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Optimal policy derivation for Transmission
Duty-Cycle constrained LPWAN

Ruben M. Sandoval, Student Member, IEEE, Antonio-Javier Garcia-Sanchez, Joan Garcia-Haro, Member, IEEE
and Thomas M. Chen, Senior Member, IEEE,

Abstract—Low-Power Wide-Area Network (LPWAN) technolo-
gies enable IoT devices to efficiently and robustly communicate
over long distances, thus making them especially suited for
industrial environments. However, the stringent regulations on
the usage of certain ISM (Industrial, Scientific and Medical)
bands in many countries in which LPWAN operate limit the
amount of time IoT motes can occupy the shared bands. This
is particularly challenging in industrial scenarios, where not
being able to report some detected events might result in the
failure of critical assets. To alleviate this, and by mathematically
modeling LPWAN-based IoT motes, we have derived optimal
transmission policies that maximize the number of reported
events (prioritized by their importance) while still complying with
current regulations. The proposed solution has been customized
for two widely known LPWAN technologies: LoRa and Sigfox.
Analytical results reveal that our solution is feasible and performs
remarkably close to the Theoretical Limit for a wide range of
network activity patterns.

Index Terms—Long-Range Networks, LPWAN, IoT, LoRa,
Sigfox, Markov Decision Process

I. INTRODUCTION

THE Internet of Things (IoT) is now extensively employed
in a wide variety of industrial environments, ranging from

agriculture to power grids to manufacturing. The integration of
sensing and actuating technologies helps increase productivity
and efficiency, while at the same time, boosting control over
the entire production chain. The increasing sophistication of
IoT devices now enables robust and long-lasting networks with
reduced installation and maintenance costs, which cut back on
operational and capital expenditures.

From a technological point of view, industrial IoT deploy-
ments have taken over classical Wireless Sensor Networks
(WSN) by implementing either low-power multi-hop com-
munication standards (such as IEEE 802.15.4) or opting for
cellular communication technologies (such as GSM/3G/4G).
The former work in the Industrial, Scientific, and Medical
radio bands (ISM), and are therefore license-free. However,
due to their limited range, they tend to incur in high initial
capital expenditures, since in order to cover medium to long
distances, multi-hop topologies consisting of dozens of motes
are required. This is even more so in the case of many indus-
trial environments where the node density is not particularly
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high and the areas to be covered tend to be large, making
most of these deployed motes serve merely as relying nodes
in a multi-hop scheme [1]. On the contrary, IoT networks
based on cellular approaches operate in licensed bands which
unavoidably leads to higher operational expenditures, and
force network operators to rely on Telcos.

However, in the past couple of years, Low-Power Wide
Area Networks (LPWAN) have emerged as alternatives to
the aforementioned options, especially for those environments
in need of long-range communications, which is the case
for many industrial scenarios like power and water grids,
agricultural/rural areas or even cities. This type of network is
characterized by three main features: (i) long coverage range
(up to 30km [2]), (ii) low-power consumption (less than 100mJ
per transmission [3]), and (iii) very long-standing deployment
(motes have an expected lifespan of around 2 years with
two AA batteries [3]). LPWAN are deployed following a
classic star topology, thus removing the complexity and costs
of a multi-hop infrastructure [1]. Furthermore, since they
operate in ISM bands (normally low-frequency bands such
as 868/902MHz for Europe/U.S.A.) and offer long-lasting
features, maintenance costs are usually much lower compared
to cellular alternatives.

Unfortunately, and as a consequence of operating in ISM
bands, LPWAN networks are subject to strict legal regulations
in many countries. One of the most inconvenient restrictions
is the limit established on radio activity device patterns. For
instance, in Europe, the ETSI EN 300 220-1 document [4]
rules that the Transmission Duty Cycle (TDC) of devices that
do not implement Listen-Before Talk mechanisms, as is the
case of LPWAN networks, must fall below a certain value
(normally expressed as a percentage, e.g. 1%)1. The Duty
Cycle (DC) is defined as the percentage of time that a given
node occupies a particular frequency band (measured over the
length of an hour). Hence, a maximum Transmission DC of
1% implies that LPWAN motes have a maximum permitted
TDC (Transmission Duty Cycle) of 36 seconds per hour. For
example, motes cannot use a specific transmission band more
than 36 seconds an hour, which corresponds to 1% of an hour.
This TDC limitation also applies to other geographical zones
and bands (e.g. the 779-787MHz band in China [1], or the 950-
956MHz in Japan [5]) and, although it helps in reducing packet
collisions, it potentially jeopardizes the ability of a network to
effectively control valuable assets.

It is easy to think of situations in which nodes reporting non-
important events (e.g. vibrations detected in a certain asset)

1Note that throughout the rest of the document, TDC will be used to denote
the precise amount (in seconds) of time that nodes can access the medium
per hour (e.g. 36 seconds), whereas DC will represent the percentage of such
an hour (e.g. 1%).
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may result in depleting the available TDC and thus rendering
the mote unable to later give information about critical events
(e.g. the global malfunction of such an asset). Therefore, it is
crucial to recognize the TDC as one of the main performance-
limiting factors in LPWAN-based deployments, and to manage
the consumed transmission time as the scarce resource it is
(as has been done in many works with the energy left in
motes batteries [6]–[8] Unfortunately, and in contrast to battery
management, the academic community still lacks exhaustive
analyses that could result in optimal transmission policies in
terms of the remaining TDC. Optimal transmission policies
would be those that, taking into account the full context of the
mote, would determine the action that maximizes the number
of total high-importance packets transmitted over the entire
node lifespan. The context of a mote could be described
by the importance of the event being reported (e.g. low
or high), the remaining TDC, propagation conditions, etc.
Furthermore, and regarding the derived optimal action, some
of the most widespread current LPWAN technologies, such
as LoRa [9], allow the use of different configurations when
transmitting packets. These configurations can increase the
probability of successfully transmitting a packet at the cost of
increasing the time-on-air of packets and hence, the consumed
TDC. Therefore, an optimal transmission policy would also
consider this trade-off and determine, in case of reporting an
event, under which configuration it should be transmitted. It
must be noted that, although the TDC-limitation resembles
bandwidth restrictions, this is a very different problem. For
instance, in the former, present decisions (e.g. transmit a
packet) greatly influence future actions (e.g. not being able to
transmit further packets) and the applied restrictions operate
in time, independently of the number of raw bits transmitted.
Conversely, under a bandwidth limitation, one could operate
greedily, taking the action that maximizes the current figure
of merit by, for example, limiting the amount of transmitted
data and/or the speed at which such data is sent.

