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Abstract

Objectives: Obstructive sleep apnea (OSA) is typically diagnosed by polysomnography (PSG). However, PSG is time-consum-
ing and has some clinical limitations. This study thus aimed to establish machine learning models to screen for the risk of
having moderate-to-severe and severe OSA based on easily acquired features.

Methods: We collected PSG data on 3529 patients from Taiwan and further derived the number of snoring events. Their base-
line characteristics and anthropometric measures were obtained, and correlations among the collected variables were inves-
tigated. Next, six common supervised machine learning techniques were utilized, including random forest (RF), extreme
gradient boosting (XGBoost), k-nearest neighbor (kNN), support vector machine (SVM), logistic regression (LR), and
naïve Bayes (NB). First, data were independently separated into a training and validation dataset (80%) and a test dataset
(20%). The approach with the highest accuracy in the training and validation phase was employed to classify the test dataset.
Next, feature importance was investigated by calculating the Shapley value of every factor, which represented the impact on
OSA risk screening.

Results: The RF produced the highest accuracy (of >70%) in the training and validation phase in screening for both OSA
severities. Hence, we employed the RF to classify the test dataset, and results showed a 79.32% accuracy for moderate-
to-severe OSA and 74.37% accuracy for severe OSA. Snoring events and the visceral fat level were the most and second
most essential features of screening for OSA risk.

Conclusions: The established model can be considered for screening for the risk of having moderate-to-severe or severe
OSA.
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Introduction
Obstructive sleep apnea (OSA) is a disease characterized by
repetitive hypoxemia caused by upper airway collapse while
sleeping; potential risk factors include being aged, being
overweight, consuming alcohol, smoking, and having nasal
congestion.1 Estimated prevalences of moderate to severe
OSA in the United States in 2013 were 17% in elderly
males and 9% in elderly females (50–70 years old).2 In add-
ition, increasing evidence exists for associations of OSA with
hypertension, cardiovascular diseases,3,4 increased cancer-
related deaths,5 a higher risk of developing Alzheimer’s
disease,6 and an impaired quality of life.7 Hence, OSA inter-
ventions, including early diagnosis and appropriate therapy,
are critical.

Polysomnography (PSG) in a sleep laboratory is recom-
mended as the gold standard for an OSA diagnosis.8

Specifically, number of apneic and hypopneic events per
hour during sleep, namely the apnea–hypopnea index
(AHI), were obtained by utilizing PSG. Based on the
derived AHI, OSA severity was classified into four categor-
ies: normal (AHI <5 times/h), mild (5≤AHI <15 times/h),
moderate (15≤ AHI <30 times/h), and severe (AHI ≥30
times/h).9 Next, subjects, with an AHI of ≥30 times/h,
were recommended to undertake corrective interventions.
However, PSG is time-consuming for a full night stay in
a hospital, and it is complex, with over 15 channels of meas-
urement.10 Also, an older age, nocturnal oxygen therapy,
health status, and long waiting lists in many sleep laborator-
ies may discourage patients from considering whether to
undergo laboratory PSG. With a growing number of sus-
pected OSA patients, previous studies proposed different
approaches for simplifying OSA risk screening and
enable home testing. For instance, researchers assessed
the possibility of using nasal air pressure in the home envir-
onment or nocturnal pulse oximetry to conduct OSA diag-
noses.11,12 A related study suggested that using a simplified
home sleep test (HST) may have an adequate OSA diagno-
sis rate in appropriately selected patients.13 Another review
study recommended employing sleep-related question-
naires which may serve as an OSA risk screener with
advantages of convenience and low cost14 However, since
HST has fewer physiological signal numbers, these simpli-
fied measurements may be inaccurate in ruling out OSA
risk when patients have respiratory events but are mainly
associated with arousals15 or those with comorbidities.16

With self-reported questionnaires, elevated false positives
and inconsistent subjective responses may affect the accur-
acy of OSA risk screening in patients with complex sleep
disorders.17 Given these deficiencies in current approaches,
novel and applicable models to aid in screening OSA risks
are required.

To construct a practical risk screening model by exploring
clinical manifestations among patients with OSA may be
worthwhile. First, snoring, the vibration of palatal soft
tissues due to obstruction of air movements when breathing
during sleep, may serve as an indicator representing the
level of airway obstruction.18 In addition, snoring is the
most common symptom of OSA, which occurs in 70–95%
of patients.19 Previous studies predicting OSA investigated
the recorded snoring sound intensity and analyzed it in a hos-
pital20 or at home.21 Similarly, previous researchers
employed the snoring intensity and frequency to predict the
risk of having OSA using data of snorers with non-severe
obesity.22 Next, considering age, sex, and obesity as risk
factors for presenting OSA, baseline characteristics and
anthropometric features can serve as predictors for evaluating
OSA risk composition states.23,24 Another advantage is that
these variables are relatively easily acquired compared to
PSG parameters. Thus, it seems that establishing risk screen-
ing models for OSA by employing snoring events, baseline
characteristics, and anthropometric features would be feasible
since they are related to the risk of OSA presentation.

