145 research outputs found

    Drawing, Handwriting Processing Analysis: New Advances and Challenges

    No full text
    International audienceDrawing and handwriting are communicational skills that are fundamental in geopolitical, ideological and technological evolutions of all time. drawingand handwriting are still useful in defining innovative applications in numerous fields. In this regard, researchers have to solve new problems like those related to the manner in which drawing and handwriting become an efficient way to command various connected objects; or to validate graphomotor skills as evident and objective sources of data useful in the study of human beings, their capabilities and their limits from birth to decline

    Building E-education platform for design-oriented learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2004.Includes bibliographical references (p. 149-155).Design-oriented learning requires tools that support creative processes and student-to-student and student-to-faculty interactions. While most present E-Education systems perform as the asynchronous distribution channel for teaching material, they usually offer little support for project based design processes. This research maps out the key learning events in design classes at MIT's Department of Mechanical Engineering, and proposes guidelines for building E-Education systems to support the unique characteristics of design-oriented learning. Two creative learning processes are identified and two independent, yet tightly related, software systems are implemented and evaluated. The first application, the Peer Review and Engineering Process (PREP), is a web system that helps instructors and students conduct and manage peer review evaluation of design concepts. The second is a real time application called InkBoard that leverages the Tablet PC and Ink medium to provide real-time collaborative sketching over TCP/IP networks. A new streaming network protocol for transferring Ink objects is proposed and implemented. A comparative study against other ink-enabled protocols is also presented.by Hai Ning.Ph.D

    GRAPHICAL ONE-TIME PASSWORD AUTHENTICATION

    Get PDF
    Complying with a security policy often requires users to create long and complex passwords to protect their accounts. However, remembering such passwords appears difficult for many and may lead to insecure practices, such as choosing weak passwords or writing them down. One-Time Passwords (OTPs) aim to overcome such problems; however, most implemented OTP techniques require special hardware, which not only adds costs, but also raises issues regarding availability. This type of authentication mechanism is mostly adopted by online banking systems to secure their clients’ accounts. However, carrying around authentication tokens was found to be an inconvenient experience for many customers. Not only the inconvenience, but if the token was unavailable, for any reason, this would prevent customers from accessing their accounts securely. In contrast, there is the potential to use graphical passwords as an alternative authentication mechanism designed to aid memorability and ease of use. The idea of this research is to combine the usability of recognition-based and draw-based graphical passwords with the security of OTP. A new multi-level user-authentication solution known as: Graphical One-Time Password (GOTPass) was proposed and empirically evaluated in terms of usability and security aspects. The usability experiment was conducted during three separate sessions, which took place over five weeks, to assess the efficiency, effectiveness, memorability and user satisfaction of the new scheme. The results showed that users were able to easily create and enter their credentials as well as remember them over time. Eighty-one participants carried out a total of 1,302 login attempts with a 93% success rate and an average login time of 24.5 seconds. With regard to the security evaluation, the research simulated three common types of graphical password attacks (guessing, intersection, and shoulder-surfing). The participants’ task was to act as attackers to try to break into the system. The GOTPass scheme showed a high resistance capability against the attacks, as only 3.3% of the 690 total attempts succeeded in compromising the system.King Abdulaziz City for Science and Technolog

    Sensor-based user interface concepts for continuous, around-device and gestural interaction on mobile devices

    Get PDF
    A generally observable trend of the past 10 years is that the amount of sensors embedded in mobile devices such as smart phones and tablets is rising steadily. Arguably, the available sensors are mostly underutilized by existing mobile user interfaces. In this dissertation, we explore sensor-based user interface concepts for mobile devices with the goal of making better use of the available sensing capabilities on mobile devices as well as gaining insights on the types of sensor technologies that could be added to future mobile devices. We are particularly interested how novel sensor technologies could be used to implement novel and engaging mobile user interface concepts. We explore three particular areas of interest for research into sensor-based user interface concepts for mobile devices: continuous interaction, around-device interaction and motion gestures. For continuous interaction, we explore the use of dynamic state-space systems to implement user interfaces based on a constant sensor data stream. In particular, we examine zoom automation in tilt-based map scrolling interfaces. We show that although fully automatic zooming is desirable in certain situations, adding a manual override capability of the zoom level (Semi-Automatic Zooming) will increase the usability of such a system, as shown through a decrease in task completion times and improved user ratings of user study. The presented work on continuous interaction also highlights how the sensors embedded in current mobile devices can be used to support complex interaction tasks. We go on to introduce the concept of Around-Device Interaction (ADI). By extending the interactive area of the mobile device to its entire surface and the physical volume surrounding it we aim to show how the expressivity and possibilities of mobile input can be improved this way. We derive a design space for ADI and evaluate three prototypes in this context. HoverFlow is a prototype allowing coarse hand gesture recognition around a mobile device using only a simple set of sensors. PalmSpace a prototype exploring the use of depth cameras on mobile devices to track the user's hands in direct manipulation interfaces through spatial gestures. Lastly, the iPhone Sandwich is a prototype supporting dual-sided pressure-sensitive multi-touch interaction. Through the results of user studies, we show that ADI can lead to improved usability for mobile user interfaces. Furthermore, the work on ADI contributes suggestions for the types of sensors could be incorporated in future mobile devices to expand the input capabilities of those devices. In order to broaden the scope of uses for mobile accelerometer and gyroscope data, we conducted research on motion gesture recognition. With the aim of supporting practitioners and researchers in integrating motion gestures into their user interfaces at early development stages, we developed two motion gesture recognition algorithms, the $3 Gesture Recognizer and Protractor 3D that are easy to incorporate into existing projects, have good recognition rates and require a low amount of training data. To exemplify an application area for motion gestures, we present the results of a study on the feasibility and usability of gesture-based authentication. With the goal of making it easier to connect meaningful functionality with gesture-based input, we developed Mayhem, a graphical end-user programming tool for users without prior programming skills. Mayhem can be used to for rapid prototyping of mobile gestural user interfaces. The main contribution of this dissertation is the development of a number of novel user interface concepts for sensor-based interaction. They will help developers of mobile user interfaces make better use of the existing sensory capabilities of mobile devices. Furthermore, manufacturers of mobile device hardware obtain suggestions for the types of novel sensor technologies that are needed in order to expand the input capabilities of mobile devices. This allows the implementation of future mobile user interfaces with increased input capabilities, more expressiveness and improved usability