In the context of deriving action policies, and especially
for WSN/IoT networks, the Markov Decision Process (MDP)
framework stands out for its particularly well-suited form, op-
timal results and mathematical robustness [10]. The solution of
MDP models are known as policies (in this case, transmission
policies) and are guaranteed to indicate the best action to take
at each moment according to the model of the environment. In
the specific domain of decision making frameworks (such as
MDP), the best action is conceptually defined as the optimal
response in terms of of maximizing the total reward over the
entire lifespan of a node. For the problem illustrated here,
the total reward of a node is understood as the number of
successfully transmitted events prioritized by their respective
importance.

Although there are many works in the literature that apply
the theory of decision making (and, in particular, MDP) to
WSN/IoT networks [11]–[13], to the best of authors’ knowl-
edge, none of them has proposed any optimal transmission
policy in TDC-limited networks. Hence, with the aim of filling
the research gaps, we present the main contribution of this
work: the derivation of an MDP-based transmission policy for
TDC-constrained networks that:

• Complies with the TDC regulations of each geographical
zone (e.g. max DC of 1%) and maximizes the number of
successfully reported events.

• Yields the optimal action to be taken when a node is
presented with the opportunity of reporting an event. Note
that the set of actions might not be limited to transmitting
or discarding the information, since several transmission
configurations may be possible.

• Considers the importance of the packet when deriving the
optimal action. Thus, high-importance packets should be
prioritized over low-importance packets when deciding
whether to send them or not, and under which available
configuration.

The rest of the paper is organized as follows: The related
work is presented in Section II. The analytical MDP formu-
lation is first introduced in Section III, where a model of
the problem is also characterized. In Section IV, the generic
mathematical model is applied to the two currently most
popular LPWAN technologies: LoRa [9] and Sigfox [14].
Section V validates the proposed models by comparing the
average reward of a simulated industrial IoT network when: (i)
our proposed MDP-based approach is used, and (ii) standard
transmission policies are employed. After that, the results
obtained from both approaches are compared to the maximum
attainable rewards (i.e. the Theoretical Limit of the network) to
further highlight the contributions. Finally, Section VI presents
the conclusions and outlines future lines of research.

II. RELATED WORK

Long range technologies such as LoRa [9] and Sigfox [14]
have started to draw significant attention from the academic
and industrial communities. Some of the published works in
this field devote their efforts to analyzing the performance
of real LPWAN deployments under different conditions: IoT
devices monitoring civil infrastructures such as bridges [15],
LoRa-based video surveillance systems [16], health monitor-
ing motes [17], etc. On the other hand, some other studies
are focused on analyzing the advantages, disadvantages, ca-
pabilities, and limits of the current implementations of these
technologies from a technological point of view. For example,
the real scalability of current LoRa networks [18], [19], the
performance of their different configurations [20], and how
these types of networks tolerate download traffic [21], amongst
other things are being studied. Although they are very practical
and illustrating, none of these works optimizes or analyzes the
performance of LPWAN in a generic and theoretic fashion,
which would allow their extrapolation to different technologies
(LoRa, Sigfox, etc.) or their future implementations, beyond
current transceivers. As a notable exception, [22] studied the
impact of sub-band selection on LoRa motes by modeling
nodes as an infinite, jockeying M/M/c queue (i.e. c servers,
arrivals determined by a Poisson process, and exponentially
distributed job services). Although the work is very well
detailed, mathematically neat and applicable to future deploy-
ments, it does not capture the true, complex nature of real
Long-Range networks, where resources are very scarce (i.e.
infinite queues are impossible to implement) and traffic cannot
always be assumed to follow a certain distribution.

Regarding the TDC-limitation problem, two works [1],
[16] have recently highlighted the importance of TDC-aware
networks by illustrating the problem of transmitting real-time
video in Long-Range deployments. Although practical, the so-
lution proposed focuses on deliberately breaking the 36s/hour
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TDC limitation by complying with it in a network-aggregated
fashion (i.e. the average network TDC is kept below 36s/hour,
not the per-node TDC). In fact, [23] highlighted that the effects
of TDC limitations jeopardize the actual capacity of large-
scale deployments, and the only de-facto proposal to manage
it, a fixed limit on the number of permitted messages per day,
fails to provide the network with enough flexibility.

With the interest of contributing to fill the notable gap in
research, we propose an approach to derive MDP-based trans-
mission policies that fully comply with the TDC regulations
while maximizing the number of high-priority reported events.

