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Fernando V., Adrián M. y Jorge J. Pasar estos años con vosotros me ha hecho

crecer personal y profesionalmente. Cada d́ıa he podido aprender algo nuevo, y

no sólo de los aspectos técnicos, sino también de vuestra forma de ver la vida. Sin

duda, esta Tesis también tiene un trocito de cada uno de vosotros.

También quiero dar las gracias a la Dra. Leila Kheirandish-Gozal y al Dr.

David Gozal de la University of Missouri School of Medicine (Columbia, USA), aśı
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Abstract

Obstructive sleep apnea (OSA) is a sleep-related breathing disorder characterized

by presenting recurrent oronasal airflow cessations. These breathing cessations can

be complete (apnea events) or partial (hypopnea events). The presence of these

respiratory events can adversely affect the physiological and cognitive functions

of children. In this regard, OSA can cause serious long-term neurocognitive defi-

ciencies, behavioral disorders, as well as cardiovascular, metabolic and endocrine

dysfunctions, drastically reducing their health and quality of life. Consequently,

it is of the utmost importance that children are timely diagnosed and treated to

prevent the negative consequences associated to OSA.

Pediatric OSA has a high prevalence, since it affects 5.7% of children between

2 and 18 years of age. According to the primary care clinical data requested

from the Subdirección General de Información Sanitaria Española in March

2021, it is estimated that this disease affects 9.56h of children under 15 years in

Spain. Despite its high prevalence, OSA is an underdiagnosed disease, estimating

that 90% of affected children still do not have a medical diagnosis. In order

to diagnose it, the subjects are referred to a specialized pediatric sleep unit

where they undergo nocturnal polysomnography (PSG). This sleep study is based

on simultaneously recording several neurophysiological and cardiorespiratory

signals while the child sleeps. After, these recordings are visually inspected by

sleep medical specialists for manual scoring of respiratory events and computing

the apnea-hypopnea index (AHI). In children, this index is used to determine

the presence and severity of OSA according to the thresholds 1, 5, and 10

events/h (e/h). PSG is effective, but also uncomfortable to children, complex,

time-consuming, and relatively unavailable, which lead to long waiting lists and

diagnostic delays. Then, great efforts have been made to search and develop

simpler alternative methods that help diagnose pediatric OSA.
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II Abstract

In this regard, several studies have focused their research on automatically

analyzing a minimum set of cardiorespiratory signals involved in PSG. In this

Doctoral Thesis, we propose to exhaustively characterize the behavior of noctur-

nal airflow (AF) in children to obtain relevant and useful information that helps

to simplify the pediatric OSA diagnosis. This signal reflects the respiratory ac-

tivity during sleep time, including the breathing pauses associated with OSA. In

addition, AF can be easily acquired at the patient’s home using a portable mon-

itoring device with built-in thermistor. Thereby, AF analysis is a promising way

to simplify the diagnosis of childhood OSA. Thus, we hypothesize that the char-

acterization of overnight AF by means of novel approaches can help and simplify

pediatric OSA diagnosis. Accordingly, the main objective of this Doctoral Thesis

is to design, implement, and assess novel automatic signal processing methods that

allow exhaustively characterizing the overnight AF from children and helping in

the pediatric OSA diagnosis.

In order to achieve this goal, a four-stage methodology is proposed. Firstly,

the recordings were subjected to a pre-processing stage to resample them and au-

tomatically remove noise and artifacts. Moreover, AF signals were standardized

to minimize the effects caused by particular features unrelated to OSA. It would

improve the quality of the AF recordings and would increase the effectiveness

of subsequent analysis. Afterwards, a feature extraction stage was performed to

comprehensively characterize the behavior of pediatric overnight AF by means of

different techniques. In this regard, cardiorespiratory signals, and therefore AF,

are dynamic, non-linear, and non-stationary. Consequently, non-linear, spectral,

bispectral, recurrence plot (RP), and wavelet analyses have been conducted for

adapting to the intrinsic properties of overnight AF and getting useful OSA-related

information from it. The features derived from each of these methodological ap-

proaches could provide redundant information about the AF behavior. Thus, a

feature selection stage has been applied to identify those features that provide rel-

evant and complementary information, maximizing the diagnostic ability of AF.

In this regard, forward stepwise logistic regression (FSLR) wrapper method and

fast correlation-based filter (FCBF) method were used for this purpose. Finally,

supervised machine-learning techniques have been applied to recognize patterns in

AF features, infer behaviors from them, and use this information to automatically

detect the presence and severity of OSA in children. This stage was conducted

from three different approaches: discrimination between OSA-negative and OSA-

positive pediatric subjects (binary classification task), classification of children

according to their OSA severity degree (multiclass classification task), and AHI
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estimation of each child (regression task). The binary and multiclass classification

tasks were performed by means of logistic regression (LR) and adaptive boosting

(AdaBoost.M2) algorithms, respectively. Regarding the regression task, it was

performed through a multi-layer perceptron neural network (MLP) and a MLP

with Bayesian approach (BY-MLP). In addition, the 3% blood oxygen desatura-

tion index (ODI3), a clinical parameter used as a suboptimal alternative to PSG,

was incorporated to the study. This allowed us to evaluate its complementar-

ity with the information obtained from AF through the different methodological

approaches.

Each of proposed characterization approaches enabled us to uncover behav-

iors of pediatric nocturnal AF that were previously unknown in OSA context.

In this regard, the central tendency measure and spectral entropies showed that

this disease reduces the variability and increases the irregularity of pediatric AF.

The characterization conducted by means of RP-derived features revealed that

OSA modifies the underlying dynamics and the phase-space of AF. Concretely,

the occurrence of apneic events decreases the variability, the stationarity, and the

complexity of AF signal, as well as the exponential divergence of its phase-space.

Moreover, it also increases the dwell time at a certain phase state of AF (i.e., it

does not change, or changes very slowly), its average prediction time, and its irreg-

ularity. In the case of the bispectral features, they showed that OSA reduces the

non-gaussianity of AF, as well as the non-linear interaction of its harmonic compo-

nents. Childhood OSA also decreases the phase coupling in the normal breathing

band, shifting the coupling focus towards low frequency components related to the

occurrence apneic events. In addition, the irregularity of AF signal increases in

terms of amplitude and phase when the OSA severity is higher. Regarding the

wavelet features, they revealed that OSA disturbs the energy distribution and the

frequency components of AF signal. Concretely, apneic events reduce the AF de-

tail signal amplitude and the energy produced in the normal breathing band. The

frequency components of AF decrease, while its irregularity increases in terms of

energy as the AHI is higher.

In addition, it was observed that the information provided by AF through the

different methodological approaches is complementary to the information from

the classic ODI3. This complementarity was not only manifested in the selection

stage, but also in the pattern recognition stage. In this regard, moderate-to-

high accuracies (Acc) were achieved by the predictive models fed only with AF

features: 60.0%–81.1% for 1 e/h, 57.1%–76.0% for 5 e/h, and 70.5%–80.6% for

10 e/h. However, significantly higher diagnostic accuracies were obtained when
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AF features and ODI3 were combined: 78.0%–83.2% for 1 e/h, 78.5%–82.5% for

5 e/h, and 90.2%–91.0% for 10 e/h. Thereby, RP from AF signal and ODI3

achieved the highest Acc for 1 e/h (83.2%). Moreover, this approach obtained

the lower negative likelihood ratio (LR– = 0.1), which is considered as a reliable

clue to confirm the disease absence when it is ≤ 0.1. In the case of 5 e/h, the

highest Acc was achieved by the bispectral analysis of AF and the ODI3 (82.5%).

Regarding the AHI threshold 10 e/h, both RP and wavelet features from AF

obtained 91.0% Acc in combination with the ODI3. However, AdaBoost model

reached a remarkably higher positive likelihood ratio using wavelet features (LR+

= 19.0), which is considered as a strong inkling to confirm the disease presence

when it is ≥ 10.

Based on the aforementioned considerations, the different methodological ap-

proaches proposed in this Doctoral Thesis allow adapting to the intrinsic proper-

ties of pediatric overnight AF, characterizing its behavior, and providing useful

OSA-related information. These approaches enhance the ability of automatic AF

analysis to determine the presence and severity of OSA in children. In this regard,

the predictive models based on RP, bispectrum, and wavelet features obtained a

high overall diagnostic performance along with the ODI3, outperforming other

state-of-the-art studies and conventional approaches previously applied in adults.

Thus, we can conclude that the characterization of overnight AF by means of these

novel methods can help to simplify the OSA diagnosis in children. In addition, the

high performance of the proposed models suggests that they could be incorporated

into clinical practice as reliable automatic screening methods for pediatric OSA.
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Garćıa et al. (2021a) . . . . . . . . . . . . . . . . . . . . . 76

Figure 5.7 Heat map of the symmetric uncertainty between bispectral

features and ODI3. The color scale represents the median

value of 1000 bootstrap replicates. Figure derived from
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Chapter 1

Introduction

The study presented in this Doctoral Thesis focuses on characterizing overnight

airflow (AF) to help determine the presence and severity of obstructive sleep apnea

(OSA) in children. In order to carry out this characterization, AF was analyzed

using different approaches that allowed adapting to the intrinsic properties of the

signal, such as non-linearity and non-stationarity. Thus, each of these approaches

enabled us to uncover behaviors of pediatric nocturnal AF that were previously

unknown in OSA context. The results obtained in this research were published

in four journals indexed in the Journal Citation Reports (JCR) from the Web of

Science�, which has allowed presenting this Doctoral Thesis as a compendium of

publications.

The thematic consistency of the articles included in this Doctoral Thesis is

shown in section 1.1. The general context is briefly described in section 1.2, which

presents biomedical engineering, physiological signal processing, and machine-

learning study fields. Section 1.3 is devoted to pediatric OSA definition, preva-

lence, causes, and consequences. The standard method used to diagnose this dis-

ease, as well as its current limitations, are detailed in section 1.4. In this regard,

simpler diagnostic methods are demanded to deal with these limitations, which

motivates the research problem. Finally, section 1.5 provides a exhaustive state-

of-the-art revision of previous studies focused on the simplification of pediatric

OSA diagnosis.

1
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1.1 Compendium of publications: thematic con-

sistency

OSA is a sleep-related breathing disorder of high prevalence (Blechner and

Williamson, 2016; Kaditis et al., 2016). This disease causes numerous adverse med-

ical consequences in children, decreasing their health and quality of life (Blechner

and Williamson, 2016; Kaditis et al., 2016). Therefore, it is important to diagnose

and treat them in a timely fashion to prevent the worsening and irreversibility

of these consequences (Alonso-Álvarez et al., 2011). In this regard, the standard

method for pediatric OSA diagnosis, the polysomnography (PSG), is uncomfort-

able to children, complex, time-consuming, and relatively unavailable, which lead

to long waiting lists and delays in diagnosis (Alonso-Álvarez et al., 2015; Tan et al.,

2014). Consequently, novel and simpler diagnostic methods are required to deal

with these limitations and accelerate OSA diagnosis in children.

In this context, the research carried out during the Doctoral Thesis has fo-

cused on exhaustively characterizing the behavior of nocturnal AF in children

to obtain relevant and useful information that helps to simplify the diagnosis of

pediatric OSA. As can be seen in Figure 1.1, the four papers included in the

present compendium of publications share this research focus. Another connec-

tion among these articles is the used methodological framework. Thereby, the

following four-stage methodology was conducted in each of them: pre-processing,

feature extraction, feature selection, and machine-learning.

In order to address its characterization, AF was analyzed using different ap-

proaches that allowed adapting to the signal intrinsic properties. In this regard, the

first article focused on the analysis of AF and respiratory rate variability (RRV)

signals, which was directly obtained from AF, using the central tendency measure

(CTM) and spectral entropies (Barroso-Garćıa et al., 2017). This approach al-

lowed us to characterize the variability and the irregularity of these respiratory

signals in the presence of apneic events. In the second article (Barroso-Garćıa et al.,

2020), the characterization of AF was carried out by extracting nine features de-

rived from recurrence plots (RP). These features provided novel information about

the underlying dynamics and phase-space of AF signal. The third article focused

on analyzing AF by means of thirteen bispectral features (Barroso-Garćıa et al.,

2021a). Thereby, bispectral analysis revealed changes in the non-gaussianity de-

gree and the phase coupling of AF signal, as well as in the non-linear interaction

of its harmonic components. Lastly, we characterized AF using discrete wavelet

transform (DWT) in the fourth paper (Barroso-Garćıa et al., 2021b). In this way,
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Figure 1.1: Thematic consistency between the publications of this Doctoral Thesis.
CMPB:Computer Methods and Programs in Biomedicine, CBM: Computers in Biology
and Medicine.
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DWT-derived features provided useful information about the energy distribution

and frequency components of AF signal. Thus, each of the approaches proposed

in this research allowed us to uncover behaviors of pediatric nocturnal AF that

were unknown in OSA context so far.

In addition to the characterization of AF signal conducted in these studies,

the complementarity between the information obtained from AF and the 3% oxy-

gen desaturation index (ODI3) was also evaluated. Therefore, the proposed ap-

proaches showed a high diagnostic ability to detect the presence and the severity

degree of OSA in children, particularly when these are used along with the ODI3.

Titles, authors, and abstracts of the aforementioned articles, as well as the

journals in which they were published are shown below. Due to this Doctoral

Thesis is presented as a compendium of publications, the complete articles have

been included in Appendix A for a suitable understanding of this document.

Irregularity and Variability Analysis of Airflow Recordings to Facili-

tate the Diagnosis of Paediatric Sleep Apnoea-Hypopnoea Syndrome

(Barroso-Garćıa et al., 2017).

Verónica Barroso-Garćıa, Gonzalo C. Gutiérrez-Tobal, Leila Kheirandish-Gozal,

Daniel Álvarez, Fernando Vaquerizo-Villar, Andrea Crespo, Félix del Campo,

David Gozal, and Roberto Hornero. Entropy, vol. 19 (9), pp. 447, 2017. Impact

factor in 2017: 2.305, Q2 in “physics, multidisciplinary” (JCR-WOS).

Abstract: The aim of this paper is to evaluate the evolution of irregularity

and variability of airflow (AF) signals as sleep apnoea-hypopnoea syndrome

(SAHS) severity increases in children. We analyzed 501 AF recordings from

children 6.2 ± 3.4 years old. The respiratory rate variability (RRV) signal,

which is obtained from AF, was also estimated. The proposed methodology

consisted of three phases: (i) extraction of spectral entropy (SE1), quadratic

spectral entropy (SE2), cubic spectral entropy (SE3), and central tendency

measure (CTM ) to quantify irregularity and variability of AF and RRV, (ii)

feature selection with forward stepwise logistic regression (FSLR), and (iii)

classification of subjects using logistic regression (LR). SE1, SE2, SE3, and CTM

were used to conduct exploratory analyses that showed increasing irregularity

and decreasing variability in AF, and increasing variability in RRV as apnoea-

hypopnoea index (AHI) was higher. These tendencies were clearer in children

with a higher severity degree (from AHI ≥ 5 events/hour). Binary LR models

achieved 60%, 76%, and 80% accuracy for the AHI cutoff points 1, 5, and 10
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e/h, respectively. These results suggest that irregularity and variability mea-

sures are able to characterize paediatric SAHS in AF recordings. Hence, the use

of these approaches could be helpful in automatically detecting SAHS in children.

Usefulness of recurrence plots from airflow recordings to aid in paedi-

atric sleep apnoea diagnosis (Barroso-Garćıa et al., 2020).

Verónica Barroso-Garćıa, Gonzalo C. Gutiérrez-Tobal, Leila Kheirandish-Gozal,

Daniel Álvarez, Fernando Vaquerizo-Villar, Pablo Núñez, Félix del Campo, David

Gozal, and Roberto Hornero. Computer Methods and Programs in Biomedicine,

vol. 183, pp. 105083, 2020. Impact factor in 2020: 5.428, Q1 in “computer

science, theory & methods” (JCR-WOS).

Abstract: Background and objective: In-laboratory overnight polysomnography

(PSG) is the gold standard method to diagnose the Sleep Apnoea-Hypopnoea

Syndrome (SAHS). PSG is a complex, expensive, labour-intensive and time-

consuming test. Consequently, simplified diagnostic methods are desirable. We

propose the analysis of the airflow (AF) signal by means of recurrence plots

(RP) features. The main goal of our study was to evaluate the utility of the

information from RPs of the AF signals to detect paediatric SAHS at different

levels of severity. In addition, we also evaluated the complementarity with the

3% oxygen desaturation index (ODI 3). Methods: 946 AF and blood oxygen

saturation (SpO2) recordings from children ages 0–13 years were used. The

population under study was randomly split into training (60%) and test (40%)

sets. RP was computed and 9 RP features were extracted from each AF recording.

ODI 3 was also calculated from each SpO2 recording. A feature selection stage

was conducted in the training group by means of the fast correlation-based

filter (FCBF) methodology to obtain a relevant and non-redundant optimum

feature subset. A multi-layer perceptron neural network with Bayesian approach

(BY-MLP), trained with these optimum features, was used to estimate the

apnoea–hypopnoea index (AHI). Results: 8 of the RP features showed statisti-

cally significant differences (p-value <0.01) among the SAHS severity groups.

FCBF selected the maximum length of the diagonal lines from RP, as well as

the ODI 3. Using these optimum features, the BY-MLP model achieved 83.2%,

78.5%, and 91.0% accuracy in the test group for the AHI thresholds 1, 5, and

10 events/h, respectively. Moreover, this model reached a negative likelihood

ratio of 0.1 for 1 event/h and a positive likelihood ratio of 13.7 for 10 events/h.

Conclusions: RP analysis enables extraction of useful SAHS-related information
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from overnight AF paediatric recordings. Moreover, it provides complementary

information to the widely-used clinical variable ODI 3. Thus, RP applied to

AF signals can be used along with ODI 3 to help in paediatric SAHS diagnosis,

particularly to either confirm the absence of SAHS or the presence of severe SAHS.

Bispectral Analysis of Overnight Airflow to Improve the Pediatric

Sleep Apnea Diagnosis (Barroso-Garćıa et al., 2021a).

Verónica Barroso-Garćıa, Gonzalo C. Gutiérrez-Tobal, Leila Kheirandish-Gozal,

Fernando Vaquerizo-Villar, Daniel Álvarez, Félix del Campo, David Gozal, and

Roberto Hornero. Computers in Biology and Medicine, vol. 129, pp. 104167,

2021. Impact factor in 2020: 4.589, Q1 in “mathematical & computational

biology” (JCR-WOS).

Abstract: Pediatric Obstructive Sleep Apnea (OSA) is a respiratory disease

whose diagnosis is performed through overnight polysomnography (PSG). Since

it is a complex, time-consuming, expensive, and labor-intensive test, simpler

alternatives are being intensively sought. In this study, bispectral analysis of

overnight airflow (AF) signal is proposed as a potential approach to replace PSG

when indicated. Thus, our objective was to characterize AF through bispectrum,

and assess its performance to diagnose pediatric OSA. This characterization

was conducted using 13 bispectral features from 946 AF signals. The oxygen

desaturation index ≥3% (ODI 3), a common clinical measure of OSA severity,

was also obtained to evaluate its complementarity to the AF bispectral analysis.

The fast correlation-based filter (FCBF) and a multi-layer perceptron (MLP)

were used for subsequent automatic feature selection and pattern recognition

stages. FCBF selected 3 bispectral features and ODI 3, which were used to train

a MLP model with ability to estimate apnea-hypopnea index (AHI). The model

reached 82.16%, 82.49%, and 90.15% accuracies for the common AHI cut-offs

1, 5, and 10 events/h, respectively. The different bispectral approaches used to

characterize AF in children provided complementary information. Accordingly,

bispectral analysis showed that the occurrence of apneic events decreases the

non-gaussianity and non-linear interaction of the AF harmonic components,

as well as the regularity of the respiratory patterns. Moreover, the bispectral

information from AF also showed complementarity with ODI 3. Our findings

suggest that AF bispectral analysis may serve as a useful tool to simplify the

diagnosis of pediatric OSA, particularly for children with moderate-to-severe OSA.
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Wavelet Analysis of Overnight Airflow to Detect Obstructive Sleep

Apnea in Children (Barroso-Garćıa et al., 2021b).

Verónica Barroso-Garćıa, Gonzalo C. Gutiérrez-Tobal, David Gozal, Fernando

Vaquerizo-Villar, Daniel Álvarez, Félix del Campo, Leila Kheirandish-Gozal, and

Roberto Hornero. Sensors, vol. 21 (4), pp. 1491, 2021. Impact factor in 2020:

3.576, Q1 in “instruments & instrumentation” (JCR-WOS).

Abstract: This study focused on the automatic analysis of the airflow signal (AF)

to aid in the diagnosis of pediatric obstructive sleep apnea (OSA). Thus, our aims

were: (i) to characterize the overnight AF characteristics using discrete wavelet

transform (DWT) approach, (ii) to evaluate its diagnostic utility, and (iii) to

assess its complementarity with the 3% oxygen desaturation index (ODI 3). In

order to reach these goals, we analyzed 946 overnight pediatric AF recordings

in three stages: (i) DWT-derived feature extraction, (ii) feature selection, and

(iii) pattern recognition. AF recordings from OSA patients showed both lower

detail coefficients and decreased activity associated with the normal breathing

band. Wavelet analysis also revealed that OSA disturbed the frequency and

energy distribution of the AF signal, increasing its irregularity. Moreover, the

information obtained from the wavelet analysis was complementary to ODI 3.

In this regard, the combination of both wavelet information and ODI 3 achieved

high diagnostic accuracy using the common OSA-positive cutoffs: 77.97%,

81.91%, and 90.99% (AdaBoost.M2), and 81.96%, 82.14%, and 90.69% (Bayesian

multi-layer perceptron) for 1, 5, and 10 apneic events/hour, respectively. Hence,

these findings suggest that DWT properly characterizes OSA-related severity as

embedded in nocturnal AF, and could simplify the diagnosis of pediatric OSA.

1.2 Context: biomedical engineering, physiologi-

cal signal processing, and machine-learning

The current Doctoral Thesis is framed in the biomedical engineering field. This

can be defined as an interdisciplinary branch of science dedicated to understand,

modify or control biological systems by applying engineering knowledge and tech-

niques (Bronzino and Peterson, 2014). Thus, one of the main benefits of biomedical

engineering is that it can provide novel and effective technical solutions to issues

and needs of our healthcare system, such as the necessary technology to monitor
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physiological functions of a patient and assist in diagnosis and treatment of patho-

logical conditions (Bronzino and Peterson, 2014). Biomedical engineering covers

a wide range of research areas, such as physiological signal and image processing,

physiological modelling, biomedical instrumentation, biotechnology, biomechanics,

biomaterials or biosensors. Since we have analysed AF signal for the purpose of ex-

tracting relevant OSA-related information from it, this Doctoral Thesis is focused

on the physiological signal processing area.

Physiological signals are produced by the different biological systems of human

body (e.g., cardiovascular, nervous, and respiratory system) and provide informa-

tion about its behavior (Bronzino and Peterson, 2014). Thus, the study of these

signals would allow to detect changes in function of biological systems, as well

as identify pathological conditions. However, the information contained in raw

biomedical signals is hard to interpret and cannot always be evaluated by visual

inspection. Consequently, a processing stage is required to extract and interpret

relevant information. In this regard, signal processing enables to automatically

extract features of physiological signals by means of mathematical and informa-

tion theory techniques in order to characterize its behavior (Sörnmo and Laguna,

2005). This fact results in reduced subjectivity and increased reliability. Hence,

physiological signal processing has become essential to understand the information

obtained from biological systems and develop automatic diagnostic methods.

The present work is also encompassed in the machine-learning field. This is

a branch of artificial intelligence focused on developing computer algorithms ca-

pable of automatically identifying regularities and complex patterns in data to

infer behaviors and make predictions (Alpaydin, 2014; Bishop, 2006). There are

different machine-learning approaches, such as supervised, unsupervised, and re-

inforcement learning. In this regard, supervised learning algorithms have been

considered in the Doctoral Thesis since we had labeled data to perform classi-

fication and regression tasks (Alpaydin, 2014). Thereby, these methods build a

mathematical model from labeled input data (i.e., training data), which is then

applied to new inputs (i.e., test data) in order to automatically classify them into

different categories (classification) or estimate a continuous variable (regression).

Thus, machine-learning methods have been successfully used to develop novel au-

tomatic diagnostic methods in recent years.

This Doctoral Thesis aims at exhaustively characterizing the behavior of noc-

turnal AF in children to obtain relevant and useful information that helps to

simplify the diagnosis of pediatric OSA. In order to reach this goal, novel sig-

nal processing and machine-learning methods have been studied and applied to
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AF signal. Hence, the aforementioned study fields reflect the framework of this

research.

1.3 Pediatric obstructive sleep apnea (OSA)

1.3.1 Definition and prevalence

Sleep apnea is a sleep-related respiratory disease characterized by the repeated

occurrence of complete and/or partial oronasal airflow cessations (Alonso-Álvarez

et al., 2011; Berry et al., 2012). These breathing cessations can be obstructive

(obstructive sleep apnea, OSA) or central (central sleep apnea, CSA) (Berry et al.,

2012). As shown in the Figure 1.2, OSA is originated by a total or partial occlusion

of the upper airways, which blocks the airflow while the respiratory effort persists.

Regarding CSA, it results when the brain stops sending stimulus for breathing

impulse during certain time intervals, leading to cessation of both oronasal airflow

and inspiratory effort movement. The combination of these apneic events results in

mixed apneas, i.e., airflow cessations with an absent of respiratory effort (central)

during one event portion and presence of inspiratory effort (obstructive) in another

portion. Thus, information about the inspiratory effort is essential to be able to

distinguish these types of events (Berry et al., 2012).

According to the aforementioned considerations, respiratory cessations can be

complete (apneas) or partial (hypopneas) (Alonso-Álvarez et al., 2011; Berry et al.,

2012). The American Academy of Sleep Medicine (AASM) defines apnea in chil-

dren as a total absence or ≥90% reduction of airflow for at least 2 breaths, and

hypopnea as a reduction between 30% and 90% of airflow for at least 2 breaths that

Figure 1.2: Representation of normal breathing, partial, and complete obstruction.
Figure modified from Cĺınica Dental Ceballos (2017).
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is accompanied by a ≥3% blood oxygen desaturation or an arousal (Berry et al.,

2012). It should be noted that these criteria are different for children and adults,

since the minimum duration established by the AASM to score an event as apneic

is 2 respiratory cycles for children and 10 seconds for adults (Alonso-Álvarez et al.,

2011; Berry et al., 2012).

Currently, pediatric OSA is a common condition that constitutes a major pub-

lic health problem. Recent epidemiological studies have shown a high prevalence

of OSA in children, estimating that this disorder affects about 5.7% of the pedi-

atric population (Lumeng and Chervin, 2008; Marcus et al., 2012). A multicenter

study, involving 4,191 pediatric subjects, revealed that approximately 43.3% of

children whom are referred to a specialized sleep laboratory for clinical OSA sus-

picion suffer from mild OSA, 12.8% moderate, and 16.8% severe degree (Hornero

et al., 2017). According to the primary care clinical data requested from the Subdi-

rección General de Información Sanitaria Española in March 2021, the estimated

prevalence of this pediatric disorder in Spain is 9.56h, affecting 10.83h of boys

and 8.20h of girls under the age of 15. However, despite its high prevalence, OSA

is still an underdiagnosed disease (Kheirandish-Gozal, 2010).

1.3.2 Causes, clinical consequences and related pathologies

The soft tissue around the naso and oropharynx relaxes during sleep, which can

occlude the airways and cause a sporadic episode of obstructive apnea in healthy

children. However, certain anatomical and functional alterations of the upper air-

ways are those that favor its obstruction (Arens and Muzumdar, 2010; Moffa et al.,

2020). In this sense, the most common cause of OSA in children is adenotonsil-

lar hypertrophy, i.e., enlarged adenoids and tonsils (Alonso-Álvarez et al., 2011;

Moffa et al., 2020). Other risk factors that predispose to suffer from OSA are

abnormalities in the maxillofacial or craniofacial anatomy, such as micrognathia,

retrognathia, Pierre Robin syndrome or Treacher Collins syndrome (Bitners and

Arens, 2020; Moffa et al., 2020). As an adipose tissue increase in the pharyngeal

area can cause a narrowing of the airways, obesity can also increase the risk of

suffering from this disease (Bitners and Arens, 2020; Moffa et al., 2020). However,

unlike what occurs in adults, this narrowing is more associated with adenotonsil-

lar hypertrophy than increased adipose tissue in children (Carroll and Loughlin,

1992; Marcus, 2000). In addition, neurological and neuromuscular disorders, such

as cerebral palsy, myotonic dystrophy, or different types of myopathy predispose

the appearance of OSA in childhood (Arens and Muzumdar, 2010).
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The main clinical manifestations that characterize the presence of OSA are

respiratory pauses during sleep, snoring, and daytime hypersomnolence (Alonso-

Álvarez et al., 2011; Kaditis et al., 2016). Unlike adults, snoring is usually con-

tinuous and excessive daytime sleepiness is often less frequent in children (Carroll

and Loughlin, 1992). Pediatric subjects affected by OSA suffer from gas exchange

abnormalities, hypoxia, arousals, and fragmented sleep, affecting their physiolog-

ical and cognitive functions (Alonso-Álvarez et al., 2011; Kaditis et al., 2016). In

this regard, this disorder can cause serious consequences in their cardiovascular

system, such as increased sympathetic activity, arterial hypertension, pulmonary

hypertension, endothelial damage, right heart dysfunction/failure (cor pulmonale),

or other alterations in ventricular function (Alonso-Álvarez et al., 2011; Kaditis

et al., 2016). Childhood OSA can also cause alterations in their central ner-

vous system, leading to several neurocognitive and behavioral disorders such as

inattention, hyperactivity, irritability, emotional lability, depression, neurcogni-

tive deficits, learning difficulties, and behavioral problems (Alonso-Álvarez et al.,

2011; Kaditis et al., 2016). Other complications associated with OSA also include

endocrine and metabolic changes, enuresis, and somatic growth delay (Alonso-

Álvarez et al., 2011; Kaditis et al., 2016). Thus, this disease drastically decreases

health and quality of life of affected children. Consequently, a timely diagnosis

and treatment is essential to avoid these clinical outcomes.

1.4 Pediatric OSA diagnosis

In order to diagnose OSA, children are referred to a specialized pediatric sleep

unit where they undergo a Type 1 sleep study (overnight polysomnography, PSG),

which is the gold standard diagnostic test (Jon, 2009). This sleep study is based

on simultaneously recording several neurophysiological and cardiorespiratory sig-

nals by means of different body sensors while the child sleeps. These signals in-

clude body position, electroencephalogram (EEG), electrooculogram (EOG), chin

and anterior tibialis electromyograms (EMG), electrocardiogram (ECG), oximetry

(SpO2), oral and nasal airflow (AF), thoracic and abdominal respiratory effort, and

snoring sound (Collop et al., 2007; Jon, 2009). These recordings are then visually

inspected by sleep medical specialists for manual scoring of apnea and hypopnea

events. The number of apneas and hypopneas per hour of sleep (apnea-hypopnea

index, AHI) is the most widely used indicator to determine the presence and sever-

ity of pediatric OSA (Spruyt, 2012). Regarding the AHI thresholds established to

determine the OSA severity degree, 1, 5 and 10 events per hour (e/h) are com-
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monly used to differentiate among no-OSA (AHI < 1 e/h), mild OSA (1 e/h ≤
AHI < 5 e/h), moderate OSA (5 e/h ≤ AHI < 10 e/h), and severe OSA (AHI ≥
10 e/h) in children (Alonso-Álvarez et al., 2011; Hornero et al., 2017; Tan et al.,

2014). It should be noted that these criteria are more conservative than in adults,

where the AHI thresholds 5, 15 and 30 e/h are used to establish these severity

degree (Kapur et al., 2017).

Although PSG is the gold standard test to effectively diagnose childhood OSA,

it has several limitations. A high number of biomedical recordings are monitored in

PSG, which requires suitable and expensive equipment (Collop et al., 2007; Ryan

et al., 1995). Specialized medical personnel should be present throughout the test

and then visually inspect the acquired recordings, which makes it complex and

intensively laborious (Collop et al., 2007; Ryan et al., 1995). Another limitation

is that child should spend a night hospitalized in the pediatric sleep unit, i.e.,

in a different environment than usual, which can affect sleep development and

characteristics (Jon, 2009). Moreover, pediatric subjects should be attached to

multiple body sensors, which can be uncomfortable and even distressing for them

(Jon, 2009). It should also be noted that not all hospitals have specialized pediatric

sleep units or these are overwhelmed by increasing demand. This fact hinders

access to PSG, generating long waiting lists and diagnosis delays (Alonso-Álvarez

et al., 2015).

All these inherent drawbacks of PSG have led to search and development of

alternative methods that simplify and accelerate pediatric OSA diagnosis before

the consequences become more severe (Alonso-Álvarez et al., 2015). In this regard,

sleep studies performed with portable monitoring equipment have been proposed

as the main alternative to PSG (Type 1) (Collop et al., 2007). Among these

studies, we can distinguish comprehensive portable polysomnography (Type 2),

modified portable sleep apnea testing (Type 3), and continuous recording of one

or two biomedical parameters (Type 4) (Flemons et al., 2003; Kapur et al., 2017):

� Type 1. It acquires up to 32 physiological recordings in a hospital environ-

ment.

� Type 2. This study consists in recording a minimum of 7 physiological

signals: EEG, EOG, EMG, ECG, SpO2, AF, and respiratory effort.

� Type 3. Between 4 and 7 signals are recorded in this study, including AF and

respiratory movement (or alternatively 2 channels of respiratory movements),

as well as ECG and SpO2.
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� Type 4. It is the simplest sleep study, which usually monitors AF and/or

SpO2. All sleep studies that do not meet Type 3 criteria are also included

in this group.

One of the portable monitoring advantages is that this is less expensive than

PSG (Collop et al., 2007). In addition, it incorporates fewer channels and can

be performed in the patient’s home, resulting less complex and uncomfortable for

children (Chiner et al., 2020).