This retrospective study hypothesized that utilizing
snoring events, anthropometric features, and baseline charac-
teristics can serve as predictors to screen for OSA risks. The
aim of this explorative study was to develop screening models
for the risk of moderate-to-severe (AHI ≥15 times/h) and
severe OSA (AHI ≥30 times/h) based on a dataset of over
3000 recruited participants. Correlations between these
abovementioned variables and the AHI were also investi-
gated. We hope that this work elucidates the feasibility of
established models presenting adequate predictive accuracy
to thereby speed up traditional diagnostic processing times.

Materials and methods

Study population

This was a retrospective study of adult patients who visited
the sleep laboratory of Taipei Medical University, Shuang
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Ho Hospital (New Taipei City, Taiwan) for an evaluation of
suspected OSA between 1 May 2019 and 31 December
2021. The patient inclusion criteria were (1) aged 20–80
years, (2) having an overall PSG recording time of >6 h
with a sleep efficiency of >40%, (3) not having previously
undergone invasive surgery as OSA treatment, and (4) not
regularly employing hypnotic or psychotropic medications.

Baseline characteristics and body composition

This study acquired baseline data and anthropometric mea-
sures for eligible individuals. Regarding the baseline, data
on individuals’ age, sex, body mass index (BMI), neck cir-
cumference (NC), and waist circumference (WC) were
obtained. For anthropometric measures, before PSG, all
patients were instructed to urinate and then undergo body
composition measurements (namely bioelectrical imped-
ance) utilizing the Tanita MC-780 system (Tanita, Tokyo,
Japan). It was noted that all patients were required to fast
for at least 3 h before PSG. In terms of measures, the fat
mass and fat-free mass (i.e. bone and muscle mass) were
assessed on different scales (i.e. whole body, limbs, and
trunk). Fat percentages on the aforementioned scales and
the body fat ratio (trunk/limbs) were thereby obtained.
Next, the visceral fat level (as an indicator for estimating
the fat encircling the organs in the abdominal space;
which ranged from 1 to 55), the basal metabolic rate
(BMR, as the lowest required energy), and physique
rating (ratio of body fat mass to muscle mass) were deter-
mined. In addition, total body water (TBW), its percentage
(TBW/body weight), its distribution, and the extracellular
water (ECW)/intracellular water (ICW) ratio were deter-
mined. All of the collected parameters were utilized for
further exploration.

PSG

In-laboratory PSG was performed utilizing ResMed Embla
N7000 (ResMed, San Diego, CA, USA) and Embla MPR
(Natus Medical, Pleasanton, CA, USA). PSG includes
various sensors (i.e. electroencephalogram, electro-
oculogram, electromyogram of the chin and leg, a nasal
cannula, oral–nasal thermistor, bands for the chest and
abdomen, pulse oximetry, and a piezoelectric vibration
sensor). All of the signals were recorded using RemLogic
software (version 3.41, Embla, Thornton, CO, USA) and
scored by certified PSG technologists per the Americana
Academy of Sleep Medicine (AASM) Scoring Manual.25

For snoring which serves as an indicator of upper airway
obstruction, these events were assessed by a piezoelectric
vibration sensor placed on the triangle of the neck.
Technically, this sensor measures frequencies of oscilla-
tions at the skin surface, thereby generating a piezoelectric
signal to represent the snoring waveform. Snoring events
were defined as protruding from the background and

being synchronized with breathing, except for the body
movement time. Piezoelectric signals were recorded at a
sampling rate of 200 Hz and with AASM-recommended
filter settings (low frequency of 10 Hz and high frequency
of 100 Hz). Regarding OSA severity, the AHI, defined as
the number of apneic and hypopneic events of the total
sleep time, was obtained, and this index was further
divided into four OSA levels, namely normal (AHI: <5
times/h), mild (5≤AHI <15 times/h), moderate (15≤ AHI
<30 times/h), and severe (AHI ≥30 times/h).26

Statistical analysis

This study performed statistical examinations using Python
(version 3.9.7) and open-source stats library-SciPy (version
1.9.1). First, Shapiro–Wilk’s method was applied to
examine data normality. Spearman’s correlation were
used to determine correlations among anthropometric mea-
sures, snoring details, and sleep quality indices, including
the AHI and oxygen desaturation index (ODI) of ≥3%,
due to their non-normal distributions. In all statistical exam-
inations, p≤ 0.05 was considered statistically significant.

Model establishment

Figure 1 presents an overview of the study. Based on the
datasets of baseline characteristics, anthropometric mea-
sures, and snoring details, various supervised learning
models were developed to screen for the risk of
moderate-to-severe OSA or severe OSA. Specifically, on
the basis of our literature review, six machine learning
approaches, including random forest (RF), extreme gradient
boosting (XGBoost), k-nearest neighbor (kNN), support
vector machine (SVM), naive Bayes (NB), and logistic
regression (LR), were recruited to establish screening
models for two different OSA severity risk levels.27,28

