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This paper presents an advanced long-range low-power Internet of Things wearable temperature 
sensor to evaluate and predict the likelihood of a heart failure event in high-risk patients. Initial 
trials have validated the potential of long-range long-term personalized community-based 
monitoring with smart intervention decision making. The intelligent device implements machine 
learning to understand the user’s activities of Daily Living (ADL) and their environment; using this 
information coupled with their body temperature allows the system to evaluate and predict the 
likelihood of a heart failure event. The solution is based upon the European 868 MHz LoRaWAN 
standard. As Ulster University roll out a regional LoRaWAN “Things Connected” network across 
Northern Ireland (owned by Digital Catapult, UK) the embryonic solution will be tested on a larger 
scale for both home based monitoring as well as patients undertaking daily living activities. 
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1. INTRODUCTION AND LITERATURE REVIEW 

A new generation of solutions are becoming 
essential to address growing healthcare shortages 
due to a global ageing population [1], an increase 
in chronic conditions [2], global health economics, 
and increasing need for earlier diagnosis and 
predictive analysis. Current monitoring techniques 
are inherently inconvenient to patients and 
clinicians and fail to meet increasing demand. 
However, practical telehealth monitoring has been 
proven to reduce Emergency Room visits by 15%, 
emergency admissions by 20%, bed days by 14%, 
and mortality rates by 45% in the general 
population [3]. Particularly, remote monitoring has 
been proven to have predictive value in early 
detection of heart failure decompensation [4]. 

Artificial Intelligence (AI) and the Internet of Things 
(IoT) promise to be disruptive technologies in every 
sector of society, with healthcare being a key 
interest. The IoT market is predicted to be worth 
USD 661.74 billion by 2021 and a $15.7 trillion 
potential contribution to the global economy by 
2030 from AI [5]. Remote healthcare has been an 
on-going topic of interest [6] and IoT devices offer 
potential for remote health monitoring of patients 
living with chronic diseases including 
cardiovascular diseases (CVD) [7] which is the 
leading cause of death worldwide [8]. 

The Internet of Things (IoT) can play a defining role 
in enabling unobtrusive portable solutions for long-
term remote patient monitoring, offering an Internet 
of Medical Things (IoMT) [9]. IoT-enabled remote 
healthcare has the potential to expedite the return 
home of patients after hospitalisation. LoRaWAN a 
key emerging long range wireless technology, 
operates in the license-free Industrial Scientific and 
Medical (ISM) radio band at 868 MHz (EU) and 915 
MHz (N. America) and boasts three layers of 
encryption for its transmissions and up to 25Km 
operational distances [10, 11]; it has been 
previously trialled for e-Health applications to 
address the cost of hospital stays [12, 13].   

This wireless enabling technology is particularly 
attractive as it can facilitate any type of home or 
region, particularly those without suitable cell 
phone coverage, broadband connections, or even a 
basic landline [14], and offers subscription-free 
long-range monitoring to deliver significant financial 
and time savings over long hospital stays, or 
frequency home visits or clinic appointment. 

2. DEVELOPMENTS TO DATE 

Presented is an autonomous LoRaWAN medical 
patient monitoring system under development that 
can be worn for a few days at a time to monitor 
patients are risk of heart failure while they continue 
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with their daily living activities following release 
from hospital. The developed research was created 
to understand the disruptive potential of the 
innovation which will better inform the international 
technical community. The wearable LoRaWAN 
device measured patient’s skin temperature, 
ambient room temperature (significant for elderly 
wellbeing and heart failure prediction [15]), and 
patient location using a u-Blox GPS chip (to rapidly 
locate patients in the event of illness or a fall). The 
device also reported system parameters such as 
received signal strength, signal to noise ratio, and 
the battery level of the device. The device has a 
14-bit digital accelerometer (MMA8451Q, 3-axis) to 
detect if the wearer has suffered a fall. The device 
was designed to transmit this variety of information 
via the LoRaWAN network for testing purposes, 
although in practice this information may not be 
regularly transmitted except as part of 
communications when the system predicts 
increasing risk of a cardiac event. The created 
device is depicted in Figure 1 shows the housed 
system with an external thermistor bead skin 

temperature sensor encapsulated in disposable 
foam with a skin-adhesive surface on one side.  