1.5 Simplification of pediatric OSA diagnosis:

cardiorespiratory signals

Due to the high prevalence of OSA in children (5.7%) and its relationship with

other severe pathologies (hypertension, heart failure, or neurocognitive deficit)

(Kaditis et al., 2016; Marcus et al., 2012), the search for diagnostic alternatives

to PSG has become a major concern and the motivation of several investigations

in recent years. In this regard, multiple alternatives focused on the automatic

analysis of a reduced set of PSG-derived signals have been evaluated (Garde et al.,

2019; Gil et al., 2010; Gutiérrez-Tobal et al., 2015; Hornero et al., 2017; Jiménez-

Garćıa et al., 2020; Lazaro et al., 2014), being single-channel approach one of the

most used.

Since repeated bradycardia and tachycardia episodes are manifested in the

presence of apneas and hypopneas, some studies have addressed the analysis of

cardiac signals such as ECG (Pu et al., 2005; Shouldice et al., 2004) or heart rate

variability (HRV) (Deng et al., 2006; Mart́ın-Montero et al., 2020, 2021). In this

context, Shouldice et al. (2004) followed a conventional approach to analyze the

ECG signal, applying temporal and spectral techniques. The study conducted by

Pu et al. (2005) based their research on the temporal feature extraction from the

ECG that, together with several cardiorespiratory index, allowed them to effec-

tively detect obstructive events. Non-linear and spectral methods were also used

by Deng et al. (2006), who showed the usefulness of jointly applying both ap-

proaches to the HRV signal. Mart́ın-Montero et al. (2020) used a spectral analysis

approach to characterize the classic frequency bands of the HRV signal, as well

as to define and characterize novel specific OSA-related bands in children. In a

later study (Mart́ın-Montero et al., 2021), the authors analyzed these bands using

bispectral techniques, which allowed them to obtain additional information about

the particularities that pediatric OSA causes in HRV.
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Others, such as those conducted by Gil et al. (2009, 2010), Lazaro et al. (2014),

and Dehkordi et al. (2016), used the photoplethysmography (PPG) to help in

childhood OSA diagnosis. Based on event detection, Gil et al. (2009) obtained

information about the spectral behavior of HRV during the amplitude fluctuation

decreases of the PPG signal. In another study carried out by the authors (Gil et al.,

2010), this approach was used to analyze the pulse transit time variability (PTTV)

through the temporal evolution of spectral features, which was particularly useful

for discriminating OSA-related events in children. Conventional spectral methods

also used by Lazaro et al. (2014) to analyze the pulse rate variability (PRV) signal,

which is directly derived from PPG. Another study based on characterizing the

PRV signal is the one conducted by Dehkordi et al. (2016). They applied temporal,

spectral, and detrended fluctuation methods, and showed the utility of combining

these approaches to diagnose pediatric OSA from the PPG signal.

The usefulness of automatic analysis of SpO2 recordings has also been widely

assessed in recent years (Álvarez et al., 2018; Calderón et al., 2020; Garde et al.,

2014a, 2019; Hornero et al., 2017; Vaquerizo-Villar et al., 2018a,b,c; Xu et al.,

2018). This signal measures the blood oxygen saturation levels, allowing to quan-

tify the number, duration, and depth of oxygen desaturations associated with the

occurrence of apneic events (Berry et al., 2012). Thus, several studies have fo-

cused on extracting features from SpO2 using different methodological approaches

to characterize the particularities of pediatric OSA (Álvarez et al., 2018; Garde

et al., 2014a, 2019; Hornero et al., 2017; Vaquerizo-Villar et al., 2018a,b,c; Xu et al.,

2018). In this context, Garde et al. (2014a) designed a phone oximeter based on

statistical, non-linear, and spectral features from SpO2 to detect the disease. In

a subsequent study (Garde et al., 2019), the authors aimed to diagnose the dif-

ferent OSA severity degrees and used time and frequency features from SpO2 for

it. Hornero et al. (2017) developed a multicenter study focused on estimating the

children’s AHI from oximetric indices, statistical moments, spectral and non-linear

features, all of them derived from the SpO2 signal. To the best of our knowledge,

their work is the one that has used the largest number of pediatric oximetry record-

ings in the automatic OSA diagnosis context. Later, their predictive model was

also successfully validated in the study conducted by Xu et al. (2018). In addition

to conventional analysis, other novel methods have been applied to characterize

the behavior of pediatric nocturnal oximetry. In this regard, Álvarez et al. (2018)

analyzed the SpO2 signal by means of symbolic dynamics techniques in order to

parameterize the non-linear changes caused by OSA. Moreover, this signal has

been characterized through bispectral, detrended fluctuation, and wavelet analy-
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sis in Vaquerizo-Villar et al. (2018a,b,c), respectively, which has allowed to obtain

novel information about the OSA-related particularities in SpO2. Another com-

mon approach has been to extract clinical indexes from this signal, such as oxygen

desaturation indexes that quantify the number of drops ≥3% (ODI3) and ≥4%

(ODI4) from SpO2 signal per hour of sleep (Calderón et al., 2020; Chang et al.,

2013; Kirk et al., 2003; Tsai et al., 2013). These indexes are commonly used by

medical specialists as a suboptimal diagnostic alternative when PSG is not avail-

able (Kaditis et al., 2015; Magalang et al., 2003). However, they underestimate

the OSA severity (Calderón et al., 2020; Kirk et al., 2003; Oeverland et al., 2002),

thus they are usually used along with additional automated features to maximize

its diagnostic ability (Garde et al., 2019; Gutiérrez-Tobal et al., 2015; Hornero

et al., 2017; Jiménez-Garćıa et al., 2020).

Previous studies addressing OSA detection in children and adults have shown

the high diagnostic potential of AF signal (Gutiérrez-Tobal et al., 2015, 2016;

Jiménez-Garćıa et al., 2020; Koley and Dey, 2013). According to the criteria

established by the AASM, apnea and hypopnea events are defined based on AF

reductions (Berry et al., 2012). Therefore, OSA diagnosis simplification naturally

leads to the analysis of this signal. As shown in the Figure 1.3, the presence of

apneic and hypopneic events modifies the overnight AF behavior. Thus, when

a partial respiratory cessation (hypopnea) occurs, the amount of inspired and

expired air is limited, which is reflected in a notable reduction of AF amplitude.

Regarding the total respiratory cessation (apnea), the airflow into the lungs is

completely blocked, causing AF signal to reach values close to zero. Thus, several

research have focused on the automatic analysis of this signal as a useful alternative

to PSG (Gutiérrez-Tobal et al., 2015, 2016; Jiménez-Garćıa et al., 2020; Koley

and Dey, 2013). In adults, this AF analysis is usually performed by means of

conventional statistical, non-linear, and/or spectral methods. Some studies have

successfully used these techniques to automatically detect apnea and hypopnea

events, such as those conducted by Han et al. (2008), Nakano et al. (2007), and

Koley and Dey (2013). However, an approach increasingly adopted in recent years

is to apply these techniques to characterize OSA particularities in complete AF

signal, thus taking advantage of the information from the whole overnight signal

instead of only the specific apneic events. In this regard, the studies carried out by

Álvarez et al. (2020) and Gutiérrez-Tobal et al. (2013, 2016) achieved accuracies

that ranged between 86.5%–95.8% for 5 e/h, 86.5%–91.5% for 10 e/h, 81.0%–

85.4% for 15 e/h, and 78.1%–83.3% for 30 e/h only with AF signal in adults. Like

in OSA diagnosis simplification in adults, some studies have already evaluated
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Figure 1.3: (a) Normal breathing, (c) Apnea, and (d) hypopnea events in airflow signal
(AF); (b) normal breathing, (e) apnea, and (f) hypopnea events in its corresponding
respitarory rate variability signal (RRV).

the usefulness of AF to characterize and diagnose pediatric OSA (Gutiérrez-Tobal

et al., 2015; Jiménez-Garćıa et al., 2020). However, these studies were based

on direct application of conventional methods previously used in adults (non-

linear and spectral techniques), leading to a significant decrease in the diagnostic

performance of the evaluated methods: accuracies of 79.1% for 3 e/h (Gutiérrez-
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Tobal et al., 2015), 80.5% for 1 e/h, 62.8% for 5 e/h, and 79.0% for 10e/h (Jiménez-

Garćıa et al., 2020), using only AF.

Another respiratory signal that has been used in the context of OSA in adults is

respiratory rate variability (RRV) (Gutierrez-Tobal et al., 2012; Gutiérrez-Tobal

et al., 2013). This signal measures the elapsed time between two consecutive

respiratory cycles and is directly derived from AF (Gutierrez-Tobal et al., 2012;

Gutiérrez-Tobal et al., 2013). To obtain this, it is necessary to apply an algorithm

that allows for the location of the inspiratory peaks (Korten and Haddad, 1989).

These peaks correspond to the relative maximums of AF, so that the algorithm is

based on the analysis of first and second derivative of AF to locate them. After-

wards, the elapsed time between these peaks is calculated, thus obtaining the RRV

signal (Cysarz et al., 2008). As can be seen in Figure 1.3, the amount of inspired

air is suddenly reduced when a hypopnea occurs. This fact leads to an increase

in elapsed time between the inspiratory peaks just before and after the event, i.e.,

when the respiratory flow changes from normal to reduced and from reduced to

normal. In the case of apneas, the subject completely stops breathing, therefore

the time between breaths increases during the collapse and then abruptly decreases

to restore normal respiratory flow. Consequently, OSA also alters the behavior of

RRV signal. Thus, this signal has been characterized by means of conventional

methods and has shown great utility to help detect OSA in adults, achieving an

accuracy of 75.7% for 10 e/h and up to 91.5% when RRV was combined with

AF (Gutierrez-Tobal et al., 2012; Gutiérrez-Tobal et al., 2013). In pediatric OSA

context, RRV signal was used for the first time in this Doctoral Thesis.

Additionally, the usefulness of automatic AF analysis in the OSA diagnosis

context, and by extension of RRV, is supported by the easy acquisition of this

single-channel signal. As shown in the Figure 1.4, AF recording can be obtained

through a simple thermistor during a Type 4 study (Collop et al., 2007; Flemons

et al., 2003). Based on the considerations aforementioned in section 1.4, this

fact would have several advantages (Collop et al., 2007; Ferber et al., 1994): (i)

fewer signals are monitored in Type 4 study, therefore the required equipment is

less expensive than in PSG (Type 1 study); (ii) it is conducted with a portable

monitoring equipment that can be used in the patient’s home, thus avoiding the

alteration of usual sleep patterns; (iii) a single sensor is used (thermistor), which is

less uncomfortable and intrusive for children; and (iv) a single channel is analyzed

(AF), resulting in a less complex and less time-consuming test. Hence, this would

facilitate access to the diagnostic test, allowing early OSA detection in children

and reducing long waiting lists.
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Figure 1.4: Thermistor to record airflow signal.



Chapter 2

Hypothesis and objectives

As previously mentioned, pediatric OSA seriously affects health and quality of

life of children who suffer from it. Consequently, it is of the utmost importance

that they are timely diagnosed and treated to prevent the negative consequences

associated to OSA. Due to the complexity of the standard diagnostic test, the high

healthcare costs, as well as the unavailability of required equipment and medical

specialists, great efforts have been made to search and develop simpler alternative

methods that help diagnose pediatric OSA. Thus, the work conducted during this

Doctoral Thesis has focused on characterizing overnight AF by means of different

methodological approaches to aid in determining the presence and severity of OSA

in children. The starting hypotheses that have motivated this research work, as

well as the main and specific objectives to be achieved, are declared in section 2.1

and section 2.2, respectively.

2.1 Hypothesis

Great efforts have been made to simplify the diagnosis of childhood OSA in re-

cent years. As stated in section 1.5, one widely used approach to address this

issue has been single-channel automatic analysis of PSG-derived signals (Garde

et al., 2019; Hornero et al., 2017; Lazaro et al., 2014). In this Doctoral Thesis,

overnight AF analysis is proposed as a potential information source to diagnose

OSA in children. This signal reflects the respiratory activity during sleep time,

including the breathing pauses associated with OSA (Berry et al., 2012). In this

regard, the amplitude of AF manifests a notable reduction in the presence of apneic

and hypopneic events (Figure 1.3). Moreover, AF is directly involved in the ap-
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nea/hypopnea definition (Berry et al., 2012). Thus, we assume that the overnight

AF gathers useful information to help diagnose pediatric OSA.

Overnight AF signal has already been characterized in adults and has shown

a high ability to diagnose this disease (Gutiérrez-Tobal et al., 2016; Han et al.,

2008). The natural way to address the simplification of OSA diagnosis in children

is to directly apply the methodologies that have been previous and successfully

used in adults, such as conventional non-linear and spectral analyzes (Gutiérrez-

Tobal et al., 2015; Jiménez-Garćıa et al., 2020). However, pediatric OSA diagnosis

presents additional difficulties. On the one hand, the rules for scoring apneas and

hypopneas are more conservative than in adults. In this regard, the AASM estab-

lishes the duration of event as ≥ 2 respiratory cycles for children and ≥ 10 seconds

for adults (Alonso-Álvarez et al., 2011; Berry et al., 2012). On the other hand, the

criteria for determining OSA severity degree are also more restrictive, being 1, 5,

and 10 e/h the AHI thresholds commonly used in children and 5, 15 and 30 e/h

in adults (Alonso-Álvarez et al., 2011; Kapur et al., 2017; Tan et al., 2014). Thus,

an AHI = 5 e/h defines the threshold for mild OSA in adults, while it is often

used to recommend surgical treatment in children due to the severe consequences

that OSA causes on them (Tan et al., 2014). These diagnostic differences between

adults and children hinder the automatic analysis of AF signal, causing that the

methods applied in adults are not as effective to characterize the OSA partic-

ularities in children. Consequently, it is required other techniques that provide

different information from traditional methods previously used in adults, such as

changes in underlying dynamics, harmonic components, or energy of AF. Thereby,

novel feature extraction approaches can characterize the behavior of overnight AF

in children and improve its diagnostic ability. In this regard, cardiorespiratory

signals, and therefore AF, are dynamic, non-linear, and non-stationary (Mart́ın-

González et al., 2018). Hence, it is particularly assumed that RP, bispectrum, and

DWT methods can adapt to the intrinsic properties of pediatric overnight AF and

provide useful OSA-related information.

However, the automatic diagnosis of childhood OSA requires not only extract-

ing new features from AF by means of different methods, but also identifying

those that provide relevant and complementary information. Thus, feature selec-

tion methods can identify these features and maximize their diagnostic ability. In

addition, a model that automatically recognizes existing regularities and patterns

in extracted data is also needed. Thereby, model must be able to infer behaviors

from AF features and use this information to make a prediction of AHI (regres-

sion task) or OSA severity degree (classification task) of pediatric subjects. In this
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regard, supervised machine-learning methods can be useful tools to automatically

detect the presence and severity of OSA in children.

Based on the aforementioned considerations, the global hypothesis of this Doc-

toral Thesis can be summarized as:

“The characterization of overnight AF by means of novel approaches

can help and simplify pediatric OSA diagnosis.”

2.2 Objectives

The main objective of this Doctoral Thesis is to design, implement, and assess

novel automatic signal processing methods that allow exhaustively characterizing

the overnight AF from children and helping in the pediatric OSA diagnosis. In

order to achieve this main goal, a four-stage methodology is proposed: (i) pre-

processing to resample, automatically remove artifacts, and standardize AF, (ii)

feature extraction to characterize pediatric overnight AF, (iii) feature selection to

maximize the diagnostic ability of the information extracted from AF, and (iv)

application of machine-learning methods to classify children according to the OSA

severity degree (classification task), and/or estimate their AHI (regression task).

This proposal leads us to the statement of the following specific objectives:

I. To improve the quality of the AF recordings by means of a novel pre-

processing method.

II. To characterize the pediatric AF to find the behavioral properties that are

intrinsically related to the presence of apneic events.

III. To identify the relevant and non-redundant information from overnight AF

that maximize their diagnostic ability.

IV. To develop and evaluate machine-learning models to determine the presence

and severity of pediatric OSA with a high diagnostic performance.





Chapter 3

Materials

This chapter describes the databases involved in the research, as well as the signal

acquisition process. Thus, section 3.1 presents demographic and clinical character-

istics of children that compose the databases under study. Regarding the involved

signals and its acquisition process, including recording equipment and sampling

rate, they are detailed in section 3.2.

3.1 Subjects under study

In this Doctoral Thesis, we analyzed a database of pediatric AF recordings. This

database was provided and expanded by the Comer Children’s Hospital, Univer-

sity of Chicago Medicine (Chicago, IL, USA). All the subjects involved in the

research were referred to the pediatric sleep unit of this hospital as they pre-

sented OSA characteristic symptoms. The common symptoms included daytime

hypersomnolence, snoring, respiratory cessations during sleep, and/or overnight

awakenings. The children underwent a Type 1 sleep study (PSG) by means

of a digital polysomnography device (Polysmith, Nihon Kohden America Inc.,

Irvine, CA, USA). This device allowed recording up to 32 neurophysiological and

cardiorespiratory signals. Afterwards, medical specialists visually inspected the

polysomnographic recordings and scored the apnea and hypopnea events following

the guidelines of the AASM (Berry et al., 2012). Based on the obtained AHI, the

pediatric subjects were diagnosed as no-OSA (AHI < 1 e/h), mild OSA (1 e/h ≤
AHI < 5 e/h), moderate OSA (5 e/h ≤ AHI < 10 e/h), and severe OSA (AHI ≥
10 e/h) (Alonso-Álvarez et al., 2011; Hornero et al., 2017; Tan et al., 2014). The

legal caretakers of all children gave their informed written consent for participat-
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ing in the study, whose protocol were approved by the Ethics Committee of the

Comer Children’s Hospital (approval numbers: 11-0268-AM017, 09-115-B-AM031,

IRB14-1241) and conformed to the Declaration of Helsinki.

Firstly, the database was composed by AF recordings from 501 pediatric sub-

jects aged from 0 to 13 years (314 boys and 187 girls). Their demographic and

clinical data are presented in Table 3.1. Out of the 501 children, 134 were healthy

controls (AHI < 1) and 367 patients with OSA (AHI ≥ 1). Thereby, 501 AF

recordings were analyzed in our first study (Barroso-Garćıa et al., 2017). After-

wards, the database was expanded, involving 946 pediatric subjects (584 boys and

362 girls). Their demographic and clinical data are shown in Table 3.2. The age

of the subjects was kept in a range from 0 to 13 years. Out of the 946 children,

163 were healthy controls and 783 patients with OSA. The expanded database was

used in the rest of our studies (Barroso-Garćıa et al., 2020, 2021a,b).

Table 3.1: Initial database: clinical and demographic characteristics from the involved
children.

All No-OSA
Mild
OSA

Moderate
OSA

Severe
OSA

Subjects (n) 501 134 (26.7%) 187 (37.3%) 76 (15.2%) 104 (20.8%)
Age (years) 6 [6] 7 [6] 6 [4] 5 [5] 4 [5.5]
Males (n) 314 (62.7%) 86 (64.2%) 119 (63.6%) 43 (56.6%) 66 (63.4%)
BMI (kg/m2) 17.8 [6.5] 17.3 [5.4] 17.9 [6.4] 19.0 [8.9] 17.6 [6.7]
AHI (e/h) 3.2 [7.1] 0.5 [0.6] 2.6 [1.9] 6.8 [2.5] 18.3 [16.1]

Data are presented as median [interquartile range] or number (%). BMI: body mass index, AHI:
apnea-hypopnea index, OSA: obstructive sleep apnea.

Table 3.2: Expanded database: clinical and demographic characteristics from the in-
volved children.

All No-OSA
Mild
OSA

Moderate
OSA

Severe
OSA

Subjects (n) 946 163 (17.2%) 386 (40.8%) 172 (18.2%) 225 (23.8%)
Age (years) 6 [6] 7 [6] 6 [5] 5 [6] 5 [5.3]
Males (n) 584 (61.7%) 98 (60.1%) 242 (62.7%) 106 (61.6%) 138 (61.3%)
BMI (kg/m2) 17.9 [6.2] 17.4 [5.7] 17.8 [5.5] 18.9 [7.9] 18.3 [7.3]
AHI (e/h) 3.8 [7.8] 0.5 [0.6] 2.5 [1.8] 6.8 [2.4] 19.1 [17.2]

Data are presented as median [interquartile range] or number (%). BMI: body mass index, AHI:
apnea-hypopnea index, OSA: obstructive sleep apnea.
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3.2 Signals under study

Overnight AF was recorded by a thermal sensor integrated in the polysomno-

graphic system. Thermistor was placed in nostrils and mouth from children to

measure the difference of temperature between inspired (cold air) and expired air

(warm air). AF recordings that composed the two databases were acquired at

sampling frequencies of 200 and 500 Hz. All of them were pre-processed before its

analysis. The pre-processing stage details are indicated in section 4.1.1. Signals

< 3 hours of duration after pre-processing were excluded from the study (Álvarez

et al., 2020). Regarding RRV signals, these were derived from pre-processed AF

recordings. As stated above, an algorithm was applied to detect inspiratory peaks

in AF, i.e., where its first derivative pass from positive to negative (Korten and

Haddad, 1989). Afterwards, the elapsed time between consecutive inspiratory

peaks was computed, thus obtaining RRV signal (Cysarz et al., 2008).

In addition, SpO2-derived ODI3 was used for comparison purposes. Overnight

SpO2 signal was recorded by means of a fingertip pulse oximeter integrated in the

polysomnographic system. Pulse oximeter included an optical sensor to measure

the blood oxygen saturation level by the intensity of light transmitted through fin-

ger tissues (the intensity is lower as the blood oxygen saturation is higher). These

oximetry recordings were acquired at sampling frequencies of 200 and 500 Hz. All

of them were pre-processed before computing ODI3 (section 4.1.2). Afterwards,

an algorithm was applied to automatically detect drops ≥ 3% from preceding

SpO2 baseline (Taha et al., 1997). The established minimum duration to score an

event as oxygen desaturation was 10 seconds. The total number of these events

was quantified and then divided by the number of hours of SpO2 recording, thus

obtaining ODI3.





Chapter 4

Methods

This chapter is devoted to the methodology conducted during this Doctoral

Thesis. As shown in the Figure 4.1, this methodology consists of four stages:

pre-processing, feature extraction, feature selection, and application of machine-

learning approaches. Firstly, the AF and SpO2 recordings were subjected to a

pre-processing stage to resample them and automatically remove noise and arti-

facts. Moreover, AF signals were standardized to minimize the effects caused by

other OSA-unrelated particularities. Afterwards, a feature extraction stage was

performed to comprehensively characterize pediatric overnight AF by means of

different techniques. In this regard, cardiorespiratory signals, and therefore AF,

are dynamic, non-linear, and non-stationary (Mart́ın-González et al., 2018). Con-

sequently, non-linear, spectral, bispectral, RP, and wavelet analyses have been

conducted for adapting to the intrinsic properties of overnight AF and getting

useful OSA-related information from it. In order to identify those features from

AF that provide relevant and complementary information while maximizing its

diagnostic ability, a feature selection stage has been applied. Thus, wrapper and

filter algorithms were implemented: forward stepwise logistic regression (FSLR)

and fast correlation-based filter (FCBF), respectively. Then, supervised machine-

learning methods have been applied to recognize regularities in AF features, infer

behaviors from them, and use this information to automatically detect the presence

and severity of OSA in children. This stage was conducted from three different ap-

proaches: discrimination between OSA-negative and OSA-positive pediatric sub-

jects (binary classification task), classification of children according to their OSA

severity degree (multiclass classification task), and AHI estimation of each child

(regression task). The binary and multiclass classification tasks were performed
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Figure 4.1: Methodological scheme of the Doctoral Thesis.
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by means of logistic regression (LR) and adaptive boosting (AdaBoost.M2) algo-

rithms, respectively. Regarding the regression task, it was performed through a

multi-layer perceptron neural network (MLP) and a MLP with Bayesian approach

(BY-MLP).

The methods applied in each of these stages are comprehensively described in

sections 4.1 (signal pre-processing), 4.2 (feature extraction), 4.3 (feature selection),

and 4.4 (machine-learning approaches). Finally, statistical techniques used to

assess the diagnostic ability of the proposed methods are detailed in section 4.5.

4.1 Signal pre-processing

After reviewing the pediatric AF and SpO2 recordings, it was observed that they

had been recorded at different sampling frequencies, presented different resolution,

and contained undesired artifacts caused by sensor contact loss due to movements

of the children during sleep time. Thus, these recordings were subjected to a pre-

processing stage to improve its quality and increase the effectiveness of subsequent

analysis. The techniques used for this purpose are described below.

4.1.1 AF signal

The AF recordings obtained during Type 1 sleep study were recorded at 200 and

500 Hz. Thus, the first pre-processing step consisted of resampling these signals so

that all of them had the same sampling frequency. Since the AASM recommends

using 100 Hz for AF signal (Berry et al., 2012), this frequency was established to

carry out the resampling process.

Afterwards, a Finite Impulse Response (FIR) filter with linear phase property

was applied to remove the noise from AF signal without introducing phase dis-

tortion (Oppenheim et al., 1999). Thus, a Kaiser windowed low-pass filter was

designed to establish a trade-off between the main-lobe width and the side-lobe

amplitude, independently defining the transition bandwidth and the stopband at-

tenuation (Oppenheim et al., 1999; Saramäki et al., 1993). A cut-off frequency =

1.5 Hz, transition band = 2 Hz, attenuation = 100 db, and sampling frequency =

100 Hz were the parameters used to design this filter.

In order to minimize inter-individual differences caused by particular features

other than OSA, AF recordings were standardized. In this regard, the signal nor-

malization method proposed by Várady et al. (2002) was used for this purpose.

Thus, an adaptive baseline correction and scale factor were applied to each sam-
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ple of filtered AF signal (Várady et al., 2002), which allowed the acquisition of

normalized samples with values in the range [-1, 1].

Finally, a novel method was implemented to automatically remove possible

noise sources contained in AF signal, such as noise caused by equipment, spurious,

and lost samples due to lack of contact with the sensor (see Figure 4.2). According

to the properties of these noisy elements, we have developed an artifact elimination

protocol based on statistical moments from AF segments. Particularly, 30-second

segments with a standard deviation ≥ 0.550 or ≤ 0.026, or a kurtosis ≤ 1.320

were considered artifacts and removed from AF recordings. Figure 4.3 shows a

fragment of AF signal before and after pre-processing. As can be seen, artifacts

were removed after signal pre-processing.

Figure 4.2: Segment types contained in airflow signal (AF).
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Figure 4.3: Airflow signal (AF) before and after pre-processing stage.

4.1.2 SpO2 signal

Like AF signals, SpO2 recordings were also subjected to a pre-processing stage

before computing the ODI3. It was observed that these recordings contained arti-

facts and lost samples caused by movements of the children during sleep time and

lack of contact with the sensor. These artifacts were automatically removed from

SpO2 signals following the method proposed by Magalang et al. (2003). Thereby,

SpO2 values < 50% and slope changes ≥4% per second were considered artifacts

and removed from SpO2 recordings (Magalang et al., 2003). Regarding the sam-

pling frequency, oximetry signals were recorded at 200 and 500 Hz during Type 1

sleep study. In order to homogenize their sampling frequency, they were resam-

pled at 25 Hz as recommended by the AASM (Berry et al., 2012). In addition,

SpO2 values were rounded to the second decimal so that all oximetry signals had

the same resolution (Garde et al., 2014b). Figure 4.4 shows a SpO2 signal be-

fore and after pre-processing. As can be seen, artifacts were removed after signal

pre-processing.



32 Chapter 4. Methods

Figure 4.4: Oximetry signal (SpO2) before and after pre-processing stage.

4.2 Feature extraction

As previously mentioned, the research conducted during the Doctoral Thesis has

focused on exhaustively characterizing the behavior of overnight AF in children

to obtain relevant and useful information that helps to simplify the diagnosis of

pediatric OSA. Therefore, a methodological stage of feature extraction from AF

was needed to address its characterization. In this regard, the classical feature

extraction methods have been shown to be less effective characterizing the OSA

particularities in children than in adults due to the diagnostic differences between

them (Álvarez et al., 2020; Gutiérrez-Tobal et al., 2013, 2015, 2016; Jiménez-Garćıa

et al., 2020). Consequently, novel approaches have been proposed in this work to

adapt to the intrinsic properties of AF signal and provide different information

from classical methods. These techniques are comprehensively described below.
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4.2.1 Central tendency measure

Based on first-order difference plots, the central tendency measure (CTM) is a

non-linear method that allows to quantify the variability of a signal (Cohen et al.,

1996). A first-order difference plot is a scatter plot where the differences between

displaced samples of the original signal are represented: (x[n+2]−x[n+1]) versus

(x[n+1]−x[n]), being x[n] the value of the nth sample of the signal (Abásolo et al.,

2006; Cohen et al., 1996). CTM is computed from these graphic representations

by selecting a circular region of radius r centered in the plot origin. Its value is

determined by the number of graph points that are located within the circular

region, divided by the total number of graph points. The total number of graph

points is N − 2, where N is the number of samples of the signal. Thereby, the

CTM is mathematically defined as (Cohen et al., 1996):

CTM =

∑N−2
n=1 δ(n)

N − 2
, (4.1)

where δ(n) is:

δ(n) =

{
1, if ((x[n+ 2]− x[n+ 1])2 + (x[n+ 1]− x[n])2)1/2 ≤ r

0, otherwise
. (4.2)

As can be seen, CTM values are within the range [0, 1]. Thereby, its value

will tend to 0 when the graph points are widely scattered, which will indicate a

high variability of the signal (Abásolo et al., 2006). In contrast, a high density of

graph points around the plot origin will lead to CTM values close to 1, indicating

a low variability (Abásolo et al., 2006). Note that CTM will not provide accurate

information about signal variability if unsuitable values of r are selected. The

circular region may not contain graph points if r is too small and almost all of them

will be located within this region if r is too large. Consequently, a suitable choice

of r is essential. In this regard, there is no guideline to optimize its value since it is

chosen according to the character of the data (Abásolo et al., 2006). In this study,

CTM was computed with several r values. Then, Spearman’s correlation was

used to assess the relationship between the AHI and the CTM obtained for each

of them in the corresponding training set. Finally, the r value with the highest

correlation was chosen as optimal.
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4.2.2 Spectral entropies

Power spectral density (PSD) estimation is an approach typically used to analyze

the spectral properties of cardiorespiratory signals (Gutiérrez-Tobal et al., 2015;

Jiménez-Garćıa et al., 2020; Mart́ın-Montero et al., 2020). Note that these signals

are not stationary, i.e. their characteristics change over time (Mart́ın-González

et al., 2018). In order to deal with this limitation, PSD is estimated using Welch’s

method (Welch, 1967). Thereby, the signal is divided into K overlapping sub-

sequences of length L using a window function wf . Then, the discrete Fourier

transform (DFT) is applied to compute the modified periodogram P̂k of each sub-

sequence xk (Welch, 1967):

P̂k(fn) =

∣∣∣∑L−1
i=0 xk(i) · wf (i) · e−

2kijn
L

∣∣∣2
LU

, k = 1, ...,K, (4.3)

where fn and U are defined as:

fn =
n

L
, n = 0, ..., L/2, (4.4)

U =

∑L−1
i=0 |wf (i)|2

L
. (4.5)

Finally, the PSD of the signal is estimated by averaging the K obtained peri-

ograms:

PSD(fn) =

∑K
k=1 P̂k(fn)

K
. (4.6)

Once the PSD has been obtained, spectral entropies of ith order (SEi) are

computed from it. Based on Shannon’s entropy, spectral entropy (SE) is a mea-

sure that quantifies the irregularity of a signal in the time domain by measuring

the uniformity of its spectral distribution (Inouye et al., 1991). Thereby, a flat

spectrum with uniform spectral content will present high SE values, indicating

a high irregularity of the signal. In the same way, a peaked spectrum with few

frequency components will have low SE values, indicating a low irregularity of the

signal (Inouye et al., 1991). Due to higher-order SE can potentiate the spectral

distribution changes of a signal, spectral entropies of first (SE1), second (SE2),

and third (SE3) order are obtained in this study (Barroso-Garćıa et al., 2017).

Thus, SEi is computed by means of the following equation (Hornero et al., 2008;

Jiménez-Garćıa et al., 2020):
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SEi = −
∑f2

f=f1
PSDni(f) · log[PSDni(f)]

log(M)
, i = 1, 2, 3, (4.7)

where i is the order of entropy, M is the number of frequency components, and

PSDn is the normalized PSD in the frequency range f1–f2 (Atri and Mohebbi,

2015; Jiménez-Garćıa et al., 2020):

PSDni(f) =
|PSD(f)|i∑f2

f=f1
|PSD(f)|i

. (4.8)

Note that division by log(M) normalizes the SEi values between 0 and 1. Thus,

values close to 0 will indicate that the signal is very regular, while values close to

1 will indicate an irregularity increase.

4.2.3 Recurrence plot-derived features

Recurrence plot (RP) is a non-linear analysis method that provides information

about the underlying dynamics and phase-space of a dynamic system (Zbilut and

Webber, 2006). Dynamic systems are those that change and evolve over time,

such as physiological signals, so RPs can also be applied to non-stationary data

(Mart́ın-González et al., 2018; Marwan et al., 2007). RPs graphically represent the

recurrences of these systems, i.e., the times at which they return to previous phase-

space states, allowing to visualize periodicity patterns (Marwan et al., 2007). Thus,

it is necessary to know the trajectories of the m-dimensional phase-space that

define the dynamic system. Since a signal is a one-dimensional system of length N ,

these trajectories are obtained by reconstructing its phase-space (Mart́ın-González

et al., 2018; Marwan et al., 2007). In this regard, the Taken’s time-delay method

is widely used for this purpose (Takens, 1981). This method consists of generating

subsequences of dimension m with τ -delayed samples from the original signal x(t).