Figure 2 demonstrates the flowchart of developing the
models. Initially, all of the collected data were integrated
as a total dataset and subsequently independently separated
into training and test datasets at an 80% to 20% ratio. In the
training phase, the study employed a grid search strategy for
model optimization for each classifier and a 10-fold cross-
validation technique to prevent overfitting.29 Regarding
the grid search strategy, this study tuned parameters to
compare the accuracy as follows: (a) RF with a bootstrap
technique: criterion (Gini or entropy) and the amount of
established classification and number of regression trees (N
= 250, 500, and 750); (b) XGBoost with a bootstrap tech-
nique: criterion (mean squared error (MSE), squared error,
or Friedman MSE) and the number of established estimators
(N= 250, 500, and 750); (c) kNN: weight type (uniform or
distance) and the k-value (k: between 2 and 9); (d) SVM:
kernel function (linear, polynomial, and radial basis
function) and regularization values (C, between 10−10 and
1010); (e) LR: inverse values of regularization (C: between
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10−10 and 1010); and (f) NB: the portion of the largest vari-
ance of all features (var_smoothing: between 10−10 and
1010). These input parameters for optimizing each model
were referenced from previous research.30,31 Next, the per-
formances, in terms of the accuracy, precision, recall,
F1-score, and area under the receiver operating characteris-
tics curve (AUROC), of each trained model with optimized
parameters were respectively calculated. The approaches
which showed the relatively highest accuracy in this phase
were employed in the test phase for further investigation.
In other words, the training set (80% of the dataset) was uti-
lized for training each model, optimizing the parameters, and
validating the performance, while the test set (20% of the
dataset) was only employed to test the model which demon-
strated the best performance in the training phase. As to the
importance of input features of the employed models, this
study calculated the Shapley value of each variable and
visualized these values in a scatterplot to assess the contribu-
tion of every feature within the models for OSA risk evalu-
ation. The order of variables was arranged from top to
bottom according to their Shapley values. Red spots
represent high values of that variable, whereas blue spots
represent low values (Figure 3). It was noted that the
Shapley value is derived based on coalitional game theory
and is widely utilized to interpret feature importance
values of models.32

Results

Baseline characteristics of the study population

In total, 3529 patients were enrolled in this retrospective
study. Their detailed baseline characteristics are pre-
sented in Table 1. The mean age of subjects was 47.64
years, and the majority were males (N= 2305,
65.32%). The average BMI was 26.78± 4.96 kg/m2,
the NC was 37.4± 4.06 cm, and the WC was 91.56±
12.64 cm. As to snoring details, snoring events and
the index were 1080.24± 1070.69 times and 230.13±
221.6 times/h. The AHI was 30.03± 24.77 times/h,
and ODI was 24.21± 24.48 times/h. Regarding OSA
severity, patients with severe OSA were the relative
majority (N= 1390, 39.39%), and patients with mild
OSA (N= 818, 23.18%) were approximately equal
to those with moderate OSA (N= 933, 26.44%).
Concerning anthropometric measures, percentages of
fat and muscle in the whole body scale were 28.71%±
8.95% and 67.45%± 8.61%, respectively, and the
mean visceral fat was 11.67± 4.93 level. As to body
water details and its distribution, the mean TBW was
36.65± 7.15 kg, and it included a mean ECW of 15.09
± 2.41 kg and a mean ICW of 21.55± 4.91 kg (ECW/
ICW ratio: 0.71± 0.08).

Figure 1. Study overview. This study established risk screening models for obstructive sleep apnea (OSA) utilizing machine learning
techniques. The noncontact determined feature, snoring events, which served as an upper airway obstruction indicator, was employed. Easily
obtained parameters, which served as overview evaluations, including anthropometric measures and baseline characteristics, were used.
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Correlation analysis

Table 2 presents correlations of baseline characteristics,
snoring details, and anthropometric measures at various
scales with the AHI and ODI of 3529 participants. On the
basis of Spearman’s correlation, all of the collected vari-
ables were significantly correlated with the AHI (all p’s <
0.01, except for the ECW-to-ICW ratio, which was p <
0.05). Likewise, all of the collected variables were signifi-
cantly correlated with the ODI (all p’s < 0.01), except for
the ECW-to-ICW ratio. In addition, to determine correl-
ation coefficients between the AHI and anthropometric
measures at each severity level, this study further performed
a subgroup analysis, and outcomes are reported in
“Supplementary materials” (Supplementary Table S1).
Notably, significant but weak correlations between
snoring events and the AHI were observed in the three
groups of AHI <15 events/h, AHI ≥15 events/h, and AHI
<30 events/h (ρ ranged 0.21 to 0.33), while significant
but very weak correlations were observed in individuals
whose AHI was higher than 30 events/h (ρ= 0.07).

Regarding the visceral fat level, significant but moderate
correlations between this level and the AHI were observed
in the two groups (AHI ≥15 events/h: ρ= 0.42; AHI <30: ρ
= 0.43), while significant but weak correlations were
observed in the two groups (AHI <15 events/h: ρ= 0.37;
AHI <30: ρ= 0.34).