III. MATHEMATICAL MODEL

As commented on Section I, the goal of the system is to
maximize the expected number of reported events prioritized
by their importance, which is defined as the reward. To this
end, we have opted for modeling the optimal action-derivation
problem as an infinite horizon, discounted reward MDP [24].
First, because of the special ability of this mathematical
framework to model the problem as an optimization task
over discrete actions [25], which makes it particularly suitable
for deriving transmission policies as explored by [8]. And
secondly, because of the remarkable efficiency of current
MDP-solving methods, which allows them to be used in
very resource-constrained WSN/IoT motes, as [26] and [7]
highlighted. The “infinite horizon” property indicates that the
optimal policy is derived by considering the entire lifespan
of motes. It is usually accepted that this otherwise infinite
lifespan of motes may come to an end with certain small
probability [6], [10]. This factors in the probability of node
breakdown or manual disconnection, and globally represents
the idea of maximizing almost immediate rewards instead of
distant rewards, i.e. the “discounted reward” attribute of the
MDP. For example, a reward of R obtained in the next hour
is preferred to a reward of R obtained next year.

The proposed Markovian system operates in a discrete
fashion (i.e. discrete time) in which time is subdivided into
time slots with a length of Q seconds. Hence, the j-th time
slot represents the time within seconds, with j ∈ Z.

The working cycle of IoT/WSN networks deployed in
industrial environments is usually ruled by the awake-asleep
mote cycles. These motes usually remain in a dormant state to
save energy, then wake up, sense some parameters and report
them to a gateway, if needed, before going back to sleep.
The periodicity with which nodes wake up and enter into the
dormant state (i.e. the length of the awake-asleep cycle) equals
T seconds or, similarly, T/Q time slots. Depending on how
critical the controlled assets are, T should vary accordingly
to allow for finer monitoring. Therefore, at the beginning of
each k-th awake-asleep cycle, there might be a requirement
to transmit an event e, i.e. sensor readings, (see Fig. 1). Each
event of the arbitrary type i is generated with a probability λi.
The set of the probabilities of generating any event conforms
vector Λ = (λ0, λ1, ..., λP ), with λ0 being the probability of
not generating any event and equal to λ0 = 1−

∑i=P
i=1 λi. Note

that 0 ≤ λi ≤ 1 and
∑i=P
i=0 λi = 1. Moreover, each packet

reports an event of a different importance, which is represented
by the priority of such an event G = (0, G1, G2, ..., GP ). The
first item in the vector indicates the priority of reporting a
non-generated event.

Fig. 1: Timing scale. awake-asleep cycles of T seconds are
divided into T/Q time slots of length Q seconds each. Events
can be generated at the beginning of each cycle, when sensor
readings are obtained.

As introduced in Section I, over any given period of 1 hour,
a node can occupy the transmission band up to 3600 ∗ DC
seconds or, equivalently, 3600∗DC

Q time slots. The specific
TDC consumption is determined by the transmission action, as
some configurations lead to greater over-the-air times. Hence,
when a given action ai is taken, C(ai) time slots of TDC
are expended. Considering up to N + 1 different actions, the
vector C models the time slot consumption of each action
C = (0, C(a1), C(a2), ..., C(aN )), with the first action being
not reporting the given event (or not having anything to
report). Continuing with the dynamics of the TDC, at the
beginning of each awake-asleep cycle, Qr = T∗DC

Q time
slots of TDC are obtained. This is derived from the fact that
some time (T seconds) has passed and accordingly, some
TDC has been “recharged”. Note, that since it is particularly
illustrating, we employ a terminology similar to the one found
in energy consumption modeling. This defines a scheme in
which the TDC is regarded as a commodity that can be
consumed with transmissions and is recharged/regained (and
stored) at the beginning of each cycle. Note that the maximum
storable amount of TDC is equal to QMAX = 3600∗DC

Q . Some
similarities can be observed between the proposed scheme and
the classic Token Bucket algorithm [6]. A token is added
to the bucket every 1/Qr seconds, the bucket can hold at
the most QMAX tokens, and events can be sent if there are
enough tokens in the bucket to process their virtual length
(defined by the vector C). However, it is “time slots” and not
packets (or bytes of packets) which are being stored. In fact,
under the proposed system, packets will never be buffered
or stored. Thus, they will be discarded if, at the time of
being generated, they are not sent (either because there are
not enough tokens/time slots or it is not in the interest of the
future rewards).

As indicated in Section I, the generation and consumption
of TDC work in a per-band fashion. That is, when different
bands are available to motes, they must choose in which band
each event will be transmitted. It is in such a band where
the TDC will be consumed. However, since gateways (which
are the core of the LPWANs) cannot be actively listening
to different bands simultaneously, we will regard different
bands as different networks. Hence, the model here introduced,
which represents a specific network, shall be simply replicated
if motes can operate in different networks (bands).

Then, the state s of any given mote can be fully described
by the tuple (qk, Gk) where qk indicates the remaining TDC,
in terms of time slots, at the beginning of the awake-asleep
cycle k, and Gk denotes the priority of the event generated in
the k-th cycle (including 0 if no event has been generated).
Note that this process exhibits the Markov property, i.e., the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 2: State space of the proposed system. Transitions be-
tween states are depicted with arrows. Horizontal and vertical
transitions are depicted independently for the sake of clarity.

state of the system is fully described by the current state and
no past information is needed.

We can now represent the state space of the system as a two-
dimensional Markovian model (see Fig. 2). The first dimension
(horizontal axis) represents the accumulated TDC, whereas the
second dimension (vertical axis) exemplifies the generation of
an event. Horizontally, we move a deterministic number of
time slots to the right every cycle: Qr (the TDC recharge
rate). Similarly, we move to the left when we transmit an
event. The number of time slots we move in that direction
depends on the action (specifically, on the TDC consumption
of such an action defined by C). Vertically, we move randomly
following the event generation probability. At the beginning of
each cycle, we move to a new event-generation position based
on Λ. Figure 2 illustrates this.