Thereby, its trajectories x⃗i can be defined as follows (Mart́ın-González et al., 2018;

Takens, 1981):

x⃗i = [x(i), x(i+ τ), . . . , x(i+ (m− 1) · τ)], i = 1, . . . , N − (m− 1) · τ. (4.9)

Once the phase-space trajectories have been obtained, the recurrence matrix

Ri,j is calculated for its subsequent graphic representation. This is a binary and

symmetric matrix of size N−(m−1) ·τ×N−(m−1) ·τ , whose values are 1 if there

is a recurrence and 0 otherwise. Thus, two trajectories x⃗i and x⃗j are recurrent
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when their Euclidean distance is less than the distance threshold ε (Marwan et al.,

2007; Nguyen et al., 2014):

Ri,j =

{
1, if ∥ x⃗i − x⃗j ∥≤ ε

0, otherwise
, i, j = 1, . . . , N − (m− 1) · τ, (4.10)

Note that RP will not provide accurate information about the underlying

dynamics of the signal if unsuitable values of τ , m, or ε are selected. An inappro-

priate τ value could lead to auto-correlated state trajectories (Mart́ın-González

et al., 2018; Nguyen et al., 2014). In order to avoid it, τ is usually adjusted

by means of the auto-mutual information (AMI) function (Jeong et al., 2001;

Mart́ın-González et al., 2018; Marwan et al., 2007). This non-linear technique

estimates the predictability of a signal from its previous values (Jeong et al.,

2001). The dependency degree between the original signal and its τ -delayed

version is quantified for each τ value by measuring the mutual information

between them (Jeong et al., 2001). Thereby, the optimum τ value is determined

as the first AMI local minimum of the signal. Regarding m, an overly high

value could reduce isolated recurrences and generate false diagonal structures in

a RP (Marwan et al., 2007). In order to avoid it, this parameter is adjusted by

means of the well-known false nearest neighbor’s (FNN) method (Kennel et al.,

1992; Mart́ın-González et al., 2018; Marwan et al., 2007). This method finds the

minimum dimension required to reconstruct the signal phase-space by examining

the number of neighbors of each trajectory point (Kennel et al., 1992). Widely

separated points in the phase-space will be considered nearby (false neighbors)

if m value is too low. Thus, m is increased until its optimal value is reached,

i.e., when the number of false neighbors is 0 (Kennel et al., 1992). In addition, a

suitable choice of ε is crucial to obtain the RP. This will not contain recurrences

if ε is too small and almost all of them will be spurious if ε is too large (Marwan

et al., 2007). In this regard, the fixed distance method is commonly applied to

adjust this parameter due to its suitability for signal detection (Mart́ın-González

et al., 2018; Schinkel et al., 2008). Based on the standard deviation (σ) of each

signal, this method sets the distance threshold as ε = λ · σ (Ramı́rez Ávila

et al., 2013; Schinkel et al., 2008). In this study, RPs was computed with several

ε values in the training set. Then, Spearman’s correlation was used to assess

the relationship between the AHI and the RP features obtained from each of

them. Finally, the ε value with which RP features reached the highest average

correlation was chosen as fixed distance.
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Once the RPs have been computed, these are characterized by means of the

recurrence quantification analysis (RQA) (Marwan et al., 2007; Zbilut and Web-

ber, 2006). RPs can contain isolated recurrences, recurrences shaping diagonal

lines (deterministic structures) and/or recurrences forming vertical lines (laminar

structures). Thus, RQA is based on quantifying the number and duration of these

recurrences according to the structure type that they form (Marwan et al., 2007).

Thereby, the following features are extracted from RP:

� Features based on the recurrence density:

– Recurrence rate (REC). It quantifies the variability of a signal by mea-

suring the proportion of recurrences contained in its RP (Marwan et al.,

2007; Zbilut and Webber, 2006). Thus, many signal trajectories return-

ing to previous phase-space states will lead to a high REC value, which

will indicate a low signal variability (Mart́ın-González et al., 2018):

REC =

∑L
i,j=1Ri,j

L2
, (4.11)

where L = N − (m− 1) · τ .

� Features based on diagonal structures:

– Determinism (DET ). This feature quantifies the predictability of a sig-

nal by measuring the proportion of recurrences that constitute diagonal

lines in the RP (Mart́ın-González et al., 2018; Marwan et al., 2007). A

RP with many diagonal lines and few isolated recurrences will result

in a high DET value, indicating a high signal predictability (Marwan

et al., 2007):

DET =

∑L
l=lmin

l · p(l)∑L
i,j=1Ri,j

, (4.12)

where p(l) is the distribution of diagonal lines of length l. Diagonal

lines must have a minimum length (lmin) to be considered as such. An

overly high lmin could lead to inaccurate DET values. Thus, lmin = 2 is

commonly used to calculate this feature (Mart́ın-González et al., 2018;

Schinkel et al., 2008).
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– Average length of the diagonal lines (LEN). It measures the average

prediction time of a signal, i.e., the time during which its trajectories

can be predicted from previous phase-space states (Acharya et al., 2011;

Mart́ın-González et al., 2018). This is obtained by quantifying the time

that the trajectories run in close phase-space states, which is determined

by the length of the diagonal lines of the RP (Marwan et al., 2007).

Thus, a RP with many long diagonal lines will lead to a high LEN

value, indicating a high average prediction time of the signal:

LEN =

∑L
l=lmin

l · p(l)∑L
l=lmin

p(l)
. (4.13)

– Maximum length of the diagonal lines (Lmax). This feature estimates

the exponential divergence of the signal trajectories in phase-space from

the diagonal line lengths of the RP (Mart́ın-González et al., 2018; Zbilut

and Webber, 2006). A RP with short diagonal lines, and therefore a

low Lmax value, will indicate that the signal trajectories diverge rapidly

in the phase-space (Marwan et al., 2007):

Lmax = max(li), i = 1, ...,
∑L

l=lmin

p(l). (4.14)

– Entropy of the diagonal distribution (ENTR). Based on Shannon’s

entropy, ENTR quantifies the irregularity of a signal by measuring

the uniformity of the distribution of diagonal line lengths of its RP

(Leonardi, 2018; McCamley et al., 2017). Thereby, a RP with uniformly

distributed diagonal line lengths will present a high ENTR value, indi-

cating a high irregularity of the signal. In the same way, a distribution

concentrated around a few length values will result in a low ENTR

value, indicating a low irregularity of the signal (Leonardi, 2018; Mc-

Camley et al., 2017):

ENTR = −
∑L

l=lmin

p(l) · log[p(l)]. (4.15)

– Trend (TREND). It estimates the non-stationarity of a signal from

the distribution of recurrences in diagonal lines parallel to the main di-

agonal of its RP (Marwan et al., 2007). Thus, a RP without drifts and

with homogeneously distributed recurrences will result in TREND ≈ 0,

indicating a high stationarity of the signal (Webber and Zbilut, 1994;
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Zbilut and Webber, 2006). However, a RP with fading of recurrences

towards the corners will have a high absolute value of TREND, indi-

cating an increase in the non-stationarity degree of the signal (Webber

and Zbilut, 1994; Zbilut and Webber, 2006):

TREND =

∑L̃
i=1(i− L̃/2) · (RECi − ⟨RECi⟩)∑L̃

i=1(i− L̃/2)2
, (4.16)

where L̃ < L to exclude the RP edges, RECi is the recurrence density

in the i-distant line from the main diagonal, and ⟨RECi⟩ is the average
RECi.

� Features based on vertical structures:

– Laminarity (LAM). This feature quantifies the complexity of a sig-

nal by measuring the proportion of recurrences that constitute vertical

lines in the RP (Mart́ın-González et al., 2018). These structures arise

when the signal does not change state or changes very slowly (Mart́ın-

González et al., 2018; Zbilut and Webber, 2006). Thus, a RP with many

vertical lines and few isolated recurrences will result in a high LAM

value (Marwan et al., 2007). This will indicate that the signal has few

state changes and, therefore, a low complexity (Mart́ın-González et al.,

2018):

LAM =

∑L
v=vmin

v · p(v)∑L
i,j=1Ri,j

, (4.17)

where p(v) is the distribution of vertical lines of length v. Vertical lines

must have a minimum length (vmin) to be considered as such. An overly

high vmin could lead to inaccurate LAM values. Thus, vmin = 2 is

commonly used to calculate this feature (Marwan et al., 2007; Schinkel

et al., 2008).

– Average length of the vertical lines (trapping time, TT ). It measures

the average trapping time of a signal, i.e., the time during which its

trajectories do not change state (Acharya et al., 2011; Nguyen et al.,

2014). This feature is obtained by quantifying the length of the vertical

lines of the RP (Marwan et al., 2007). Thereby, a RP with many long

vertical lines will lead to a high TT value. This fact will indicate that
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the signal abides in a particular state for a long time and, therefore, it

has a low complexity (Mart́ın-González et al., 2018):

TT =

∑L
v=vmin

v · p(v)∑L
v=vmin

p(v)
. (4.18)

– Maximum length of the vertical lines (Vmax). It quantifies the complex-

ity of a signal from the duration of the laminar structures presented in

its RP (Mart́ın-González et al., 2018; Marwan et al., 2007). Thus, a

RP with long vertical lines will result in a high Vmax value, indicating

a low complexity of the signal (Mart́ın-González et al., 2018):

Vmax = max(vi), i = 1, ...,
∑L

v=vmin

p(v). (4.19)

4.2.4 Bispectral features

Bispectrum is a frequency analysis method that provides information about the

non-gaussianity, non-linearity, and non-stationarity of a time series (Chua et al.,

2010; Zhang et al., 2000). Although these are intrinsic properties of cardiores-

piratory signals such as AF (Mart́ın-González et al., 2018), the classical spectral

analysis methods ignore them since they are not capable of detecting behavioral

changes or trends associated to these properties (Mart́ın-Montero et al., 2021;

Vaquerizo-Villar et al., 2018b). In contrast, bispectrum can reveal this type of

alterations and is less sensitive to noise, making it a suitable analysis method for

physiological signals (Atri and Mohebbi, 2015; Mart́ın-Montero et al., 2021). In

addition, the signal amplitude and phase information is kept by means of this tech-

nique, which also allows us to discover interactions and phase couplings between

the different signal patterns (Chua et al., 2010; Emin Tagluk and Sezgin, 2011).

Computationally, bispectrum represents the third-order cumulant of the spec-

tral probability distribution of a signal and it can be estimated by means of the

following equation (Chua et al., 2010; Mart́ın-Montero et al., 2021):

B(f1, f2) = X(f1) ·X(f2) ·X∗(f1 + f2), f1, f2 = 0, ..., fs/2, (4.20)

where X(f) is the Fourier transform, f1 and f2 are the frequency indices, and fs

is the signal sampling rate. Note that the bispectral symmetry conditions allow

the acqusition of the full bispectrum from the non-redundant triangular region

defined by 0 ≤ f1 ≤ f2 ≤ f1 + f2 ≤ fs/2 (Chua et al., 2010). Then, bispectrum is
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normalized to ensure that its magnitude values are bounded in the range [0, 1]:

BN (f1, f2) =
B(f1, f2)∑fs/2

f1,f2=0 |B(f1, f2)|
. (4.21)

This fact allows reducing differences between subjects caused by physiological

factors other than OSA, as well as estimating the phase coupling degree in equal

conditions (Chua et al., 2010).

Once the bispectrum has been normalized, the bispectral band associated to

the individual respiratory rate is determined. This adaptive band (AB) is obtained

by defining a range of 0.075 Hz around the point where the maximum bispectral

amplitude is reached, i.e., around the normal respiration peak (Fleming et al.,

2011; Milagro et al., 2019). Afterwards, AB is characterized by means of the

following features:

� Features based on the bispectral amplitude:

– Maximum bispectral amplitude (Bmax). This feature quantifies the

maximum value of bispectral magnitudes contained within the region

under study (Wang et al., 2009). It corresponds to the maximum bispec-

tral power. Therefore, a high Bmax value will indicate a high maximum

bispectral power inside the adaptive band:

Bmax = max(|BN (f1, f2)|f1,f2∈AB), (4.22)

– Minimum bispectral amplitude (Bmin). It quantifies the minimum

value of bispectral magnitudes contained within the adaptive band

(Mart́ın-Montero et al., 2021). It corresponds to the minimum bis-

pectral power of the considered region. Hence, the minimum bispectral

power inside the band will be lower as lower is Bmin value:

Bmin = min(|BN (f1, f2)|f1,f2∈AB), (4.23)

– Total bispectral power (Btotal). This feature is computed as the sum

of the bispectral amplitudes inside adaptive band (Ning and Bronzino,

1990). It allows quantifying the gaussianity deviations of the signal

components that are associated to this region. Thereby, gaussian com-

ponents (i.e. normally distributed components) will lead to bispectral

amplitude values = 0 and, thus, to low Btotal values (Chua et al., 2010):
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Btotal =
∑

f1,f2∈AB
|BN (f1, f2)|, (4.24)

� Features based on entropies:

– Bispectral entropies of ith order (BEi). Based on Shannon’s entropy,

bispectral entropy is a measure that quantifies the irregularity of a signal

by measuring the uniformity of its bispectral distribution (Chua et al.,

2010; Vaquerizo-Villar et al., 2018b). Thereby, a flat bispectrum with

uniform bispectral content will present high BEi values, indicating a

high irregularity of the signal (Mart́ın-Montero et al., 2021). In the same

way, a peaked bispectrum with few involved frequency components will

have low BEi values, indicating a low irregularity of the signal (Mart́ın-

Montero et al., 2021). Due to higher-order entropies can potentiate the

bispectral distribution changes of a signal, bispectral entropies of first

(BE1), second (BE2), and third (BE3) order are obtained by means of

the following equations (Atri and Mohebbi, 2015; Chua et al., 2010):

BEi = −
∑J

j=1
pj · log(pj), i = 1, 2, 3, (4.25)

where i is the entropy order, J is the number of histogram bins, and p

is the magnitude distribution in AB:

pj =
|BN (f1, f2)|i∑

f1,f2∈AB |BN (f1, f2)|i
. (4.26)

– Phase entropy (PE). This feature is also a variant of the Shannon’s

entropy. It quantifies the irregularity of the bispectral phase signal in

the considered region, basing on the distribution of its phase angles

(Chua et al., 2010; Vaquerizo-Villar et al., 2018b). PE is computed as

follows:

PE = −
∑N

n=1
p(ψn) · log[p(ψn)], (4.27)

where N is the number of histogram bins and p(ψ) is the phase angle

distribution in AB:

p(ψn) =
1

L
·
∑

f1,f2∈AB
Ind[ϕ(BN (f1, f2)) ∈ ψn], (4.28)
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such that L is the size of the region AB, ϕ is the bispectral phase angle,

and Ind(·) is the indicator whose value is 1 if ϕ belongs to the range

ψn:

ψn =

{
ϕ

∣∣∣∣−π +
2πn

N
≤ ϕ ≤ −π +

2π(n+ 1)

N

}
. (4.29)

As in the previous entropies, uniformly distributed phase angles in a

wide range of harmonic components will give rise to high PE values,

indicating a high irregularity of the signal phase in the bispectral region

under study (Mart́ın-Montero et al., 2021). In contrast, PE value will

be low if few harmonic components are affected. This fact will reveal

that the signal is less random and has a more regular phase in the

bispectral band (Mart́ın-Montero et al., 2021).

� Features based on bispectral moments:

– Sum of logarithmic bispectral magnitudes inside adaptive band (H1),

sum of logarithmic bispectral magnitudes contained in the adaptive

band diagonal (H2), first and second order spectral moments of bispec-

tral magnitudes contained in the adaptive band diagonal (H3 and H4,

respectively). They quantify the phase coupling and provide informa-

tion about the signal non-linearity in the region under study (Mart́ın-

Montero et al., 2021). Thus, strong non-linear interactions between the

frequency components of the signal will lead to greater phase coupling

and therefore high values of these features (Atri and Mohebbi, 2015).

As already mentioned, they are calculated according to the bispectral

content of the adaptive band and its diagonal ABdiag (Atri and Mo-

hebbi, 2015; Zhou et al., 2008):

H1 =
∑

f1,f2∈AB
log(|BN (f1, f2)|). (4.30)

H2 =
∑

fk∈ABdiag

log(|BN (fk, fk)|). (4.31)

H3 =
∑

fk∈ABdiag

k · log(|BN (fk, fk)|). (4.32)

H4 =
∑

fk∈ABdiag

(k −H3)
2 · log(|BN (fk, fk)|). (4.33)
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� Features based on bispectral weighted center:

– Components fm1 and fm2 of the weighted center of bispectrum

(WCOB). fm1 and fm2 are 2 vectors that allow locating the bispectral

coupling focus within the region under study (Wang et al., 2014; Zhang

et al., 2000). These are obtained by means of the following equations

(Wang et al., 2014; Zhang et al., 2000):

fm1 =

∑
f1,f2∈AB

f1 ·BN (f1, f2)∑
f1,f2∈AB

BN (f1, f2)
. (4.34)

fm2 =

∑
f1,f2∈AB

f2 ·BN (f1, f2)∑
f1,f2∈AB

BN (f1, f2)
. (4.35)

The WCOB features provide information about the frequency interac-

tions that occur between the signal components (Wang et al., 2014).

Thus, low fm1 and/or fm2 values will indicate that there is greater

activity at low frequencies, while high values of them will reveal an

activity shift towards higher frequencies (Mart́ın-Montero et al., 2021;

Wang et al., 2014).

4.2.5 Wavelet features

Wavelet decomposition is a multi-resolution analysis method that provides infor-

mation about the signal behavior at different frequency ranges (Rioul and Vet-

terli, 1991). Although classical spectral analysis methods also provide information

at frequency domain, these are limited by using a fixed spectral and temporal

resolution that could hinder the low frequency scans (Rioul and Vetterli, 1991;

Vaquerizo-Villar et al., 2018c). Moreover, they take the signal stationarity for

granted. In contrast, wavelet transform performs a signal decomposition at differ-

ent resolutions, providing high spectral resolution at low frequencies while offering

high temporal resolution at high frequencies (Figliola and Serrano, 1997; Rioul

and Vetterli, 1991). Note that this fact is particularly important in the present

thesis context, since OSA-elicited alterations are reflected in low frequency bands

of AF signal (Gutiérrez-Tobal et al., 2015; Jiménez-Garćıa et al., 2020). In ad-

dition, wavelet transform can be applied to non-stationary signals, making it a

suitable analysis method for physiological recordings (Figliola and Serrano, 1997;

Rosso et al., 2006).
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Wavelet transform can be obtained in a discrete or continuous way (Rioul

and Vetterli, 1991; Rosso et al., 2006). In this study, discrete wavelet transform

(DWT) was used due to its higher computational efficiency compared to continuous

wavelet transform (CWT) (Rioul and Vetterli, 1991). As can be seen in Figure 4.5,

the algorithm calculates the DWT of N -sample input signal (x(n), n ∈ N) by

recursively applying high-pass (g(n)) and low-pass (h(n)) filters, followed by a

dyadic sampling (Mallat, 1989; Rioul and Vetterli, 1991). These filters are based on

scaling and translation of the basis functions. The basis functions are the mother

wavelet and its mirror version, which correspond to g(n) and h(n) respectively,

such that (Mallat, 1989; Rioul and Vetterli, 1991):

g(n) = (−1)1−n · h(1− n). (4.36)

Thereby, two signals are obtained at each decomposition level j: detail signal

Dj and approximation signal Aj . The coefficients of Dj are obtained through

g(n), while those of Aj are obtained by means of h(n) (Rioul and Vetterli, 1991;

Vaquerizo-Villar et al., 2018c):

Dj(k) =
∑

n
Aj−1(n) · g(2k − n), (4.37)

Aj(k) =
∑

n
Aj−1(n) · h(2k − n), (4.38)

where k ∈ Z is the position of each coefficient within the detail/approximation

signal of level j. Afterwards, Aj signal is decomposed back into a new range of

high and low frequencies, giving rise to detail and approximation signals of the

next level (Dj+1 and Aj+1). Thus, the process continues until the maximum

decomposition level is reached: M = log2(N).

In this study, DWT was applied to 216-sample segments of AF signal (Jiménez-

Garćıa et al., 2020). Therefore, the highest reached decomposition level was M =

16. The mother wavelets used were Haar and Daubechies-5. Both wavelets have

already been successfully tested on respiratory signals (Kermit et al., 2000; Lee

et al., 2011). Some motivations for using Haar mother wavelet are that: (i) it is the

simplest basis function, (ii) it does not elicit edge effect, and (iii) its stepped shape

could help detect sudden changes in AF (Gogolewski, 2020; Hadaś-Dyduch, 2018).

Regarding Daubechies-5 mother wavelet, it was chosen due to: (i) it provides a

time-frequency localization of high precision, (ii) it causes a reduced edge effect

compared to other higher order Daubechies wavelets, and (iii) its wavy shape could



46 Chapter 4. Methods

Figure 4.5: Discrete wavelet decomposition process. Figure taken from Barroso-Garćıa
et al. (2021b).

better fit the AF behavior (Daubechies, 1990, 1992; Gogolewski, 2020). Figure 4.6

shows an example of DWT applying Daubechies-5 mother wavelet to a 10-min

segment of AF signal. As can be observed, the 8th detail level covers the frequency

range 0.1953–0.3906 Hz. This frequency band corresponds to the usual duration of

children’s respiratory cycles, i.e., to normal breathing rates (Fleming et al., 2011).

Thus, the wavelet features were particularly extracted from D8 to characterize the

detail signal associated to the normal breathing band. In addition, the wavelet

entropy was obtained from the full outline to have a global view of the AF behavior.

� Features derived from a particular decomposition level:

– First to fourth order statistical moments (M1Dj–M4Dj ). These fea-

tures correspond to mean, standard deviation, skewness and kurtosis

of the Dj detail level coefficients (M1Dj , M2Dj , M3Dj , and M4Dj , re-

spectively). Thus, they allow quantifying central tendency, variation,

asymmetry, and tailedness of its distribution (Vaquerizo-Villar et al.,

2018c).
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Figure 4.6: Wavelet decomposition process applied to a 10-min segment of airflow.
Figure obtained from Barroso-Garćıa et al. (2021b).

– Maximum and minimum (MaxDj and MinDj ). These features cor-

respond to maximum and minimum value achieved by Dj detail level

coefficients. Thereby, they provide information about the highest and

lowest amplitude obtained by the signal components associated to this

level. Thus, MaxDj and MinDj are calculated as follows (Vaquerizo-

Villar et al., 2018c):
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MaxDj
= max[Dj(k)]. (4.39)

MinDj
= min[Dj(k)]. (4.40)

– Energy (EDj
). Based on the quadratic amplitudes of Dj , this feature

quantifies the activity level producted in the frequency component range

associated to each detail level (Rosso et al., 2001; Vaquerizo-Villar et al.,

2018c). Therefore, a detail level with high EDj
values will reveal that

the signal has a high activity in the encompassed frequency band. In

order to compute EDj , the following equation is used (Figliola and

Serrano, 1997; Rosso et al., 2006):

EDj
=

∑
k
|Dj(k)|2, (4.41)

� Features derived from the full wavelet outline:

– Wavelet entropy (WE). Wavelet entropy is a measure that quantifies

the irregularity of a signal by measuring the uniformity of its energy

distribution in the different decomposition levels (Figliola and Serrano,

1997; Rosso et al., 2001). Thereby, uniformly distributed energy in a

wide level range will reach high WE values, indicating a high signal

irregularity. In contrast, WE will present low values if signal energy is

concentrated in only a few decomposition levels. This fact will reveal

that the signal has a more regular behavior. Thus, this feature can be

obtained as a variant of the Shannon’s entropy by means of the following

equation (Rosso et al., 2001; Vaquerizo-Villar et al., 2018c):

WE = −
∑M

j=1
pj · log(pj), (4.42)

where M is the maximum decomposition level, and p is the energy

distribution computed as:

pj =
EDj∑N
j=1EDj

. (4.43)
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4.3 Feature selection

A feature selection stage was developed after feature extraction in order to obtain

a more compact and explanatory representation of the extracted data, as well as

to reduce the input set to classifiers. In this regard, the selection techniques allow

us (Guyon and Elisseeff, 2003): (i) improving understanding of feature extraction

processes, (ii) obtaining computationally faster and more efficient classifiers, and

(iii) improving its prediction ability.

Note that extracting a large number of features does not ensure right pat-

tern recognition results. The collected features could be redundant, thus they

would not provide additional information when combined (Guyon and Elisseeff,

2003). It is also possible that some features are not relevant to solve the addressed

problem, thus negatively affecting predictability (Guyon and Elisseeff, 2003). A

large number of features can even cause the classifier to overfit, which reduces its

predictability (Guyon and Elisseeff, 2003; Saeys et al., 2007). Feature selection

techniques provide an optimal subset to characterize a certain model (Saeys et al.,

2007). Hence the need and importance of performing this selection stage prior to

pattern recognition.

It is important to point out that the feature selection methods do not apply

any data transformation, they only choose a reduced subset from the input fea-

tures (Saeys et al., 2007). According to how it works, three technical categories

can be differentiated (Saeys et al., 2007): (i) filter methods, which are indepen-

dent of the predictive model, (ii) wrapper methods, that depend on the predictive

model, and (iii) embedded methods, which are dependent on the model and both

are jointly constructed. In this regard, we have been implemented and automati-

cally applied forward stepwise logistic regression wrapper method (FSLR) and fast

correlation-based filter method (FCBF). Both FSLR and FCBF selection methods

have already been shown to be particularly useful in the diagnosis of pediatric OSA

(Álvarez et al., 2018; Gutiérrez-Tobal et al., 2015; Hornero et al., 2017; Jiménez-

Garćıa et al., 2020). Each of them is detailed below.

4.3.1 Forward stepwise logistic regression

Proposed by Hosmer and Lemeshow (2002), FSLR feature selection algorithm is

a wrapper method that uses logistic regression (LR) models to obtain a optimum

subset of features. Its approach is based on evaluating the LR models built in each

algorithm step by including features that contribute with relevant information (for-

ward selection), and excluding those that provide redundant information (back-
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ward elimination) (Gutiérrez-Tobal et al., 2015; Hosmer and Lemeshow, 2002). In

this regard, statistical significance is used to determine which features should re-

main in the model and which ones should not. According to Hosmer and Lemeshow

(2002), this parameter is defined based on the p-value of the likelihood-ratio χ2

test that is applied in each algorithm step.

Thereby, the algorithm starts from a null LR model, without features, only

with the constant term. Then, a forward selection is performed by computing the

significance of each of the N features that were extracted in the previous stage.

Thus, their corresponding N LR models are built and compared with the initial

model through the likelihood-ratio test. The feature that obtains the highest

significance (i.e. lowest p-value) is included in the model if its p-value is less than

a certain input threshold pinput. Subsequently, the forward search is performanced

yet again with the rest of the features, their corresponding LR models are built, and

these are compared with the previous model. In addition to the forward selection,

a backward elimination process is conducted to test that the M features that

constitute the model are still statically significant after each new entry. Hence, M

LR models are built and compared with the previous model through the likelihood-

ratio test. The feature with lowest significance (i.e. highest p-value) is excluded

from the model if its p-value is greater than a certain output threshold poutput.

The process continues until there are no features to select or until none of them

meets the input and/or output criteria from the model. Note that the condition

pinput < poutput should be met to prevent the algorithm from running infinitely.

Moreover, they should be carefully chosen. In this regard, important features could

stay out of the model if these thresholds are overly restrictive (a too low value of

pinput and/or poutput). In contrast, if pinput and poutput are inappropriately high,

almost all features will enter the model and none will be removed (Hosmer and

Lemeshow, 2002).

4.3.2 Fast correlation-based filter

The FCBF algorithm is one of the most popular feature selection methods in the

context of pediatric OSA diagnosis (Hornero et al., 2017; Jiménez-Garćıa et al.,

2020; Mart́ın-Montero et al., 2021; Vaquerizo-Villar et al., 2018a,b,c). It is a filter

method that uses the symmetrical uncertainty (SU) to obtain an optimum subset

of features (Yu and Liu, 2004). The approach of this algorithm is based on first

selecting a subset with the most relevant features and then eliminating from it

those that are redundant with respect to other more relevant features. Therefore,
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the optimun subset is only composed of relevant and independent features (Yu

and Liu, 2004).

In order to determine which features should remain in the model and which

ones should not, SU is used. This is a non-linear correlation measure defined by

the entropy of the features. Thus, SU can be computed as follows (Yu and Liu,

2004):

SU(Xi|Xj) = 2 · H(Xi)−H(Xi|Xj)

H(Xi) +H(Xj)
, (4.44)

where H(Xi), H(Xj), and H(Xi|Xj) are the Shannon’s entropies of the features

Xi and Xj :

H(Xi) = −
∑

xi∈Xi

p(xi) · log(p(xi)). (4.45)

H(Xj) = −
∑

xj∈Xj

p(xj) · log(p(xj)). (4.46)

H(Xi|Xj) = −
∑

xj∈Xj

p(xj) ·
∑

xi∈Xi

p(xi|xj) · log(p(xi|xj)). (4.47)

Thereby, FCBF calculates the SU between the variable V to be predicted and

each of the N extracted features (i.e. SU(Xi|V ), i ∈ N) to quantify its relevance

in the first step of the algorithm (Yu and Liu, 2004). The feature Xi that obtain a

SU(Xi|V ) greater than a certain input threshold pinput is considered relevant and

included in a preliminary subset. Afterwards, FCBF computes the SU between

each pair of features that constitute this subset (i.e. SU(Xi|Xj), i, j ∈ N) to

evaluate its redundancy in a second step of the algorithm (Yu and Liu, 2004). The

feature Xi that has a higher SU with Xj than with V (SU(Xi|Xj) ≥ SU(Xi|V ))

and that is also less relevant than Xj (SU(Xj |V ) ≥ SU(Xi|V )) is considered

redundant and excluded from the final optimum subset.

4.4 Machine-learning approaches

As stated above, this work is also encompassed in the machine-learning field. It

is a branch of artificial intelligence focused on developing computer algorithms

capable of automatically identifying complex patterns in data to make predic-

tions from them (Alpaydin, 2014; Bishop, 2006). There are different machine-

learning approaches: supervised learning, unsupervised learning, and reinforce-

ment learning (Alpaydin, 2014). Due to our original dataset is labeled, supervised

machine-learning methods have been applied in the Doctoral Thesis to recognize

patterns in AF-extracted features and use this information to automatically de-

tect the presence and severity of OSA in children. Thus, this stage was conducted
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from three different approaches: discrimination between OSA-negative and OSA-

positive pediatric subjects (binary classification task), classification of children

according to their OSA severity degree (multiclass classification task), and AHI

estimation of each child (regression task). The binary and multiclass classification

tasks were carried out by means of logistic regression (LR) and adaptive boosting

(AdaBoost.M2) algorithms, respectively. Regarding the regression task, it was

performed through a multi-layer perceptron neural network (MLP) and a MLP

with Bayesian approach (BY-MLP). Each of these methods is presented below.

4.4.1 Binary classification: Logistic regression

Regression methods model how an output dependent variable changes when one or

more input independent variables (i.e., predictor variables) are modified (Hosmer

and Lemeshow, 2002). Depending on the nature of this dependent variable, some

models or others can be used. In this regard, linear regression models are applied

when the dependent variable is continuous, while LR models are widely used when

it is dichotomous (Hosmer and Lemeshow, 2002). The latter allow estimating

the posterior probability p(Cj |xi) that one of the two mutually exclusive options

contemplated in the dependent variable (Cj , j = 1, 2) occurs as a function of

predictor variable value xi. Due to this, LR is used as binary classifier (Hosmer

and Lemeshow, 2002). In this Doctoral Thesis, LR was applied to discriminate

OSA-negative from OSA-positive subjects (our dependent variable) based on AF

features obtained in the selection stage (our predictor variables). Thus, the logistic

function was used (Hosmer and Lemeshow, 2002):

p(Cj |xi) =
eβ0+

∑N
i=1 βi·xi

1 + eβ0+
∑N

i=1 βi·xi
, (4.48)

where N is the number of predictor variables xi, and β0 and βi are the model

coefficients. Note that each new predictor variable xi that enters into the logistic

function increases the number of required coefficients βi. Hence, these coefficients

should be defined and fitted in order to obtain a suitable model. In this regard,

an estimator is used for this purpose (Hosmer and Lemeshow, 2002). The least

squares estimator is used in classical linear regression models. However, some of its

statistical properties are not met when the output dependent variable is dichoto-

mous (Hosmer and Lemeshow, 2002). Consequently, LR models use maximum

likelihood as an estimator, which allows us to find values of βi by maximizing the

probability of obtaining the observed value set (Hosmer and Lemeshow, 2002).
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4.4.2 Multi-class classification: Adaptive Boosting

Adaptive Boosting (AdaBoost) is an ensemble learning method used for classifi-

cation tasks (Freund and Schapire, 1997; Witten et al., 2011). In the particular

case of multiclass classification, it is performed by means of the AdaBoost.M2

algorithm. This method has already been shown to be particularly useful with

AF signal in the diagnosis of OSA (Gutiérrez-Tobal et al., 2016; Jiménez-Garćıa

et al., 2020). It is based on building a strong classifier by combining several weak

classifiers or learners (Freund and Schapire, 1997; Witten et al., 2011). These weak

classifiers are simple and of the same type. In this way, a single weak classifier

is trained in each algorithm iteration. AdaBoost initially assigns the same weight

to all observations. Then, the first weak classifier makes its prediction. Those

correctly classified observations are updated with a weight decrease. In contrast,

those that have been misclassified by the first learner are identified and penalized

by assigning them a greater weight. In the second iteration, the next weak classi-

fier will focus on correcting the observations that its predecessor has erroneously

predicted (i.e., the ones with the greatest weight). This fact allows the new weak

classifier to adapt to the observations, thus minimizing its pseudo-loss εt (Freund

and Schapire, 1997; Witten et al., 2011). Being an iterative process, the algorithm

continues adding learners until reaching the established maximum number L. The

final classification prediction H(x) will be made based on the weighted vote of the

predictions ht(x) obtained by the weak classifiers (Freund and Schapire, 1997):

H(x) = argmax
∑L

t=1
log(1/βt) · ht(x), (4.49)

where L is the number of weak classifiers and βt is the weight update coefficient

of the weak classifier t ∈ L , which depend on the pseudo-loss εt and the learning

rate α required to minimize overfitting:

βt =

(
εt

1− εt

)α

. (4.50)

Thus, AdaBoost allows to create a strong classifier much more robust and

precise than the weak classifiers used in the process. Due to decision trees are

widely used as weak classifiers by boosting methods (Witten et al., 2011), they were

applied in the present Doctoral Thesis. Note that L and α are hyperparameters

that should be adjusted. In this regard, their values were chosen as those that

maximize the Cohen’s kappa coefficient (k) estimated by 0.632 bootstrap procedure

in 1000 replicates from training dataset (Witten et al., 2011).
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4.4.3 Regression: Multi-layer perceptron neural network

Artificial neural networks (ANNs) are methods that consist of a large number of

interconnected processing units called neurons (Jain et al., 2000). They have the

ability to learn complex and non-linear input-output relationships, thus adapting

to the intrinsic properties of input data. The ANNs most used in pattern recog-

nition are feed-forward networks, among which are multi-layer perceptron (MLP)

networks (Jain et al., 2000). Hence, a MLP is an ANN whose neurons are orga-

nized in layers and where its connections are forward unidirectional, no feedback

loops. In this regard, three-layer MLP networks (i.e. an input layer, a hidden layer,

and an output layer) are capable of providing a universal approximation (Bishop,

1995). Consequenly, this network architecture was implemented throughout this

Doctoral Thesis. As Figure 4.7 shows, the first layer of MLP is the input layer.