Training and cross-validation performances
of the machine learning approaches

Performance metrics of each model in the training and val-
idation phases are illustrated in Table 3. Among the devel-
oped models for screening the risk of moderate-to-severe
OSA, the RF model had the highest values of accuracy
(80.18%± 1.14%), F1-score (85.35%± 0.85%), and
AUROC (83.08%± 2.03%), while the XGBoost model
showed the second highest values of accuracy (78.29%±
1.44%), F1-score (84.18%± 1.06%), and AUROC
(82.18%± 1.78%). Regarding the models for screening
the risk of having severe OSA, similarly, the RF and

Figure 2. Training process with grid search cross-validation. Various machine learning models were trained using grid search
cross-validation (k-fold: 10). The accuracy of the models in the validation stage was determined. The model demonstrating the highest
accuracy was employed to predict the test data, and the feature importance was investigated.
AHI, apnea–hypopnea index; C, regularization values; XGBoost, extreme gradient boosting; kNN, k-nearest neighbor; LR, logistic
regression; n_trees, number of classification and regression trees; n_estimators, number of gradient boosted trees; NB, naive Bayes; RF,
random forest; SVM, support vector machine; var_smoothing, portion of the largest variance of all features.
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XGBoost models still demonstrated the highest and second
highest performances (RF: accuracy: 76.96%± 2.55%,
F1-score: 67.64%± 3.55%, AUROC: 82.82%± 2.37%;
XGBoost: accuracy: 74.85%± 2.09%, F1-score: 66.02%
± 3.08%, AUROC: 81.19%± 1.8%). Due to its best per-
formance (highest accuracy and AUC), the RF model was
recruited to separately predict the test datasets for testing
the performance of screening for the risk of
moderate-to-severe or severe OSA, and the feature import-
ance values of the model were further determined.

Accuracy performance and feature importance

The classification performance metrics of the RF model
using the test dataset are shown in Table 4. First, for
moderate-to-severe OSA risk screening, the RF model pre-
sented an accuracy of 79.32%± 2.99%, an F1-score of
85.57%± 2.59%, and an AUROC of 82.76%± 2.79%.
With the RF model for screening for the risk of severe
OSA, the accuracy was 74.37%± 3.22%, the F1-score
was 66.31%± 3.49%, and the AUROC was 82.84%±
2.78%. Next, Figure 3 shows a scatterplot of feature import-
ance values of these two severity types of RF models by
presenting the Shapley value of each input feature. In

both OSA severity types of screening models, snoring
events and the visceral fat level had the relative highest
and second highest Shapley values, which mean they
were the most and second most important features, respect-
ively. Age, NC, WC, BMI, TBW, ECW, and the
ECW-to-ICW ratio respectively demonstrated the third- to
ninth highest Shapely values in risk screening models for
both moderate-to-severe OSA and severe OSA.

Model performance comparison by employing
various input features

To evaluate the classification performance of the risk of
having OSA based on employing different input features,
this study further established models with various input
feature bundles. Results derived using the training set is illu-
strated in Supplementary Tables S2 to S5. For
moderate-to-severe OSA risk screening, the RF model pre-
sented the highest accuracy by employing baseline details
and snoring events (78.13%± 1.63%), anthropometrics
(74.95%± 2.24%) or only snoring events (75.02%±
1.87%)), while the XGBoost had the highest accuracy in
the model that utilized snoring events and anthropometrics
(78.21%± 1.56%). When screening for the risk of severe

Figure 3. Density scatterplot of SHAP values of input parameters for the random forest (RF) models for screening moderate-to-severe and
severe risk of obstructive sleep apnea (OSA) with the test dataset. (a) Moderate-to-severe OSA model and (b) severe OSA model.
BMI, body mass index; BMR, basal metabolic rate; ECW, extracellular water; ICW, intracellular water; TBW, total body water.
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Table 1. Baseline characteristics and anthropometric measures of participants separated by obstructive sleep apnea (OSA) severity
(N=3529).