At any given state s, a certain set of actions, A, are at
the disposal of motes based on their remaining TDC, qk,
and the priority of the generated event Gk (that is, the state
of such motes). Motes will act according to a transmission
policy (defined by π) which should be regarded as a simple
mapping between states and actions (π : S→ A). This policy
determines what is called the value function V (s, π), formally
described as the expected total reward obtained when such a
policy is followed given a starting state s:

V (s, π) = Eπs

(
inf∑
k=0

γk · r(sk, ak)

)
, s ∈ S, (1)

where k is the awake-asleep cycle index, ak and sk are the
action taken and the state at that cycle respectively. 1−γ is the
i.i.d (independent and identically distributed) probability of a
node terminating its lifespan, again, due to a breakdown or a
simple disconnection. Note that γ ∈ [0, 1). Eπs represents the
expectation of the total reward under such policy. On the other
hand, r(sk, ak) denotes the reward obtained when action ak
is performed being at state sk. This reward has been modeled
to reflect the final goal: to successfully report events to the
gateway (especially high-importance events). To appropriately
consider this “success rate” in reporting events, it should
be noted that, as indicated in Section I, some transmission

configurations increase the probability of reception. Hence, the
expected reward should increase accordingly. Thus, the reward
is formally defined as follows:

r(sk, ak) = Gk · PRR(ak), (2)

that is, the reward obtained when reporting a generated
event is defined as the product of the priority of such event
and the packet reception rate (PRR) under the employed
configuration (i.e. the action). The function PRR(ak) depends
on the particular technology and specific examples for different
technologies will be given in Section IV.

The aim of the MDP is then to find the optimal policy π∗

that maximizes the value function given an initial state:

π∗ = arg max
π

V (s, π). (3)

This optimal policy π∗ effectively maximizes the expected
number of reported events (prioritized by their respective
importance) over the entire mote lifespan, while complying
with the TDC regulations at the same time.

Since the states, transitions, actions, and rewards structures
of the system can be fully described, we have opted for
tackling the optimal policy-derivation problem via model-
based approaches (for which these four elements are needed).
On the other hand, Reinforcement Learning (RL) alternatives
depend on feedback signals to derive such policies. These
feedback signals are typically modeled via ACKs in wireless
networks. However, LPWAN gateways (in charge of acknowl-
edging packets) are also TDC-limited. This poses a very strict
limit on the number of ACKs that may be sent and thus,
renders RL alternatives unfeasible. Unfortunately, traditional
model-based approaches, like policy iteration or value iteration
[25], require tabular representations of the system and thus,
can only be applied if the number of states and actions is
small. Therefore, to enable the application of such algorithms,
Section IV elaborates on a set of simplifications that can be
applied to the proposed model of Fig. 2, without any loss of
precision, in real Long-Range networks.

Modeling the generation probability
As indicated above, to solve a model-based decision-making

problem, the transition matrix of the MDP (i.e. how states
evolve when actions are performed) must be known. Although
the horizontal transitions in the two-dimensional MDP model
represented in Fig. 2 are deterministically defined by the
actions taken and the TDC obtained in each cycle (Qr),
the vertical transitions depend on the Λ vector (the event-
generation probabilities). For the generic scenario in which
events are being generated based on the sensor readings,
the event-generation probabilities are unknown. Note that if
events are generated periodically, the sensing rate must simply
be adjusted to balance the consumption-generation of TDC.
However, these probabilities can be effectively estimated by
looking at the generation history of each mote. By considering
the number (and type) of generated events over a given number
of sensing cycles, we can roughly estimate the probability of
packet generation. It is worth remarking that we only need an
estimation of how likely is that an event is generated, not an
estimation of when it will be generated. Nevertheless, large
imprecisions in the estimation of Λ may translate, under some
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circumstances, in a slight degradation of the performance of
the derived policy –see appendix for further analysis on this
degradation–. Since, at the beginning of a mote’s life, this
knowledge (the history of generated events) might be very
scarce (especially for very rare events) we may incorporate
some prior knowledge of the environment in order to start off
with appropriate accuracy. For example, other motes deployed
in the same scenario might provide valuable information
regarding the probability of generating an event. Considering
that events are independent to each other, the occurrence of
a given type of event i can be regarded as a realization of
a Bernoulli process with probability λi, which models how
likely that event is to occur. To estimate λi, we can compute
how likely the history of events (e1, e2, ..., en) is under each
value of λi ∈ [0, 1] and weight it by our prior knowledge.
Then, we can derive the value of λi that maximizes (λ∗i ) that
product and thus, define the vector Λ∗. Formally:

P (λi ∨ e1, e2, ..., en) ∝ P (e1, e2, ..., en ∨ λi) · P (λi) (4)

λ∗i = arg max
λi

P (e1, e2, ..., en ∨ λi) · P (λi) (5)

P (λi) characterizes our prior belief about the distribution of
a specific event generation probability. For instance, it seems
reasonable to consider that high-importance events would tend
to occur less frequently than low-importance events in well-
functioning industrial environments.

Additionally, if Λ is known to change over time, that
is, there is a seasonality component, a moving average can
be used to let our knowledge about the event-generation
process change over time. Furthermore, if events are known
to be correlated, we can let λi,j represent the probability of
generating an event of type i after having generated an event
of type j. Then, to estimate λi,j , we would only consider this
type of sequence when analyzing the event history.

IV. PARTICULARIZATION OF THE MODEL

To assess the performance and benefits of the proposed
solution, the MDP-based system model has been applied to
the two most popular technologies in the current LPWAN
networks arena: Sigfox and LoRa. The generic modeling
(depicted in Fig. 2) is particularized to the specifics of Sigfox
and LoRa technologies in subsections 4.a and 4.b, respectively.
Furthermore, it is shown how the inherent properties of both
technologies reduce the complexity of the MDP models (i.e.
the size of the state and action space) and thus, allow them
to be solved directly on actual IoT/WSN motes. In the next
section (V), these models are used to simulate Sigfox/LoRa
motes under a wide range of conditions. The rewards obtained
with our proposal are compared with those obtained under
different habitual policies.

