963 research outputs found

    Evaluation of Machine-Learning Approaches to Estimate Sleep Apnea Severity from at-Home Oximetry Recordings

    Get PDF
    Producción CientíficaComplexity, costs, and waiting lists issues demand a simplified alternative for sleep apnea-hypopnea syndrome (SAHS) diagnosis. The blood oxygen saturation signal (SpO2) carries useful information about SAHS and can be easily acquired from overnight oximetry. In this study, SpO2 single-channel recordings from 320 subjects were obtained at patients’ home. They were used to automatically obtain statistical, spectral, non-linear, and clinical SAHS-related information. Relevant and non-redundant data from these analyses were subsequently used to train and validate four machine-learning methods with ability to classify SpO2 signals into one out of the four SAHS-severity degrees (no-SAHS, mild, moderate, and severe). All the models trained (linear discriminant analysis, 1-vs-all logistic regression, Bayesian multi-layer perceptron, and AdaBoost), outperformed the diagnostic ability of the conventionally-used 3% oxygen desaturation index. An AdaBoost model built with linear discriminants as base classifiers reached the highest figures. It achieved 0.479 Cohen’s in the SAHS severity classification, as well as 92.9%, 87.4%, and 78.7% accuracies in binary classification tasks using increasing severity thresholds (apnea-hypopnea index: 5, 15, and 30 events/hour, respectively). These results suggest that machine learning can be used along with SpO2 information acquired at patients’ home to help in SAHS diagnosis simplification.This research has been supported by the project VA037U16 from the Consejería de Educación de la Junta de Castilla y León, the project 265/2012 of the Sociedad Española de Neumología y Cirugía Torácica (SEPAR), the projects RTC-2015-3446-1 and TEC2014-53196-R from the Ministerio de Economía y Competitividad, and the European Regional Development Fund (FEDER). D. Álvarez was in receipt of a Juan de la Cierva grant from the Ministerio de Economía y Competitivida

    Oximetry use in obstructive sleep apnea

    Get PDF
    Producción CientíficaIntroduction. Overnight oximetry has been proposed as an accessible, simple, and reliable technique for obstructive sleep apnea syndrome (OSAS) diagnosis. From visual inspection to advanced signal processing, several studies have demonstrated the usefulness of oximetry as a screening tool. However, there is still controversy regarding the general application of oximetry as a single screening methodology for OSAS. Areas covered. Currently, high-resolution portable devices combined with pattern recognition-based applications are able to achieve high performance in the detection this disease. In this review, recent studies involving automated analysis of oximetry by means of advanced signal processing and machine learning algorithms are analyzed. Advantages and limitations are highlighted and novel research lines aimed at improving the screening ability of oximetry are proposed. Expert commentary. Oximetry is a cost-effective tool for OSAS screening in patients showing high pretest probability for the disease. Nevertheless, exhaustive analyses are still needed to further assess unattended oximetry monitoring as a single diagnostic test for sleep apnea, particularly in the pediatric population and in especial groups with significant comorbidities. In the following years, communication technologies and big data analysis will overcome current limitations of simplified sleep testing approaches, changing the detection and management of OSAS.This research has been partially supported by the projects DPI2017-84280-R and RTC-2015-3446-1 from Ministerio de Economía, Industria y Competitividad and European Regional Development Fund (FEDER), the project 66/2016 of the Sociedad Española de Neumología y Cirugía Torácica (SEPAR), and the project VA037U16 from the Consejería de Educación de la Junta de Castilla y León and FEDER. D. Álvarez was in receipt of a Juan de la Cierva grant IJCI-2014-22664 from the Ministerio de Economía y Competitividad

    Nocturnal Oximetry-based Evaluation of Habitually Snoring Children

    Get PDF
    Rationale: The vast majority of children around the world undergoing adenotonsillectomy for obstructive sleep apnea–hypopnea syndrome (OSA) are not objectively diagnosed by nocturnal polysomnography because of access availability and cost issues. Automated analysis of nocturnal oximetry (nSpO2), which is readily and globally available, could potentially provide a reliable and convenient diagnostic approach for pediatric OSA. Methods: DeidentifiednSpO2 recordings froma total of 4,191 children originating from13 pediatric sleep laboratories around the worldwere prospectively evaluated after developing and validating an automated neural network algorithm using an initial set of single-channel nSpO2 recordings from 589 patients referred for suspected OSA. Measurements and Main Results: The automatically estimated apnea–hypopnea index (AHI) showed high agreement with AHI from conventional polysomnography (intraclass correlation coefficient, 0.785) when tested in 3,602 additional subjects. Further assessment on the widely used AHI cutoff points of 1, 5, and 10 events/h revealed an incremental diagnostic ability (75.2, 81.7, and 90.2% accuracy; 0.788, 0.854, and 0.913 area under the receiver operating characteristic curve, respectively). Conclusions: Neural network–based automated analyses of nSpO2 recordings provide accurate identification of OSA severity among habitually snoring children with a high pretest probability of OSA. Thus, nocturnal oximetry may enable a simple and effective diagnostic alternative to nocturnal polysomnography, leading to more timely interventions and potentially improved outcomes.Supported in part by project VA037 U16 from the Consejer´ıa de Educacio´ n de la Junta de Castilla y Leo´ n and the European Regional Development Fund (FEDER), project RTC-2015-3446-1 from the Ministerio de Econom´ıa y Competitividad and FEDER, and project 153/2015 of the Sociedad Espan˜ ola de Neumolog´ıa y Cirug´ıa Tora´ cica (SEPAR). L.K.-G. is supported by NIH grant 1R01HL130984. M.F.P. was supported by a Fellowship Educational grant award from the Kingdom of Saudi Arabia. D.´A. was in receipt of a Juan de la Cierva grant from the Ministerio de Econom´ıa y Competitividad. The funders played no role in the study design, data collection, data analysis, interpretation, and writing of the manuscript