Variable Mean± SD Variable Mean± SD

Baseline characteristics Anthropometric measures

Age (years) 47.64± 13.33 Whole body

Sex (male/female) 2305 / 1224 Fat mass (kg) 21.91± 10.16

BMI (kg/m2) 26.78± 4.96 Fat-free mass (kg) 52.61± 10.83

Neck circumference (NC) (cm) 37.4± 4.06 Muscle mass (kg) 49.79± 10.36

Waist circumference (WC) (cm) 91.56± 12.64 Bone mass (kg) 2.82± 0.48

Sleep stage summary Fat percent (%) 28.71± 8.95

Sleep efficiency (%) 76.45± 13.23 Muscle percent (%) 67.45± 8.61

Mean SpO2 (%) 94.92± 2.31 Visceral fat (level) 11.67± 4.93

Minimum SpO2 (%) 83.23± 8.8 BMR (kJ) 6314.64± 1250.38

WASO (min) 57.99± 41.06 Physique rating (level) 29.62± 10.25

Total sleep time (min) 280.1± 49.6 Body fat ratio (limbs/trunk) 0.77± 0.16

Sleep stage (% of SPT) Limbs

Wake 17.19± 12.08 Fat mass (kg) 9.41± 4.52

REM 11.64± 6.38 Fat-free mass (kg) 25.12± 6.31

NREM 71.14± 10.64 Muscle mass (kg) 23.67± 5.97

Snoring details Fat percent (%) 26.86± 8.45

Snoring event (times) 1080.24± 1070.69 Trunk

Snoring index (times/h) 230.13± 221.6 Fat mass (kg) 12.51± 5.81

Sleep quality index (times/h) Fat-free mass (kg) 27.49± 4.99

AHI 30.03± 24.77 Muscle mass (kg) 26.12± 4.83

ODI 24.21± 24.48 Fat percent (%) 30.34± 9.76

ArI 21.66± 14.92 Body water

OSA severity (N, %) TBW (kg) 36.65± 7.15

Normal 388 (10.99%) ECW (kg) 15.09± 2.41

Mild 818 (23.18%) ICW (kg) 21.55± 4.91

Moderate 933 (26.44%) Body water percent (%) 49.7± 5.72

(continued)
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Table 2. Spearman’s correlation coefficients of anthropometric measures (N= 3529) with the apnea–hypopnea index (AHI) and oxygen
desaturation index (ODI) of ≥3%.

Variable

Correlation coefficient

AHI (times/h) ODI (times/h)

Baseline characteristics

Age (years) 0.11 ** 0.08 **

Sex (male/female) 0.26 ** 0.25 **

BMI (kg/m2) 0.51 ** 0.53 **

Neck circumference (NC) (cm) 0.52 ** 0.52 **

Waist circumference (WC) (cm) 0.55 ** 0.56 **

Snoring details

Snoring events (times) 0.38 ** 0.41 **

Snoring index (times/h) 0.42 ** 0.43 **

Anthropometric measures

Whole body

Fat mass (kg) 0.41 ** 0.42 **

Fat-free mass (kg) 0.42 ** 0.41 **

Muscle mass (kg) 0.41 ** 0.42 **

Bone mass (kg) 0.41 ** 0.41 **

Fat percent (%) 0.19 ** 0.22 **

Muscle percent (%) −0.18 ** −0.21 **

Visceral fat level 0.56 ** 0.56 **

BMR (kJ) 0.42 ** 0.43 **

Physique rating −0.34 ** −0.36 **

(continued)

Table 1. Continued.

Variable Mean± SD Variable Mean± SD

Severe 1390 (39.39%) ECW/ICW ratio 0.71± 0.08

Data are expressed as mean± sSD.
AHI, apnea–hypopnea index; ArI, arousal index; BMI, body mass index; BMR, basal metabolic rate; ECW, extracellular water; ICW, intracellular water; NREM,
non-rapid eye movement; ODI, oxygen desaturation index for ≥ 3%; REM, rapid eye movement; SpO2, peripheral capillary oxygen saturation; TBW, total body
water; WASO, wake time after sleep onset.
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OSA, XGBoost presented the highest accuracy by employing
baseline details and snoring events (72.15%± 3.38%) or
anthropometrics and snoring events (72.44%± 3.37%),
while the RF showed the highest accuracy in the model that
employed anthropometrics (70.22%± 3.45%) or snoring
events (69.57%± 1.99%). Next, Supplementary Table S6
documents the outcomes of predicting the test set using the
models which had the best performance in the training and
validation stage. Accuracies in screening for the risk of
having moderate-to-severe OSA ranged from 74.36% to
78.11%, while accuracies in screening for the risk of having
severe OSA ranged from 65.63% to 72.44%. Notably, in
the classification performance metrics using the test dataset,
models which only considered snoring events demonstrated
the relatively lowest accuracy.

Discussion

Principal findings

Considering the limitations of PSG and other proposed sur-
rogates, the present study established machine learning
models for screening the risks of moderate-to-severe OSA
and severe OSA based on easily accessible parameters.
Specifically, we collected snoring events of PSG, baseline
characteristics, and anthropometric measures from 3529
patients, examined their correlations, and further developed
OSA risk screening models. The major outcomes were that
optimized RF models manifested the best classification per-
formances, with accuracies exceeding 75% and AUROCs
exceeding 80% for the two severity type models in the

Table 2. Continued.

Variable

Correlation coefficient

AHI (times/h) ODI (times/h)

Body fat ratio (limbs/trunk) −0.15 ** −0.13 **

Limbs

Fat mass (kg) 0.38 ** 0.41 **

Fat-free mass (kg) 0.42 ** 0.42 **

Muscle mass (kg) 0.42 ** 0.42 **

Fat percent (%) 0.11 ** 0.14 **

Trunk

Fat mass (kg) 0.41 ** 0.43 **

Fat-free mass (kg) 0.34 ** 0.33 **

Muscle mass (kg) 0.34 ** 0.33 **

Fat percent (%) 0.25 ** 0.28 **

Body water

TBW (kg) 0.43 ** 0.43 **

ECW (kg) 0.5 ** 0.51 **

ICW (kg) 0.38 ** 0.38 **

Body water percent (%) −0.2 ** −0.23 **

ECW/ICW ratio −0.04 * −0.04 *

Data are expressed as coefficients.
BMI, body mass index; BMR, basal metabolic rate; ECW, extracellular water; ICW, intracellular water; TBW, total body water.
*p < 0.05; **p < 0.01.
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training and validation phases. Next, using the independent
test dataset, the optimized RF models still presented accur-
acies of over 70% and AUROCs of over 80%. Regarding

feature importance, snoring events and the visceral fat
level were the most and second most crucial factors for
screening for OSA risk. Similarly, significant correlations
of baseline characteristics, snoring details, and anthropo-
metric measures with the AHI were observed.