Throughout the following subsections, the European 868-
868.6MHz ISM sub-band [4], with its 1% DC limitation, is
used. However, results can be directly applied to other bands
without any loss of generality.

A. Sigfox
Sigfox operates both as an LPWAN technology (with a

proprietary communication solution) and as a service provider
(with its own LPWAN network, installed in 17 countries)

Parameter Formula Value
Q N/A 0.05 seconds
T N/A 5 seconds

TTX N/A 6 seconds
DC N/A 1%

C TTX/Q
120 time slots (note that the TDC

consumption for not sending any packet is
0)

Qr T · DC
Q

1 time slot

QMAX 3600 · DC
Q

720 time slots

TABLE I: Variables of the Sigfox’s model

[2]. Technology-wise, it employs ultra-narrow band (UNB)
signals along with BPSK modulation to attain communication
distances longer than 50km. Like most LPWAN technologies,
it works in sub-GHz ISM bands, and provides a rather modest
bitrate of 100 bps [27].

For the evaluation of the transmission policies, an IoT/WSN
network deployment in an industrial environment is assumed.
In such a scenario, it is usual that following the awake-asleep
mote cycle, events are generated based on the pre-processed
sensor readings. These readings reflect the value of certain
assets (e.g. industrial machinery, soil moisture, rotor vibration,
etc.) and thus, are reasonably supposed to all be equal in
length. Since Sigfox only allows payloads of up to 12 bytes,
this payload length is considered in this and following sections.
The entire packet length, once the headers have been added,
is 26 bytes (208 bits) in length, which at 100 bps, takes 2
seconds to be sent. However, to increase the packet reception
rate, Sigfox transmits, by default, three times the same packet
(one after another), thus occupying the working band for 6
seconds (TTX = 6).

Note that Sigfox provides a single transmission configura-
tion. Hence, reducing the action space to either transmit or
do not transmit (a1 and a0 respectively). The time is divided
into time slots of Q = 0.05 seconds. Thus, each 6-second
transmission consumes 120 time slots of TDC. The length
of the awake-asleep cycle is chosen to be T = 5 seconds.
This value is consistent with the sensing rate of IoT/WSN
motes deployed in industrial scenarios that do not require
real-time monitoring (which is not attainable with current
LPWAN solutions [23]) and yields a recharge rate of 1 time
slot (Qr = 1) per cycle. Similarly, the 1% DC implies a
maximum storable TDC of 36 seconds or QMAX = 720 time
slots. Table I specifies the variables of the model along with
the formulae when applicable:

Concerning the event generation, 2 types of events, based
on their priorities, have been considered as an example: low-
importance and high-importance events. Note that this does
not entail any loss of generality and the models presented in
this work can be easily generalized to any number of different
priorities. Thus, we define the Λ vector as follows: Λ =
(λ0, λ1, λ2). This reflects a scenario in which low-importance
events can be regarded as readings lying within acceptable
values (i.e. controlled assets are operating normally), whereas
high-importance events would model reports on anomalies in
the controlled assets. As explained in Section III, the rewards
obtained by motes depend on both the importance of the
transmitted event (1 or 2 for the low- and high-importance
events, respectively) and the PRR. Unfortunately, the exact
curves for deriving the PRR from the signal-to-noise ratio
(SNR) are not currently available for Sigfox motes. Therefore,
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Fig. 3: State space of the Sigfox Markovian model. Transi-
tions between states are depicted with arrows. Horizontal and
vertical transitions are depicted independently for the sake of
clarity.

the sensitivity of Sigfox gateways (-147dBm [28]) is rightfully
employed to compute the PRR. That is, if the received power
is over the sensitivity threshold, the PRR will be 1, and 0
otherwise.

The parameters in Table I configure the Sigfox system
model depicted in Fig. 3. This system shows states with 721
different TDC values (from TDC=0 to TDC=QMAX=720) and
3 different G values (the type of the generated event). Hence,
configuring a joint state-space of 2163 (721x3) different states.
Conversely, and as indicated above, the action-space is limited
to two different actions: report (a1) and do not report (a0) an
event.

B. LoRa

LoRa is unarguably the main actor in the current LPWAN
scene. It has the support of many worldwide technology
leaders (Cisco, Microchip, IBM, HP, etc.) [29], and unlike
Sigfox, it enables the deployment of private networks. From a
technological point of view, LoRa offers a proprietary Chirp
Spread Spectrum modulation (CSS) to achieve communication
distances greater than 15km in sub-GHz bands [30]. Moreover,
LoRa allows us to modify several transmission properties: the
bandwidth and central frequency of the communication, the
Coding Rate (CR), which is the ratio between the length of
the packet and the length of the error-correction code, the
Transmission Power, and the Spreading Factor (SF). This last
parameter, the SF, is defined as the ratio between the symbol
rate and chip rate. Higher spreading factors can increase the
sensitivity and range of communication at the expense of
increasing the over-the-air time of the packets. Thus, this
parameter is fundamental in the derivation of the optimal
transmission policy and leads to a trade-off which is worth
studying. Higher SF factors increase the PRR and hence,
the expected immediate reward, but consume more TDC,
reducing the potential future rewards. Similarly, the Coding
Rate also affects both the TDC consumption, as decreasing it
increases the effective length of the packet, and the expected
reward, since with higher values, the PRR increases as the
communication gets more resistant to errors. The relation
between the SF/CR configurations and the bit-error-rate and
therefore, the PRR, has been modeled in [31] and is illustrated
in the following expression:

BER = 10αe
βSNR

, (6)

CR SF ai α β TXR

4/5

7 a1 -30.2580 0.2857 3410 bps
8 a2 -77.1002 0.2993 1841 bps
9 a3 -244.6424 0.3223 1015 bps