This is composed of NI neurons, as many features as they have been selected in the

Figure 4.7: Generic MLP network architecture with NI neurons in the input layer, a
single hidden layer with NH neurons, and one neuron in the output layer (NO = 1).
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previous selection stage. Thus, each neuron receives a input feature and spreads

it to the next layer neurons (Bishop, 1995). The next layer of MLP is the hidden

layer. This is composed of a number of neurons NH that should experimentally be

tuned. Each of its neurons receives as input a linear combination of the previous

layer neuron outputs and provides a non-linear function of it as output (Bishop,

1995). Finally, the last layer of MLP is the output layer. Since MLP is intended

to estimate the AHI of pediatric subjects, a single neuron is required in this layer.

Then, this neuron receives as input the hidden layer neuron outputs and provides

a linear function of it as MLP output y (Bishop, 1995):

y = gout(
∑NH

j=1
wjo · ghidden(

∑NI

i=1
wij · xi + bj) + bout), (4.51)

where xi is the input feature i, wij is the connection weight between the input

neuron i and the hidden neuron j, wjo is the connection weight between the hidden

neuron j and the single output neuron, bj is the bias associated to the hidden

neuron j, bout is the bias associated to the single output neuron, and ghidden and

gout are the activation function of the hidden and output neurons, respectively.

Note that weights influence the MLP learning process, thus they should be

carefully adjusted. In this regard, two different approaches were applied in the

studies that this Doctoral Thesis encompasses:

� Classic MLP. Initially, weights are randomly assigned. Afterwards, they

are adjusted by jointly using scaled conjugate gradient to minimize the error

function and weight decay regularization to avoid overfitting (Bishop, 1995).

This last method adds a regulatory parameter α that penalizes the use of

high weights at the neuron input. Like NH , α should also be adjusted in the

training set.

� MLP with Bayesian approach (BY-MLP). In this case, an alternative

method is used to set the weights. It is based on modeling the distribution

function of the weight space instead of finding an optimum value for them

(Bishop, 1995). Thus, the posterior probability is computed and the network

weights are adjust by means of Bayesian inference. This technique is self-

regulated, so it does not introduce any regularization parameters and only

NH should be tuned (Bishop, 1995).

Regarding the hyperparameter optimization, leave-one-out cross-validation

(loo-cv) method was applied to the training dataset and the averaged Cohen’s

kappa coefficient (k) was obtained for each NH value in Barroso-Garćıa et al.
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(2020). The NH that obtained the highest k was chosen as optimum. A similar

process was applied to jointly optimize NH and α in Barroso-Garćıa et al. (2021a).

Loo-cv method was also used and the maximum k determined the optimum values

of NH -α pair. In Barroso-Garćıa et al. (2021b), NH was chosen as the value that

maximized the k estimated by 0.632 bootstrap procedure in 1000 replicates from

training dataset (Witten et al., 2011).

4.5 Statistical analysis

The analysis and interpretation of the obtained results, as well as the performance

and reliability evaluation of the used methods, is a key issue in any research study.

In order to address these essential tasks, suitable statistical tests, diagnosis per-

formance measures, agreement measures, and validation methods were applied in

the present Doctoral Thesis. Thus, the techniques used in each case are presented

below.

4.5.1 Statistical tests

Statistical tests are tools for accepting or rejecting probabilistic modeling hypothe-

ses. Thereby, statistical tests were used in this research work to assess whether: (i)

the data under study come from a normal distribution, (ii) its population variances

are equal (homoscedasticity), and (iii) the distribution of independent variables is

the same.

Firstly, the Lilliefors test (Lilliefors, 1967) was applied to evaluate the nor-

mality of the clinical and sociodemographic data of the subjects under study, as

well as the normality of each feature extracted from AF signal. These data were

also subjected to the Leneve test to assess their homoscedasticity (Levene, 1961).

It was observed that their distributions were neither normal nor homoscedastic.

Therefore, the clinical and sociodemographic data of the subjects belonging to the

training set were compared with those of the test set using the non-parametric

Mann-Whitney U , χ2, and Fisher’s exact tests (Fisher, 1922; Mann and Whitney,

1947). In this regard, the Mann-Whitney U test was applied to continuous vari-

ables (age, BMI, and AHI), while the χ2 test and Fisher’s exact test were applied

to categorical variables (gender and OSA severity groups). In order to determine

whether there were statistically significant differences between the training and test

data, the significance level α = 0.01 was established. Moreover, we evaluate pos-

sible differences between the severity groups (i.e. non-OSA, mild, moderate, and



4.5. Statistical analysis 57

severe) in AF-derived features. Thus, the Mann-Whitney U test was applied for

pairwise comparisons between gropus and the Kruskal-Wallis test for comparisons

among 4 groups (Kruskal and Wallis, 1952; Mann and Whitney, 1947). According

to the number of subjects involved in these comparisons, the significance levels

α = 0.01 and α = 0.05 were established. Note that the probability of making a

type I error by chance not only depends on the α value. This probability noticeably

increases when the number of performed tests (T ) increases: 1− (1−α)T (Narsky

and Porter, 2013). Consequently, p-values should be corrected. In this Thesis, the

correction was carried out using the Bonferroni method, that is, multiplying the

p-value by the number of applied tests or, alternatively, α/T (Farcomeni, 2008).

Therefore, those features with a p-value < α after Bonferroni correction were con-

sidered to have statistically significant differences between severity groups. In

the latest studies (Barroso-Garćıa et al., 2021a,b), it was also assessed whether

there were differences in any performance and/or agreement metric between the

different predictive models that were applied to the test set. In this case, the

Mann-Whitney U test for pairwise comparisons with Bonferroni correction was

applied. Due to the large number of values that were compared (1000 samples of

each metric after applying bootstrapping, see subsection 4.5.4), 0.001 was used as

significance level to minimize the probability of making a type I error.

In order to complement the information provided by the statistical tests, other

techniques were also applied. In this regard, the Spearman’s correlation coefficient

was used to evaluate the relationship between variables (Zar, 1972), particularly

between the features extracted from AF and the AHI. Thus, this tool allowed us

to detect those that had the highest correlation with the AHI from the subjects

under study. This information was also very useful to optimize some methods de-

veloped and applied in this Thesis: (i) radius value of the CTM, (ii) fixed distance

threshold value used to compute the RPs, and (iii) type of wavelet mother used

to performance the multi-resolution analysis of AF signal. In addition, box and

violin plots were used to analyze the distribution and tendencies of the extracted

features (Hintze and Nelson, 1998). Box plots show the median, 25th and 75th

percentiles, maximum and minimum, as well as outliers of the data distribution.

The violin plots provide addicional information about the data arrangement by

showing the density of its distribution. Hence, the use of these diagrams allowed

us to obtain a visual summary of the distribution of AF features and to complete

the information provided by statistical tests.
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4.5.2 Diagnostic performance measures

In order to evaluate the usefulness of the AF features, as well of the models built

from them, several diagnostic performance measures are computed. These metrics

are derived from the number of subjects correctly and/or wrongly classified. Tak-

ing into account that the OSA severity degree of pediatric subjects is considered in

this Thesis according to the AHI thresholds 1, 5, and 10 e/h, the following terms

are defined based on these cut-off points (Fawcett, 2006):

� True Positives (TP). Subjects with an AHI≥cut-off who are classified as

≥cut-off by the proposed model (i.e. positives correctly classified).

� True Negatives (TN). Subjects with an AHI<cut-off who are classified as

<cut-off by the proposed model (i.e. negatives correctly classified).

� False Positives (FP). Subjects with an AHI<cut-off who are classified as

≥cut-off by the proposed model (i.e. negatives wrongly classified).

� False Negatives (FN). Subjects with an AHI≥cut-off who are classified

as <cut-off by the proposed model (i.e. positives wrongly classified).

According to these terms, the following diagnostic performance metrics are

calculated (Fawcett, 2006; Flemons and Littner, 2003; Zweig and Campbell, 1993):

� Sensitivity (Se). Rate of subjects with AHI≥cut-off correctly classified:

Se =
TP

TP + FN
· 100. (4.52)

� Specificity (Sp). Rate of subjects with AHI<cut-off correctly classified:

Sp =
TN

TN + FP
· 100. (4.53)

� Accuracy (Acc). Rate of subjects with an AHI<cut-off or AHI≥cut-off

correctly classified:

Acc =
TP + TN

TP + TN + FP + FN
· 100. (4.54)

� Positive predictive value (PPV). Probability that a subject classified as

≥cut-off is actually a subject with an AHI≥cut-off:

PPV =
TP

TP + FP
· 100. (4.55)
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� Negative predictive value (NPV). Probability that a subject classified

as <cut-off is actually a subject with an AHI<cut-off:

NPV =
TN

TN + FN
· 100. (4.56)

� Positive likelihood ratio (LR+). Rate of subjects with AHI≥cut-off

correctly classified with respect to the rate of subjects with AHI<cut-off

wrongly classiffied:

LR+ =
Se

100− Sp
. (4.57)

� Negative likelihood ratio (LR-). Rate of subjects with AHI≥cut-off

wrongly classified with respect to the rate of subjects with AHI<cut-off

correctly classiffied:

LR− =
100− Se

Sp
. (4.58)

� Area under the Receiver Operating Characteristic curve (AUC). A

Receiver Operating Characteristic (ROC) curve is a parametric curve in the

XY plane representing 100−Sp versus Se (Zweig and Campbell, 1993). The

point [(100−Sp) = 0, Se = 100] of this curve represents the ideal classification

in which FP = 0 and FN = 0, while Se, Sp, Acc, PPV, and NPV reach their

maximum value 100. Thereby, higher classification results will be obtained

as the ROC curve is closer to this ideal classification point (Fawcett, 2006;

Zweig and Campbell, 1993). One way to summarize the information provided

by the ROC curves is to use AUC measure, i.e., the area enclosed between

the ROC curve and the abscissa axis (Fawcett, 2006; Zweig and Campbell,

1993). Thus, AUC values close to 1 will reveal that the predictive model is

highly effective.

4.5.3 Agreement measures

In addition to the diagnostic performance measures, global metrics are required

to evaluate the agreement between observers and determine the reliability of the

proposal. Thus, we need measures that allow evaluating the agreement between

the actual AHI (i.e. the one derived from the PSG) and the AHI estimated by

regression models, as well as the agreement between the severity group diagnosed

by medical specialists and the one predicted by binary or multiclass classification

models. In this regard, the suitable way to approach the issue depends closely on
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the data nature. If the data are continuous, the intraclass correlation coefficient

is commonly used as agreement measure. However, when the data are categorical,

the most applied metrics are the multiclass precision and the Cohen’s kappa index.

Each of these measures is detailed below:

� Intraclass correlation coefficient (ICC). It is a global measure for evalu-

ating the reliability of regression models (Chen and Barnhart, 2008). Unlike

other conventional correlation coefficients, the notion underlying in the ICC

formulation is to consider systematic error (Bartko, 1966; Chen and Barn-

hart, 2008). This fact prevents the correlation from being perfect when two

observers systematically measure different quantities from each other and

the agreement is null. Moreover, ICC estimates the average of the correla-

tions between all possible orderings by pairs of observations (Bartko, 1966).

Therefore, this avoids the order dependency limitation that arises with other

approaches such as Pearson’s. A common way to calculate the ICC is with-

out making suppositions about the analysis of variance (ANOVA) or using

repeated measures (Chen and Barnhart, 2008). The basis idea is that the to-

tal variability of measurements can be decomposed into two components: the

variability due to differences between instances, and the variability caused by

differences between observers. The latter, in turn, depends on the variability

between observations and a residual variability associated to the error that

any measurement entails. Thus, ICC can be computed as follows (Chen and

Barnhart, 2008):

ICC =
MSI −MSE

MSI − (O − 1) ·MSE +O · (MSO −MSE)/N
, (4.59)

where N is the total number of instances, O is the number of observers,MSI

is the instances mean square, MSE is the error mean square, and MSO is

the observers mean square. Thus, ICC values can range from 0 to 1, being

an ICC = 1 the maximum possible agreement (Weir, 2005). In this case, all

observed variability would be explained by the differences between subjects

and not by the differences between the estimation methods or the different

observers. In contrast, a value ICC = 0 is obtained when the agreement

occurs only by chance (Weir, 2005).

� Multiclass accuracy (AccM). It is a global measure for evaluating the

reliability of multiclass classification models. In multiclass prediction, the

result is often presented in a 2-dimensional array known as confusion matrix
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(Witten et al., 2011). This matrix has as many rows and columns as number

of categories to classify (M). Each matrix element nij shows the number of

instances classified as the class indicated in row i by a observer (actual class)

and as the class indicated in column j according to other observer (predicted

class) (Witten et al., 2011). Extending the definition of 2-class accuracy

previously indicated (subsection 4.5.2), multiclass accuracy would be the

probability that both observers agree on the assigned class. Thus, AccM

corresponds to the percentage of instances of each class correctly classified

and it is computed based on the main diagonal elements of confusion matrix:

AccM =

∑M

i=1
ni,i

N
· 100, (4.60)

where M is the number of class and N is the total number of instances.

� Cohen’s Kappa index (k). It is a global measure for evaluating the

reliability of binary and multiclass classification models (Cohen, 1960). k

quantifies the agreement between two observers in their corresponding clas-

sifications of N instances in M mutually exclusive categories. Thereby, its

computation is based on the probability that the classification made by both

observers agrees (P (A)), and the hypothetical probability that the agreement

occurs by chance (P (C)) (Cohen, 1960):

k =
P (A)− P (C)

1− P (C)
, (4.61)

where P (A) corresponds to the proportion of instances of each class correctly

classified:

P (A) =

∑M

i=1
ni,i

N
, (4.62)

and P (C) includes the marginal distributions in its formula for be able to

exclude the agreement happened just by chance when computating k:

P (C) =
∑M

i=1


∑M

j=1
ni,j

N
·

∑M

j=1
nj,i

N

 . (4.63)

Thus, the maximum agreement corresponds to k = 1, while the maximum

disagreement corresponds to k = −1. In the same way, a value k = 0 is

obtained when the agreement is caused only by chance (Cohen, 1960).
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4.5.4 Validation methods

In order to check the validity of the proposed methods and the results obtained

with them, several validation techniques have been used throughout this Doctoral

Thesis. Firstly, hold-out validation method was applied to obtain the training and

test sets. Depending on the study, the training set was used to optimize param-

eters of extraction methods (e.g. radius value of CTM, computation parameters

of RPs, wavelet type to perform the multi-resolution analysis), selected feature

subsets, and hyperparameters of predictive models (e.g. number of hidden layer

perceptrons of BY-MLP, number of hidden layer perceptrons and regularization

parameter of MLP, learning rate and number of weak classifiers of AdaBoost.M2),

as well as to train predictive models. So as to minimize overfitting and to min-

imize the bias produced by using the same dataset for parameter optimization

and predictive model training, leave-one-out cross-validation (loo-cv) and boot-

strapping procedures were also applied to the training set (Witten et al., 2011).

In addition, k-fold cross-validation and bootstrapping methods were used in the

test set to ensure that the results of the predictive models are independent of the

training-test partition and thus increase its generalizability (Bishop, 2006). Each

of the aforementioned techniques is detailed below:

� Hold-out. This method consists of dividing the original dataset into two

independent subsets: training and testing (Bishop, 2006; Witten et al., 2011).

In this regard, the training set is used to build the proposed model, while the

test set is used to evaluate its performance. Hold-out is a computationally

fast validation method, but it depends a lot on how the partition is done

and the number of subjects used for it (Refaeilzadeh et al., 2016; Witten

et al., 2011). Thus, the data should be randomly divided into independent

sets. Consequently, statistical tests were applied in this Thesis to ensure

that the training and test samples were completely independent and that

there were no statistically significant differences (p-value ≥ 0.01) in any

sociodemographic or clinical characteristics from the subjects that compose

each group. Regarding the size of the subsets, this is an arbitrary issue,

although usually the number of subjects belonging to the test set is less

than or equal to the number of subjects belonging to the training set. This

is because the training set should be large enough to be representative and to

allow a suitable fitting of the models (Witten et al., 2011). According to each

of our studies, the training set was used to optimize parameters of extraction,

selection and pattern recognition stages, as well as to train predictive models.
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However, the amount of available data did not allow us to obtain a subset

for each of these tasks with a sufficiently representative size. Consequently,

hold-out method was combined with additional validation methods to avoid

overfitting and to minimize the bias produced by using the same subset of

data for several tasks (Witten et al., 2011).

� Leave-one-out cross-validation (loo-cv). It is an iterative method that

uses as training set all available observations except one, which is used to test

the model (Bishop, 2006; Witten et al., 2011). If a single observation is used

to measure the performance and/or agreement if the model, this measure

could significantly vary depending on which observation is selected. To avoid

this, the process is repeated N times, as many as available observations.

Thereby, a different observation is excluded in each iteration, the model is

trained with the rest, and then it is tested with the observation that had been

excluded (Bishop, 2006; Witten et al., 2011). At the end of the process, we

will have N estimates of each performance and/or agreement measure. Its

estimated final value will be computed as the average of the values obtained

in theN iterations, thus increasing the reliability and generalizability of these

results (Witten et al., 2011). In this Thesis, loo-cv was used with the training

set to optimize hyperparameters of MLP (Barroso-Garćıa et al., 2021a) and

BY-MLP (Barroso-Garćıa et al., 2020) according to the agreement measure

k obtained in the N iterations. Therefore, its application allowed us to build

more robust predictive models. Note that this validation method has a high

computational cost since the model is refitted and tested as many times as

available observations, which can become a time-consuming and tedious task

(Witten et al., 2011). However, it allows obtaining models more generalizable

by using all available data, as well as reducing the variability that arises when

the observations are allocated only into two groups (Refaeilzadeh et al., 2016;

Witten et al., 2011). Moreover, loo-cv results are completely reproducible

as there is no random partition.

� K-fold cross-validation. This is also an iterative method. It consists

of randomly allocating the data into k sets of approximately the same size

(Refaeilzadeh et al., 2016). Thereby, k − 1 sets are used to train the model

and one of them is used as testing. This process is repeated k times using a

different test set in each iteration. At the end of the process, we will have

k estimates of each performance and/or agreement measure. Its estimated

final value will be the average of the values obtained in the k iterations,
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which increases its reliability and generalizability (Refaeilzadeh et al., 2016;

Witten et al., 2011). Regarding its computational cost, this is determined

by the number of required iterations, i.e, the chosen k value (Witten et al.,

2011). Overall, its choice depends on the dataset, although a value of k = 10

is commonly used (Refaeilzadeh et al., 2016). Consequently, 10-fold cross-

validation method was applied to the test set in order to obtain more gener-

alizable results with the logistic regression models proposed in our first study

(Barroso-Garćıa et al., 2017). Note that loo-cv is a particular case of k-fold,

in which the number of folds is equal to the number of available observations.

The main advantage of k-fold is that it provides a better balance between

bias and variance than loo-cv (Refaeilzadeh et al., 2016). Loo-cv uses N − 1

observations to train the model, i.e., practically the whole available dataset.

This fact maximizes the model fit to data and reduces the bias (Refaeilzadeh

et al., 2016). However, the final estimate of performance and/or agreement

measures is computed with practically the same data (there is only one dif-

ferent data between each training set). This fact leads to a higher risk of

overfitting and,therefore, a high variance (Refaeilzadeh et al., 2016). In con-

trast, the k sets used in k-fold method as training are much less overlapping,

which leads to a lower variance. Consequently, this provides more accurate

estimates of performance measures and/or agreements. (Refaeilzadeh et al.,

2016; Witten et al., 2011).

� Bootstrapping. It is based on applying the proposed method to M boot-

strap replicates (Efron and Tibshirani, 1994). A bootstrap replicate is a

sample obtained from the original set of observations by random resampling

with replacement. Resampling with replacement consists in that once an

observation has been extracted, it is made available again for subsequent

extractions. As a result of this resampling type, some observations will ap-

pear multiple times in the bootstap replicate and others will not be chosen

(Witten et al., 2011). Each bootstrap replicate will be the same size as the

original set of observations. Thus, a new replicate is used at each bootstrap-

ping iteration, the model is fitted with the observations from this replicate,

and then it is evaluated with the observations that are left out (Efron and

Tibshirani, 1994; Witten et al., 2011). The process is repeated M times, as

many as bootstrap replicates have been created. Thereby, M estimates will

be obtained for each statistical measure of performance and/or agreement.

Note that bootstrapping method generates certain bias in these estimates,
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which can be a limitation when the training set is too small (Efron and Tib-

shirani, 1994). In order to deal with this issue, the following correction is

used in the estimation of each statistical measure:

S =

∑M

i=1
0.368 · Straini + 0.632 · Stesti

M
, (4.64)

where Straini and Stesti are the value of the statistic obtained with the

training and test sets of the ith boostrap replicate, respectively. In this The-

sis, bootstrapping method was applied to obtain the optimum feature subset

in the selection stage (Barroso-Garćıa et al., 2020, 2021a,b), to optimize the

hyperparameters of AdaBoost.M2 and MLP (Barroso-Garćıa et al., 2021b),

and to increase the generalization of the results obtained with the test set

(Barroso-Garćıa et al., 2021a,b). In all of them, 1000 bootstrap replicates

were used. In those studies where bootstrapping was applied to the training

set in selection and classification stage, the bootstrap replicate sets used for

each stage were different to keep data independence.
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Results

This chapter is devoted to the most relevant results obtained throughout the Doc-

toral Thesis. Since the main objective is to characterize overnight AF to help

in the pediatric OSA diagnosis, the chapter has been organized according to the

different feature extraction approaches used to characterize the pediatric AF sig-

nal: 5.1 combination of CTM and spectral entropies, 5.2 RP-derived features, 5.3

bispectral features, and 5.4 wavelet features. Note that the conducted characteri-

zation is directly related to the studies included in the compendium of publications

of this Doctoral Thesis (please see Appendix A).

5.1 Central tendency measure and spectral en-

tropies

AF and RRV respiratory signals were characterized and their complementarity was

also evaluated. The characterization was raised from two different perspectives,

the variability study and the irregularity study of both signals. In order to conduct

these studies, CTM was used to quantify signal variability and first to third order

spectral entropies were used to quantify signal irregularity.

CTM was calculated for 5-min segments. Then, the values obtained for these

segments were averaged to obtain the CTM of each subject. CTM computation

involved defining the optimum value of the radius r. Thus, the training set was

used to find the value that maximized the correlation between CTM and AHI. The

Spearman’s correlation coefficient (RHO) was used for this. The results obtained

for AF and RRV (r = 0.0004 and r = 7, respectively) are shown in Figure 5.1.

67



68 Chapter 5. Results

Figure 5.1: Spearman’s correlation coefficient (RHO) obtained in the optimization of
the radius r with the training set for (a) airflow signal (AF) and (b) respiratory rate
variability signal (RRV). Figure taken from Barroso-Garćıa et al. (2017).

Regarding the spectral entropies, these were directly obtained from the PSD

of each subject. PSD was computed by means of 215-sample Hamming windows

(≈5-min), 50% overlap, and 216-point DFT. Figure 5.2 displays the averaged PSD

by OSA severity groups in the training set. As can be seen, almost all spectral

information of AF is located in the frequency range 0–0.6 Hz. Consequently, the

spectral entropies from AF were computed for this frequency range. Similarly, not

enough spectral content was found above 0.2 Hz for RRV signal. Thus, its spectral

entropies were computed in the range 0–0.2 Hz.

Afterwards, CTM and spectral entropies of AF and RRV from the training set

were subjected to a statistical analysis. The obtained results are presented in Ta-

ble 5.1. As can be seen, the CTM and the spectral entropies showed an increasing

tendency in AF signal, particularly in the severely affected children. Statistically

significant differences (p-value < 0.01) were found among severity groups in CTM ,

SE1, and SE2 by means of Kruskal-Wallis test. When Mann-Whitney U test was

applied, the severe OSA group showed statistically significant differences (p-value

< 0.01) with the no-OSA and mild OSA groups in CTM , SE1, and SE2 from

AF, but only SE2 also obtained significant differences (p-value < 0.05, according

to the number of involved subjects) with the moderate OSA group. In contrast,

RRV did not show clear tendencies in any spectral entropy and no statistically

significant differences were found among severity groups in them. However, the

CTM from RRV showed a clear decreasing tendency as AHI increased, as well

as significant differences (p-value < 0.01) when Kruskal-Wallis test was applied.

According to Mann-Whitney U test, the severe OSA group showed statistically

significant differences (p-value < 0.01 or p-value < 0.05, depending on the number

of involved subjects) with the rest of the groups. Moreover, significant differences
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Figure 5.2: Averaged PSD of the four OSA severity groups (i.e. no-OSA, mild, mod-
erate, and severe) in the training set for (a) airflow signal (AF) and (b) respiratory rate
variability signal (RRV). Figure extracted from Barroso-Garćıa et al. (2017).

Table 5.1: Value of the central tendency measure and the spectral entropies by OSA
severity group.

Feature No-
OSA

Mild
OSA

Moderate
OSA

Severe
OSA

RHO p-value

CTMAF 0.06 [0.04] 0.06 [0.04] 0.06 [0.04] 0.10 [0.09] 0.2992 < 0.01
SE1

AF 0.81 [0.06] 0.83 [0.08] 0.83 [0.12] 0.88 [0.10] 0.2769 < 0.01
SE2

AF 0.64 [0.08] 0.66 [0.08] 0.65 [0.15] 0.73 [0.14] 0.1957 < 0.01
SE3

AF 0.58 [0.07] 0.58 [0.10] 0.56 [0.10] 0.63 [0.17] 0.1166 0.0249
CTMRRV 0.99 [0.02] 0.98 [0.02] 0.97 [0.03] 0.96 [0.08] −0.3800 < 0.01
SE1

RRV 0.91 [0.05] 0.90 [0.07] 0.90 [0.06] 0.89 [0.10] −0.0943 0.2453
SE2

RRV 0.81 [0.14] 0.78 [0.16] 0.81 [0.11] 0.75 [0.19] −0.0412 0.2357
SE3

RRV 0.69 [0.22] 0.65 [0.25] 0.74 [0.25] 0.64 [0.23] 0.0126 0.4132

Data are presented as median [interquartile range]. RHO: Spearman’s correlation with the apnea-
hypopnea index, p-value: result of Kruskal-Wallis test with Bonferroni correction.
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(p-value < 0.05) were also found between the no-OSA and moderate OSA groups.

That is, significant differences were obtained with CTM from RRV in 4 of 6

possible comparisons. In addition, this feature obtained the highest Spearman’s

correlation in absolute value with the AHI in the training set.

The results statistically obtained for each feature are consistent with the results

achieved in the feature selection stage. In this regard, FSLR was used as selection

method. Thus, 8 features (4 from AF signal and 4 from RRV signal) of the

training set formed the FSLR algorithm input. According to the common AHI

cut-off points, SE1 from AF and CTM from RRV were selected by FSLR for 1 e/h,

while it selected SE2 from AF and CTM from RRV for 5 and 10 e/h. Thereby,

three binary LR classifiers were constructed and trained with the training set, one

for each AHI cut-off point: LR1 fed with SE1 from AF and CTM from RRV, LR5

fed with SE2 from AF and CTM from RRV, and LR10 fed with SE2 from AF and

CTM from RRV. Afterwards, each of these models was evaluated with the test

set. The diagnostic performance obtained with each of them is shown in Table 5.2.

As can be observed, a moderate-to-high diagnostic performance was reached for 5

and 10 e/h, as well as a fairly balanced Se-Sp pair for the three cut-off points.

5.2 Features derived from recurrence plots

The next step was to characterize the underlying dynamics and the phase-space

of pediatric overnight AF. Thus, RPs were used for this purpose. As stated in

the methodology section 4.2.3, the computation parameters τ , m, and ε were

optimized with the training set using AMI, FNN, and Spearman’s correlation

methods, respectively. The optimum values obtained by these methods were the

following: τ = 0.9 s,m = 3, and ε = 10−2·σ. Once the calculation parameters were

optimized, RPs were obtained for 30-s segments of AF signal. Afterwards, RPs

obtained by segments were averaged to obtain the global RP from each subject.

Table 5.2: Diagnostic performance obtained by means of LR models for 1, 5, and 10
e/h.

AHI Model Se(%) Sp(%) Acc(%) PPV(%) NPV(%) LR+ LR– AUC

1 LR1 60.5 58.6 60.0 81.2 25.0 1.1 0.9 0.59
5 LR5 65.0 80.6 76.0 70.7 78.2 3.6 0.4 0.78
10 LR10 83.3 79.0 80.0 52.8 93.5 4.0 0.2 0.80

AHI: apnea-hypopnea index, Se: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive pre-
dictive value, NPV: negative predictive value, LR+: positive likelihood ratio, LR–: negative
likelihood ratio, AUC: area under receiver-operating characteristic curve.
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An exploratory analysis was conducted to study the behavior of AF-extracted

RPs according to the OSA severity degree of the subjects. In this regard, Figure 5.3

shows the averaged RPs by severity group in the training set. As can be seen in

this figure, the highest concentration of recurrences (red-orange region) is located

close to the main diagonal of RP. However, there is a fading of recurrences towards

the corners of RP (dark blue region) as the distance to the main diagonal is

greater, which is a common evidence of non-stationary signals (Marwan et al.,

2007). Note that there is a greater density of recurrences around the diagonal

as the OSA severity increases, thus its fading towards the corners is slower in

severely affected children. Consequently, a greater number of diagonal and vertical

structures appear in these cases.

This led us to perform a recurrence quantification analysis (RQA) by means of

the extraction of 9 RP-based features, as detailed in section 4.2.3. These features

were computed from RPs obtained for each 30-s segment. The values calculated

Figure 5.3: Averaged RP of the groups (a) no-OSA, (b) mild OSA, (c) moderate OSA,
and (d) severe OSA in the training set. Figure taken from Barroso-Garćıa et al. (2020).
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from each segment were averaged to obtain the RP features of each subject. Then,

the 9 features were subjected to a statistical analysis. According to the results

presented in Table 5.3, the features ENTR, LAM , LEN , Lmax, REC, TT , and

Vmax showed an increasing tendency as the OSA severity degree increased, while

this tendency was decreasing for TREND. In the case of DET , it did not show a

clear tendency. It did not also present statistically significant differences (p-value

≥ 0.01) between the OSA severity groups when Kruskal-Wallis and Mann-Whitney

tests were applied with Bonferroni correction. The remaining RP features showed

significant differences (p-value < 0.01) between the OSA severity groups when they

underwent the Kruskal-Wallis test. In this regard, the severe OSA group presented

significant differences (p-value < 0.01) with the other groups in all other features

when Mann-Whitney test was applied. It was observed that LAM and Lmax also

manifested statistical differences between no-OSA and moderate OSA, as well as

between mild and moderate OSA groups. In addition, these 2 features obtained

higher Spearman’s correlation with the AHI in the training set.

The results presented statistically for each feature are consistent with those

obtained in the next methodological stage, the feature selection. In this case,

FCBF was used as selection method together with the bootstrapping validation

method. Thus, the algorithm was applied to 1000 replicates obtained from the

training set and the features selected at least 500 times formed the optimum

subset. In this regard, the only feature selected more than 500 times was Lmax

(Figure 5.4a), which was one of those that showed the most differences between

OSA severity groups. Moreover, the complementarity between the information

extracted from the RPs of AF and ODI3 was also evaluated in this study. Hence,

this was incorporated into the selection process together with the 9 RP-derived

features. In this case, the 2 features selected were Lmax and ODI3 (Figure 5.4b).

Table 5.3: Value of the RP-derived features by OSA severity group.

Feature
No-
OSA

Mild
OSA

Moderate
OSA

Severe
OSA

RHO p-value

DET 0.79 [0.17] 0.80 [0.20] 0.78 [0.16] 0.81 [0.19] 0.0754 0.3017
ENTR 1.05 [0.59] 1.03 [0.66] 1.10 [0.58] 1.40 [0.84] 0.3003 < 0.01
LAM 0.11 [0.07] 0.11 [0.09] 0.13 [0.10] 0.22 [0.15] 0.4649 < 0.01
LEN 10.28 [4.65] 10.01 [4.93] 11.15 [6.22] 16.23 [12.44] 0.3712 < 0.01
Lmax 55.06 [39.47] 57.25 [39.40] 68.23 [43.80] 140.76 [159.53] 0.4436 < 0.01

REC(10−4) 1.24 [2.33] 1.10 [2.61] 1.47 [3.37] 2.87 [5.23] 0.2415 < 0.01

TREND(10−4) −6.67 [12.17] −6.13 [12.76] −7.72 [14.73] −16.78 [25.99] −0.2717 < 0.01
TT 1.07 [0.85] 1.07 [0.82] 1.24 [0.80] 1.70 [1.24] 0.3568 < 0.01
Vmax 2.92 [2.46] 2.81 [2.43] 3.44 [3.04] 5.25 [5.52] 0.3364 < 0.01

Data are presented as median [interquartile range]. RHO: Spearman’s correlation with the apnea-
hypopnea index, p-value: result of Kruskal-Wallis test with Bonferroni correction.
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Figure 5.4: Results obtained with fast correlation-based filter for (a) RP-derived fea-
tures from AF and (b) RP-derived features from AF and ODI3.

Therefore, 2 BY-MLP predictive models were built with the training set to

estimate AHI of pediatric subjects: BY-MLPAF fed only with AF features (Lmax)

and BY-MLPAF,ODI3 fed with the optimum subset that combines both approaches

(Lmax and ODI3). In order to optimize NH , this was varying from 1 to 30 in steps

of 1. Loo-cv validation method was applied to the training set and the averaged k

was obtained for each value of NH . The optimal value of NH was established as

the one with which the highest value of k was obtained: NH = 17 for BY-MLPAF

and NH = 16 for BY-MLPAF,ODI3.