    Multi-Class AdaBoost to Detect Sleep Apnea-Hypopnea Syndrome Severity from Oximetry Recordings Obtained at Home

    Get PDF
    Producción CientíficaThis paper aims at evaluating a novel multi-class methodology to establish Sleep Apnea-Hypopnea Syndrome (SAHS) severity by the use of single-channel at-home oximetry recordings. The study involved 320 participants derived to a specialized sleep unit due to SAHS suspicion. These were assigned to one out of the four SAHS severity degrees according to the apnea-hypopnea index (AHI): no-SAHS (AHI<5 events/hour), mild-SAHS (5≤AHI<15 e/h), moderate-SAHS (15≤AHI<30 e/h), and severe-SAHS (AHI≥30 e/h). A set of statistical, spectral, and non-linear features were extracted from blood oxygen saturation (SpO2) signals to characterize SAHS. Then, an optimum set among these features were automatically selected based on relevancy and redundancy analyses. Finally, a multi-class AdaBoost model, built with the optimum set of features, was obtained from a training set (60%) and evaluated in an independent test set (40%). Our AdaBoost model reached 0.386 Cohen’s kappa in the four-class classification task. Additionally, it reached accuracies of 89.8%, 85.8%, and 74.8% when evaluating the AHI thresholds 5 e/h, 15 e/h, and 30 e/h, respectively, outperforming the classic oxygen desaturation index. Our results suggest that SpO2 obtained at home, along with multi-class AdaBoost, are useful to detect SAHS severity.Junta de Castilla y León (project VA059U13)Pneumology and Thoracic Surgery Spanish Society (265/2012

    Wavelet analysis of overnight airflow to detect obstructive sleep apnea in children

    Get PDF
    Producción CientíficaThis study focused on the automatic analysis of the airflow signal (AF) to aid in the diagnosis of pediatric obstructive sleep apnea (OSA). Thus, our aims were: (i) to characterize the overnight AF characteristics using discrete wavelet transform (DWT) approach, (ii) to evaluate its diagnostic utility, and (iii) to assess its complementarity with the 3% oxygen desaturation index (ODI3). In order to reach these goals, we analyzed 946 overnight pediatric AF recordings in three stages: (i) DWT-derived feature extraction, (ii) feature selection, and (iii) pattern recognition. AF recordings from OSA patients showed both lower detail coefficients and decreased activity associated with the normal breathing band. Wavelet analysis also revealed that OSA disturbed the frequency and energy distribution of the AF signal, increasing its irregularity. Moreover, the information obtained from the wavelet analysis was complementary to ODI3. In this regard, the combination of both wavelet information and ODI3 achieved high diagnostic accuracy using the common OSA-positive cutoffs: 77.97%, 81.91%, and 90.99% (AdaBoost.M2), and 81.96%, 82.14%, and 90.69% (Bayesian multi-layer perceptron) for 1, 5, and 10 apneic events/hour, respectively. Hence, these findings suggest that DWT properly characterizes OSA-related severity as embedded in nocturnal AF, and could simplify the diagnosis of pediatric OSA.Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación y Fondo Europeo de Desarrollo Regional (FEDER) - (Projects DPI2017-84280-R and RTC-2017-6516-1)Comisión Europea y Fondo Europeo de Desarrollo Regional (FEDER) - (POCTEP 0702_MIGRAINEE_2_E)Instituto de Salud Carlos III y Fondo Europeo de Desarrollo Regional (FEDER) - (CIBER-BBN)Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación y Fondo Social Europeo - (grant RYC2019- 028566-I)Ministerio de Educación, Cultura y Deporte - (grant FPU16/02938)Institutes of Health - (grants HL130984, HL140548, and AG061824