10 a4 -725.9556 0.3340 507 bps
11 a5 -2109.8064 0.3407 253 bps
12 a6 -4452.3653 0.3317 127 bps

4/7

7 a7 -105.1966 0.3746 2663 bps
8 a8 -289.8133 0.3756 1466 bps
9 a9 -1114.3312 0.3969 816 bps

10 a10 -4285.4440 0.4116 408 bps
11 a11 -20771.6945 0.4332 204 bps
12 a12 -98658.1166 0.4485 102 bps

TABLE II: α, β, and TXR parameters for different values of
CR and SF

Parameter Formula Value
Q N/A 0.051 seconds
T N/A 5 seconds

TXR N/A
(3410, 1841, 1015, 507, 253, 127,
2663, 1466, 816, 408, 204, 102)

bps
DC N/A 1%

C C(ai) =
208/TXRai

Q

(1, 2, 4, 8, 16, 32, 2, 3, 5, 10, 20,
40) time slots (note that the TDC
consumption for not sending any

packet is 0)
Qr T · DC

Q
5 time slots

QMAX 3600 · DC
Q

706 time slots

TABLE III: Variables of the LoRa’s model

where alpha and beta depend on the specific configuration of
the SF and CR, covered in Table II. In turn, the PRR, used to
model the rewards as per Eq. 2, can be computed as follows:

PRR = (1−BER)L, (7)

where L is the length of the packet. As indicated above, the
specific configuration of SF/CR also affects the transmission
rate of packets. For a bandwidth of 125KHz, which is the
most common configuration, the effective transmission rates
(TXR) are included in Table II for all the 6 configurations
of SF available, and the 2 different values of CR studied (the
two CR configurations for which the α and β parameters were
available).

If the time slot length (Q) is set to 0.051 seconds, and
again, 26-byte packets are considered (208 bits), the time slot
consumption of each action can be easily computed as follows
(note that the SF/CR configurations define the action set):

C(ai) =
TTX
Q

=
208/TXRai

Q
(8)

Similarly, for an awake-asleep cycle of 5 seconds, the time
slot recharge rate equals 1 time slot (Qr = 1) and the
maximum storable TDC 706 time slots (QMAX = 706). Table
III summarizes the variables of the model along with the
formulae when applicable.

Technically, LoRa only defines the physical layer of the
wireless communication, whereas LoRaWAN standardizes the
upper layers. Within these layers, the Medium Access Control
(MAC) sublayer ensures compliance with TDC regulations
in a very specific fashion. Instead of simply enforcing the
maximum transmission duty cycle of, for example, 1% per
hour (i.e. 36 seconds), it forces the motes to undergo a silent
period after each packet transmission. Therefore, the TDC
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Fig. 4: State space of the LoRa Markovian model. Only when
motes reach the end of the chain (at the right-hand side of the
model) can new packets can be. Therefore, states with fewer
than 666 time slots will never be visited.

regulation is not only met “per hour”, but also between any
two transmitted packets. This silent period (Toff ) depends on
how long the radio was ON to transmit the last packet (TTX )
and it is formally defined as:

Toff =
TTX
DC

− TTX (9)

Although this helps in reducing the number of packet colli-
sions, it has the undesirable effect of preventing LoRa motes
from being able to transmit packets in bursts. Furthermore, this
alters the way in which the model (Fig. 2) makes a transition.
Instead of progressively “accumulating” TDC each cycle, a
mote would lie at the end of the TDC chain (at the right-
hand side of it, where QMAX is in Fig. 2) and every time it
generates a packet, it moves the number of time slots defined
by C to the left (see Fig. 4). Only then, would the mote
start to progressively move to the end of the chain again (Qr
time slots each cycle). And when it finally reaches the end
of the chain, another packet can be sent again (i.e. when the
mote is not at the end of the chain, it is considered to be in
its Toff period and hence, cannot send any further packets).
This behavior results in the leftmost side of the chain never
being visited. In particular, the states to the left of the value
QMAX − CMAX = 666 time slots (see Fig. 4) will not be
reached. Note that CMAX = 40 time slots and corresponds
to C(a12). Therefore, these states can be omitted to speed up
the computation of the MDP solution.

Thus, the state-space of the LoRa model is simplified to only
account for TDC values ranging from 666 to 706 (41 different
values) and event generation from 0 to 2 (3 different values).
Hence, the entire system model contains 123 different states
(41*3) and 13 different actions (not sending a packet plus
the 12 different combinations of SF and CR). Note that LoRa
motes operating in the 868-868.6MHz sub-band can select one
of the 3 different channels to transmit a packet. However, since
they belong to the same sub-band, the TDC consumption is
aggregated among them, and the system dynamics are not
altered at all. Therefore, TDC-wise motes are assumed to
select a channel randomly when facing a new transmission,
which is the current by-default behavior of LoRaWAN motes
as per the standard.

V. PERFORMANCE ANALYSIS OF THE TRANSMISSION
POLICIES

To analyze and judge the performance obtained when the
proposed MDP-based transmission policy is implemented in
LPWAN motes, two metrics are employed: (i) a measure of
how well motes could possibly do (i.e. the maximum attainable
reward, defined by Eq. 11), and (ii) a measure of how well
motes do with other policies (the reward obtained by following
other transmission policies, defined by Eq. 10). The former
represents the highest performance a node can attain if it
knew beforehand all the events that would be generated over
a fixed time period of K sensing cycles. Mathematically, it
represents a Theoretical Limit on the attainable rewards, and
can be computed as the maximization of the sum of discounted
rewards over the set of available actions for the K cycles
(Eq. 11). Although knowing what events will be generated
beforehand is not realistic, it offers us a clear insight into
the regret of using a certain transmission policy. This figure
of merit (the regret) is formally defined as the difference
between the maximum attainable reward (RMAX ) and the
reward obtained with a given transmission policy (R, –Eq.
10, which is a particularization of the Eq. 1 for a fixed time
period and a given event history–).