Model performances

Regarding the classification performance, optimized RF
models showed the highest accuracy, F1-score, and
AUROC values in screening for OSA risks of the two
severity types, and XGBoost demonstrated the second
highest values. Although there are no direct references
revealing that these two approaches outperformed other
supervised machine learning techniques, some potential
reasons may partially explain these outcomes. First, both
the RF and XGBoost were constructed using the ensemble
learning theory. This theory aims to enhance predictive per-
formances by averaging predictions from decision trees
trained by various subsamples from a dataset. In other
words, due to the structure of ensemble learning models,
which can guard against the effects of irrelevant features
but be more sensitive to relevant ones; they also have an
anti-noise capability, and this may allow prediction results

Table 3. Comparison of the accuracy of screening moderate-to-severe and severe obstructive sleep apnea (OSA) in a grid search
cross-validation of models using the training and validation datasets (N=2823).

Variable (%) RF XGBoost kNN SVM NB LR

Moderate-to-severe OSA model AHI ≥15 (N= 1848); AHI <15 (N= 975)

Precision 79.52± 0.98 80.5± 1.52 77.88± 1.89 79.24± 1.51 80.92± 1.41 80.27± 1.23

Recall 89.83± 1.62 88.26± 2.04 81.76± 2.78 88.2± 1.91 71.1± 2.29 87.07± 2.18

Accuracy 80.18± 1.14 78.29± 1.44 72.83± 2.32 77.12± 1.45 70.1± 1.71 76.51± 1.53

F1-score 85.35± 0.85 84.18± 1.06 79.75± 1.83 83.46± 1.05 75.68± 1.58 82.51± 1.22

AUROC 83.08± 2.03 82.18± 1.78 75.28± 2.89 80.65± 1.66 77.54± 1.67 80.9± 1.76

Severe OSA model AHI ≥30: (N= 1093); AHI <30: (N= 1730)

Precision 68.64± 3.67 69.22± 3.08 67.76± 3.79 69.82± 5.55 60.99± 4.42 68.58± 5.12

Recall 66.67± 3.9 63.22± 4.14 43.0± 4.41 58.29± 4.29 66.51± 3.59 59.84± 4.55

Accuracy 76.96± 2.55 74.85± 2.09 70.0± 1.91 74.0± 3.03 70.46± 3.39 73.79± 3.18

F1-score 67.64± 3.55 66.02± 3.08 52.5± 3.97 63.45± 4.16 63.59± 3.72 63.86± 4.41

AUROC 82.82± 2.37 81.19± 1.8 73.48± 1.66 78.74± 2.58 76.7± 2.83 80.53± 2.68

Data are expressed as the mean± SD.
AHI: apnea–hypopnea index; AUROC, area under the receiver operating characteristics curve; kNN, k-nearest neighbor; LR, logistic regression; NB, naive
Bayes; RF, random forest; SVM, support vector machine; XGBoost, extreme gradient boosting

Table 4. Classifications of the results of the random forest (RF)
model for screening moderate-to-severe and severe risk of
obstructive sleep apnea (OSA) using the test dataset (N= 706).

Variable (%)
Moderate-to-severe

OSA model
Severe

OSA model

AHI ≥15 (N= 475);
AHI <15 (N= 231)

AHI ≥30 (N= 297);
AHI <30 (N= 409)

Precision 80.63± 2.92 70.88± 3.35

Recall 91.16± 2.09 62.29± 3.58

Accuracy 79.32± 2.99 74.37± 3.22

F1-score 85.57± 2.59 66.31± 3.49

AUROC 82.76± 2.79 82.84± 2.78

AHI, apnea–hypopnea index; AUROC, area under the receiver operating
characteristics curve.
Data are expressed as the mean± SD.
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to appropriately converge.33 Moreover, other techniques,
namely bootstrapping and setting the maximum amount
of the basic unit of ensemble learning models, can encour-
age increased diversity in the created trees, and this straight-
forwardly optimizes model stability and prevents the risk of
overfitting.34 These ensemble learning approaches, thus,
have been widely utilized to assist diagnosis and decision-
making in different medical fields.30,35

Performance comparisons of OSA risk predictions
between ensemble learning approaches