Once the hyperparameters were optimized, the models were trained with the

training set and then evaluated with the test set. The diagnostic performance

achieved by each model for the AHI cut-off points 1, 5, and 10 e/h in test set is

shown in Table 5.4. As can be observed, BY-MLPAF model reached a moderate

diagnostic performance but improving the one individually obtained by ODI3 in

most of the diagnostic metrics for 1 e/h. These results, both those of AF and

ODI3, were outperformed by the BY-MLPAF,ODI3 model that combines both

approaches. Note that in addition to obtain higher diagnostic performance, BY-

MLPAF,ODI3 overcame the limitations of BY-MLPAF (OSA severity overestima-

tion) and ODI3 (OSA severity underestimation) in 1 and 5 e/h. Thus, it is notable

the LR– value ≤ 0.01 reached for 1 e/h, the balanced Se-Sp pair achieved for 5 e/h,

as well as the LR+ value ≥ 10 obtained for 10 e/h by BY-MLPAF,ODI3 model.
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Table 5.4: Diagnostic performance obtained by means of BY-MLP models and ODI3
for 1, 5, and 10 e/h.

AHI Model Se(%) Sp(%) Acc(%) PPV(%) NPV(%) LR+ LR– AUC

1
BY-MLPAF 99.3 4.2 81.1 81.4 60.0 1.0 0.2 0.67
BY-MLPAF,ODI3 97.7 22.2 83.2 84.1 69.6 1.3 0.1 0.81
ODI3 59.9 86.1 64.9 94.8 33.7 4.3 0.5 0.82

5
BY-MLPAF 80.9 48.9 60.9 48.7 81.0 1.6 0.4 0.74
BY-MLPAF,ODI3 78.7 78.3 78.5 68.5 86.0 3.6 0.2 0.88
ODI3 69.5 89.4 81.9 79.7 83.0 6.5 0.3 0.88

10
BY-MLPAF 63.8 85.1 80.6 53.7 89.7 4.3 0.4 0.79
BY-MLPAF,ODI3 78.8 94.3 91.0 78.8 94.3 13.7 0.2 0.93
ODI3 81.3 88.5 87.0 65.7 94.6 7.1 0.2 0.92

AHI: apnea-hypopnea index, Se: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive pre-
dictive value, NPV: negative predictive value, LR+: positive likelihood ratio, LR–: negative
likelihood ratio, AUC: area under receiver-operating characteristic curve.

5.3 Bispectral features

The next step was to characterize the gaussianity and the phase coupling of pe-

diatric overnight AF, as well as the possible non-linear interactions between its

different frequency components. Thus, bispectrum was used for this purpose. It

was computed by means of 212-sample Hamming windows (≈30-s), 50% overlap,

and 213-point DFT. Figure 5.5 displays the averaged bispectrum by OSA severity

groups in the training set. Once the bispectrum was computed, the band corre-

sponding to the particular respiratory rate of each pediatric subject was extracted

from it. The bandwidth used to determine this band was 0.15 Hz. Figure 5.6 shows

the averaged bispectral band by severity group in the training set. As can be seen

in Figure 5.5, bispectrum reaches a greater amplitude in the frequency range 0.2–

0.4 Hz (yellow region), which corresponds to the normal breathing band shown in

Figure 5.6. However, bispectral power decreases in this band as the OSA severity

degree increases (from 0.017 Hz−1 for no-OSA to 0.008 Hz−1 for severe OSA) and

it is redistributed into other wider frequency ranges. Consequently, a new coupling

focus appears around 0.05 Hz as the AHI increases, possibly associated with the

occurrence of apneic events.

As stated in the methodology section 4.2.4, 13 bispectral features were

extracted from the adaptive band of each subject in order to quantify the

information contained therein. These 13 features were subjected to a statistical

analysis. The results are presented in Table 5.5. As can be seen, the features

Bmax, Btotal, H1, H2, H3, H4, and fm2 showed a decreasing tendency as the

OSA severity degree increased, while this tendency was increasing for BE1, BE2,
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Figure 5.5: Averaged bispectrum of the groups (a) no-OSA, (b) mild OSA, (c) moderate
OSA, and (d) severe OSA in the training set. Figure derived from Barroso-Garćıa et al.
(2021a).

BE3, PE, and fm1. In the case of Bmin, it experienced an increasing tendency

in the less severe groups. Regarding the obtained p-values, Bmin and fm1 did

not present statistically significant differences (p-value ≥ 0.01) between the OSA

severity groups when Kruskal-Wallis and Mann-Whitney tests were applied with

Bonferroni correction. In contrast, the rest of the bispectral features showed

significant differences (p-value < 0.01) between the OSA severity groups when

they underwent the Kruskal-Wallis test. Thus, the severe OSA group presented

significant differences (p-value < 0.01) with the rest of the groups in these features

when Mann-Whitney test was applied. In addition, it was observed that Bmax,

Btotal, H2, and H4 also manifested statistical differences between no-OSA and

moderate OSA groups, and Btotal between mild and moderate OSA groups.
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Figure 5.6: Averaged bispectral adaptive band of the groups (a) no-OSA, (b) mild
OSA, (c) moderate OSA, and (d) severe OSA in the training set. Figure obtained from
Barroso-Garćıa et al. (2021a)

Table 5.5: Value of the bispectral features by OSA severity group.

Feature No-
OSA

Mild
OSA

Moderate
OSA

Severe
OSA

RHO p-value

Bmax 0.03 [0.02] 0.03 [0.02] 0.02 [0.02] 0.01 [0.02] −0.4231 < 0.01
Bmin(10−4) 0.74 [1.02] 0.76 [0.95] 0.99 [1.25] 0.93 [1.54] 0.1147 0.0224
Btotal 0.54 [0.27] 0.52 [0.31] 0.43 [0.28] 0.22 [0.29] −0.4659 < 0.01
BE1 5.61 [0.33] 5.61 [0.36] 5.68 [0.38] 5.89 [0.48] 0.3235 < 0.01
BE2 4.60 [0.54] 4.59 [0.67] 4.65 [0.70] 4.95 [0.89] 0.2283 < 0.01
BE3 3.92 [0.75] 3.96 [0.78] 3.94 [0.68] 4.20 [0.98] 0.1725 < 0.01
PE 1.78 [0.56] 1.81 [0.57] 1.77 [0.58] 1.95 [0.64] 0.1695 < 0.01
H1 −551.47 [50.71]−551.76 [60.39]−568.31 [52.97]−611.34 [115.67] −0.3338 < 0.01
H2 −68.54 [7.35] −69.83 [9.04] −71.75 [8.67] −80.15 [16.14] −0.4357 < 0.01
H3 −484.66 [76.22]−494.51 [86.71]−510.21 [70.66]−571.55 [121.66] 0.3989 < 0.01
H4(107) −1.70 [0.73] −1.75 [0.81] −1.92 [0.80] −2.71 [1.66] −0.4173 < 0.01
fm1 7.72 [0.90] 7.87 [0.88] 7.88 [0.86] 7.93 [0.89] 0.0641 0.5911
fm2 5.91 [0.84] 5.93 [0.92] 5.86 [0.77] 5.61 [1.06] −0.1576 < 0.01

Data are presented as median [interquartile range]. RHO: Spearman’s correlation with the apnea-
hypopnea index, p-value: result of Kruskal-Wallis test with Bonferroni correction.
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The results statistically presented for each feature are consistent with those

obtained in the next methodological stage, the feature selection. FCBF was used

as selection method together with a bootstrap method. Thus, the algorithm was

applied to 1000 replicates obtained from the training set. Figure 5.7 displays the

SU between each pair of features as the median value of the 1000 iterations. Note

that the features from the same bispectral approach share a lot of information with

each other (SU ≥ 0.5). Bmax and Btotal also share sustancial informacion with the

entropy-based features and moment-based features, respectively. However, lower

SU values were found comparing Bmin and PE with the rest of bispectral features.

Thereby, the features selected as relevant and non-redundant a number of times

equal to or greater than the average significance formed the optimum subset.

In this regard, Bmin, BE1, H2, and fm2 were selected more than 182.9 times

(Figure 5.8a). Moreover, the complementarity between the information extracted

from the bispectrum of AF and ODI3 was also evaluated in this study. Hence,

this was incorporated into the selection process together with the 13 bispectral

features. In this case, the features selected more than 212.6 times were BE1, H2,

fm2, and ODI3 (Figure 5.8b).

Figure 5.7: Heat map of the symmetric uncertainty between bispectral features and
ODI3. The color scale represents the median value of 1000 bootstrap replicates. Figure
derived from Barroso-Garćıa et al. (2021a).
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Figure 5.8: Results obtained with fast correlation-based filter for (a) bispectral features
from AF and (b) bispectral features from AF and ODI3.

Therefore, 2 MLP predictive models were built with the training set to estimate

AHI of pediatric subjects: MLPAF fed only with AF features (Bmin, BE1, H2,

and fm2) and MLPAF,ODI3 fed with the optimum subset that combines both

approaches (BE1, H2, fm2, and ODI3). In order to optimize the NH -α pair, NH

ranged from 1 to 40 in steps of 1 and α ranged from 1 to 20 also in steps of 1.

The loo-cv validation method was applied to the training set and the averaged k

was obtained for each value of NH -α pair. The optimal values of NH and α were

established as those with which the highest value of k was reached: NH = 39 and

α = 7 for MLPAF , and NH = 2 and α = 8 for MLPAF,ODI3.

Once the hyperparameters were optimized, the models were trained with the

training set and then evaluated with the test set. In order to obtain more gener-

alizable results, the evaluation was performed in 1000 bootstrap replicates. The

performance and agreement metrics were computed according to the bootstrap

0.632 procedure. Moreover, possible significant differences (p-value < 0.001) be-

tween models were assessed by means of Mann-Whitney U test together Bonferroni

correction. The diagnostic performance achieved by each model for the AHI cut-

off points 1, 5, and 10 e/h in test set is shown in Table 5.6. In addition, its

global performance is shown in Table 5.7. Data are presented as median and 95%

confidence interval in both tables.

As can be observed, MLPAF model reached a moderate diagnostic performance

but significantly improving (p-value < 0.001) the one individually obtained by

ODI3 in Se and Acc for 1 e/h, as well in Se for 5 e/h. Even so, the accuracies

obtained with MLPAF and ODI3 were significantly outperformed (p-value<0.001)
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Table 5.7: Global performance obtained by means of MLP models and ODI3 for 1, 5,
and 10 e/h. Data presented as median [95% confidence interval].

Model k4 ICC Acc4 (%)

MLPAF 0.14 [0.11, 0.18] a,b 0.52 [0.41, 0.59] a,b 37.08 [34.17, 40.15] a,b

MLPAF,ODI3 0.38 [0.34, 0.42] a,c 0.88 [0.81, 0.91] a 57.94 [55.02, 61.09] a,c

ODI3 0.29 [0.26, 0.33] b,c 0.88 [0.82, 0.90] b 46.21 [43.39, 49.60] b,c

k4: four-class Cohen’s kappa, ICC: intra-class correlation coefficient, Acc4: four-class accuracy,
aSignificant differences (p-value < 0.001) between MLPAF and MLPAF,ODI3, bSignificant dif-
ferences (p-value < 0.001) between MLPAF and ODI3, cSignificant differences (p-value < 0.001)
between MLPAF,ODI3 and ODI3. All differences were evaluated using Mann-Whitney U test
with Bonferroni correction.

by the model that combines both approaches (MLPAF,ODI3). Note that in addition

to get a statistically higher diagnostic performance, MLPAF,ODI3 overcame the

limitations of MLPAF (OSA severity overestimation) and ODI3 (OSA severity

underestimation) in 1 and 5 e/h. Moreover, it is notable the LR– value ≤ 0.01

reached for 1 e/h, the balanced Se-Sp pair achieved for 5 e/h, as well as the LR+

value ≥ 10 obtained for 10 e/h by MLPAF,ODI3 model. This model also achieved a

significantly higher global performance (p-value < 0.001) than MLPAF and ODI3

in terms of k and Acc4.

5.4 Wavelet features

The final step was to characterize the pediatric overnight AF by means of DWT.

Thus, DWT was applied to 216-sample segments (≈10-min) of AF signal. Haar

and Daubechies-5 mother wavelets were used to compute the coefficients with and

without sign of the 8th level detail signal (0.1953–0.3906 Hz, corresponding to

normal breathing band in children). The wavelet features were extracted for each

of them. Thus, the average Spearman’s correlation of the D8-extracted features

with Haar mother wavelet was 0.21 for coefficients with sign and 0.32 for coeffi-

cients without sign. In the same way, the average Spearman’s correlation of the

D8-extracted features with Daubechies-5 mother wavelet was 0.24 for coefficients

with sign and 0.34 for coefficients without sign. Therefore, the D8-extracted fea-

tures with Daubechies-5 mother wavelet and without sign were used in subsequent

analysis.

Thus, Figure 5.9 and Figure 5.10 show the averaged D8 detail signal by OSA

severity groups in the training set, as well as the distribution of its coefficients

(computed without sign through Daubechies-5 mother wavelet), respectively. As

can be seen, D8 detail signal amplitude notably decreases as the AHI increases.
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Figure 5.9: Averaged 8th level detail signal of the groups no-OSA, mild OSA, moderate
OSA, and severe OSA in the training set. Figure obtained from Barroso-Garćıa et al.
(2021b).

Figure 5.10: Coefficient distribution of 8th level detail signal for the groups no-OSA,
mild OSA, moderate OSA, and severe OSA in the training set. Figure extractes from
Barroso-Garćıa et al. (2021b).

This fact leads to the coefficients of D8 from the most severely-affected subjects

being concentrated close to zero value. Consequently, its distribution is more

asymmetrical and pointed in these cases.
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As stated in the methodology section 4.2.5, 8 wavelet features were extracted

in order to quantify the information contained in the D8 detail signal of each

subject, as well in the full wavelet outline. These features were calculated from

the detail coefficients obtained for each 216-sample segment. The values computed

by segments were averaged to obtain the wavelet features of each subject. Then,

they features were subjected to a statistical analysis to study its behavior according

to the OSA severity degree of the subjects. Thus, Table 5.8 displays the value of

each wavelet feature as median and interquartile range from the no-OSA, mild,

moderate, and severe OSA groups, as well as its Spearman’s correlation with the

AHI, and the result from Kruskal-Wallis test with Bonferroni correction to evaluate

possible differences among OSA severity groups in the training set. In this regard,

the featuresM1D8 ,M2D8 ,MaxD8 ,MinD8 , and ED8 showed a decreasing tendency

as the AHI increased, while this tendency was increasing for M3D8 and M4D8 . In

the case of WE, it did not show a clear tendency. Regarding the obtained p-

values, all wavelet features showed significant differences (p-value < 0.01) between

the OSA severity groups when the Kruskal-Wallis test was applied. In addition,

M3D8 and MinD8 were the wavelet features that obtained highest correlation in

absolute value with the AHI.

These results presented visually and statistically for each wavelet feature are

consistent with those obtained in the feature selection stage. In this regard, FCBF

was used as selection method together with a bootstrapping method. Thus, the

algorithm was applied to 1000 replicates obtained from the training set and the

features selected as relevant and non-redundant a number of times equal to or

greater than the average significance formed the optimum subset. As can be

seen in Figure 5.11a, M3D8
was the only feature selected more than 125.25 times.

Moreover, the complementarity between the information provided by the wavelet

Table 5.8: Value of the wavelet features by OSA severity group.

Feature No-
OSA

Mild
OSA

Moderate
OSA

Severe
OSA

RHO p-value

M1D8
2.62 [0.97] 2.46 [0.86] 2.29 [1.03] 1.67 [1.08] -0.4024 < 0.01

M2D8
2.64 [1.27] 2.34 [1.20] 2.27 [1.34] 1.61 [1.28] -0.3058 < 0.01

M3D8
0.25 [0.69] 0.29 [0.54] 0.50 [0.79] 1.05 [1.06] 0.4413 < 0.01

M4D8
2.87 [2.76] 2.98 [1.96] 3.58 [2.92] 5.32 [4.34] 0.3666 < 0.01

MaxD8
6.67 [1.09] 6.61 [0.99] 6.59 [1.36] 6.21 [1.44] -0.1662 < 0.01

MinD8
(10−3) 2.87 [0.84] 2.60 [0.93] 2.52 [1.14] 1.86 [1.06] -0.4154 < 0.01

ED8 (10
3) 2.68 [1.56] 2.36 [1.41] 2.19 [1.67] 1.33 [1.44] -0.3809 < 0.01

WE 0.26 [0.04] 0.25 [0.04] 0.26 [0.05] 0.28 [0.05] 0.2793 < 0.01

Data are presented as median [interquartile range]. RHO: Spearman’s correlation with the apnea-
hypopnea index, p-value: result of Kruskal-Wallis test with Bonferroni correction.
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Figure 5.11: Results obtained with fast correlation-based filter for (a) wavelet features
from AF and (b) wavelet features from AF and ODI3.

features from AF and ODI3 was also evaluated in this study. Hence, this was

incorporated into the selection process together with the 8 wavelet features. In

this case, the features selected more than 205.33 times were M3D8
, MinD8

, and

ODI3 (Figure 5.11b).

Therefore, 2 AdaBoost.M2 multi-class classifiers were built with the training

set to discriminate pediatric subjects according to their OSA severity degree:

ABAF fed with wavelet features from AF (M3D8
) and ABAF,ODI3 fed with the

optimum subset that combines both approaches (M3D8
, MinD8

, and ODI3). In

order to optimize the L-α pair, L varied in the range [1:9 10:10:90 100:100:900

1000:1000:10000] and α ranged from 0.1 to 1 in steps of 0.1. Bootstrapping

validation method was applied to the training set (1000 replicates) and k value

for each L-α pair was estimated by means of 0.632 bootstrap procedure. The

optimal values of L and α were established as those with which the highest k

value was reached: L = 8000 and α = 1 for ABAF , and L = 3000 and α = 1

for ABAF,ODI3. In the same way, 2 BY-MLP predictive models were built with

the training set to estimate AHI of pediatric subjects: BY-MLPAF fed only with

M3D8 and BY-MLPAF,ODI3 fed M3D8 , MinD8 , and ODI3. In order to optimize

NH value, it ranged from 1 to 40 in steps of 1. Bootstrapping was applied to

the training set (1000 replicates) and k value was estimated by means of 0.632

bootstrap procedure. The maximum value of k was obtained with NH = 1 for

BY-MLPAF and NH = 36 for BY-MLPAF,ODI3.
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Once the hyperparameters were optimized, the models were trained with the

training set and then evaluated with the test set. In order to obtain more gener-

alizable results, the evaluation was carried out in 1000 bootstrap replicates. The

performance and agreement metrics were computed according to the bootstrap

0.632 procedure. Moreover, possible significant differences (p-value < 0.001) be-

tween models were assessed by means of Mann-Whitney U test together Bonferroni

correction. The diagnostic performance achieved by each model for the AHI cut-

off points 1, 5, and 10 e/h in test set is shown in Table 5.9. In addition, its

global performance is shown in Table 5.10. Data are presented as median and

95% confidence interval in both tables.

As can be observed, ABAF and BY-MLPAF models reached a moderate di-

agnostic performance but significantly improving (p-value < 0.001) the result ob-

tained by ODI3 in Se and Acc for 1 e/h, as well in Se for 5 e/h. Even so, the

diagnostic accuracies individually achieved with AF and ODI3 were significantly

outperformed (p-value < 0.001) by the models that combines both approaches:

ABAF,ODI3 and BY-MLPAF,ODI3. In this regard, BY-MLPAF,ODI3 reached the

highest diagnostic accuracy for 1 and 5 e/h, while ABAF,ODI3 achieved it for 10

e/h. Note that in addition to get a statistically higher diagnostic performance,

these models overcame the limitations of ABAF and BY-MLPAF (OSA severity

overestimation), as well as the limitations of ODI3 (OSA severity underestima-

tion) in 1 and 5 e/h. Moreover, ABAF,ODI3 and BY-MLPAF,ODI3 also achieved

a significantly higher global performance (p-value < 0.001) than the individual

approaches in terms of k2, k4, and Acc4.
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Table 5.10: Global performance obtained by means of AB and BY-MLP models, as well
with ODI3 for 1, 5, and 10 e/h. Data presented as median [95% confidence interval].

Model k4 Acc4 (%)

ABAF 0.11 [0.08, 0.15] a,b,c,d 30.52 [27.90, 33.37] a,b,c,d

ABAF,ODI3 0.40 [0.36, 0.45] a,e,f,g 57.46 [54.47,60.60] a,e,f

BY-MLPAF 0.07 [0.03, 0.10] b,e,h,i 32.53 [29.87, 35.20] b,e,h,i

BY-MLPAF,ODI3 0.41 [0.36, 0.45] c,f,h,j 58.57 [55.36, 61.47] c,f,h,j

ODI3 0.38 [0.34, 0.43] d,g,i,j 57.23 [53.95, 60.22] d,i,j

k4: four-class Cohen’s kappa, Acc4: four-class accuracy, aSignificant differences (p-value < 0.001)
between ABAF and ABAF,ODI3, bSignificant differences (p-value < 0.001) between ABAF and
BY-MLPAF , cSignificant differences (p-value < 0.001) between ABAF and BY-MLPAF,ODI3,
dSignificant differences (p-value < 0.001) between ABAF and ODI3, eSignificant differences (p-
value < 0.001) between ABAF,ODI3 and BY-MLPAF , fSignificant differences (p-value < 0.001)
between ABAF,ODI3 and BY-MLPAF,ODI3, gSignificant differences (p-value < 0.001) between
ABAF,ODI3 and ODI3, hSignificant differences (p-value < 0.001) between BY-MLPAF and
BY-MLPAF,ODI3, iSignificant differences (p-value < 0.001) between BY-MLPAF and ODI3,
jSignificant differences (p-value < 0.001) between BY-MLPAF,ODI3 and ODI3. All differences
were evaluated using Mann-Whitney U test with Bonferroni correction.



Chapter 6

Discussion

The study presented in this Doctoral Thesis focuses on characterizing overnight AF

to help determine the presence and severity of OSA in children. In order to carry

out this characterization, single-channel AF signal was automatically analyzed

using different approaches: CTM, spectral entropies, RP, bispectrum, and wavelet.

Each of these approaches was able to adapt to the intrinsic properties of the signal,

such as non-linearity and non-stationarity, allowing us to uncover behaviors of

pediatric nocturnal AF that were previously unknown in OSA context. Thus, the

main findings of the study developed throughout this Thesis are discussed in the

present chapter. Afterwards, the results obtained with each approach are discussed

from the complementarity and performance viewpoint. In addition, a comparison

with other state-of-the-art studies is also carried out. Finally, the main study

limitations are exposed in the last section of this chapter.

6.1 Characterization of nocturnal AF in children

6.1.1 Central tendency measure and spectral entropies

Each of the different methodological approaches used in this Doctoral Thesis re-

vealed OSA-related changes in the behavior of pediatric overnight AF. In this re-

gard, the CTM from AF experienced an increasing tendency as severity increased,

while it was decreasing for the CTM from RRV. This fact suggests that the OSA

presence decreases the variability of AF and increases the one of RRV. This was

supported by the statistical analysis, where the CTM from AF of the severe OSA

group experienced statistically significant differences with the no-OSA and mild

87
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OSA groups. Thus, the variability of AF would be especially useful to reflect the

severe OSA particularities. Regarding the CTM from RRV, this showed signif-

icant differences between the severe OSA and the rest of the groups, as well as

between the no-OSA and moderate OSA groups. Hence, the variability could be

a common characteristic of the disease in RRV signal and, consequently, a useful

indicator for its diagnosis.

In the case of the spectral entropies of AF, these showed an increasing ten-

dency as the AHI was higher. This agrees with the Figure 5.2(a), where it was

observed that the subjects with greater severity presented a flatter spectrum in the

band 0–0.6 Hz. This tendency suggests that OSA could increase the irregularity of

AF, causing its oscillatory behavior to evolve without a specific way. In addition,

differences between SE1, SE2, and SE3 could be observed. While SE3 only man-

ifested significant differences between the no-OSA and severe OSA groups, SE1

also showed those between the mild and severe OSA groups. In contrast, only

SE2 presented differences between the severe OSA and all other groups, including

the moderate OSA group. This fact would indicate that SE2 can better reflect

changes of irregularity caused by apneic events in AF and, thus, be particularly

useful in severely affected cases. Regarding the spectral entropies of RRV, these

showed high values, but without statistically significant differences between the

OSA severity groups. This agrees with the Figure 5.2(b), since no visual differ-

ences could be appreciated in the flatness of the PSDs in the band 0–0.2 Hz. This

suggests that RRV signal has a mostly irregular behavior regardless of the presence

and severity degree of OSA.

6.1.2 Features derived from recurrence plots

The variability and irregularity changes experienced by AF in the presence of ap-

neic events also agree with what was revealed by the RP-derived features REC

and ENTR. These features showed an increasing tendency as the severity degree

increased. Hence, OSA would reduce the variability (high REC) and increase

the irregularity (high ENTR) of AF signal, which supports the findings made by

means of the CTM and the spectral entropies of AF. In addition, the high re-

currence density (REC) achieved by the most severe groups was consistent with

the exploratory analysis conducted (Figure 5.3), where it was observed that the

RP presented a greater number of recurrences in those cases. Since a recurrence

indicated the existence of a relationship between 2 phase-space trajectories (same

state in 2 different trajectories), this increase of recurrences revealed a greater
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phase coupling in the groups with higher OSA severity. It was also observed that

the recurrences faded towards the corners of the RP, which is a common mani-

festation of non-stationary time series. Such an effect occurred in the four OSA

groups, suggesting that AF signal has a mostly non-stationary behavior. However,

higher absolute values of TREND were reached as the AHI increased, indicating

that apneic events could increase the non-stationarity degree of AF. Regarding

the complexity, LAM , TT , and Vmax experienced a clear increasing tendency as

the OSA severity was greater. This fact suggests that OSA increases the duration

of the laminar structures of AF (high Vmax), causing the signal to not change or

change very slowly (high LAM) since its trajectories remain longer trapped in the

same phase state (high TT ). Consequently, apneic events would be reducing the

complexity of AF signal. In the case of Lmax and LEN , these also experienced

higher values with increasing AHI. Hence, OSA could increase the time during

which the AF trajectories run in close phase-space states, causing these to diverge

more slowly (high Lmax) and increasing the average prediction time of AF (high

LEN). Regarding the predictability, DET did not show clear tendencies or statis-

tical differences between severity groups. This fact suggests that AF signal has a

mostly predictable behavior regardless of the presence and severity degree of OSA.

However, REC, ENTR, TREND, TT , Vmax, and LEN presented significant dif-

ferences between the severe OSA group and the rest of the groups. Hence, these

would be especially useful to reflect the severe OSA particularities in AF. In ad-

dition, it was observed that Lmax and LAM also manifested statistical differences

between mild and moderate OSA groups, respectively. Thus, the exponential di-

vergence and the laminarity could be common manifestations of pediatric OSA in

AF signal and, consequently, useful indicators for its diagnosis.

6.1.3 Bispectral features

This approach provided information about the phase coupling, the gaussianity,

and the non-linear interaction of the harmonic components of AF signal. As seen

in the exploratory analysis (Figure 5.5 and 5.6), there was a coupling focus around

the normal breathing band (0.20–0.40 Hz). As the AHI increased, this focus faded

while another appeared at low frequencies (around 0.05 Hz). This fact suggests

that apnea and hypopnea events reduce the bispectral amplitude and phase cou-

pling of AF in the normal breathing band and reallocate it in other OSA-related

frequency components. According to this bispectral amplitude reduction, Bmax

and Btotal experienced a decrease with increasing severity. Due to the gaussian
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components are nullified in high order spectrums (Chua et al., 2010), this de-

creasing tendency suggests that OSA reduces the non-gaussianity degree of AF

signal. Regarding the bispectral entropies (BE1, BE2, and BE3) and the phase

entropy (PE), these experienced an increasing tendency as the AHI was higher.

Thus, OSA could increase the irregularity of AF signal, disturbing its oscilla-

tory behavior and causing it to evolve without following a specific amplitude and

phase way. Moreover, H1, H2, H3, and H4 presented a decreasing tendency as

the severity increased. This suggests that OSA reduces the non-linear interaction

between the AF frequency components in the normal breathing band (low H1).

In addition, apneic events would also reduce the non-linear interaction between

the harmonic components of AF signal (low H2), leading to less phase coupling

and fewer affected components (low H3 and H4). Furthermore, WCOB revealed

that OSA modify the coupling focus location. The slightly increasing and decreas-

ing tendency of fm1 and fm2, respectively, suggests that OSA shift the activity

focus toward lower frequency components. Regarding the minimum coupling of

the adaptive band, Bmin did not show clear tendencies or statistical differences

between severity groups. However, BE1, BE2, BE3, PE, H1, H3, and fm2 pre-

sented significant differences between the severe OSA group and the rest of the

groups. Thus, these could be regarded as a characteristic of the highest develop-

ment of the disease. Moreover, Bmax, Btotal, H2, and H4 also showed differences

between the no-OSA and moderate OSA groups, and Btotal between the mild and

moderate OSA groups. Thus, these could be common manifestations of pediatric

OSA in AF signal and, consequently, useful indicators for its diagnosis.

6.1.4 Wavelet features

Concerning the wavelet analysis, it was observed that the pediatric subjects pre-

sented an AF detail signal with lower amplitude at the frequency range associated

to normal respiration as the OSA severity increased (Figure 5.9). This is con-

sistent with the decreasing tendency presented by M1D8
and M2D8

. Thus, the

activity reduction caused by apneic events in the normal breathing band could

decrease the value and dispersion range of the coefficients of the 8th level detail

signal from AF. Regarding the distribution of these coefficients, the asymmetry

and peakedness increased with severity (Figure 5.10). Consequently, M3D8 and

M4D8 showed an increasing tendency. This would indicate that OSA disturbs the

frequency distribution of pediatric AF in the normal breathing band. Particularly,

the recurrence of apneic events would reduce the frequency components of AF in
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this region, resulting in almost all its coefficients are close to 0. A decreasing ten-

dency of MaxD8
, MinD8

, and EnD8
could also be observed. This suggests that

OSA not only reduces the amplitude of D8 from AF, but also its energy at this

level of resolution. Moreover, WE experienced an increasing tendency. Hence,

apneas and hypopneas would reduce the energy produced in the normal respi-

ration frequency range and reallocate it into other frequency ranges associated

with the recurrence of these events. Consequently, OSA would cause AF signal to

be also more irregular in terms of energy. Note that all wavelet features showed

significant differences between severity groups. The greatest differences arose in

M1D8 , M3D8 , and MinD8 , which also showed the highest absolute correlation

with the AHI. This fact highlighted the usefulness of these features to reflect the

OSA-related particularities in AF signal.

Based on the aforementioned considerations, the different methodological ap-

proaches proposed in this Doctoral Thesis allow adapting to the intrinsic proper-

ties of pediatric overnight AF, characterizing its behavior, and providing useful

OSA-related information.

6.2 Complementarity

These OSA-related findings obtained from the pediatric AF characterization are

consistent with the results achieved in the selection stage.

As explained in Barroso-Garćıa et al. (2017), SE1, SE2, and CTM from AF

signal, as well as CTM from RRV signal, showed high separability between OSA

severity groups. When the information provided by both signals was combined,

FSLR algorithm automatically selected the features SE1 from AF and CTM from

RRV for 1 e/h, and SE2 from AF and CTM of RRV for 5 e/h and 10 e/h. This fact

allowed us to discover the following findings: (i) CTM from AF provides redundant

information despite its high separability, (ii) the variability information (quantified

by CTM) completes and is additional to the irregularity information (quantified

by SE) from these respiratory signals, and (iii) there is complementarity between

the information provided by AF and that extracted from RRV.

When pediatric overnight AF was characterized by means of RP-derived fea-

tures in Barroso-Garćıa et al. (2020), LAM and Lmax showed the highest sepa-

rability between OSA severity groups despite clear tendencies of the rest. This

supported that FCBF only selected Lmax as relevant and non-redundant feature

of the 9 extracted. Moreover, Lmax continued to be selected along with ODI3

when it was incorporated into the selection process. These facts revealed that:
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(i) despite its high separability, LAM provides redundant information, (ii) the

information about the AF phase-space exponential divergence provided by means

Lmax is more useful for characterizing the pediatric OSA particularities on its own

than other individual or combined RP features, and (iii) there is complementarity

between the RP-extracted information from AF signal and that provided by the

commonly used ODI3.

Regarding the bispectral analysis of AF signal conducted in Barroso-Garćıa

et al. (2021a), it was observed that features from the same bispectral approach

were redundant with each other (high SU values). Consequently, FCBF selected

one bispectral feature of each approach as optimum subset: Bmin, BE1, H2, and

fm2, i.e., the most relevant ones. In addition, BE1, H2, and fm2 continued to

be selected along with ODI3 when it was incorporated into the selection process.

These facts allowed us to make the following findings: (i) despite not having

individual utility (p-value ≥ 0.01 after Bonferroni correction), Bmin contributes

with additional information when it is combined with other bispectral features from

AF, (ii) the different bispectral approaches provide additional and complementary

information to each other, and (iii) there is complementarity between the bispectral

information from AF signal and that provided by the oximetric index ODI3.

In the case of the AF characterization using DWT in Barroso-Garćıa et al.

(2021b), M3D8
and MinD8

showed greater separability between OSA severity

groups than the rest of wavelet features. This supported that FCBF only se-

lected M3D8
as relevant and non-redundant feature of the 8 extracted. However,

both M3D8
and MinD8

were selected along with ODI3 when it was incorporated

into the selection process. These facts revealed that: (i) the information about

the distribution asymmetry of AF coefficients provided byM3D8
is more useful for

characterizing the pediatric OSA particularities than that individual and jointly

provided by other wavelet features, (ii) although MinD8
could be redundant to

M3D8
, it has shown to complement ODI3 with additional and different informa-

tion from that supplied by M3D8
, and (iii) there is complementarity between the

information obtained from wavelet analysis of pediatric AF and the information

provided by the ODI3.