    Nocturnal Oximetry-based Evaluation of Habitually Snoring Children

    Get PDF
    Rationale: The vast majority of children around the world undergoing adenotonsillectomy for obstructive sleep apnea–hypopnea syndrome (OSA) are not objectively diagnosed by nocturnal polysomnography because of access availability and cost issues. Automated analysis of nocturnal oximetry (nSpO2), which is readily and globally available, could potentially provide a reliable and convenient diagnostic approach for pediatric OSA. Methods: DeidentifiednSpO2 recordings froma total of 4,191 children originating from13 pediatric sleep laboratories around the worldwere prospectively evaluated after developing and validating an automated neural network algorithm using an initial set of single-channel nSpO2 recordings from 589 patients referred for suspected OSA. Measurements and Main Results: The automatically estimated apnea–hypopnea index (AHI) showed high agreement with AHI from conventional polysomnography (intraclass correlation coefficient, 0.785) when tested in 3,602 additional subjects. Further assessment on the widely used AHI cutoff points of 1, 5, and 10 events/h revealed an incremental diagnostic ability (75.2, 81.7, and 90.2% accuracy; 0.788, 0.854, and 0.913 area under the receiver operating characteristic curve, respectively). Conclusions: Neural network–based automated analyses of nSpO2 recordings provide accurate identification of OSA severity among habitually snoring children with a high pretest probability of OSA. Thus, nocturnal oximetry may enable a simple and effective diagnostic alternative to nocturnal polysomnography, leading to more timely interventions and potentially improved outcomes.Supported in part by project VA037 U16 from the Consejer´ıa de Educacio´ n de la Junta de Castilla y Leo´ n and the European Regional Development Fund (FEDER), project RTC-2015-3446-1 from the Ministerio de Econom´ıa y Competitividad and FEDER, and project 153/2015 of the Sociedad Espan˜ ola de Neumolog´ıa y Cirug´ıa Tora´ cica (SEPAR). L.K.-G. is supported by NIH grant 1R01HL130984. M.F.P. was supported by a Fellowship Educational grant award from the Kingdom of Saudi Arabia. D.´A. was in receipt of a Juan de la Cierva grant from the Ministerio de Econom´ıa y Competitividad. The funders played no role in the study design, data collection, data analysis, interpretation, and writing of the manuscript

    Assessment of airflow and oximetry signals to detect pediatric sleep apnea-hypopnea syndrome using AdaBoost

    Get PDF
    Producción CientíficaThe reference standard to diagnose pediatric Obstructive Sleep Apnea (OSA) syndrome is an overnight polysomnographic evaluation. When polysomnography is either unavailable or has limited availability, OSA screening may comprise the automatic analysis of a minimum number of signals. The primary objective of this study was to evaluate the complementarity of airflow (AF) and oximetry (SpO2) signals to automatically detect pediatric OSA. Additionally, a secondary goal was to assess the utility of a multiclass AdaBoost classifier to predict OSA severity in children. We extracted the same features from AF and SpO2 signals from 974 pediatric subjects. We also obtained the 3% Oxygen Desaturation Index (ODI) as a common clinically used variable. Then, feature selection was conducted using the Fast Correlation-Based Filter method and AdaBoost classifiers were evaluated. Models combining ODI 3% and AF features outperformed the diagnostic performance of each signal alone, reaching 0.39 Cohens’s kappa in the four-class classification task. OSA vs. No OSA accuracies reached 81.28%, 82.05% and 90.26% in the apnea–hypopnea index cutoffs 1, 5 and 10 events/h, respectively. The most relevant information from SpO2 was redundant with ODI 3%, and AF was complementary to them. Thus, the joint analysis of AF and SpO2 enhanced the diagnostic performance of each signal alone using AdaBoost, thereby enabling a potential screening alternative for OSA in children.Ministerio de Ciencia e Innovación - FEDER (DPI2017-84280-R y RTC-2017-6516-1)Comisión Europea - FEDER (Programa de Cooperación Interreg V-A España-Portugal POCTEP 2014–2020)Ministerio de Ciencia e Innovación - Ministerio de Universidades (PRE2018-085219)US National Institutes of Health (grants HL130984 and HL140548

    Screening the risk of obstructive sleep apnea by utilizing supervised learning techniques based on anthropometric features and snoring events