This study determined the relatively highest accuracy in
predicting the risk of OSA by utilizing ensemble learning
approaches (i.e. RF and XGBoost). Previous researchers
employed a different ensemble learning method, namely
LSBoost, based on oximetry parameters to predict different
OSA severities in three datasets and demonstrated adequate
accuracies, which ranged from 81.1% to 96.6%.36 A rele-
vant study developed AdaBoost based on oximetry para-
meters to screen for the risk of having OSA of different
severities and demonstrated a 92.9% accuracy for AHI
values of ≥5, an 87.4% accuracy for AHI values of ≥15,
and a 78.7% accuracy for AHI values of ≥30.37 Another
relative study used RF models with oxygen signals during
sleeping of two datasets and achieved acceptable accuracies
(for AHI values of ≥15: 87% to 88.2% and for AHI values
of ≥30: 93.2% to 94.3%).38 First, it should be noted that in
the present outcomes, better performances were determined
in the moderate-to-severe OSA models compared to values
in the severe OSA models in both the training and test
phases. Although it is uncertain whether the accuracy of
models using physiological signals was higher in models
screening for severe OSA or moderate-to-severe OSA,
several potential reasons may explain the current observa-
tions. First, nonlinear associations of baseline values,
anthropometrics, and snoring events with OSA severity
may affect the performance of the screening models.
Specifically, snoring events and the visceral fat level were
shown to be the most critical indicators for screening for
the risk of OSA severity in the current models. However,
in Supplementary Table S1, significant but very weak cor-
relations between snoring events and the AHI were
observed in patients who had severe OSA (with AHI
values of ≥30), whereas relatively stronger correlations
were determined in the moderate-to-serve group (with
AHI values of ≥15). For the visceral fat level, relatively
higher correlation coefficients were also observed in the
moderate-to-severe group compared to values in the
severe group. These may partially allude to the fact that
although snoring and anthropometric variables are asso-
ciated with OSA severity, these parameters may likely be
more predictable or functional for screening for
moderate-to-severe OSA risk compared to screening for

severe OSA risk. In addition, the distribution of OSA sever-
ity levels in the collected dataset and the sample size may
partially have affected accuracy differences. A prior
related study employed outcomes of a subjective question-
naire regarding snoring events and baseline characteristics,
including the NC, obesity level, age, and sex, to establish
classification approaches for screening for different sever-
ities of OSA.39 Their results demonstrated a relatively
higher AUROC value in screening for the risk of
moderate-to-severe OSA model compared to the value of
the severe OSA model. Next, based on the aforementioned
previous outcomes and the present findings, it seems that
ensemble learning approaches established based on
OSA-associated parameters, such as body profiles,
anthropometrics, snoring, or oximetry parameters, can be
applied to screen for the risk of this disease. However, it
should be noted that the accuracy range of current models
developed with snoring details and anthropometrics was
relatively lower than the aforesaid previous outcomes,
trained with oximetry parameters. Several reasons may
account for these differences, such as the nature of different
demographics in collected data, sample sizes, or the fat dis-
tribution issue. In other words, individuals who have a
narrow upper airway anatomy or excessive deposition of
fat at the base of the tongue may present with snoring but
without exhibiting OSA. Epidemiologically, 94% of
patients with OSA exhibited snoring, which was seen as
the most common manifestation of OSA.40 However,
another study that recruited 602 participants who were
habitual snorers observed that 61% of females and 81%
of males did not have OSA.41 Another study observed a sig-
nificant but weak correlation between the snoring index and
AHI.42 Collectively, to enhance the accuracy of screening
for OSA risks, it may be worthwhile employing data with
more comprehensive dimensions, such as baseline values,
anthropometrics, snoring details, and oximetry parameters.

Feature importance for predicting the risk
of having OSA using RF

Concerning feature importance, snoring events and the vis-
ceral fat level were the most and second most important fea-
tures when screening for OSA risks of both severity types.
Subsequently, age, NC, WC, BMI, TBW, ECW, and the
ECW-to-ICW ratio presented the third- to ninth highest
Shapely values in the screening risk models for both
types of OSA severity. Such a distribution of Shapley
values was also in accordance with our correlation out-
comes among anthropometric parameters, snoring details,
and the AHI. First, snoring has long been considered an
indicator of higher upper airway resistance and the most
common symptom suggestive of OSA.43 Past research pro-
posed only monitoring the volume and time of snoring to
diagnose moderate-to-severe OSA, which showed adequate
accuracy.18 Thus, our results partially aligned with previous
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outcomes that snoring events can be a predictor for screen-
ing for OSA risk. In terms of baseline characteristics and
anthropometric measures, aging effects and adipose depos-
ition may be used to interpret the present results. More pre-
cisely, visceral fat (internal abdominal cavity), WC
(abdomen), NC (upper airway), and BMI (whole body),
can all be employed to partially represent the obesity
level, which is associated with OSA severity.44 On the
other hand, aging, as a proxy for decreased muscle strength,
may cause the elderly to tend to have more severe OSA
compared to younger persons.45 As to the body fluid distri-
bution, research has documented that increased nocturnal
rostral fluid, shifting from the limbs or due to excessive
TBW, may elevate the mucosal water content in the
upper airway and cause tract narrowing, thereby aggravat-
ing the risk of OSA.46 In addition, ECW is relevant to
residual kidney function and can serve as an indicator of
body fluid drainage.47 Several prior findings were partially
similar to the current observations. For example, research-
ers who investigated fat accumulation in different body
regions revealed that an accumulated adipose volume was
related to the risk of OSA.48,49 Similarly, relevant research
suggests that increased BMI and WC values are essential to
the risk of OSA.50 A study indicated the possibility of
employing BMI and NC to identify the risk of exhibiting
OSA in different sexes.51 A systematic review exhibited
results that conformed to our outcomes that both the BMI
and age increased the OSA risk.52 As to body fluid, a
study found an increased ECW volume in OSA patients
compared to those without OSA.53 Other research reported
similar observations of higher average values of the
TBW-to-ECW ratio in patients with OSA.54 Taken
together, the current outcomes may elucidate the feasibility
of using the currently developed models based on these
easily assessed variables to screen for OSA risks of differ-
ent severities (AHI ≥15 times/h or AHI ≥30 times/h).