All in all, the pediatric AF characterization through the different methodolog-

ical approaches showed complementarity with the ODI3. Note that the hypopnea

definition is based on a significant AF reduction that occurs along with a blood

oxygen desaturation ≥ 3% or an arousal (Berry et al., 2012). In this regard, the

AASM recommends the use of a thermistor sensor and a nasal pressure sensor to

score apneas and hypopneas, respectively (Berry et al., 2012). All AF recordings
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used in this research were acquired by thermistor. Although the results obtained

only with AF did not show signs of OSA severity underestimation due to sen-

sor type, this could have conditioned the detection of hypopneas. This effect

could have been reduced by incorporating the information about desaturations

provided by the ODI3. Consequently, an improvement would emerge in the hy-

popneic event characterization. In the same way, the AF analysis from different

perspectives would provide the necessary information to reduce the well-known

OSA severity underestimation of the ODI3 (Kirk et al., 2003; Oeverland et al.,

2002). Hence, the information provided by AF is additional and complete to the

information about the occurrence of blood oxygen desaturations provided by this

widely used oximetric index.

6.3 Diagnostic performance

This complementarity was not only manifested in the selection stage, but also in

the pattern recognition stage. In this regard, moderate-to-high accuracies were

achieved when the predictive models based on AF-extracted information were

evaluated: 60.0%–81.1% for 1 e/h, 57.1%–76.0% for 5 e/h, and 70.5%–80.6% for 10

e/h (Barroso-Garćıa et al., 2017, 2020, 2021a,b). The AHI threshold 10 e/h reached

the highest global diagnostic performance by jointly considering all metrics. This

agrees with what was found in the conducted exploratory and statistical analyses,

where severe OSA group presented more differences with respect to other OSA

groups in all methodological approaches applied in this research. Thus, the highest

Acc for 1 e/h and 10 e/h was obtained by means of RP-derived features (Barroso-

Garćıa et al., 2020). Although the variability and irregularity analysis of AF and

RRV obtained the lowest Acc for 1 e/h, this approach reached the highest Acc

for 5 e/h, as well as a much more balanced Se-Sp pair than the other approaches

for the three AHI thresholds (Barroso-Garćıa et al., 2017). It should be noted

that the predictive models only based on RP, bispectrum, or wavelets features

manifested an overestimation of the pediatric OSA severity degree for 1 and 5 e/h

(low Sp values), as well as an underestimation of it for 10 e/h (low Se values)

(Barroso-Garćıa et al., 2020, 2021a,b). In contrast, ODI3 presented a severity

underestimation for 1 and 5 e/h.

These unwanted under and overestimation effects were reduced when the AF-

extracted features were used along with the oximetric index. Combining both

approaches, the severity overestimation remained for 1 e/h. This fact was off-

set as the models fed with AF (RP, bispectral, or wavelet features) and ODI3
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significantly outperformed the diagnostic accuracy achieved only by the ODI3.

In addition, the models built with RP-derived features from AF and ODI3, as

well as with bispectral features from AF and ODI3, reached a LR– ≤ 0.1 for

this threshold, providing a strong indicator to discard the pediatric OSA presence

(Deeks and Altman, 2004), even more reliably than ODI3 according to the re-

ported results. Regarding 5 events/h, the combination of bispectral features from

AF and ODI3, as well as wavelet features from AF and ODI3, outperformed the

individual diagnostic accuracy of the ODI3. Moreover, a higher Se and an almost

perfectly balanced Se-Sp pair were obtained thanks to the information provided

by the RP, bispectrum, and wavelet from AF. It is particularly remarkable, since

the proposed models can provide similar importance to the classification of pedi-

atric subjects above and below the threshold of this intermediate illness degree.

ODI3 was also significantly outperformed for 10 events/h in almost all metrics.

The models fed with AF features and ODI3 achieved higher diagnostic accuracy

for all the methodological approaches proposed in this Thesis. In addition, higher

values for LR+ (≥ 10) were also reached, which provides a strong indicator to

establish the presence of severe OSA in children (Deeks and Altman, 2004), even

more reliably than ODI3 according to the results. Thus, the combined use of

AF and ODI3 achieved a significantly higher diagnostic performance for all AHI

thresholds, outperforming those individually obtained.

In order to facilitate the comparison of the results jointly obtained by the

ODI3 and each of the methodologies applied to AF in this research, these are

summarized in Table 6.1. As can be seen, the RPs from AF signal and the ODI3

Table 6.1: Summary of the results jointly obtained by the ODI3 and each of the
methodologies applied to AF in this research.

Study AHI Se(%) Sp(%) Acc(%) PPV(%) NPV(%) LR+ LR–

Barroso-Garćıa et al.
(2020)

1 97.7 22.2 83.2 84.1 69.6 1.3 0.1
5 78.7 78.3 78.5 68.5 86.0 3.6 0.2
10 78.8 94.3 91.0 78.8 94.3 13.7 0.2

Barroso-Garćıa et al.
(2021a)

1 98.0 15.3 82.2 83.0 65.0 1.2 0.1
5 81.6 83.0 82.5 74.2 88.3 4.9 0.2
10 72.3 95.0 90.2 79.6 92.7 15.0 0.3

Barroso-Garćıa et al.
(2021b) - AdaBoost

1 80.3 68.1 78.0 91.5 44.9 2.6 0.3
5 68.0 90.3 81.9 80.8 82.5 7.2 0.4
10 72.4 96.0 91.0 83.0 92.8 19.0 0.3

Barroso-Garćıa et al.
(2021b) - BY-MLP

1 91.2 43.3 82.0 87.2 53.6 1.6 0.2
5 79.3 83.8 82.1 74.6 87.2 5.0 0.3
10 74.9 95.0 90.7 80.0 93.3 15.6 0.3

AHI: apnea-hypopnea index, Se: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive pre-
dictive value, NPV: negative predictive value, LR+: positive likelihood ratio, LR–: negative
likelihood ratio.
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obtained the highest Acc for 1 e/h (Barroso-Garćıa et al., 2020). Although the

wavelet-based models obtained a more balanced Se-Sp pair for this threshold, the

RP-based model achieved a remarkably lower LR– than the rest of approaches. It

should be noted that this diagnostic metric is considered as a reliable indicator

to confirm the disease absence when its value is ≤ 0.1 (Deeks and Altman, 2004).

Hence, the RP-derived information from AF signal could be used together with

the ODI3 as a robust tool to discard the pediatric OSA presence. In the case

of 5 e/h, the bispectral analysis of AF and the ODI3 achieved higher Acc than

the other methodological approaches (Barroso-Garćıa et al., 2021a). In addition,

this approach also obtained the most balanced Se-Sp pair, as well as the highest

Se for this AHI threshold. Thus, the bispectral information from AF signal and

the ODI3 could be particularly useful for discriminating pediatric subjects mildly

affected by OSA from those moderately-to-severely affected. Regarding 10 e/h,

the RP and wavelet features from AF obtained the highest diagnostic accuracy

when these were combined with the ODI3 (Barroso-Garćıa et al., 2020, 2021b).

Although the RP-based model obtained a slightly more balanced Se-Sp pair for this

threshold, the AdaBoost model reached a remarkably higher LR+ using wavelet

features. This diagnostic metric is considered as a reliable indicator to confirm the

disease presence when its value is ≥ 10.0 (Deeks and Altman, 2004). Consequently,

the DWT-derived information from AF signal and the ODI3 could be jointly used

as a robust tool to determine the severe OSA presence in children. Considering all

the thresholds, the AdaBoost model fed with wavelet features from AF and ODI3

provided the highest overall performance for 10 e/h, a much more balanced Se-Sp

pair for 1 e/h, and higher Sp, PPV and LR+ for 5 e/h, at the expense of a slightly

lower Acc at these last two thresholds. Thus, this could be proposed as our final

model for the pediatric OSA diagnosis.

All in all, these proposals based on AF analysis would be an innovative and

effective way to early diagnose children with OSA, as well as to automatically iden-

tify those who do not suffer from it. On the one hand, being able to automatically

detect children without OSA would avoid referring them to hospital for undergoing

to PSG. Consequently, the long waiting lists would be streamlined and the med-

ical costs, such as those derived from hospitalization and equipment acquisition,

would be reduced. On the other hand, children with moderate-to-severe OSA have

a higher risk of developing comorbidities and major adverse health consequences

(Alonso-Álvarez et al., 2011; Kaditis et al., 2016). These include increases in C-

reactive protein level and blood pressure, cardiac strain, cor pulmonale, as well as

neurocognitive deficits (Alonso-Álvarez et al., 2011; Kaditis et al., 2016). Due to
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the severity of these consequences, children with AHI ≥ 5 are usually subjected

to surgical treatment (adenotonsillectomy), while those with an AHI ≥ 10 can

present residual OSA even after treatment (Alonso-Álvarez et al., 2011). Con-

sequently, the tools proposed in this research would help to early diagnose these

cases in order that they are treated in a timely fashion and thus avoid worse and

irreversible sequels. In addition, this would allow the medical team to focus on

doubtful pediatric OSA cases.

6.4 Comparison with state-of-the-art studies

Due to the high prevalence of pediatric OSA and its relationship with other severe

pathologies, great efforts have been made to simplify the diagnosis of this disease

in recent years. In this regard, several studies have focused their research on

applying signal processing techniques to a reduced set of physiological recordings

to automatically detect OSA in children. Tables 6.2 and 6.3 summarize the main

methodological characteristics of these studies and the diagnostic performance

achieved in them, respectively. In order to facilitate the comparison of results,

Table 6.3 also shows those obtained by the methodological approaches with highest

diagnostic performance of this research.

As can be observed, cardiorespiratory signals such as ECG, PPG, SpO2, and

AF are widely used in these state-of-the-art studies. Shouldice et al. (2004)

carried out a temporal and spectral analysis of ECG signal, while Mart́ın-Montero

et al. (2020, 2021) used it to extract and characterize the pediatric HRV signal

by spectral and bispectral techniques. These studies reached accuracies that

ranged between 52.6%–84.0% for 1 e/h, 76.4%–80.0% for 5 e/h, and 82.8%–89.3%

for 10 e/h. Other studies conducted an automatic analysis of PPG signal to

diagnose OSA in children. In these works, PPG signal was characterized in both

time domain and frequency domain (Dehkordi et al., 2016; Gil et al., 2009, 2010;

Lazaro et al., 2014). However, they did not consider the OSA severity degree

and they only assessed their proposal for 5 e/h.Thus, the results obtained for

this threshold were within the range 71.0%–86.7%, being the study performed by

Lazaro et al. (2014) the one that obtained the highest diagnostic performance with

PPG signal. Regarding the oximetry signal, its use predominates in the studies

of this context (Gutiérrez-Tobal et al., 2021). As can be seen in Garde et al.

(2014a, 2019), Hornero et al. (2017), Xu et al. (2018), and Calderón et al. (2020),

the characterization of SpO2 by spectral, temporal, and non-linear techniques,
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Table 6.2: Methodological summary of other state-of-the-art studies focused on the
automatic OSA diagnosis in children.

Study Signal Extraction Selection
Pattern

recognition
Validation

#Total/
#Test

Shouldice
et al. (2004)

ECG
Temporal,
Spectral

– QDA
Training
/Test

50/25

Mart́ın-
Montero
et al. (2020)

ECG
Spectral of
HRV

– LDA
Training
/Test

1738/757

Mart́ın-
Montero
et al. (2021)

ECG
Bispectral of
HRV

FCBF MLP
Training
/Bootstrap
/Test

1738/757

Gil et al.
(2010)

PPG
DAP events,
Spectral of
HRV

Wrapper QDA – 21/21

Gil et al.
(2010)

PPG
DAP events,
PTTV, HRV

Wrapper LDA Loo-cv 21/21

Lazaro et al.
(2014)

PPG
DAP events,
Spectral of
PRV

Wrapper LDA Loo-cv 21/21

Dehkordi
et al. (2016)

PPG

Temporal,
Spectral,
Detrended
fluctuation

LASSO LASSO 10-fold-cv 146/146

Garde et al.
(2014a)

SpO2,
PRV

Temporal,
Non-linear,
Spectral

Optimizing
the AUC

LDA
Loo-cv /4-
fold-cv

146/146

Hornero et al.
(2017)

SpO2

Temporal,
Spectral,
Non-linear,
ODI3

FCBF MLP
Training
/loo-cv
/Test

4191/3602

Álvarez et al.
(2018)

SpO2

Anthropometrics,
Temporal,
Symbolic
dynamics,
Oximetric
indexes

FSLR LR Bootstrap 142/142

Vaquerizo-
Villar et al.
(2018b)

SpO2

Anthropometrics,
Spectral,
Bispectral,
ODI3

FCBF MLP
Training
/Validation
/Test

298/75

Vaquerizo-
Villar et al.
(2018c)

SpO2

Temporal,
Spectral,
Wavelet,
ODI3

FCBF SVM

Training
/10-fold-cv
/5-fold-cv
/Test

981/392

Xu et al.
(2018)

SpO2

Temporal,
Spectral,
Non-linear,
ODI3

– MLP
Validation
study

432/432

Garde et al.
(2019)

SpO2,
PRV

Temporal,
Spectral

Stepwise-
selection

LR Loo-cv 207/207

Calderón
et al. (2020)

SpO2
Oximetric
indexes

– LR 10-fold-cv 453/453

Gutiérrez-
Tobal et al.
(2015)

AF,
SpO2

Spectral,
ODI3

FSLR LR Bootstrap 50/50

Jiménez-
Garćıa et al.
(2020)

AF,
SpO2

Temporal,
Spectral,
Non-linear,
ODI3

FCBF AdaBoost.M2
Training
/Bootstrap
/Test

974/390

ECG: electrocardiogram, PPG: photoplethysmography, SpO2: blood oxygen saturation signal, AF:
airflow signal, PRV: pulse rate variability signal, DAP: decreases in amplitude fluctuations of the PPG
signal, HRV: heart rate variability, PTTV: pulse transit time variability, ODI3: 3% oxygen desatu-
ration index, AUC: area under the receiver operating characteristic curves, FSLR: forward stepwise
logistic regression, LASSO: least absolute shrinkage and selection operator, FCBF: fast correlation
based filter, QDA: quadratic discriminant analysis, LDA: linear discriminant analysis, LR: logistic re-
gression, MLP: multi-layer perceptron, SVM: support vector machine, AdaBoost: adaptive boosting,
Loo-cv: leave-one-out cross validation.
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Table 6.3: Comparison of the diagnostic performance obtained in other state-of-the-art
studies focused on the automatic OSA diagnosis in children.

Study AHI Se(%) Sp(%) Acc(%) PPV(%) NPV(%) LR+ LR–

Shouldice et al. (2004) 1 85.7 81.8 84.0 85.7 81.8 4.7 0.2

Mart́ın-Montero et al.

(2020)

1 42.5 72.3 52.6 75.0 39.1 1.5 0.8
5 50.0 80.9 76.4 31.3 90.3 2.6 0.6
10 63.8 84.7 82.8 29.5 95.9 4.2 0.4

Mart́ın-Montero et al.

(2021)

1 76.3 38.3 63.4 70.7 45.5 1.2 0.6
5 62.5 84.2 81.0 40.7 92.8 4.0 0.4
10 66.7 91.6 89.3 44.2 96.5 7.9 0.4

Gil et al. (2009) 5 87.5 71.4 80.0 – – 3.1 0.2
Gil et al. (2010) 5 75.0 85.7 80.0 – – 5.2 0.3
Lazaro et al. (2014) 5 100 71.4 86.7 – – 3.5 0
Dehkordi et al. (2016) 5 76.0 68.0 71.0 – – 2.4 0.4
Garde et al. (2014a) 5 88.4 83.6 84.9 76.9 92.6 5.4 0.1

Hornero et al. (2017)

1 84.0 53.2 75.2 81.6 53.7 1.8 0.3
5 68.2 87.2 81.7 68.6 87.0 5.3 0.4
10 68.7 94.1 90.2 67.7 94.3 11.6 0.3

Álvarez et al. (2018) 5 73.5 89.5 83.3 82.0 84.3 10.4 0.3
Vaquerizo-Villar et al.

(2018b)

5 61.8 97.6 81.3 95.5 75.5 25.3 0.4
10 60.0 94.5 85.3 80.0 86.7 11.0 0.4

Vaquerizo-Villar et al.

(2018c)

5 71.9 91.1 84.0 83.8 84.5 14.6 0.3

Xu et al. (2018)

1 95.3 19.1 79.6 82.0 51.5 1.2 0.2
5 77.8 80.5 79.4 72.3 84.7 4.0 0.3
10 73.5 92.7 88.2 75.8 91.9 10.1 0.3

Garde et al. (2019)

1 80.0 65.0 75.0 – – 2.3 0.3
5 85.0 79.0 82.0 – – 4.1 0.2
10 82.0 91.0 89.0 – – 9.1 0.2

Calderón et al. (2020) 5 62.0 96.0 79.0 94.3 – 15.5 0.4
Gutiérrez-Tobal et al.

(2015)

3 85.9 87.4 86.3 88.4 85.8 6.8 0.2

Jiménez-Garćıa et al.

(2020)

1 92.1 36.0 81.3 85.8 51.9 1.4 0.2
5 76.0 85.7 82.1 76.0 85.7 5.3 0.3
10 62.7 97.7 90.3 88.1 90.6 27.5 0.4

Barroso-Garćıa et al.
(2020)

1 97.7 22.2 83.2 84.1 69.6 1.3 0.1
5 78.7 78.3 78.5 68.5 86.0 3.6 0.2
10 78.8 94.3 91.0 78.8 94.3 13.7 0.2

Barroso-Garćıa et al.
(2021a)

1 98.0 15.3 82.2 83.0 65.0 1.2 0.1
5 81.6 83.0 82.5 74.2 88.3 4.9 0.2
10 72.3 95.0 90.2 79.6 92.7 15.0 0.3

Barroso-Garćıa et al.
(2021b) - AdaBoost

1 80.3 68.1 78.0 91.5 44.9 2.6 0.3
5 68.0 90.3 81.9 80.8 82.5 7.2 0.4
10 72.4 96.0 91.0 83.0 92.8 19.0 0.3

AHI: apnea-hypopnea index, Se: sensitivity, Sp: specificity, Acc: accuracy, PPV: positive pre-
dictive value, NPV: negative predictive value, LR+: positive likelihood ratio, LR–: negative
likelihood ratio.

as well as oximetric indices extracted from it, is a commonly used approach. Other

works combined this with more novel techniques such as symbolic dynamics, bis-

pectrum, or wavelet (Álvarez et al., 2018; Vaquerizo-Villar et al., 2018b,c). These

SpO2-based studies achieved accuracies that ranged between 75.0%–79.6% for 1
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e/h, 79.0%–84.9% for 5 e/h, and 85.3%–90.2% for 10 e/h. Regarding AF signal,

only 2 studies have been found that use this signal combined with the oximetry

to help in pediatric OSA diagnosis. Gutiérrez-Tobal et al. (2015) characterized

the overnight AF in frequency domain by defining new specific interest bands to

children and extracting spectral features. Although their study achieved a high

diagnostic accuracy for 3 e/h (86.3%), the evaluated threshold hinders a direct

comparison with the performance results obtained in this Thesis. Jiménez-Garćıa

et al. (2020) also characterized AF along with SpO2 by means of spectral, tempo-

ral, and non-linear techniques, reaching accuracies of 81.3% for 1 e/h, 82.1% for 5

e/h, and 90.3% for 10 e/h.

The studies that comprise this compendium of publications reached accuracies

ranged between 60.0%–83.2% for 1 e/h, 76.0%–82.5% for 5 e/h, and 80.0%–91.0%

for 10 e/h. Thus, the research conducted in Barroso-Garćıa et al. (2020, 2021a,b)

outperformed the Acc obtained for 1 e/h by the state-of-the-art studies that used

SpO2 and/or AF signal. Regarding ECG, only the study of Shouldice et al. (2004)

slightly outperformed our results for this threshold (84.0% Acc versus 83.2% Acc).

However, the sample size in their study is considerably smaller than that used

in our research (50 subjects versus 946 subjects), limiting the generalization of

their results. In addition, it should be noted that Barroso-Garćıa et al. (2020,

2021a) obtained a LR– = 0.1, the lowest value found in the literature for 1 e/h.

As previously mentioned, this metric is a robust indicator to confirm the disease

absence (Deeks and Altman, 2004). Therefore, our proposals, and particularly

the one conducted in Barroso-Garćıa et al. (2020), are more robust discarding the

pediatric OSA presence than the rest of the studies considered here. Regarding

the AHI threshold 5 e/h, all our studies obtained results within the performance

ranges achieved with ECG, PPG, SpO2, and/or AF signals by other research

works. The highest Acc reached by our studies for this threshold was with bis-

pectrum in Barroso-Garćıa et al. (2021a) (82.5%), which outperformed most of

the state-of-the-art studies. In addition, it achieved a very balanced Se-Sp pair

compared to other works. Note that the generalization of the results from other

studies reaching very meritorious performances is limited by the smaller number

of their observations (Álvarez et al., 2018; Garde et al., 2014a; Lazaro et al., 2014).

On the other hand, the studies based on RPs, bispectrum, and wavelet outper-

formed the diagnostic accuracies obtained for 10 e/h by all previously indicated

state-of-the-art studies. Moreover, our research achieved high LR+ values for this

threshold, particularly with the proposal based on wavelet and AdaBoost (LR+

= 19.0) (Barroso-Garćıa et al., 2021b). This metric was only improved by the
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work of Jiménez-Garćıa et al. (2020). However, 3 of the 4 studies included in this

compendium of publications outperformed their Acc and Se and obtained a more

balanced Se-Sp pair for 10 e/h. Hence, our proposals, and particularly the one

conducted in Barroso-Garćıa et al. (2021b), would be more useful discriminating

the severe OSA degree than the rest of the studies considered here.

Other studies carried out in our research group also applied bispectrum to help

diagnose OSA in children. In them, the bispectral features were extracted from

SpO2 (Vaquerizo-Villar et al., 2018b) and ECG-derived HRV (Mart́ın-Montero

et al., 2021). The use of these features notably improved the performance obtained

by means of classic spectral approaches, thus increasing the diagnostic ability of

these signals. However, the results achieved in Barroso-Garćıa et al. (2021a) with

bispectral features from AF and ODI3 improved those reached by Vaquerizo-

Villar et al. (2018b) and Mart́ın-Montero et al. (2021). In other study, wavelet

features were extracted from SpO2 signal together with temporal and spectral

features (Vaquerizo-Villar et al., 2018c). This approach achieved a high diagnostic

accuracy for 5 e/h, improving the performance previously obtained with SpO2 by

means of conventional methods. In Barroso-Garćıa et al. (2021b), wavelet analysis

was applied to AF signal and evaluated for 1, 5, and 10 e/h, i.e., considering the

severity degree of the disease. This allowed us to detect pediatric subjects with

severe OSA, as well as those who do not suffer from the disease. In addition, their

performance was outperformed in terms of Se, NPV, and LR– for 5 e/h.

In summary, the characterization of pediatric overnight AF through the differ-

ent methodological approaches proposed in this research allowed to obtain a high

overall diagnostic performance for the three AHI thresholds in comparison with

other state-of-the-art studies.

6.5 Limitations of the study

After conducting this research, it is necessary to point out and discuss some limi-

tations that could have conditioned the reached results.

One of these limitations is the database size. Although the conducted research

has involved a large and incremental number of subjects (from 501 to 946 chil-

dren), it would have been desirable to have a greater number of recordings. Thus,

the database would be more representative of OSA characteristics in children and

the results would be more generalizable. In this regard, several validation tech-

niques have been used throughout this Doctoral Thesis, such as loo-cv, k-fold, and

bootstrapping, which have increased the validity and generalization of our results.
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Another limitation is that the number of children with OSA predominates in

this study (163 no-OSA, 386 mild, 172 moderate, and 225 severe OSA). This

fact could influence the predictive model building that identify pathological and

normality patterns, which would tend to overestimate and introduce a bias in the

results. However, the number of subjects belonging to each OSA severity group

reflects the actual disease prevalence in the pediatric population referred to sleep

units, since all subjects showed previous symptoms of suffering from OSA.

It should also be noted that the AF analyses were not performed by age ranges,

BMI, and/or gender of the pediatric subjects. This fact hinders the identification of

the population subgroups where our diagnostic proposal would be more efficient,

as well as the detection of characteristics or phenotypes that are conditioning

our results. Nevertheless, pediatric AF recordings have been normalized in this

research to minimize the effects generated by the age difference and by any other

physiological characteristic other than OSA that could improperly influence the

results.

Another limitation concerns the acquisition of AF signal. All pediatric signals

used in this research have been recorded in a hospital environment. This ensured

that sleep studies were conducted in a controlled environment. However, one of

the main advantages of using single-channel AF for the pediatric OSA diagnosis

is that it can be recorded using a portable device with thermistor during a type

4 study (Collop et al., 2007; Flemons et al., 2003). This offers the ability of

recording AF outside the hospital setting. Therefore, it would be interesting to

validate the efficacy of the proposed methodology in AF signals directly acquired

at the patient’s home.

In addition, the AASM recommends using thermistor sensor to adequately

score apneas and nasal pressure sensor to score hypopneas (Berry et al., 2012). In

this Doctoral Thesis, AF recordings acquired by means of a thermistor sensor have

been used as only information source since nasal pressure sensor proved to be very

noisy in our database. Consequently, this could have influenced the hypopnea

detection and thus have conditioned the results of this research. However, Se

values achieved through the different methodological approaches did not reveal

a disease underestimation by using only thermistor. Moreover, previous studies

in OSA adults have shown that very similar diagnostic performances can be

reached when applying automatic analysis to AF, regardless it is acquired with a

thermistor or a nasal prong sensore (Gutierrez-Tobal et al., 2012; Gutiérrez-Tobal

et al., 2013, 2016).
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As stated above, the AASM distinguishes between obstructive, central, and

mixed apnea depending on the respiratory event origin and the respiratory effort

criteria (Berry et al., 2012). Thus, information about the thoracic and/or abdom-

inal movement is essential to be able to identify these types of respiratory events.

However, only single-channel AF recordings were used in this research to simplify

the pediatric OSA diagnosis, and no data about respiratory effort were available.

Consequently, it was not possible to discriminate among obstructive, central, and

mixed apneic events.

Another limitation is that the total recording time (TRT) was used to obtain

the ODI3. It is important to point out that information about the EEG is essential

to be able to distinguish between sleep and wake stages and accurately estimate

the total sleep time (TST) (Iber et al., 2007). Alternatively, overnight actigraphy

data could be used as a suboptimal option to calculate the TST (Grandner and

Rosenberger, 2019). However, no reference EEG and/or actigraphy signals were

available in our study. Consequently, it was not possible to compute the ODI3

using the TST, which could have generated a negative effect of underestimation

for this clinical parameter.

Note that there are additional factors related to AF signal acquisition: the

sensor could not suitably fit the child, it could lose contact with nose-mouth at

night, or it could even record undesired artifacts caused by movements. This leads

to AF recordings containing many noise sources, hindering its analysis. In this

regard, a novel automatic method has been implemented in the present Doctoral

Thesis to deal with this limitation.

There are also limitations concerning feature engineering methods. Previous

studies have shown promising results by automatically analyzing AF signal through

feature extraction and selection techniques (Gutiérrez-Tobal et al., 2015; Jiménez-

Garćıa et al., 2020). Nevertheless, traditional approaches require a high knowledge

degree to identify a priori which features should be extracted (Goodfellow et al.,

2016). Moreover, they provide a low abstraction level, which limits its ability to

detect complex patterns in physiological data (Goodfellow et al., 2016). Conse-

quently, relevant information from AF signal could go unnoticed. Hence, it would

be interesting to apply pattern recognition methods based on novel deep-learning

techniques to address these limitations.

Finally, it should be noted that explainable artificial intelligence (XAI) meth-

ods have not been applied during the development of this research. Commonly,

machine and deep learning models behave like black boxes, since it is hard to un-

derstand why they reach their results. In order to address this inherent drawback
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and obtain more understandable results that increase the reliability of automatic

OSA diagnostics, an exhaustive AF characterization work has been performed by

means of different methodological techniques. This characterization has allowed

to discover novel and useful OSA-related information from the AF signal, which

has helped to better understand the results obtained in subsequent automatic

processing stages.
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Conclusions

The four papers included in the present compendium of publications share a com-

mon research focus: the comprehensive characterization of nocturnal AF behavior

in children to obtain relevant and useful information that helps to simplify the pe-

diatric OSA diagnosis. In order to address this characterization of AF, the design,

implementation, and evaluation of novel automatic signal processing algorithms

were performed. Thus, AF was analyzed using different approaches adapted to

the signal intrinsic properties: no-linear, spectral, bispectral, RP, and wavelet

analyses. These approaches allowed us to discover novel and useful OSA-related

information from AF signal, which had not been studied so far in the pediatric OSA

context. The obtained results revealed that the overnight AF characterization by

means of the methodologies proposed in this research improves its performance

and helps to automatically diagnose the pediatric OSA.

In this chapter, the contributions that our research provides to the pediatric

OSA diagnosis are indicated in section 7.1. Afterwards, the conclusions drawn

from the studies conducted in this compendium are exposed in section 7.2. Finally,

possible future research lines are suggested in section 7.3, which could continue

and complement the findings of this Doctoral Thesis.

7.1 Contributions

Once the study is completed, it is important to highlight the original contributions

that our work brings to this research field. Thus, the main ones are listed below:

105
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1) The AF signal pre-processing algorithm developed in this Doctoral

Thesis. As previously mentioned, there are many external factors related

to the signal acquisition that originate noise sources and hinder its analysis.

In order to deal with this drawback, the noise were carefully studied. As

a result, a novel algorithm was designed and implemented to automatically

remove artifacts from AF signal. In addition, this was combined with filtering

and normalization techniques to complete the pre-processing. Consequently,

the proposed algorithm allows to improve the quality of AF recordings, as

well as to increase the effectiveness of its subsequent analysis.

2) The exhaustive characterization of overnight AF in the pediatric

OSA diagnosis context. To the best of our knowledge, pediatric AF

signal has only been analyzed by conventional spectral or non-linear methods

previously used in adults. However, the clinical and diagnostic differences

between both adults and children limit a suitable characterization of AF

through these techniques. In contrast, we have extracted novel and useful

information from pediatric AF signal, which has been able to reflect the

OSA-related particularities and to improve its diagnostic ability.

3) Characterization of AF and RRV signals by means of CTM and

spectral entropies. Although some of these features were previously used

in adults, this is the first research where they are used and combined to

help in pediatric OSA diagnosis. Thus, its use provided information about

the variability and the irregularity of these respiratory signals. It is also

important to note that this is the first time that AF-derived RRV signal is

analyzed in the pediatric setting.

4) Characterization of AF signal using RP-derived features. To the

best of our knowledge, this approach had not been previously evaluated to

characterize AF signal. Hence, the RP-based analysis revealed novel infor-

mation about the underlying dynamics and the phase-space of overnight AF.

5) Characterization of pediatric AF through bispectral features. This

is the first research in which bispectrum is used for this purpose. It allowed

us to obtain useful information related to the gaussianity, the non-linear

interaction, and the phase coupling of AF signal.
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6) Characterization of overnight AF by DWT analysis. This method-

ological approach had also not been used to characterize AF in the pediatric

OSA context. In this regard, wavelet features revealed changes in the fre-

quency components and the energy distribution of AF signal.

7) Identification of optimum features subsets from AF. To the best of

our knowledge, this is the first time that relevant and non-redundant features

from AF have been found in children.

7.2 Main conclusions

Based on the research developed throughout this Doctoral Thesis, the following

conclusions are drawn:

1) CTM , spectral entropies, RP, bispectrum, and DWT analyses can character-

ize the behavior of overnight pediatric AF, adapting to its intrinsic properties

and providing useful OSA-related information.

2) After applying CTM and spectral entropies, we concluded that OSA re-

duces the variability and increases the irregularity of AF. In addition, it also

increases the variability of RRV signal.

3) Based on the information provided by RPs, OSA modifies the underlying

dynamics and the phase-space of AF. Concretely, the occurrence of apneic

events decreases the variability, the stationarity, and the complexity of AF

signal, as well as the exponential divergence of its phase-space. It can also

be concluded that OSA increases the dwell time at a certain phase state of

AF (i.e., it does not change, or changes very slowly). Moreover, its average

prediction time and its irregularity are higher as the AHI increases.

4) The bispectral features led us to conclude that OSA reduces the non-

gaussianity of AF, as well as the non-linear interaction of its harmonic com-

ponents. Childhood OSA also decreases the phase coupling in the normal

breathing band, shifting the coupling focus towards low frequency compo-

nents related to the occurrence apneic events. In addition, the irregularity of

AF signal increases in terms of amplitude and phase when the OSA severity

is higher.
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5) Derived from the wavelet analysis, we can conclude that OSA disturbs the

energy distribution and the frequency components of AF signal. Concretely,

apneic events reduce the AF detail signal amplitude and the energy produced

in the normal breathing band. In addition, the frequency components of AF

decrease, while its irregularity increases in terms of energy as the AHI is

higher.

6) The OSA-related information provided by AF signal is additional and com-

plementary to that obtained from RRV signal. Particularly, there is comple-

mentarity between the irregularity of AF and the variability of RRV, thus

highlighting its ability to reflect different OSA particularities.

7) The information about the changes that experiments the exponential diver-

gence of AF phase-space is more useful to characterize the pediatric OSA-

related particularities than the information individual and jointly provided

by other RP-derived features.

8) The different bispectral approaches contribute with complementary informa-

tion about the effects that apneic and hypopneic events cause in AF signal.

Hence, its joint use provides a more complete characterization of the behavior

of this signal.

9) The information about the changes that experiments the distribution asym-

metry of AF coefficients is more useful to characterize the pediatric OSA-

related particularities than the information individual and jointly provided

by other wavelet features.

10) The information provided by AF through the different methodological ap-

proaches is complementary to the information provided by the classic ODI3

about the occurrence of blood oxygen desaturations. Thus, its joint use is

particularly useful for accurately diagnosing the pediatric OSA.

11) The proposed AF processing methodologies allow obtaining highly accurate

predictive models to automatically diagnose the presence and severity of

childhood OSA. The highest diagnostic performance was reached by BY-

MLP fed with RP-features and ODI3 for discarding the OSA presence (1

e/h), MLP fed with bispectral features and ODI3 for discriminating children

mildly affected by OSA from those moderately-to-severely affected (5 e/h),

and AdaBoost fed with wavelet features and ODI3 for confirming the severe
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OSA presence (10 e/h). Considering together the performance achieved for

all thresholds, the latter could be proposed as final model.