The system gathers data from the ambient 
temperature sensor (itself a key indicator of heart 
failure risk), GPS location, accelerometer data (to 
evaluate movement, activity levels, falls, 
waking/sleeping behavioural patterns, etc.) and 
skin temperature and uses the information to 
determine per-defined risk levels using a 
proprietary algorithm. The system also analyses 
general patterns of environmental change cross-
referenced with the various sensor data. This 
allows the system to make an educated decision on 
the level of risk. We consider future iterations will 
allow this risk level to be set depending on the 
patient’s medical prognosis, their personal living 
arrangements (e.g. living alone, remote location 
living, a home without heating, etc.) as well as 
more advanced algorithms to compensate for other 
chronic conditions such as dementia. 

With regards to the radio transmission portion of 
the solution testing in an anechoic chamber 
(located at Ulster University, Shore road) revealed 
that the wearable device’s signal strength 
experienced additional shadowing attenuation of 
between -5 to -45dB depending on facing towards 
or away from the gateway respectively. This is 
partially due to natural body effects (propagating 
through bone, muscle, etc. at 868 MHz is more 
difficult than propagating through air) as well as 
losses due to antenna detuning effects when an 
antenna is positioned on the human body (a future 
iteration will also develop an intelligent RF tuning 
balun to compensate for the wearer’s unique 
biological makeup). Despite these additional signal 
attenuations we discovered all the signals were still 
suitably received over a 12 Km radius from the 
LoRaWAN gateway, with patient location accuracy 
of better than 3m and skin temperature readings in 
line with commercial temperature monitors. 

3. PROTOTYPE TRIAL AND CHALLENGES 

A short validation trial was conducted using a 
device wearer with no known history of heart failure 
risk. The raw data was transmitted to assist with 
validation of the system (Table 1) and results show 
that each of the measurements were correctly 
recorded and robustly received at the local gateway 
and relayed to the secure server for inspection. 
With the new network in Northern Ireland it was 
observed that transmissions can be received on 3 
or more gateways which offers robust 
communication through redundancy. Over a 7 day 
period the system monitored the range of sensors 
at its disposal (transmitting raw data to prove the 
veracity of the long range telemetry aspect) and the 
gathered data was used to understand the potential 
of the decision-making solution. While the system 

 

Figure 1: Wearable LPWAN smart monitor  

Table 1: Raw data from device  

 