    Get PDF
    OBJECTIVES: Obstructive sleep apnea (OSA) is typically diagnosed by polysomnography (PSG). However, PSG is time-consuming and has some clinical limitations. This study thus aimed to establish machine learning models to screen for the risk of having moderate-to-severe and severe OSA based on easily acquired features. METHODS: We collected PSG data on 3529 patients from Taiwan and further derived the number of snoring events. Their baseline characteristics and anthropometric measures were obtained, and correlations among the collected variables were investigated. Next, six common supervised machine learning techniques were utilized, including random forest (RF), extreme gradient boosting (XGBoost), k-nearest neighbor (kNN), support vector machine (SVM), logistic regression (LR), and naïve Bayes (NB). First, data were independently separated into a training and validation dataset (80%) and a test dataset (20%). The approach with the highest accuracy in the training and validation phase was employed to classify the test dataset. Next, feature importance was investigated by calculating the Shapley value of every factor, which represented the impact on OSA risk screening. RESULTS: The RF produced the highest accuracy (of >70%) in the training and validation phase in screening for both OSA severities. Hence, we employed the RF to classify the test dataset, and results showed a 79.32% accuracy for moderate-to-severe OSA and 74.37% accuracy for severe OSA. Snoring events and the visceral fat level were the most and second most essential features of screening for OSA risk. CONCLUSIONS: The established model can be considered for screening for the risk of having moderate-to-severe or severe OSA

    A 2D convolutional neural network to detect sleep apnea in children using airflow and oximetry

    Get PDF
    Producción CientíficaThe gold standard approach to diagnose obstructive sleep apnea (OSA) in children is overnight in-lab polysomnography (PSG), which is labor-intensive for clinicians and onerous to healthcare systems and families. Simplification of PSG should enhance availability and comfort, and reduce complexity and waitlists. Airflow (AF) and oximetry (SpO2) signals summarize most of the information needed to detect apneas and hypopneas, but automatic analysis of these signals using deep-learning algorithms has not been extensively investigated in the pediatric context. The aim of this study was to evaluate a convolutional neural network (CNN) architecture based on these two signals to estimate the severity of pediatric OSA. PSG-derived AF and SpO2 signals from the Childhood Adenotonsillectomy Trial (CHAT) database (1638 recordings), as well as from a clinical database (974 recordings), were analyzed. A 2D CNN fed with AF and SpO2 signals was implemented to estimate the number of apneic events, and the total apnea-hypopnea index (AHI) was estimated. A training-validation-test strategy was used to train the CNN, adjust the hyperparameters, and assess the diagnostic ability of the algorithm, respectively. Classification into four OSA severity levels (no OSA, mild, moderate, or severe) reached 4-class accuracy and Cohen's Kappa of 72.55% and 0.6011 in the CHAT test set, and 61.79% and 0.4469 in the clinical dataset, respectively. Binary classification accuracy using AHI cutoffs 1, 5 and 10 events/h ranged between 84.64% and 94.44% in CHAT, and 84.10%–90.26% in the clinical database. The proposed CNN-based architecture achieved high diagnostic ability in two independent databases, outperforming previous approaches that employed SpO2 signals alone, or other classical feature-engineering approaches. Therefore, analysis of AF and SpO2 signals using deep learning can be useful to deploy reliable computer-aided diagnostic tools for childhood OSA.Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (project 10.13039/501100011033)Fondo Europeo de Desarrollo Regional - Unión Europea (projects PID2020-115468RB-I00 and PDC2021-120775-I00)Sociedad Española de Neumología y Cirugía Torácica (project 649/2018)Sociedad Española de Sueño (project Beca de Investigación SES 2019)Consorcio Centro de Investigación Biomédica en Red - Instituto de Salud Carlos III - Ministerio de Ciencia, Innovación y Universidades (project CB19/01/00012)National Institutes of Health (projects HL083075, HL083129, UL1-RR-024134 and UL1 RR024989)National Heart, Lung, and Blood Institute (projects R24 HL114473 and 75N92019R002)Ministerio de Educación, Cultura y Deporte (grant FPU16/02938)Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación - Fondo Social Europeo (grant RYC2019-028566-I)National Institutes of Health (grants HL130984, HL140548, and AG061824

    Automatic analysis of overnight airflow to help in the diagnosis of pediatric obstructive sleep apnea

    Get PDF
    La apnea obstructiva del sueño (AOS) pediátrica es una enfermedad respiratoria altamente prevalente e infradiagnosticada que puede afectar negativamente a las funciones fisiológicas y cognitivas de los niños, causándoles graves deficiencias neurocognitivas, cardiometabólicas y endocrinas. El método estándar para su diagnóstico es la polisomnografía nocturna, una prueba compleja, de elevado coste, altamente intrusiva y poco accesible, lo que genera largas listas de espera y retrasos en el diagnóstico. Por ello, es necesario desarrollar pruebas diagnósticas más sencillas. Una de estas alternativas es el análisis automático de señales cardiorrespiratorias. Así, esta tesis doctoral presenta un compendio de cuatro publicaciones que proponen el uso de novedosos métodos de procesado de señal (no lineal, espectral, bispectral, gráficos de recurrencia y wavelet) que permiten caracterizar exhaustivamente el comportamiento del flujo aéreo nocturno de los niños y simplificar el diagnóstico de la apnea obstructiva del sueño pediátrica.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione
    corecore