136 research outputs found

    A Comparative Analysis on IoT Communication Protocols for Future Internet Applications

    Full text link
    With the emergence of 5G, the Internet of Things (IoT) will bring about the next industrial revolution in the name of Industry 4.0. The communication aspect of IoT devices is one of the most important factors in choosing the right device for the right usage. So far, the IoT physical layer communication challenges have been met with various communications protocols that provide varying strengths and weaknesses. And most of them are wireless protocols due to the sheer number of device requirements for IoT. In this paper, we summarize the network architectures of some of the most popular IoT wireless communications protocols. We also present them side by side and provide a comparative analysis revolving around some key features, including power consumption, coverage, data rate, security, cost, and Quality of Service (QoS). This comparative study shows that LTE-based protocols like NB-IoT and LTE-M can offer better QoS and robustness, while the Industrial, Scientific, and Medical (ISM) Band based protocols like LoRa, Sigfox, and Z-wave claim their place in usage where lower power consumption and lesser device complexity are desired. Based on their respective strengths and weaknesses, the study also presents an application perspective of the suitability of each protocol in a certain type of scenario and addresses some open issues that need to be researched in the future. Thus, this study can assist in the decision making regarding choosing the most suitable protocol for a certain field

    Autonomous Collision Avoidance in Small Scale Vehicles

    Get PDF
    The undergraduate research performed in this study focused on autonomous collision avoidance in small scale vehicles. The goal of this study was to find equipment to build a fully autonomous small scale vehicle for use in different applications. Radio frequency communication, ultrasonic sensors, and single board computers were used to create an autonomous vehicle for multiple applications. Different communication protocols and sensors were investigated, and an explanation was specified concerning the hardware choice. The main communication protocol tested was Long Range Wide Area Network, and the main electronics tested and used were ultrasonic sensors, First Person View cameras, and the Arduino Mega 2560. Though the main communication protocol performed worse than anticipated, a different communication protocol was chosen and tested. The secondary communication protocol produced more promising results

    A Wearable Fall Detection System based on LoRa LPWAN Technology

    Get PDF
    Several technological solutions now available in the market offer the possibility of increasing the independent life of people who by age or pathologies otherwise need assistance. In particular, internet-connected wearable solutions are of considerable interest, as they allow continuous monitoring of the user. However, their use poses different challenges, from the real usability of a device that must still be worn to the performance achievable in terms of radio connectivity and battery life. The acceptability of a technology solution, by a user who would still benefit from its use, is in fact often conditioned by practical problems that impact the person’s normal lifestyle. The technological choices adopted in fact strongly determine the success of the proposed solution, as they may imply limitations both to the person who uses it and to the achievable performance. In this document, targeting the case of a fall detection sensor based on a pair of sensorized shoes, the effectiveness of a real implementation of an Internet of Things technology is examined. It is shown how alarming events, generated in a metropolitan context, are effectively sent to a supervision system through Low Power Wide Area Network technology without the need for a portable gateway. The experimental results demonstrate the effectiveness of the chosen technology, which allows the user to take advantage of the support of a wearable sensor without being forced to substantially change his lifestyle

    Experimental Study on Low Power Wide Area Networks (LPWAN) for Mobile Internet of Things

    Full text link
    In the past decade, we have witnessed explosive growth in the number of low-power embedded and Internet-connected devices, reinforcing the new paradigm, Internet of Things (IoT). The low power wide area network (LPWAN), due to its long-range, low-power and low-cost communication capability, is actively considered by academia and industry as the future wireless communication standard for IoT. However, despite the increasing popularity of `mobile IoT', little is known about the suitability of LPWAN for those mobile IoT applications in which nodes have varying degrees of mobility. To fill this knowledge gap, in this paper, we conduct an experimental study to evaluate, analyze, and characterize LPWAN in both indoor and outdoor mobile environments. Our experimental results indicate that the performance of LPWAN is surprisingly susceptible to mobility, even to minor human mobility, and the effect of mobility significantly escalates as the distance to the gateway increases. These results call for development of new mobility-aware LPWAN protocols to support mobile IoT.Comment: To appear at 2017 IEEE 85th Vehicular Technology Conference (VTC'17 Spring

    Channel Characterisation for Wearable LoRaWAN Monitors

    Get PDF
    corecore