Strengths and limitations

This study has some strengths and limitations. First, the
established models conducted OSA risk screening by
employing characteristics, anthropometric parameters, and
snoring details. Compared to approaches that only
analyze snoring sounds, the current models may be more
likely to be suitable for non-snorers with OSA.55 Some
researchers proposed age- and sex-dependent models that
trained using only baseline characteristics (i.e. WC, NC,
and BMI).56 However, detailed investigations or higher-
dimensional parameters in anthropometrics may serve as
useful indicators to provide further information regarding
the risk of having OSA. The classification results in the
present supplementary, derived by employing various
input feature bundles, may also indicate that anthropomet-
rics provide essential and complementary information for
screening the risk of presenting OSA. In addition, a relevant

study developed machine learning approaches for OSA
severity classification based on scanned craniofacial
feature images, but the accuracy of those approaches was
67% for predicting the risk of moderate-to-severe OSA.57

Variations in obtained craniofacial images (due to breathing
movements or muscle tone) may have affected the accur-
acy. Also, OSA presentation might not completely be
caused by craniofacial factors. Altogether, the current
machine learning models developed based on snoring
events, baseline characteristics, and anthropometric mea-
sures may be applicable for screening for OSA risks. As
to limitations, first, the presently developed models were
population specific since we only employed data from a
single sleep center in Taiwan. This may limit the generaliza-
tion ability of the developed models for application to other
ethnicities. More precisely, some features such as craniofa-
cial features, that vary among different ethnicities, may
affect the AHI and OSA severity.58 Other lifestyle habits,
such as tobacco and alcohol usage59 or one’s personal
health status (menopausal status, medication use, and
comorbidities),60,61 may also affect OSA severity. Some
researchers proposed machine learning approaches by
employing nocturnal oxygen saturation obtained by pulse
oximetry and electrocardiogram signals for screening for
OSA risk.62 The relatively high accuracies of those out-
comes imply the prospect of improving model performance
by considering the oximetry and cardio-related parameters.
However, the absence of these data limited the possibility of
improving the performance in the current work, which
should be addressed in future studies. In addition, there
was no measurement of body position, and it is accepted
that snoring and the AHI are very dependent on body pos-
ition.63 Thus, although the current models were developed
using anthropometric measures (overall body adipose
tissue evaluation) and snoring events (predictors of obstruc-
tion of the upper airway), they might only be applicable to
specific ethnicities or populations with craniofacial struc-
tures similar to those of the Taiwanese population.
Further studies can consider obtaining such comprehensive
dimensional data to increase the accuracy of screening for
OSA risks. Snoring events of this study were determined
using piezoelectric signals. The piezoelectric sensor,
placed on the neck area of individuals, may cause incon-
venience and discomfort and thereby potentially result in
the occurrence of artifacts. Next, the current classification
target, namely OSA severity, was based on the AHI, but
these data need to be manually scored by different PSG
technologists, which may be affected by inter-scorer vari-
ability.64 Despite the fact that inter-scorer training is regu-
larly performed among PSG technologists to reduce
scoring variability, a partial degree of variability may still
be inescapable. Environmental factors (e.g. the first night
effect), may be crucial factors in affecting the reliability
of PSG results.65 In other words, sleeping in a hospital
environment may change participants’ architecture and
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depth of sleep during PSG, which would indirectly impact
PSG outcomes.66 Although the present study excluded par-
ticipants whose sleep efficiency was low (≥ 40%), repeated
PSG for preventing such biases may still need to be consid-
ered. In addition, future studies should consider using 3 h as
the exclusion threshold, which is the most common
minimum threshold of total sleep time, to enhance the rep-
resentativeness of the PSG data of patients.

Conclusions
Avoiding the drawbacks of PSG and the requirements of
OSA risk screening tools, this retrospective study aimed
to develop classification models based on easily acquired
variables. Using baseline characteristics, anthropometric
measures, and snoring data derived from 3529 patients in
Taiwan, various machine learning models for screening
the risk of having severe-to-moderate OSA and severe
OSA were established. RF models, which manifested the
best classification performance in the training and valid-
ation phases, were employed to predict the independent
test set. In both OSA severity screening RF models, over
70% accuracy and over 80% AUROC were achieved. As
to feature importance values, snoring events, and the vis-
ceral fat level were the most and second most essential fea-
tures of screening for OSA risk. Likewise, the current
statistical outcomes indicated that anthropometric measures
and snoring details were significantly correlated with the
AHI and ODI. Collectively, the present machine learning
approaches developed based on snoring events, baseline
characteristics, and anthropometric measures can be consid-
ered for OSA risk screening.
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