R =

K∑
k=0

γkr(sk, ak), with ak = π(sk) (10)

RMAX = max
ak

R, subject to

TDCk+1 = min(QMAX , TDCk +Qr − C(ak)) ≥ 0
(11)

Furthermore, in order to have a good idea of the true
performance of the MDP-based transmission policy under
different scenarios, our proposal is compared to two different
intuitive policies:

• Always Transmit (AT): Every generated event is trans-
mitted if enough TDC is available. This is the by-default
policy in scenarios where the priorities of events are
disregarded, as is the case in the majority of current
LPWAN deployments. Every generated event is treated
the same way and transmitted if possible.

• Transmit High-Importance Events Only (THIEO): Only
high-importance events will be transmitted (if enough
TDC is available). In very TDC-restricted networks (like
networks with 1% of DC) it is tempting to save such
TDC for the dispatching of high-importance events. This
policy is aimed at guaranteeing the transmission of high-
importance events by allocating all the available TDC to
them.

Since the rewards obtained depend on the history of gen-
erated events, all the policies will be tested for different
values of Λ. Let θ = λ1

λ2
be the relation between λ1 and λ2

(the probabilities with which low and high-importance events
are generated respectively). By varying θ, different types of
networks can be characterized. For instance, θ = 2 represents
a network in which low-importance events, events containing
readings that lie within normal/expected values, are generated
twice as often as high-importance events (reports on anomalies
or unexpected values). Furthermore, let φ = λ1 + λ2 ∈ [0, 1]
be the probability of which an event of any type is generated
during every sensing cycle. This parameter adjusts the activity
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of the network. For instance, φ = 0.6 indicates that with a 60%
probability, an event is generated at any given cycle. These
two parameters (φ and θ) define the activity patterns of the
network and particularize λ1 and λ1 (e.g., for θ = 2, φ = 0.6,
the following values are derived: λ1 = 0.4 and λ2 = 0.2).

For the evaluation of the different policies, φ has taken
values from 0 to 1 in steps of 0.05 (20 different values that
cover a wide range of networks between very quiet to very
active ones). On the other hand, θ has been set to the following
discrete values: 0.5, 1, 2, and 4 to analyze four different
LPWAN networks according to the relation between both types
of events. For each of these 80 combinations (20 different
values of φ and 4 different values of θ), 1000 sensing/awake-
asleep cycles of 5 seconds each have been simulated with 20
different seeds to compute the Average Discounted Reward,
ADR, (the average of Eq. 10 over 20 different randomly gener-
ated event-histories). For the MDP-based transmission policy,
the estimated generation rates (Λ∗) are updated with past
experiences every 50 sensing cycles, following the procedure
described in Subsection III.B. It should be mentioned that the
Python code employed to run the simulations has been made
publicly available to support the research in this area [32].

A. Sigfox

The difference in the ADR (i.e. regret) between the max-
imum attainable reward (i.e. the Theoretical Limit) and the
proposed solution (denoted as MDP-based) is remarkably
low for the entire space of φ and θ. In fact, the greatest
difference found is 0.186 for φ=0.71 and θ=4 (this means
ADR values of, in the worst case, just 3.12% smaller than
the Theoretical Limit). However, these differences increase up
to 1.23 for the AT policy and 2.24 for the THIEO policy
(φ=1.0, θ=1 and φ=0.24, θ=4 respectively), yielding ADR
values 14.09% and 58.96% smaller than the Theoretical Limit
respectively. Such increments in the regret, reflect the fact that
only with the MDP-based proposed transmission policy, can
motes effectively adapt to the changing conditions of a realistic
network, swiftly finding a suitable event-reporting policy that
boosts their performance. Ultimately, this translates into a
higher number of events being reported, always in a way in
which their respective priorities are considered.

When motes generate very few events (that is, for low
values of φ), the AT policy gets very close to the Theoretical
Limit. In these situations, the TDC is accumulated faster than
it is consumed, and thus, every event can (and should) be
transmitted. This is precisely what AT policy does. On the
other hand, when the network is very active (high values
of φ), the rewards obtained under the THIEO policy (which
only reports high-importance events) also tend to reach the
Theoretical Limit (especially for θ=0.5, when more high-
importance packets are generated). The intersection between
AT and THIEO rewards occurs at different points of φ based
on the exact value of θ. For instance, high values of θ entail
a higher proportion of low-importance events and thus, make
the THIEO policy tend to drop too many events by discarding
low-importance ones. Moreover, and as a secondary effect,
when more high-importance events are generated (i.e. when θ
grows), the global ADR tends to increase. This is reflected by
the fact that ADR values are generally greater for θ=0.5 than
for θ=4.

(a)

(b)

(c)

(d)

Fig. 5: ADR values obtained with Sigfox motes for (a) θ =
0.5, (b) θ = 1.0, (c) θ = 2.0, and (d) θ = 4.0
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Nevertheless, for the Sigfox technology, neither AT nor
THIEO policies can effectively adapt to the ever-changing
conditions of industrial LPWAN networks, and thus, they
would perform very poorly in dynamic scenarios, which are
the most common type of industrial environment. Conversely,
the proposed, MDP-based policy efficiently controls the be-
havior of LPWAN motes to adapt their transmission patterns
to fluctuating conditions of the environment, attaining near-
optimal performance for a wide range of situations.

B. LoRa
Since in LoRa, packets can be sent under different configu-

rations, for the AT and THIEO policies, the Spreading Factor
is adjusted with the Adaptive Data Rate algorithm [33]. This
algorithm is part of the LoRaWAN recommendations and it
is basically in charge of finding the most suitable SF for
the given conditions (specifically, the perceived SNR). With
respect to the CR, the two configurations (4/5 and 4/7) have
been exhaustively evaluated. On the other hand, the bandwidth
and the transmission power, which do not affect the TDC
consumption, have been set to their default values: 125kHz
and 30dBm respectively.