Based on the aforementioned considerations, we can conclude that the charac-

terization of overnight AF by means of these novel methods can help to simplify

the OSA diagnosis in children. In addition, the high performance of the proposed

models suggests that they could be incorporated into clinical practice as reliable

automatic screening methods for pediatric OSA.

7.3 Future research lines

During the development of this research, several new ideas have arisen. Although

they fall outside the scope of this Doctoral Thesis, they could be the starting point

of future research and contribute to our findings. Thus, the following ideas could

be addressed in future works:

1) It would be interesting to apply our proposal to pediatric AF recordings

by groups of age, BMI, gender, or combinations of these and other clinical

and demographic characteristics. The comparison of these results could help

to identify the population subgroups where our diagnostic proposal is most

effective. It would also help to detect physiologic and demographic factors

that influence our results, as well as to establish a future improvement plan.

In addition, it would allow to find OSA-related sociodemographic particu-

larities not yet covered in the pediatric context.

2) The validation of the proposed methodology in other larger databases from

different hospital centers would be a direct continuation of our study. This

would not only increase the reliability and generalizability of our results,

but also help to detect possible conditioning factors (e.g., the use of different

signal recording devices).

3) The validation of our proposal in domiciliary AF recordings would also be a

natural way to continue our research. This is a key point as the simplification

of childhood OSA diagnosis by automatic AF analysis includes that it can

be acquired at the patient’s home during a type 4 study.

4) Another interesting research would be the combination of overnight AF ac-

quired by means of a thermistor sensor and the one obtained through a nasal

pressure sensor. This would be very helpful to determine which of the two
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AF recording types has higher ability to diagnose pediatric OSA. In addi-

tion, it could be evaluated whether both provide complementary information

about the occurrence of apneas and hypopneas in children.

5) The combination of AF signal with other PSG-derived signals could be an-

other novel future work. In this regard, it would be particularly interesting

to combine AF signal with thoracic and/or abdominal movement signal in

order to discriminate between the different types of apneic events (i.e., ob-

structive, central, and mixed events). Moreover, the analysis proposed in

this research could be applied together with EEG or actigraphy signals in

order to improve the ODI3 estimation.

6) Advanced pattern recognition methods based on novel deep-learning tech-

niques could be also applied, such as long short-term memory (LSTM) and

inception neural networks. Thus, these methods could be used with raw AF

signals and/or AF-derived images (e.g., RP or bispectrum) to improve and

maximize its diagnostic performance in future research.

7) Finally, it would be interesting to use explainable artificial intelligence (XAI)

methods, such as layer-wise relevance propagation (LRP) and local inter-

pretable model-agnostic explanations (LIME). In this way, the results derived

from the predictive models would be more understandable, which would in-

crease medical reliability in the OSA diagnostics that these models report.
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2. Verónica Barroso-Garćıa, Gonzalo C. Gutiérrez-Tobal, Leila
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Kheirandish-Gozal, Daniel Álvarez, Fernando Vaquerizo-Villar, Pablo
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Fernando Vaquerizo-Villar, Verónica Barroso-Garćıa, Félix del Campo,
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ciela López-Muñiz, Leila Kheirandish-Gozal, David Gozal, Roberto Hornero,

Félix del Campo, “Automated detection of childhood sleep apnea using

discrete wavelet transform of nocturnal oximetry and anthropometric vari-

ables”, European Respiratory Society International Congress 2017 (ERS

2017), ISSN: 1399-3003, PA1308, Milán (Italy), September 9 - September

13, 2017, DOI: 10.1183/1393003.congress-2017.PA1308.

6. Gonzalo C. Gutiérrez-Tobal, Daniel Álvarez, Fernando Vaquerizo-Villar,
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de apnea-hipopnea del sueño en niños”, XXXIV Congreso Anual de la
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“Análisis de fluctuaciones sin tendencias (DFA) en los registros de oximetŕıa

para la ayuda en el diagnóstico del śındrome de la apnea-hipopnea del sueño
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infantil”, XXXV Congreso Anual de la Sociedad Española de Ingenieŕıa

Biomédica (CASEIB 2017), ISBN: 978-84-9082-797-0, pp. 209–212, Bilbao

(Spain), November 29 - December 1, 2017.

8. Gonzalo C. Gutiérrez-Tobal, Daniel Álvarez, Verónica Barroso-Garćıa,

Fernando Vaquerizo-Villar, Adrián Mart́ın-Montero, Andrea Crespo, Félix

del Campo, Roberto Hornero, “Aplicación de la entroṕıa espectral a la señal

de variabilidad de pulso para incrementar el potencial de la oximetŕıa en

el diagnóstico de la apnea del sueño a domicilio”, XXVI Reunión Anual de

la Sociedad Española del Sueño (SES 2018), Barcelona (Spain), April 26 -

April 28, 2018.

9. Fernando Vaquerizo-Villar, Daniel Álvarez, Gonzalo C. Gutiérrez-Tobal,

Leila Kheirandish-Gozal, Verónica Barroso-Garćıa, Andrea Crespo, Félix

del Campo, David Gozal, Roberto Hornero, “Utilidad de los patrones bina-

rios locales aplicados a la señal de oximetŕıa en la ayuda al diagnóstico del

śındrome de la apnea-hipopnea del sueño en niños”, XXVI Reunión Anual

de la Sociedad Española del Sueño (SES 2018), Barcelona (Spain), April 26

- April 28, 2018.

10. Adrián Mart́ın-Montero, Gonzalo C. Gutiérrez-Tobal, Jesús Poza, Daniel

Álvarez, Fernando Vaquerizo-Villar, Verónica Barroso-Garćıa, Saúl J.

Ruiz-Gómez, Leila Kheirandish-Gozal, Félix del Campo, David Gozal,

Roberto Hornero, “Caracterización de la apnea del sueño infantil mediante

nuevas bandas espectrales del EEG”, XXXVI Congreso Anual de la Sociedad

Española de Ingenieŕıa Biomédica (CASEIB 2018), ISBN: 978-84-09-06253-

9, pp. 249–252, Ciudad Real (Spain), November 21 - November 23, 2018.

11. Daniel Álvarez, Ana Cerezo-Hernández, Andrea Crespo, Gonzalo C.

Gutiérrez-Tobal, Fernando Vaquerizo-Villar, Verónica Barroso-Garćıa,

Carmen A. Arroyo, Tomás Ruiz-Albi, Roberto Hornero, Félix del Campo,

“Comparación de tests de screening automático de estimación del ı́ndice de

apnea-hipopnea basados en oximetŕıa y flujo aéreo no supervisados frente

a la polisomnograf́ıa domiciliaria”, XXVII Reunión Anual de la Sociedad

Española del Sueño (SES 2019), Vitoria (Spain), April 11 - April 13, 2019.

12. Ana Cerezo-Hernández, Daniel Álvarez, Ana Sánchez, Ana Andrés, Gon-

zalo C. Gutiérrez-Tobal, Fernando Vaquerizo-Villar, Verónica Barroso-

Garćıa, Roberto Hornero, Tomás Ruiz-Albi, Félix del Campo, “Estudio
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del efecto combinado de la enfermedad pulmonar obstructiva crónica y del

śındrome de apnea obstructiva del sueño moderado-a-severo en la modu-

lación nocturna de la función autonómica cardiaca”, XXXVIII Congreso de

la Sociedad Castellano-Leonesa y Cántabra de Patoloǵıa Respiratoria (SO-

CALPAR 2019), Zamora (Spain), May 10 - May 11, 2019.

13. Gonzalo C. Gutiérrez-Tobal, Daniel Álvarez, Andrea Crespo, Fernando

Moreno, Fernando Vaquerizo-Villar, Ana Cerezo-Hernández, Verónica

Barroso-Garćıa, Félix del Campo, Roberto Hornero, “Screening au-

tomático de la apnea del sueño a partir de la pulsioximetŕıa domiciliaria”,

52º Congreso Nacional de la Sociedad Española de Neumoloǵıa y Ciruǵıa

Torácica (SEPAR 2019), ISSN: 0300-2896, pp. 456–457, Santiago de Com-

postela (Spain), June 13 - June 16, 2019.

14. Daniel Álvarez, Ana Cerezo-Hernández, Andrea Crespo, Gonzalo C.

Gutiérrez-Tobal, Fernando Vaquerizo-Villar, Verónica Barroso-Garćıa,

Fernando Moreno, Ainhoa Arroyo, Tomás Ruiz-Albi, Roberto Hornero, Félix

del Campo, “Estimación automática del ı́ndice de apnea-hipopnea mediante

los registros de oximetŕıa y flujo aéreo realizados en el domicilio”, 52º Con-

greso Nacional de la Sociedad Española de Neumoloǵıa y Ciruǵıa Torácica

(SEPAR 2019), ISSN: 0300-2896, pp. 432, Santiago de Compostela (Spain),

June 13 - June 16, 2019.

15. Adrián Mart́ın-Montero, Gonzalo C. Gutiérrez-Tobal, Daniel Álvarez, Fer-

nando Vaquerizo-Villar, Verónica Barroso-Garćıa, Jorge Jiménez-Garćıa,

Leila Kheirandish-Gozal, Félix del Campo, David Gozal, Roberto Hornero,

“Utilidad de nuevas bandas espectrales en la señal de HRV para ayudar en

el diagnóstico de la apnea del sueño infantil”, XXXVII Congreso Anual de

la Sociedad Española de Ingenieŕıa Biomédica (CASEIB 2019), ISBN: 978-

84-09-16707-4, pp. 295–298, Santander (Spain), November 27 - November

29, 2019.

16. Jorge Jiménez-Garćıa, Gonzalo C. Gutiérrez-Tobal, Maŕıa Garćıa, Daniel

Álvarez, Verónica Barroso-Garćıa, Fernando Vaquerizo-Villar, Adrián

Mart́ın-Montero, Félix del Campo, Leila Kheirandish-Gozal, David Gozal,

Roberto Hornero, “Evaluación de la información espectral de las señales de

flujo aéreo y saturación de ox́ıgeno en sangre para la ayuda al diagnóstico

de la apnea del sueño infantil”, XXXVII Congreso Anual de la Sociedad
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Española de Ingenieŕıa Biomédica (CASEIB 2019), ISBN: 978-84-09-16707-

4, pp. 25–28, Santander (Spain), November 27 - November 29, 2019.

17. Daniel Álvarez, Andrea Crespo, Ana Cerezo-Hernández, Gonzalo C.

Gutiérrez-Tobal, Fernando Vaquerizo-Villar, Verónica Barroso-Garćıa,

Fernando Moreno, Carmen A. Arroyo, Roberto Hornero, Félix del Campo,

“Estudio de la asociación entre el ı́ndice de calidad del sueño de Pittsburgh

y los ı́ndices polisomnográficos de severidad del SAHS”, 53º Congreso Na-

cional de la Sociedad Española de Neumoloǵıa y Ciruǵıa Torácica (SEPAR

2020), ISSN: 0300-2896, pp. 390, Virtual conference (Spain), November 12

- November 14, 2020.

18. Verónica Barroso-Garćıa, Gonzalo C. Gutiérrez-Tobal, Leila

Kheirandish-Gozal, Daniel Álvarez, Fernando Vaquerizo-Villar, Félix

del Campo, David Gozal, Roberto Hornero, “Análisis del flujo aéreo

nocturno mediante wavelets para la ayuda en el diagnóstico de la apnea

del sueño infantil”, XXXVIII Congreso Anual de la Sociedad Española

de Ingenieŕıa Biomédica (CASEIB 2020), ISBN: 978-84-09-25491-0, pp.

252–255, Virtual conference (Spain), November 25 - November 27, 2020.

19. Fernando Vaquerizo-Villar, Daniel Álvarez, Leila Kheirandish-Gozal, Gon-

zalo C. Gutiérrez-Tobal, Verónica Barroso-Garćıa, Eduardo Santamaŕıa-

Vázquez, Félix del Campo, Roberto Hornero, “Modelo de deep learning

basado en la arquitectura Inception para el diagnóstico de la apnea del

sueño infantil mediante la señal de oximetŕıa”, XXXVIII Congreso Anual

de la Sociedad Española de Ingenieŕıa Biomédica (CASEIB 2020), ISBN:

978-84-09-25491-0, pp. 340–343, Virtual conference (Spain), November 25 -

November 27, 2020.

B.2 International internship

Three-month research internship at the Sleep Technology and Analytics Group

(STAG), University of Eastern Finland (UEF), Kuopio, Finland.

i. Purpose of the internship

The main purpose of the research stay was to develop novel and advanced

signal processing methods based on deep-learning techniques to help in the

pediatric OSA diagnosis. In order to reach this objective, the developed

study encompassed: (1) state-of-the-art revision of deep-learning techniques
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and hyperparameter optimization, (2) data collection of biomedical record-

ings of subjects with and without OSA (patients and controls, respectively),

(3) design, development, and application of deep-learning methods to the

biomedical recordings, and (4) analysis and evaluation of the results ob-

tained.

ii. Methodological summary

The experimental study that was conducted during the research stay foused

on the automatic deep learning-based estimation of the AHI from raw airflow

signals in pediatric cohort. In this regard, the Childhood Adenotonsillec-

tomy Trial dataset (CHAT, https://sleepdata.org/datasets/chat) was used.

Thereby, 1,639 raw airflow recordings from thermistor were preparated and

resampled prior to the processing and analysis process. Afterwards, an ex-

haustive review of the literature state was carried out in order to find the

most suitable deep learning-based methods for our purpose. Thus, the use

of convolutional neural networks (CNN) together with a long short-term

memory (LSTM) architecture were considered to make a AHI regession of

each child from their airflow signal. These deep learning methods were pro-

grammed and their hyperparameters were optimized according to the in-

trinsic properties of pediatric overnight AF. The results showed that the

diagnostic performance measures were generally above those achieved in AF

with traditional machine learning approaches, suggesting that the proposed

methodology was suitable for helping diagnose pediatric OSA.

iii. Quality indicators of the institution

UEF is an university training institution with more than 15500 students and

2700 staff members. The University participates in several international net-

works, such as the Campus Europae, and cooperates with international uni-

versities, such as Nanjing University of China. Since launching its operations

in 2010, UEF has reached suitable positions in international rankings (Shang-

hai: 501-600 and Times High Education: 401-500 in 2020). The STAG of

UEF has expert staff in sleep disorders, as well as in advanced biomedical

signal processing techniques. This research group cooperates with national

and international institutions, conducting globally recognized research in the

development of OSA diagnosis techniques. It is also important to highlight

that their work is supported by 70 research projects and grants of public and

private funding, all related to sleep research. The head of the STAG, Prof.

Dr. Juha Töyräs, who was also the supervisor of the internship, is Profes-
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sor at the UEF, Professor at the University of Queensland (Australia), and

Chief Physicist at the Diagnostic Imaging Centre of the Kuopio Univeristy

Hospital (Finland). He has supervised 45 Doctoral Theses and is currently

supervising more than 20 in several fields of medical physics. In addition,

he has published more than 282 JCR articles, reaching 7353/10783 citations

and a H index of 45/54 according to Scopus/Google Scholar. Thus, these

indicators reflect the high quality of the University and the research group,

as well as the researcher who supervised the internship.

B.3 Awards and honors

B.3.1 Prizes

05/2016: SOCALPAR 2016 prize, awarded by the Sociedad Castellano-Leonesa

y Cántabra de Patoloǵıa Respiratoria (SOCALPAR), for the project

entitled “Utilidad de una red neuronal basada en caracteŕısticas de-

mográficas y de oximetŕıa nocturna como método de ayuda al diagnóstico

del śındrome de apnea-hipopnea obstructiva del sueño en niños”, con-

ducted by Félix del Campo, Daniel Álvarez, Andrea Crespo, Tania

Álvaro, Gonzalo C. Gutiérrez-Tobal, Ainhoa Arroyo, Julio de Frutos,

Tomás Ruiz-Albi, Verónica Barroso-Garćıa, Fernando Vaquerizo-

Villar, David Gozal, and Roberto Hornero.

11/2016: Third José Maŕıa Ferrero Corral prize in the XXXIV Con-

greso Anual de la Sociedad Española de Ingenieŕıa Biomédica

(CASEIB 2016), awarded by the Sociedad Española de Ingenieŕıa

Biomédica (SEIB), for the study entitled “Análisis espectral de la señal

de flujo aéreo como ayuda al diagnóstico del śındrome de apnea-hipopnea

del sueño en niños”, conducted by Verónica Barroso-Garćıa, Gonzalo

C. Gutiérrez-Tobal, Leila Kheirandish-Gozal, Daniel Álvarez, Fernando

Vaquerizo-Villar, Andrea Crespo, Félix del Campo, David Gozal, and

Roberto Hornero.

04/2017: Prize to the second best conference paper in the XXV Re-

unión Anual de la Sociedad Española del Sueño (SES 2017),

awarded by the Sociedad Española del Sueño (SES), for the study

entitled “Transformada wavelet de la señal de oximetŕıa nocturna

y variables antropométricas en la ayuda al diagnóstico automático
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de la apnea del sueño infantil”, conducted by Daniel Álvarez, Fer-

nando Vaquerizo-Villar, Andrea Crespo, Gonzalo C. Gutiérrez-Tobal,

Verónica Barroso-Garćıa, Ana Cerezo-Hernández, Graciela López-

Muñiz, Leila Kheirandish-Gozal, David Gozal, Roberto Hornero, and

Félix del Campo.

04/2017: Prize to the best innovative proposal in the Taller de

preparación de propuestas INNOvadoras para participar en el

proyecto europeo INNOLABS, awarded by the Clúster de Salud

de Castilla y León (BIOTECYL), conducted by Verónica Barroso-

Garćıa, Fernando Vaquerizo-Villar, Gonzalo C. Gutiérrez-Tobal, and

Roberto Hornero.

11/2018: First José Maŕıa Ferrero Corral prize in the XXXVI Con-

greso Anual de la Sociedad Española de Ingenieŕıa Biomédica

(CASEIB 2018), awarded by the Sociedad Española de Ingenieŕıa

Biomédica (SEIB), for the study entitled “Caracterización de la apnea

del sueño infantil mediante nuevas bandas espectrales del EEG”, con-

ducted by Adrián Mart́ın-Montero, Gonzalo C. Gutiérrez-Tobal, Jesús

Poza, Daniel Álvarez, Fernando Vaquerizo-Villar, Verónica Barroso-

Garćıa, Saúl J. Ruiz-Gómez, Leila Kheirandish-Gozal, Félix del Campo,

David Gozal, and Roberto Hornero.

03/2021: Winner of the 1st edition of the “#Cuéntame11F –

Cuéntame3min” scientific divulgation competition, awarded and

organized by “Iniciativa 11 de Febrero” to make visible the work of

women scientists, promote technological vocations in girls and adoles-

cents, and remove gender stereotypes in the science and technology field.

In this competition, I explained to non-expert audience what sleep apnea

is, how it is diagnosed, and what my contribution is in this field of study.

06/2021: Accésit prize, “Premio de Innovación Educativa del Consejo

Social de la Universidad de Valladolid, Edición 2021”, awarded

by the University of Valladolid for the teaching innovation project enti-

tled “InGenias: fomentando las vocaciones tecnológicas y la divulgación

cient́ıfica”, coordinated by Noemı́ Merayo Álvarez.
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B.3.2 Grants

07/2017: “Ayuda para financiar la contratación predoctoral de personal

investigador (Orden EDU/602/2016)”, grant from the Consejeŕıa

de Educación de la Junta de Castilla y León and cofunded by Euro-

pean Social Fund. Destination place: Biomedical Engineering Group,

University of Valladolid, Valladolid, Spain. Duration: July 25, 2017 –

December 04, 2021.

07/2017: “Ayudas Financieras Erasmus+ destinadas al Personal Do-

cente e Investigador de la Universidad de Valladolid para la

realización de un curso de Inglés en Instituciones de Enseñanza

Superior y Empresas durante el curso académico 2016/2017”,

grant from the University of Valladolid and cofunded by European

Funds. Destination place: Atlantic Language School, Dublin, Ireland.

Duration: July 31, 2017 – August 11, 2017.

07/2018: “Ayudas Financieras Erasmus+ destinadas al Personal Do-

cente e Investigador de la Universidad de Valladolid para la

realización de un curso de Inglés en Instituciones de Enseñanza

Superior y Empresas durante el curso académico 2017/2018”,

grant from the University of Valladolid and cofunded by European

Funds. Destination place: Caledonian Language School Ltd., Edinburgh,

Scotland. Duration: July 23, 2018 – August 03, 2018.

07/2019: “Movilidad de Doctorandos. Ayudas para la asistencia a cur-

sos, congresos y jornadas relevantes para el desarrollo de Tesis

Doctorales (convocatoria 2019)”, grant from the University of Val-

ladolid. Destination place: 41st Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC 2019),

Berlin, Germany. Duration: July 23, 2019 – July 27, 2019.

08/2019: “Ayudas Financieras Erasmus+ destinadas al Personal Do-

cente e Investigador de la Universidad de Valladolid para la

realización de un curso de Inglés en Instituciones de Enseñanza

Superior y Empresas durante el curso académico 2018/2019”,

grant from the University of Valladolid and cofunded by European

Funds. Destination place: British School of Grammar & Speaking

(BSGS) College, London, England. Duration: August 05, 2019 – August

16, 2019.
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06/2021: “Movilidad de Doctorandos. Ayudas para estancias breves en

el desarrollo de tesis doctorales (convocatoria 2021)”, grant from

the University of Valladolid. Destination place: Sleep Technology and

Analytics Group, University of Eastern Finland, Kuopio, Finland. Du-

ration: September 01, 2021 – December 03, 2021.

06/2021: “Ayudas financieras destinadas a estudiantes o recién titulados

de la Universidad de Valladolid para la realización de prácticas

Erasmus+ en empresas extranjeras con sede en el espacio eu-

ropeo de educación superior (EEES) y páıses asociados del pro-

grama durante el curso académico 2021/2022”, grant from the

University of Valladolid and cofunded by European Funds. Destination

place: Sleep Technology and Analytics Group, University of Eastern Fin-

land, Kuopio, Finland. Duration: September 01, 2021 – December 03,

2021.

11/2021: “Acciones de Movilidad para estancias del personal CIBER-

BBN en grupos externos. Año 2021”, “Centro de Investigación

Biomédica en Red en el área temática de Bioingenieŕıa, Biomateriales

y Nanomedicina (CIBER-BBN)”. Destination place: Sleep Technology

and Analytics Group, University of Eastern Finland, Kuopio, Finland.

Duration: September 01, 2021 – December 03, 2021.



Apéndice C

Resumen en castellano

C.1 Introducción

La apnea obstructiva del sueño (AOS) es una patoloǵıa con alta prevalencia, que

se caracteriza por presentar pausas respiratorias durante el sueño (Alonso-Álvarez

et al., 2011; Berry et al., 2012). Estas pausas respiratorias pueden ser completas

(apneas) o parciales (hipopneas). En niños, una apnea se define como una reducción

del flujo aéreo ≥90% durante al menos 2 ciclos respiratorios (Berry et al., 2012). En

el caso de una hipopnea, esta se define como una reducción entre 30% y 90% del

flujo aéreo que ocurre durante al menos 2 ciclos respiratorios y que va acompañada

de una desaturación de ox́ıgeno en sangre ≥3% o de un arousal (Berry et al.,

2012). La presencia de estos eventos respiratorios conducen a anomaĺıas en el

intercambio de gases, hipoxia, microdespertares y sueño fragmentado, lo que afecta

negativamente a las funciones fisiológicas y cognitivas de los niños (Alonso-Álvarez

et al., 2011; Kaditis et al., 2016). En este sentido, este trastorno puede ocasionarles

graves deficiencias neurocognitivas a largo plazo, desordenes de comportamiento,

aśı como disfunciones cardiovasculares, metabólicas y endocrinas, lo que reduce

drásticamente su salud y calidad de vida (Alonso-Álvarez et al., 2011; Kaditis et al.,

2016). Por lo tanto, es esencial que los niños afectados de AOS sean diagnosticados

y tratados lo antes posible.

La AOS pediátrica tiene una alta prevalencia, ya que afecta al 5.7% de los niños

entre 2 y 18 años (Lumeng and Chervin, 2008; Marcus et al., 2012). Según los datos

cĺınicos de atención primaria solicitados a la Subdirección General de Información

Sanitaria Española en marzo de 2021, se estima que en España esta enfermedad

afecta al 9.56h de los niños menores de 15 años. A pesar de su alta prevalencia

129
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la AOS sigue siendo una enfermedad infradiagnosticada, estimándose que el 90%

de los niños afectados aún no cuentan con un diagnóstico médico (Kheirandish-

Gozal, 2010). Para diagnosticarla, los niños son remitidos a una unidad pediátrica

del sueño especializada donde se les realiza la polisomnograf́ıa nocturna (PSG)

(Jon, 2009). Este estudio del sueño se basa en registrar simultáneamente varias

señales neurofisiológicas y cardiorrespiratorias mientras el niño duerme. Después,

los registros son inspeccionados visualmente por especialistas médicos para pun-

tuar los eventos apneicos y calcular el ı́ndice de apnea-hipopnea (IAH). Aśı, el IAH

derivado de la PSG es el parámetro cĺınico utilizado para diagnosticar la AOS pe-

diátrica (Spruyt, 2012). No obstante, la PSG es técnicamente compleja y requiere

mucho tiempo, ya que el niño debe permanecer hospitalizado al menos una noche y

después todos sus registros fisiológicos deben ser manualmente analizados (Collop

et al., 2007; Ryan et al., 1995). También hay que tener en cuenta que el hecho de

pernoctar en un ambiente diferente al habitual y con múltiples sensores conecta-

dos, puede ser especialmente incómodo para los niños y afectar en sus patrones de

sueño (Jon, 2009). Además, el personal, los equipos y las instalaciones necesarias

para realizar una PSG no siempre están disponibles, lo que da lugar a largas listas

de espera y retrasos en el diagnóstico.

Todas estas limitaciones inherentes de la PSG han llevado a explorar y de-

sarrollar técnicas más simples, que puedan servir como alternativa y agilizar el

diagnóstico de la AOS pediátrica (Alonso-Álvarez et al., 2015). En este sentido,

diversos estudios han centrado sus investigaciones en analizar automáticamente un

conjunto reducido de señales cardiorrespiratorias que, si bien están implicadas en

la PSG, podŕıan ser adquiridas con dispositivos de monitorización portátil en la ca-

sa del paciente. Entre estas señales está la saturación de ox́ıgeno en sangre (SpO2)

(Calderón et al., 2020; Garde et al., 2019), la fotopletismograf́ıa (photoplestismo-

graphy, PPG) (Dehkordi et al., 2016; Lazaro et al., 2014), el electrocardiograma

(ECG) (Shouldice et al., 2004), la variabilidad de la frecuencia cardiaca (heart

rate variability, HRV) derivada del ECG (Mart́ın-Montero et al., 2020, 2021) o el

flujo aéreo respiratorio (FA) (Gutiérrez-Tobal et al., 2015; Jiménez-Garćıa et al.,

2020). En esta Tesis Doctoral se propone caracterizar exhaustivamente el com-

portamiento del FA nocturno pediátrico para obtener información relevante que

ayude a simplificar el diagnóstico de la AOS en niños. El FA es capaz de reflejar

la actividad respiratoria de un sujeto mientras duerme, incluidas las pausas respi-

ratorias asociadas con la AOS (Berry et al., 2012). De hecho, esta señal interviene

directamente en la de definición de apnea e hipopnea (Berry et al., 2012). Además,

el FA puede ser fácilmente adquirido en la casa del paciente mediante un disposi-
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tivo de monitorización portátil dotado de termistor (Collop et al., 2007; Flemons

et al., 2003). Todo esto hace que el análisis del FA sea un enfoque prometedor para

simplificar el diagnóstico de la AOS infantil.

En esta investigación el FA pediátrico se caracterizó mediante novedosas técni-

cas de análisis. Los resultados obtenidos dieron lugar a cuatro art́ıculos publicados

en revistas indexadas en el Journal Citation Reports (JCR), lo que ha permitido

presentar esta Tesis Doctoral por compendio de publicaciones. El primer art́ıculo

se centró en el análisis del FA y de la variabilidad de la frecuencia respiratoria

(respiratory rate variability, RRV) utilizando la medida de la tendencia central

(central tendency measure, CTM) y entroṕıas espectrales (Barroso-Garćıa et al.,

2017). Este enfoque nos permitió caracterizar la variabilidad e irregularidad de

estas señales respiratorias. En el segundo art́ıculo (Barroso-Garćıa et al., 2020),

la caracterización del FA se llevó a cabo mediante la extracción de nueve carac-

teŕısticas derivadas de los gráficos de recurrencia (recurrence plots, RPs). Estas

caracteŕısticas proporcionaron información novedosa sobre la dinámica subyacen-

te y el espacio fase de la señal de FA. En cuanto al tercer art́ıculo (Barroso-Garćıa

et al., 2021a), este se centró en caracterizar el FA usando trece caracteŕısticas

bispectrales. Aśı, el análisis bispectral permitió obtener información útil sobre la

gaussianidad, el acoplamiento de fase y la interacción no lineal de los componen-

tes armónicos del FA. Por último, en el cuarto art́ıculo se utilizó la transformada

wavelet discreta (discrete wavelet transform, DWT) para analizar el FA pediátri-

co (Barroso-Garćıa et al., 2021b). De este modo, las caracteŕısticas derivadas del

análisis wavelet ofrecieron información sobre la distribución de enerǵıa y los compo-

nentes frecuenciales de la señal de FA. Aśı, cada uno de los enfoques metodológicos

propuestos en esta investigación nos permitió descubrir comportamientos del FA

nocturno pediátrico que hasta el momento eran desconocidos en el contexto de

la AOS. Además, se incorporó el ı́ndice de desaturación de ox́ıgeno en sangre del

3% (ODI3), un parámetro cĺınico utilizado como alternativa subóptima a la PSG

cuando esta no está disponible (Kaditis et al., 2015; Van Eyck and Verhulst, 2018).

Esto nos permitió evaluar su complementariedad con la información obtenida del

FA mediante los diferentes enfoques metodológicos.

C.2 Hipótesis y objetivos

El FA es capaz de reflejar la actividad respiratoria durante el tiempo de sueño, in-

cluidas las pausas respiratorias asociadas con la AOS (Berry et al., 2012). Además,

este interviene directamente en la de definición de apnea e hipopnea (Berry et al.,
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2012). Por lo tanto, la señal de FA nocturno recopila información útil para ayu-

dar a diagnosticar la AOS pediátrica. Algunos estudios previos ya han intentado

caracterizar esta señal en el contexto pediátrico (Gutiérrez-Tobal et al., 2015;

Jiménez-Garćıa et al., 2020). Sus investigaciones se basaron en la aplicación di-

recta de técnicas que hab́ıan sido usadas con éxito en adultos. Sin embargo, las

diferencias cĺınicas y diagnósticas entre adultos y niños dificultan el análisis au-

tomático de la señal de FA. Este hecho provoca que los métodos aplicados hasta

ahora en adultos no sean tan efectivos para caracterizar las particularidades de

la AOS en niños. De este modo, se requieren otras técnicas que proporcionen in-

formación diferente de los métodos tradicionales previamente usados en adultos.

Por ello, asumimos que nuevas técnicas de extracción de caracteŕısticas pueden

caracterizar el comportamiento del FA nocturno en niños y mejorar su capacidad

diagnóstica. En este sentido, y dado que FA es una señal dinámica, no lineal y no

estacionaria (Mart́ın-González et al., 2018), los métodos RP, bispectrum y DWT

pueden adaptarse a las propiedades intŕınsecas del FA nocturno pediátrico y pro-

porcionar información útil relacionada con la AOS. Además, también asumimos

que los métodos de selección de caracteŕısticas pueden identificar las caracteŕısti-

cas relevantes y complementarias de FA y maximizar aśı su capacidad diagnóstica.

No obstante, para que se pueda realizar un diagnóstico automático de la enferme-

dad se necesita un modelo predictivo que reconozca automáticamente los patrones

existentes en los datos extráıdos de FA. Aśı, los métodos de aprendizaje supervi-

sado pueden ser herramientas útiles para detectar automáticamente la presencia

y la severidad de la AOS infantil. Teniendo en cuenta todas las consideraciones

anteriormente mencionadas, esta Tesis Doctoral parte de la hipótesis general de

que la caracterización del FA nocturno mediante novedosos enfoques metodológicos

puede ayudar a simplificar el diagnóstico de la AOS pediátrica.

De acuerdo con esta hipótesis, el objetivo principal de nuestra investigación es

diseñar, implementar y evaluar nuevos métodos automáticos de procesado de señal

que permitan caracterizar exhaustivamente el FA nocturno de los niños y ayudar a

diagnosticar la AOS infantil. Para alcanzar este objetivo principal, se propone una

metodoloǵıa en 4 etapas: (i) preprocesado, (ii) extracción de caracteŕısticas, (iii)

selección de caracteŕısticas y (iv) aplicación de métodos de aprendizaje automático.

Esta propuesta nos lleva a formular los siguientes objetivos espećıficos:

I. Mejorar la calidad de los registros de FA mediante novedosos métodos de

preprocesado.
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II. Caracterizar el FA pediátrico para encontrar las propiedades conductuales

que están intŕınsecamente relacionadas con la presencia de eventos apneicos.

III. Identificar la información relevante y no redundante del FA nocturno que

maximiza su capacidad diagnóstica.

IV. Desarrollar y evaluar modelos de aprendizaje automático para determinar la

presencia y gravedad de AOS pediátrica con un alto rendimiento diagnóstico.

