproxy.org/. Last access on May
21, 2023.

[ZE14] Yuchen Zhou and David Evans. SSOScan: Automated testing of web applications
for Single Sign-On vulnerabilities. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 495–510, 2014.

158

https://www.zaproxy.org/

	List of Figures
	List of Listings
	List of Tables
	Glossary
	Chapter Introduction
	Context and Motivations
	Goals and Contributions
	Thesis Structure

	Chapter Background
	Security and Penetration Testing
	Threat Model
	Identity Management Protocols
	SAML v2.0 Web Browser SSO Profile
	OAuth 2.0
	OpenID Connect

	Chapter A Declarative Approach to Security Testing of IdM Protocols
	Suggesting mitigations of automated security testing of IdM protocols based on standards
	Overview of the proposed approach
	MIG-L: a declarative language for Security Testing
	Session Example
	Session Details
	MIG-L Syntax
	MIG-L Semantics
	Machine Readable Specification of Testsuite

	Chapter Micro-Id-Gym Design
	Overview
	MIG Backend
	Dashboard
	MIG Frontend
	Proxy
	MIG Tool
	MIG Drawer
	MIG STIX Visualizer

	MIG in DevSecOps

	Chapter Micro-Id-Gym Implementation
	Overview
	MIG Backend
	Client and Identity Provider repositories
	STIX Repositories

	Dashboard
	MIG Frontend
	Proxy
	MIG MSC Drawer
	MIG STIX Visualizer
	MIG Tool

	Usage of MIG
	MIG in DevSecOps

	Chapter Experiments
	User Validation of MIG Drawer
	Evaluation of the Effectiveness
	Experimental definition and Context
	Results

	Security Testing in the Lab using MIG
	OIDC for CIE deployment
	OIDC for Developers Italia deployment

	Security Testing in the Wild using MIG
	OAuth for PSD2 deployment
	SAML deployment
	SSO-based account linking process

	Chapter Related Work
	State of the art
	Methodology
	Automated tools
	General purpose tools
	Tools for OAuth and OpenID implementations
	Tools for SAML implementations
	Tools for OAuth/OIDC and SAML
	Sandboxing and education
	Considerations

	Chapter Conclusions and Future Work
	Appendix Survey Questionnaires' Content
	Appendix Mapping between MIG-L and Machine Readable Specification
	Bibliography