AM 35.5 -63.0 7.8 21.4 61 54°41′15.08″N, 5°52′41.37″W

PM 34.9 -55.0 8.6 20.5 60 54°41′15.78″N, 5°52′42.91″W

AM 35.8 -47.6 7.1 20.5 60 54°41′15.38″N, 5°52′41.66″W

PM 35.1 -76.7 11.2 7.5 58 54°41'09.81"N 5°53'04.92"W 

AM 35.0 -37.1 12.4 18.6 58 54°41′15.25″N, 5°52′41.32″W

PM 35.7 -41.4 10.6 21.9 56 54°41′15.66″N, 5°52′41.48″W

AM 36.1 -83.8 5.2 14.2 56 54°37'47.43"N 5°55'04.39"W 

PM 35.4 -52.9 9.0 20.7 55 54°41'16.01"N 5°52'43.16"W 

AM 34.8 -86.2 6.2 8.3 54 54°41'49.31"N 5°57'08.64"W 

PM 35.9 -68.4 9.4 21.5 54 54°41'13.87"N 5°52'46.09"W 

AM 35.8 -77.7 8.7 23.1 51 54°41'17.45"N 5°52'50.25"W 

PM 35.4 -82.3 6.8 21.8 50 54°42'02.91"N 5°53'11.14"W 

AM 34.8 -47.7 10.1 18.3 49 54°41'14.68"N 5°52'42.65"W 

PM 35.1 -86.4 5.4 6.9 49 54°37'47.21"N 5°55'03.54"W 
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can highlight low temperature as a sole indicator of 
potential risk the authors believe cross-correlation 
with the other data will reduce the chances of false 
positives (a nuisance to clinical staff and patients) 
or false negatives (potentially fatal). For example, if 
the air temperature sensor records a low value yet 
the accelerometer indicates that the user is walking 
to the shops (GPS verified) as part of their daily 
routine whilst presenting a healthy skin temperature 
range then an alarm to the clinician is unwarranted. 
Conversely, if the patient is in their home and both 
ambient temperature and skin temperature are 
dropping then an intervention is required. This is 
additionally true if behaviour patterns (based on the 
accelerometer and GPS) have notably changed. 
This can be pre-programmed into any patient 
monitoring system and the machine learning for the 
individual patient can increase the accuracy of 
intervention information to be patient-specific. 

A number of challenges have been identified that 
require addressing to further develop the system. It 
is understood that a large volume of controlled 
testing will be required to develop a mass of data to 
initially train the system; following this the system 
will then need to be trialled with closely monitored 
heart failure patients to understand whether the 
system can learn quickly enough based on 
controlled training data and incoming data from it 
new environment. Typically the patient will need 
monitored for a number of weeks to a number of 
months; for those patients requiring shorter term 
observation it will need to be understood how 
quickly the system can learn and adapt to the 
temporal environment to avoid false positives or 
negatives. It is however recognised that this is the 
common challenge facing intelligent machines for 
healthcare monitoring and a key obstacle to 
overcome before such devices are trusted by 
clinicians and patients alike. 

The machine learning-based analytical models 
could be augmented by creating a database from 
clinical trial data. This database would store 
curated and high quality labelled data. This 
database would provide suitable data to produce 
an initial, functional, model for classification of 
conditions. Thus, this clinical data would address 
aspects of the cold start problem common to 
machine learning-based solutions.  

Subsequent works will evaluate models produced 
by a range of supervised machine learning 
algorithms and techniques, such as Naïve Bayes 
[16], Recurrent Neural Networks [17], Support 
Vector Machines [18] and Decision Trees [19]. 
Through this experimental evaluation a single or 
ensemble [20] of supervised machine learning 
models will be adopted into the final solution – as 
dictated by performance. Initially this experimental 
evaluation will occur using graphical tools such as 
Weka [21], R-studio [22] and TensorFlow [23]  

Following this evaluation, appropriate solutions will 
be integrated into the final solution via libraries, 
such as Neuroph [24], TensorFlow or PyTorch [25].  

As dictated though future experimental evaluation, 
problem complexity and required use cases, 
federated learning [26], [27] may be adopted, 
ideally via Open Neural Network eXchange 
(ONNX) models [26].  

During field trials we highlighted an issue with the 
ranges possible with LoRa. We have confirmed that 
20+ Km between a device and the gateway is 
easily achievable in rural areas and over bodies of 
water, and that 5+ Km in suburban and urban is 
regularly achievable without issue. During testing 
however we found that a few areas of Belfast city 
obtained no signal despite the gateway-device 
separation distance being less than 2 Km. While 
this was found to be the exception rather than the 
rule it does highlight that planning of gateway 
locations is necessary through the use of empirical 
testing [16] coupled with computer modelling of 
signal coverage as is now customary with cell 
phone base station deployment.  

Future work includes further development of the 
machine learning aspect of individual user’s long 
term patterns of behaviour as well as to develop a 
more user friendly graphical user interface at the 
clinical end (current data is displayed in Base-64). 
Overall we believe these investigations will have a 
material impact on future remote healthcare 
provision and consider LoRaWAN to be an 
essential technology to deliver future services. 
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