C.3 Sujetos

En esta Tesis Doctoral se ha analizado una base de datos de registros de FA pe-

diátrico procedentes del Comer Children’s Hospital de la Universidad de Chicago

(Chicago, IL, EE.UU.). Todos los sujetos involucrados en la investigación fueron

remitidos a la unidad pediátrica del sueño de este hospital por presentar śıntomas

caracteŕısticos de la AOS, como hipersomnolencia diurna, ronquidos, interrupcio-

nes respiratorias y despertares durante la noche. Los niños fueron sometidos a un

estudio del sueño tipo 1 (PSG) mediante un dispositivo polisomnográfico digital

(Polysmith, Nihon Kohden America Inc., Irvine, CA, EE.UU.). Posteriormente,

los especialistas médicos inspeccionaron visualmente los registros polisomnográfi-

cos y puntuaron los eventos de apnea e hipopnea siguiendo las reglas de la AASM

(Berry et al., 2012). Según el IAH obtenido, cada sujeto pediátrico fue diagnostica-

do como no AOS (IAH < 1 e/h), AOS leve (1 e/h ≤ AHI < 5 e/h), AOS moderada

(5 e/h ≤ AHI < 10 e/h) o AOS severa (AHI ≥ 10 e/h) (Alonso-Álvarez et al.,

2011; Hornero et al., 2017; Tan et al., 2014). Los tutores legales de todos los niños

dieron su consentimiento informado por escrito para participar en el estudio. Los

protocolos de estudio fueron aprobados por el Comité Ético del Comer Children’s

Hospital (números de aprobación: 11-0268-AM017, 09-115-B-AM031, IRB14-1241)

conforme a la Declaración de Helsinki.

Inicialmente, la base de datos estaba compuesta por 501 registros de FA pe-

diátrico. Todos ellos fueron adquiridos con un termistor a 200 y 500 Hz durante

la realización de la PSG. Aśı, 501 registros de FA fueron analizados en nuestro

primer estudio (Barroso-Garćıa et al., 2017). Después, la base de datos fue am-

pliada e involucró a 946 niños. Estos 946 registros de FA fueron analizados en

nuestros otros tres estudios (Barroso-Garćıa et al., 2020, 2021a,b). Además de los

registros de FA obtenidos mediante termistor, también se incorporó registros de

SpO2 adquiridos con un pulsiox́ımetro a 200 y 500 Hz. Los datos demográficos y

cĺınicos de los sujetos involucrados son mostrados en las Tablas C.1 y C.2.
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Tabla C.1: Base de datos inicial: datos cĺınicos y demográficos de los niños involucrados.

Todos Sin AOS
AOS
leve

AOS
moderada

AOS
severa

Sujetos (n) 501 134 (26.7%) 187 (37.3%) 76 (15.2%) 104 (20.8%)
Edad (años) 6 [6] 7 [6] 6 [4] 5 [5] 4 [5.5]
Varones (n) 314 (62.7%) 86 (64.2%) 119 (63.6%) 43 (56.6%) 66 (63.4%)
IMC (kg/m2) 17.8 [6.5] 17.3 [5.4] 17.9 [6.4] 19.0 [8.9] 17.6 [6.7]
IAH (e/h) 3.2 [7.1] 0.5 [0.6] 2.6 [1.9] 6.8 [2.5] 18.3 [16.1]

Datos presentados como mediana [rango intercuartil] o número (%). IMC: ı́ndice de masa cor-
poral, IAH: ı́ndice de apnea-hipopnea, AOS: apnea obstructiva del sueño.

Tabla C.2: Base de datos ampliada: datos cĺınicos y demográficos de los niños involu-
crados.

Todos Sin AOS
AOS
leve

AOS
moderada

AOS
severa

Sujetos (n) 946 163 (17.2%) 386 (40.8%) 172 (18.2%) 225 (23.8%)
Edad (years) 6 [6] 7 [6] 6 [5] 5 [6] 5 [5.3]
Varones (n) 584 (61.7%) 98 (60.1%) 242 (62.7%) 106 (61.6%) 138 (61.3%)
IMC (kg/m2) 17.9 [6.2] 17.4 [5.7] 17.8 [5.5] 18.9 [7.9] 18.3 [7.3]
IAH (e/h) 3.8 [7.8] 0.5 [0.6] 2.5 [1.8] 6.8 [2.4] 19.1 [17.2]

Datos presentados como mediana [rango intercuartil] o número (%). IMC: ı́ndice de masa cor-
poral, IAH: ı́ndice de apnea-hipopnea, AOS: apnea obstructiva del sueño.

C.4 Métodos

La metodoloǵıa aplicada en esta investigación consta de cuatro etapas: prepro-

cesado, extracción de caracteŕısticas, selección de caracteŕısticas y aplicación de

métodos de aprendizaje automático.

Se observó que los registros de FA y SpO2 hab́ıan sido registrados a diferentes

frecuencias de muestreo, presentaban diferente resolución y conteńıan artefactos

no deseados causados por la pérdida de contacto con el sensor y los movimientos

de los niños durante el sueño. Por lo tanto, la primera etapa metodológica consistió

en preprocesar los registros para remuestrearlos y eliminar automáticamente los

artefactos que conteńıan. Además, las señales de FA fueron normalizadas para mi-

nimizar las posibles diferencias ocasionadas por otras particularidades fisiológicas

no relacionadas con la AOS (Várady et al., 2002).

Después, se realizó una etapa de extracción de caracteŕısticas para caracterizar

exhaustivamente el comportamiento del FA pediátrico nocturno. Teniendo que en

cuenta que el FA es una señal cardiorrespiratoria dinámica, no estacionaria y no

lineal (Mart́ın-González et al., 2018), se buscaron técnicas de extracción de ca-

racteŕısticas que se adaptasen a las propiedades intŕınsecas de esta señal. De este

modo, los registros de FA fueron analizados mediante CTM , entroṕıas espectrales,
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bispectrum, RPs y DWT para obtener información relevante relacionada con la

AOS. Aśı, cada uno de los enfoques propuestos en esta investigación nos permi-

tió descubrir comportamientos del FA nocturno pediátrico que hasta el momento

eran desconocidos en el contexto de la AOS infantil. En este sentido, la CTM y

las entroṕıas espectrales caracterizaron la variabilidad e irregularidad del FA res-

piratorio, respectivamente (Abásolo et al., 2006; Jiménez-Garćıa et al., 2020). Las

caracteŕısticas derivadas de los RPs proporcionaron información novedosa sobre

la dinámica subyacente y el espacio fase del FA pediátrico (Marwan et al., 2007;

Zbilut and Webber, 2006). Respecto al análisis bispectral, este permitió obtener

información útil sobre la gaussianidad y el acoplamiento de fase de la señal de FA,

aśı como de la interacción no lineal de sus componentes armónicos (Chua et al.,

2010; Mart́ın-Montero et al., 2021). Por último, las caracteŕısticas wavelet detec-

taron cambios en la distribución de enerǵıa y los componentes frecuenciales del FA

(Rioul and Vetterli, 1991; Vaquerizo-Villar et al., 2018c).

La siguiente etapa metodológica que se llevó a cabo fue la selección de carac-

teŕısticas. Puede resultar que las caracteŕısticas extráıdas en la etapa anterior no

proporcionen información complementaria o e incluso que no sean relevantes para

resolver el problema en cuestión (Guyon and Elisseeff, 2003). Además, el uso de

una alta e inadecuada cantidad de caracteŕısticas puede conducir a un sobreajus-

te de los modelos, lo que afecta negativamente a su predictibilidad (Guyon and

Elisseeff, 2003; Saeys et al., 2007). Por ello, antes de realizar el reconocimiento de

patrones, se necesita identificar los subconjuntos óptimos de caracteŕısticas que

maximizan la capacidad diagnóstica del FA. Aśı, los métodos forward stepwise

logistic regression (FSLR) (Hosmer and Lemeshow, 2002) y fast correlation based

filter (FCBF) (Yu and Liu, 2004) fueron implementados y aplicados para seleccio-

nar automáticamente los subconjuntos óptimos de caracteŕısticas relevantes y no

redundantes del FA.

Finalmente, en la última etapa se aplicaron métodos de aprendizaje automático

para identificar patrones en las caracteŕısticas extráıdas del FA, inferir comporta-

mientos a partir de ellos y utilizar esta información para detectar automáticamente

la presencia y severidad de AOS en niños. Esta etapa se llevó a cabo desde tres

enfoques diferentes: clasificación de los sujetos pediátricos como AOS negativo o

AOS positivo (tarea de clasificación binaria), clasificación de los niños según su

grado de severidad de AOS (tarea de clasificación multiclase) y estimación del IAH

de cada sujeto (tarea de regresión). Las tareas de clasificación binaria y multiclase

se realizaron mediante algoritmos de regresión loǵıstica (RL) y adaptive boosting

(AdaBoost.M2), respectivamente (Freund and Schapire, 1997; Hosmer and Le-
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meshow, 2002). En cuanto a la tarea de regresión, está se realizó a través de redes

neuronales perceptrón multicapa (Multi-layer perceptron, MLP) y redes MLP con

enfoque bayesiano (BY-MLP) (Bishop, 1995).

Además, se aplicaron técnicas estad́ısticas para analizar e interpretar los resul-

tados obtenidos, aśı como para evaluar la capacidad diagnóstica y la fiabilidad de

los métodos propuestos en esta investigación. De este modo, en esta Tesis Docto-

ral se utilizaron test estad́ısticos (Lilliefors, Leneve, χ2, Fisher, Mann-Whitney y

Kruskal-Wallis), técnicas visuales (diagramas de caja y de vioĺın), medidas de ren-

dimiento diagnóstico (sensibilidad, especificidad, precisión, valor predictivo positi-

vo y negativo, razón de verosimilitud positiva y negativa y área bajo la curva recei-

ver operating characteristic), medidas de concordancia (coeficiente de correlación

intraclase, precisión multiclase e ı́ndice kappa de Cohen) y técnicas de validación

(hold-out, leave-one-out cross-validation, k-fold cross-validation y bootstrapping).

C.5 Resultados y discusión

Cada uno de los diferentes enfoques metodológicos empleados en esta Tesis Doc-

toral revelaron cambios en el comportamiento del FA nocturno pediátrico que

estaban relacionados con la ocurrencia de eventos apneicos. En este sentido, los re-

sultados obtenidos con la CTM sugieren que la AOS podŕıa reducir la variabilidad

de la señal de FA e incrementar la del RRV. Aśı, la variabilidad seŕıa especialmente

útil reflejando las particularidades de la AOS severa en FA. Además, podŕıa ser un

rasgo común de la enfermedad en la señal RRV y, por lo tanto, un útil indicador

para su diagnóstico. En el caso de las entroṕıas espectrales, sus tendencias crecien-

tes en FA indican que los eventos apneicos podŕıan incrementar la irregularidad

de esta señal. No obstante, el análisis estad́ıstico realizado sugiere que la entroṕıa

cuadrática refleja mejor los cambios de irregularidad causados por la AOS en FA

y que ésta podŕıa ser particularmente más útil en los casos severamente afectados.

Respecto a las entroṕıas espectrales de RRV, estas mostraron valores elevados,

pero sin diferencias estad́ısticamente significativas entre grupos de severidad. Es-

te hecho indicaŕıa que la señal RRV tiene un carácter mayoritariamente irregular

independientemente de la presencia y grado de AOS.

Estos cambios de variabilidad e irregularidad que experimenta el FA en presen-

cia de eventos apneicos coinciden con los hallazgos realizados mediante el análisis

de los RPs. De acuerdo con este análisis, la AOS no sólo reduciŕıa la variabilidad

e incrementaŕıa la irregularidad de la señal de FA, sino que también reduciŕıan

su complejidad y su divergencia exponencial. Además, la alta densidad de recu-
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rrencias alcanzada por los grupos más severos reveló que los eventos apneicos

podŕıan aumentar el acoplamiento de fase de FA. También se observó que, aun-

que el FA tienen un comportamiento mayoritariamente no estacionario, la AOS es

capaz de incrementar el grado de no estacionariedad de esta señal. Además, los

eventos apneicos podŕıan aumentar la duración de los estados laminares de FA,

haciendo que ésta no cambie o cambie muy lentamente ya que sus trayectorias

permaneceŕıan más tiempo atrapadas en el mismo estado de fase. Aśı, el tiem-

po de predicción promedio de la señal también se incrementaŕıa con la severidad.

Respecto a la predictibilidad, los resultados obtenidos sugieren que la señal de FA

tiene un comportamiento mayoritariamente predecible independientemente de la

presencia y grado de AOS. Por el contrario, la laminaridad y la divergencia expo-

nencial podŕıan ser manifestaciones comunes de la AOS en FA y, por lo tanto, ser

unos útiles indicadores para su diagnóstico.

En cuanto al análisis bispectral, se pudo observar que hab́ıa un foco de acopla-

miento entorno de la banda de respiración normal (0.20–0.40 Hz). A medida que

el IAH aumentaba, este foco se desvanećıa mientras otro aparećıa a bajas frecuen-

cias (0.05 Hz). Este hecho sugiere que las apneas e hipopneas reducen la amplitud

bispectral y el acoplamiento de fase del FA en la banda de respiración normal

y lo redistribuyen en otros componentes frecuenciales relacionados con la AOS.

De este modo, los eventos apneicos podŕıan desplazar el foco de actividad hacia

componentes de baja frecuencia. Además, los resultados obtenidos indican que los

eventos apneicos podŕıan reducir el grado de no gaussianidad de la señal de FA,

aśı como la interacción no lineal entre sus componentes armónicos. Respecto a la

irregularidad, la tendencia creciente de las entroṕıas bispectrales y de fase sugiere

que la AOS podŕıa alterar el comportamiento oscilatorio de FA haciendo que su

amplitud y fase cambien sin seguir un determinado patrón. Como consecuencia,

la señal de FA seŕıa más irregular al incrementar la severidad de la enfermedad.

El análisis estad́ıstico realizado también reveló que la irregularidad de amplitud y

fase, el grado de acoplamiento en la banda de respiración normal, la localización

del foco de acoplamiento y la centralización de los componentes armónicos podŕıan

ser caracteŕısticas propias de un alto desarrollo de la enfermedad. Sin embargo,

la potencia bispectral total y máxima, la interacción no lineal entre componentes

armónicos y la dispersión de estos, podŕıan reflejar mejor el comportamiento del

FA según los diferentes grados de severidad y, por lo tanto, ser más útiles para

diagnosticar la AOS.
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Respecto al análisis wavelet, se pudo observar que a medida que se incremen-

taba la severidad de AOS los sujetos presentaban una señal de detalle de menor

amplitud en el rango de frecuencias asociado a la respiración normal. De este mo-

do, la reducción de actividad causada por los eventos apneicos en la banda de

respiración normal podŕıa disminuir el valor y el rango de dispersión de los coefi-

cientes de la señal de detalle de FA en su 8o nivel de resolución (D8). Los resultados

también indicaron que la recurrencia de apneas e hipopneas podŕıa perturbar la

distribución frecuencial de FA y reducir sus componentes frecuenciales en esta ban-

da. Esto daŕıa lugar a que casi todos los coeficientes de D8 estuvieses próximos a

0. Además, la AOS podŕıa reducir la enerǵıa producida en el rango de frecuencias

de respiración normal y redistribuirla en otros rangos frecuenciales asociados con

la ocurrencia de eventos apneicos. De este modo, la señal de FA también seŕıa

más irregular en términos de enerǵıa a medida que aumenta la severidad de la

enfermedad. Todas las caracteŕısticas wavelet mostraron diferencias significativas

entre grupos de severidad. Las mayores se alcanzaron con la mı́nima amplitud, la

centralización y la asimetŕıa de los coeficientes de D8, lo que destacó su utilidad

para reflejar las particularidades de la AOS en FA.

En base a estas consideraciones, los diferentes enfoques metodológicos pro-

puestos en esta Tesis Doctoral permitieron adaptarse a las propiedades intŕınsecas

del FA nocturno pediátrico, caracterizar su comportamiento y proporcionar in-

formación útil relacionada con la AOS. En cuanto a su rendimiento diagnóstico,

estos enfoques obtuvieron precisiones moderadas–altas: 60.0%–81.1% para 1 e/h,

57.1%–76.0% para 5 e/h y 70.5%–80.6% para 10 e/h (Barroso-Garćıa et al., 2017,

2020, 2021a,b). Aśı, la mayor precisión alcanzada para 1 y 10 e/h fue mediante las

caracteŕısticas derivadas de los RPs, mientras que para 5 e/h la precisión mas alta

se alcanzó con la CTM y las entroṕıas espectrales. Cabe destacar que este último

enfoque obtuvo un par sensibilidad - especificidad mucho más balanceado para

los tres umbrales. En este sentido, los modelos alimentados con caracteŕısticas de

RPs, bispectrum o wavelets, mostraron una sobrestimación de la severidad en 1 y

5 e/h (valores bajos de especificidad) y una ligera subestimación en 10 e/h (valores

bajos de sensibilidad). Por el contrario, el ODI3 presentó una subestimación de

la severidad en 1 y 5 e/h.

Estos efectos indeseados de subestimación y sobreestimación se redujeron cuan-

do la información extráıda del FA se combinó con el ODI3. De este modo, su uso

conjunto consiguió un rendimiento diagnóstico significativamente superior al obte-

nido individualmente, con precisiones del 78.0%–83.2% para 1 e/h, 78.5%–82.5%

para 5 e/h y 90.2%–91.0% para 10 e/h (Barroso-Garćıa et al., 2020, 2021a,b). En
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cuanto al umbral de 1 e/h, la precisión más alta se volvió a obtener con los RPs.

Además, este enfoque alcanzó una razón de verosimilitud negativa notablemente

más baja que el resto. Por lo tanto, la información derivada de los RPs de FA podŕıa

usarse junto con el ODI3 como una técnica sólida para descartar la presencia de

AOS pediátrica. En el caso de 5 e/h, la precisión más alta se alcanzó mediante el

análisis bispectral. Además, este enfoque obtuvo un par sensibilidad - especifici-

dad más balanceado que el resto. Por lo tanto, la información bispectral del FA

podŕıa usarse junto con el ODI3 como una herramienta eficaz para discriminar

a los niños levemente afectados de aquellos con AOS moderada-severa. Respecto

a 10 e/h, tanto el enfoque de RPs como el de wavelets obtuvieron un 91.0% de

precisión. No obstante, el modelo AdaBoost alcanzó una razón de verosimilitud

positiva notablemente más alta usando caracteŕısticas wavelet. En consecuencia,

la información wavelet de FA podŕıa usarse junto con el ODI3 como una técnica

robusta para determinar la presencia de AOS severa en niños. Teniendo en cuenta

todos los umbrales, el modelo AdaBoost alimentado con caracteŕısticas wavelet de

AF y ODI3 proporcionó el mayor rendimiento global para 10 e/h, un par sensibili-

dad - especificidad mucho más balanceado para 1 e/h y mayor especificidad, valor

predictivo positivo y ratio de verosimilitud positiva para 5 e/h, a costa de una pre-

cisión ligeramente inferior en estos dos últimos umbrales. Por lo tanto, este podŕıa

ser propuesto como nuestro modelo final para diagnosticar la AOS pediátrica.

Aśı, el mayor rendimiento diagnóstico alcanzado con cada uno de los enfoques

propuestos en esta Tesis Doctoral es mostrado en la Tabla C.3. La Tabla C.4 resume

las principales caracteŕısticas metodológicas y el rendimiento diagnóstico obtenido

por otros estudios del estado del arte basados en el diagnóstico automático de la

AOS infantil. Como puede observarse, los enfoques propuestos en esta investigación

alcanzaron un alto rendimiento diagnóstico en comparación con otros estudios de

vanguardia. Aunque en 5 e/h obtuvimos unos resultados dentro de los rangos

de rendimiento de estos estudios, nuestra propuesta logró superarlos en 1 y 10

e/h. De este modo, la caracterización del FA nocturno mediante estos novedosos

métodos podŕıa incrementar su capacidad diagnóstica y ayudar a detectar la AOS

pediátrica. Además, el alto rendimiento de los modelos propuestos sugiere que

estos se podŕıan incorporar en la práctica cĺınica para identificar automáticamente

la presencia y severidad de AOS en niños.
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Tabla C.3: Rendimiento diagnóstico obtenido con cada uno de los enfoques metodológi-
cos propuestos en este compendio de publicaciones.

Estudio
#Total
/#Test

Señal

Métodos
(Extracción
/Selección/
Clasificación)

IAH
S
(%)

E
(%)

P
(%)

VPP
(%)

VPN
(%)

LR+ LR–

Barroso-
Garćıa
et al. (2017)

501/251 FA

Entroṕıas
espectrales,
CTM
/FSLR/LR

1
5
10

60.5
65.0
83.3

58.6
80.6
79.0

60.0
76.0
80.0

81.2
70.7
52.8

25.0
78.2
93.5

1.1
3.6
4.0

0.9
0.4
0.2

Barroso-
Garćıa
et al. (2020)

946/376
FA,
SpO2

Gráficos de
recurrencia,
ODI3/FCBF/
BY-MLP

1
5
10

97.7
78.7
78.8

22.2
78.3
94.3

83.2
78.5
91.0

84.1
68.5
78.8

69.6
86.0
94.3

1.3
3.6
13.7

0.1
0.2
0.2

Barroso-
Garćıa et al.
(2021a)

946/376
FA,
SpO2

Bispectrum,
ODI3/FCBF/
MLP

1
5
10

98.0
81.6
72.3

15.3
83.0
95.0

82.2
82.5
90.2

83.0
74.2
796

65.0
88.3
92.7

1.2
4.9
15.0

0.1
0.2
0.3

Barroso-
Garćıa et al.
(2021b)

946/376
FA,
SpO2

Wavelet,
ODI3/FCBF/
AdaBoost.M2

1
5
10

80.3
68.0
72.4

68.1
90.3
96.0

78.0
81.9
90.1

91.5
80.8
83.0

44.9
82.5
92.8

2.6
7.2
19.0

0.3
0.4
0.3

Barroso-
Garćıa et al.
(2021b)

946/376
FA,
SpO2

Wavelet,
ODI3/FCBF/
BY-MLP

1
5
10

91.2
79.3
74.9

43.3
83.8
95.0

82.0
82.1
90.7

87.2
74.6
80.0

53.6
87,2
93.3

1.6
5.0
15.6

0.2
0.3
0.3

IAH: ı́ndice de apnea-hipopnea, S: sensibilidad, E: especificidad, P: precisión, VPP: valor predictivo
positivo, VPN: valor predictivo negativo, LR+: razón de verosimilitud positiva, LR–: razón de vero-
similitud negativa, SpO2: señal de oximetŕıa, FA: señal de flujo aéreo, ODI3: ı́ndice de desaturación
de ox́ıgeno en sangre del 3%, CTM : central tendency measure, FSLR: forward stepwise logistic re-
gression, FCBF: fast correlation based filter, LR: logistic regression, MLP: multi-layer perceptron,
BY-MLP: Bayesian MLP, AdaBoost: adaptive boosting.

C.6 Conclusiones

De acuerdo con los resultados obtenidos a lo largo de esta investigación, se pueden

derivar las siguientes conclusiones:

1) El CTM , las entroṕıas espectrales, los RPs, el bispectrum y el análisis wa-

velet pueden caracterizar el comportamiento del FA nocturno pediátrico,

adaptarse a sus propiedades intŕınsecas y proporcionar información útil re-

lacionada con la AOS.

2) Tras aplicar el CTM y las entroṕıas espectrales podemos concluir que la

AOS reduce la variabilidad e incrementa la irregularidad de la señal de FA.

Además, los eventos apneicos también incrementan la variabilidad de la señal

RRV.
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Tabla C.4: Rendimiento diagnóstico obtenido en otros estudios del estado del arte.

Estudio
#Total
/#Test

Señal

Métodos
(Extracción
/Selección/
Clasificación)

IAH
S
(%)

E
(%)

P
(%)

VPP
(%)

VPN
(%)

LR+ LR–

Shouldice
et al. (2004)

50/25 ECG
Temporal, es-
pectral/–/QDA

1 85.7 81.8 84.0 85.7 81.8 4.7 0.2

Mart́ın-
Montero
et al. (2020)

1738/757 ECG
Espectral de
HRV/–/LDA

1
5
10

42.5
50.0
63.8

72.3
80.9
84.7

52.6
76.4
82.8

75.0
31.3
29.5

39.1
90.3
95.9

1.5
2.6
4.2

0.8
0.6
0.4

Mart́ın-
Montero
et al. (2021)

1738/757 ECG
Bispectral de
HRV/FCBF
/MLP

1
5
10

76.3
62.5
66.7

38.3
84.2
91.6

63.4
81.0
89.3

70.7
40.7
44.2

45.5
92.8
96.5

1.2
4.0
7.9

0.6
0.4
0.4

Gil et al.
(2009)

21/21 PPG
Espectral de
HRV, DAP
/Wrapper/QDA

5 87.5 71.4 80.0 – – 3.1 0.2

Lazaro et al.
(2014)

21/21 PPG
Espectral de
PRV, DAP
/Wrapper/LDA

5 100 71.4 86.7 – – 3.5 0

Dehkordi
et al. (2016)

146/146 PPG
Temporal, es-
pectral, DFA
/LASSO/LASSO

5 76.0 68.0 71.0 – – 2.4 0.4

Garde et al.
(2014a)

146/146
SpO2

PRV

Temporal, no
lineal, espectral
/Optimización
AUC/LDA

5 88.4 83.6 84.9 76.9 92.6 5.4 0.1

Hornero
et al. (2017)

4191
/3602

SpO2

Temporal, no
lineal, espectral
ODI3/FCBF
/MLP

1
5
10

84.0
68.2
68.7

53.2
87.2
94.1

75.2
81.7
90.2

81.6
68.6
67.7

53.7
87.0
94.3

1.8
5.3
11.6

0.3
0.4
0.3

Vaquerizo-
Villar et al.
(2018b)

298/75 SpO2

Espectral, bis-
pectral, ODI3,
antropométri-
cas/FCBF/MLP

5
10

61.8
60.0

97.6
94.5

81.3
85.3

95.5
80.0

75.5
86.7

25.3
11.0

0.4
0.4

Vaquerizo-
Villar et al.
(2018c)

981/392 SpO2

Temporal,
espectral, wa-
velet, ODI3
/FCBF/SVM

5 71.9 91.1 84.0 83.8 84.5 14.6 0.3

Xu et al.
(2018)

432/432 SpO2

Temporal, no
lineal, espectral
ODI3/–/MPL

1
5
10

95.3
77.8
73.5

19.1
80.5
92.7

79.6
79.4
88.2

82.0
72.3
75.8

51.5
84.7
91.9

1.2
4.0
10.1

0.2
0.3
0.3

Garde et al.
(2019)

207/207
SpO2,
PRV

Temporal,
espectral/
Stepwise/LR

1
5
10

80.0
85.0
82.0

65.0
79.0
91.0

75.0
82.0
89.0

–
–
–

–
–
–

2.3
4.1
9.1

0.3
0.2
0.2

Calderón
et al. (2020)

453/453 SpO2
Índices oxi-
metŕıa/–/LR

5 62.0 96.0 79.0 94.3 – 15.5 0.4

Gutiérrez-
Tobal et al.
(2015)

50/50
FA,
SpO2

Espectral,
ODI3/FSLR/LR

3 85.9 87.4 86.3 88.4 85.8 6.8 0.2

Jiménez-
Garćıa et al.
(2020)

974/390
FA,
SpO2

Temporal, no
lineal, espectral
ODI3/FCBF/
AdaBoost.M2

1
5
10

92.1
76.0
62.7

36.0
85.7
97.7

81.3
82.1
90.3

85.8
76.0
88.1

51.9
85.7
90.6

1.4
5.3
27.5

0.2
0.3
0.4

IAH: ı́ndice de apnea-hipopnea, S: sensibilidad, E: especificidad, P: precisión, VPP: valor predictivo positivo, VPN:
valor predictivo negativo, LR+: razón de verosimilitud positiva, LR–: razón de verosimilitud negativa, ECG: electrocar-
diograma, PPG: fotopletismograf́ıa, SpO2: señal de oximetŕıa, FA: señal de flujo aéreo, PRV: pulse rate variability, DAP:
decreases in amplitude fluctuations of PPG, HRV: heart rate variability, ODI3: ı́ndice de desaturación de ox́ıgeno en sangre del
3%, AUC: área bajo la receiver operating characteristic curve, FSLR: forward stepwise logistic regression, LASSO: least absolute
shrinkage and selection operator, FCBF: fast correlation based filter, QDA: quadratic discriminant analysis, LDA: linear discriminant
analysis, LR: logistic regression, MLP: multi-layer perceptron, SVM: support vector machine, AdaBoost: adaptive boosting.
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3) Según la información proporcionada por los RPs, la AOS modifica la dinámi-

ca subyacente y el espacio fase del FA nocturno. Concretamente, los eventos

apneicos disminuyen la variabilidad, la estacionariedad y la complejidad de

la señal de FA, aśı como la divergencia exponencial de su espacio fase. Tam-

bién se puede concluir que la AOS aumenta el tiempo durante el cual el FA

permanece en un determinado estado del espacio fase. Además, su tiempo

medio de predicción y su irregularidad son mayores a medida que aumenta

el IAH.

4) La interpretación de las caracteŕısticas bispectrales nos llevaron a concluir

que la AOS reduce la no gaussianidad del FA, aśı como la interacción no

lineal de sus componentes armónicos. La AOS infantil también disminuye el

acoplamiento de fase en la banda de respiración normal y desplaza el foco

de acoplamiento hacia componentes de baja frecuencia relacionados con los

eventos apneicos. Además, la irregularidad de la señal de FA aumenta en

términos de amplitud y fase cuando aumenta la severidad de la enfermedad.

5) De acuerdo con la información proporcionada por el análisis wavelet podemos

concluir que la AOS perturba la distribución de enerǵıa y de los componentes

frecuenciales de la señal de FA. Concretamente, los eventos apneicos redu-

cen la amplitud de la señal de detalle de FA y la enerǵıa producida en la

banda de respiración normal. En esta banda, los componentes frecuenciales

del FA también disminuyen con la AOS. Además, su irregularidad aumenta

en términos de enerǵıa a medida que aumenta el IAH.

6) La información que proporciona la señal de FA sobre la AOS es adicional y

complementaria a la que aporta la señal RRV. Concretamente, existe comple-

mentariedad entre la irregularidad del FA y la variabilidad del RRV, lo que

destaca su capacidad para caracterizar diferentes rasgos de la AOS infantil.

7) La información sobre la divergencia exponencial del espacio fase del FA es

más útil para caracterizar las particularidades de la AOS pediátrica que la

que proporcionan otras caracteŕısticas derivadas de los RPs.

8) Los diferentes enfoques bispectrales ofrecen información complementaria so-

bre los efectos que los eventos apneicos provocan en la señal de FA. Por lo

tanto, su uso conjunto proporciona una caracterización más completa del

comportamiento de esta señal.
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9) La información sobre los cambios que experimenta la asimetŕıa de la distri-

bución de los coeficientes del FA es más útil para caracterizar la AOS infantil

que la que proporcionan otras caracteŕısticas wavelet.

10) La información proporcionada por el FA a través de los diferentes enfo-

ques metodológicos es complementaria a la información proporcionada por

el clásico ODI3. Por lo tanto, su uso conjunto seŕıa especialmente útil para

diagnosticar con precisión la AOS pediátrica.

11) Los métodos de procesado de FA propuestos permiten obtener modelos pre-

dictivos de alta precisión para diagnosticar automáticamente la presencia y

severidad de la AOS infantil. El modelo BY-MLP diseñado con caracteŕısti-

cas RP y el ODI3 alcanzó el rendimiento diagnóstico más alto para descartar

la presencia de AOS (1 e/h), la MLP diseñada con caracteŕısticas bispectrales

y el ODI3 lo obtuvo para distinguir entre niños afectados levemente de AOS

y aquellos con un grado moderado-a-severo (5 e/h), y el modelo AdaBoost

construido con caracteŕısticas wavelet y el ODI3 logró el mayor rendimiento

para confirmar la presencia de AOS severa (10 e/h). Considerando conjunta-

mente el rendimiento alcanzado para todos los umbrales, este último modelo

podŕıa ser propuesto como el modelo final.

De acuerdo con las consideraciones anteriormente expuestas, podemos concluir

que la caracterización del FA nocturno mediante estos novedosos métodos puede

ayudar a simplificar el diagnóstico de la AOS pediátrica. Además, el alto rendi-

miento de los modelos propuestos sugiere que estos se podŕıan incorporar en la

práctica cĺınica para identificar automáticamente la presencia y severidad de AOS

infantil.
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Hornero, R., 2015. Diagnosis of pediatric obstructive sleep apnea: Preliminary findings using

automatic analysis of airflow and oximetry recordings obtained at patients’ home. Biomedical

Signal Processing and Control 18, 401–407.

Gutiérrez-Tobal, G. C., Member, S., Alvarez, D., del Campo, F., Hornero, R., Member, S.,

2016. Utility of AdaBoost to Detect Sleep Apnea-Hypopnea Syndrome From Single-Channel

Airflow. IEEE Transactions on Biomedical Engineering 63 (3), 636–646.
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A., Álvarez, D., del Campo, F., Gozal, D., Hornero, R., 2020. Assessment of Airflow and

Oximetry Signals to Detect Pediatric Sleep Apnea-Hypopnea Syndrome Using AdaBoost.

Entropy 22 (6), 670.

Jon, C., 2009. Polysomnography in Children. In: Pediatric Otolaryngology for the Clinician.

Humana Press, pp. 35–47.

Kaditis, A., Kheirandish-Gozal, L., Gozal, D., 2015. Pediatric OSAS: Oximetry can provide

answers when polysomnography is not available. Sleep Medicine Reviews 27, 96–105.

Kaditis, A. G., Alvarez, M. L. A., Boudewyns, A., Alexopoulos, E. I., Ersu, R., Joosten, K.,

Larramona, H., Miano, S., Narang, I., Trang, H., Tsaoussoglou, M., Vandenbussche, N.,

Villa, M. P., Waardenburg, D. V., Weber, S., Verhulst, S., 2016. Obstructive sleep disordered

breathing in 2- to 18-year-old children: Diagnosis and management. European Respiratory

Journal 47 (1), 69–94.

Kapur, V. K., Auckley, D. H., Chowdhuri, S., Kuhlmann, D. C., Mehra, R., Ramar, K., Harrod,

C. G., 2017. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea:

An American academy of sleep medicine clinical practice guideline. Journal of Clinical Sleep

Medicine 13 (3), 479–504.

Kennel, M. B., Brown, R., Abarbanel, H. D. I., 1992. Determining embedding dimension for

phase-space reconstruction using a geometrical construction. Physical Review A 45 (6), 3403–

3411.



Bibliography 151
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Vaquerizo-Villar, F., Álvarez, D., Kheirandish-Gozal, L., Gutiérrez-Tobal, G. C., Barroso-Garćıa,
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