The first notable fact in Fig. 6 is the large difference
between the ADR obtained under the MDP-based policy and
the ADR achieved under the AT and THIEO intuitive policies.
The maximum regret yielded by the AT policy is 5.1 for
CR=4/5, and 4.01 for CR=4/7 (both for φ=θ=1.0). ADR values
are 68.58% and 55.14% smaller than the Theoretical Limit,
respectively. In turn, the maximum regret obtained under the
THIEO policy is 4.7 for CR=4/5 and 3.43 for CR=4/7 (both for
φ=1 and θ=0.5). ADR values are 60.05% and 50.07% smaller
than the Theoretical Limit, respectively. These rather large
differences reveal the importance of reckoning with a policy
that adapts to environmental conditions, especially when the
set of possible actions is fairly large. In LoRa, 13 different
actions are considered. THIEO and AT policies, limited to
employing a fixed set of two actions, either not transmitting
or transmitting under a fixed configuration determined by the
Adaptive Data Rate algorithm, cannot regulate mote behavior
to meet the network conditions. As in the Sigfox case, THIEO
tends to perform better than AT for high values of φ and
especially for low values of θ. In other words, when either
a large proportion of events are high-importance events, or
a large number of them are generated in absolute terms,
it is advisable to employ the TDC only for sending high-
importance events.

In contrast, the proposed MDP-based solution seems to
perform relatively well under any circumstances, with the
maximum regret being 1.18 for φ=0.85 and θ=2. This means
that ADR values are, in the worst case, 18.21% smaller than
the Theoretical Limit. The ability of the proposed solution to
choose the best SF and CR configurations in each scenario
results in a higher capacity to adapt to different situations,
hence, being able to effectively report a larger number of
prioritized events.

It is worth noting that the differences appreciated between
Sigfox and LoRa (in terms of ADR), stem from the fact that
LoRa enforces a silent period Toff after every transmission.
This makes that a larger portion of packets get sent later
in time. With a discount rate γ strictly smaller than 1 –
the common practice–, postponing transmissions entails a

(a)

(b)

(c)

(d)

Fig. 6: ADR values obtained with LoRa motes for (a) θ = 0.5,
(b) θ = 1.0, (c) θ = 2.0, and (d) θ = 4.0
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penalization in the obtained reward (precisely, the reward is
scaled by γ). In fact, it can be shown how, if γ approaches
one, the obtained ADR values under LoRa surpasses those
obtained under Sigfox –the average non-discounted rewards
are generally larger for LoRa than for Sigfox–.

Regarding the complexity of the proposed transmission
policy for both, LoRa and Sigfox motes, it should be noted
that traditional MDP-solving methods, such as Value Iteration,
have been formally proven to run in polynomial time with
respect to the number of states and actions for a fixed discount
rate γ [34]. Moreover, the memory requirement has been
shown to be lineal with the number of states [35]. These
two properties make the proposed MDP-based solution very
well-suited for running in resource-constrained devices, such
as IoT motes and in time-critical scenarios, such as industrial
environments. Furthermore, the obtained transmission policies
can be easily stored in 1D arrays in motes. These are extremely
efficient and fast memory structures. In fact, for the worst-case
scenario (LoRa), the complete policy could be stored in less
than 62 bytes (123 different states multiplied by 4 bits per
state).

VI. CONCLUSIONS

Long-Range IoT networks have started to draw the attention
of the academic and industrial communities as very promising
alternatives to other classic IoT technologies. This is mainly
due to their longer communication ranges, robustness, sim-
plicity, and convenient use of the license-free ISM bands.
However, the limitations imposed on ISM bands in many
countries hinder the ability of Long-Range IoT motes to make
free use of the shared medium. In particular, the restriction to
the amount of time motes can occupy the ISM bands (normally
less than 36 seconds an hour) might jeopardize the ability
of these kinds of networks to operate in industrial scenarios,
where sensed data must flow in a timely fashion.

To alleviate this situation, an optimal transmission policy
based on the analytical framework of Markov Decision Pro-
cesses (MDP), has been derived with two objectives: (i) to
maximize the number of reported events, prioritized by their
importance, and (ii) to comply with the ISM regulations.
This has been accomplished in two steps. Firstly, a general
model of Long-Range IoT motes has been proposed and,
secondly this model has been tuned for two widely-known
technologies: LoRa and Sigfox. Motes of both technologies
have been simulated under different network conditions. Un-
like other traditional policies tested, whose performance is
strongly coupled with network conditions, our obtained results
reveal that the proposed solution performs very close to
the maximum Theoretical Limit under almost any condition.
Furthermore, the proposed solution is computationally fitted
for resource-constrained motes and for time-critical scenarios,
thus making it a good solution for IoT motes deployed in
industrial scenarios.

APPENDIX
IMPACT OF THE ESTIMATION OF Λ ON THE ADR

For the proposed MDP-based approach, the event-
generation rate, Λ, need to be estimated. When the estimated
Λ largely diverges from the true underlying event-generation
rate, the derive transmission policies might be sub-optimal.

We have analyzed this by purposely introducing perturbations
in the estimated Λ to later analyze the obtained performance
degradation. This degradation has been computed as a differ-
ence between the ADR obtained with the true Λ and the ADR
obtained with the perturbed Λ. In turn, the perturbed Λ has
been generated by adding zero-mean Gaussian noise to the
true Λ.

Results show that, even in the presence of large perturba-
tions (noise values that alter the estimated Λ in more than
50%), the degradation in the ADR varies between 0% to 18%
depending on the specific scenario.
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