    Information security and assurance : Proceedings international conference, ISA 2012, Shanghai China, April 2012

    Full text link

    Biometrics

    Get PDF
    Biometrics-Unique and Diverse Applications in Nature, Science, and Technology provides a unique sampling of the diverse ways in which biometrics is integrated into our lives and our technology. From time immemorial, we as humans have been intrigued by, perplexed by, and entertained by observing and analyzing ourselves and the natural world around us. Science and technology have evolved to a point where we can empirically record a measure of a biological or behavioral feature and use it for recognizing patterns, trends, and or discrete phenomena, such as individuals' and this is what biometrics is all about. Understanding some of the ways in which we use biometrics and for what specific purposes is what this book is all about

    Measuring user experience for virtual reality

    Get PDF
    In recent years, Virtual Reality (VR) and 3D User Interfaces (3DUI) have seen a drastic increase in popularity, especially in terms of consumer-ready hardware and software. These technologies have the potential to create new experiences that combine the advantages of reality and virtuality. While the technology for input as well as output devices is market ready, only a few solutions for everyday VR - online shopping, games, or movies - exist, and empirical knowledge about performance and user preferences is lacking. All this makes the development and design of human-centered user interfaces for VR a great challenge. This thesis investigates the evaluation and design of interactive VR experiences. We introduce the Virtual Reality User Experience (VRUX) model based on VR-specific external factors and evaluation metrics such as task performance and user preference. Based on our novel UX evaluation approach, we contribute by exploring the following directions: shopping in virtual environments, as well as text entry and menu control in the context of everyday VR. Along with this, we summarize our findings by design spaces and guidelines for choosing optimal interfaces and controls in VR.In den letzten Jahren haben Virtual Reality (VR) und 3D User Interfaces (3DUI) stark an Popularität gewonnen, insbesondere bei Hard- und Software im Konsumerbereich. Diese Technologien haben das Potenzial, neue Erfahrungen zu schaffen, die die Vorteile von Realität und Virtualität kombinieren. Während die Technologie sowohl für Eingabe- als auch für Ausgabegeräte marktreif ist, existieren nur wenige Lösungen für den Alltag in VR - wie Online-Shopping, Spiele oder Filme - und es fehlt an empirischem Wissen über Leistung und Benutzerpräferenzen. Dies macht die Entwicklung und Gestaltung von benutzerzentrierten Benutzeroberflächen für VR zu einer großen Herausforderung. Diese Arbeit beschäftigt sich mit der Evaluation und Gestaltung von interaktiven VR-Erfahrungen. Es wird das Virtual Reality User Experience (VRUX)- Modell eingeführt, das auf VR-spezifischen externen Faktoren und Bewertungskennzahlen wie Leistung und Benutzerpräferenz basiert. Basierend auf unserem neuartigen UX-Evaluierungsansatz leisten wir einen Beitrag, indem wir folgende interaktive Anwendungsbereiche untersuchen: Einkaufen in virtuellen Umgebungen sowie Texteingabe und Menüsteuerung im Kontext des täglichen VR. Die Ergebnisse werden außerdem mittels Richtlinien zur Auswahl optimaler Schnittstellen in VR zusammengefasst

    Campus Communications Systems: Converging Technologies

    Get PDF
    This book is a rewrite of Campus Telecommunications Systems: Managing Change, a book that was written by ACUTA in 1995. In the past decade, our industry has experienced a thousand-fold increase in data rates as we migrated from 10 megabit links (10 million bits per second) to 10 gigabit links (10 billion bits per second), we have seen the National Telecommunications Policy completely revamped; we have seen the combination of voice, data, and video onto one network; and we have seen many of our service providers merge into larger corporations able to offer more diverse services. When this book was last written, A CUT A meant telecommunications, convergence was a mathematical term, triple play was a baseball term, and terms such as iPod, DoS, and QoS did not exist. This book is designed to be a communications primer to be used by new entrants into the field of communications in higher education and by veteran communications professionals who want additional information in areas other than their field of expertise. There are reference books and text books available on every topic discussed in this book if a more in-depth explanation is desired. Individual chapters were authored by communications professionals from various member campuses. This allowed the authors to share their years of experience (more years than many of us would care to admit to) with the community at large. Foreword Walt Magnussen, Ph.D. Preface Ron Kovac, Ph.D. 1 The Technology Landscape: Historical Overview . Walt Magnussen, Ph.D. 2 Emerging Trends and Technologies . Joanne Kossuth 3 Network Security . Beth Chancellor 4 Security and Disaster Planning and Management Marjorie Windelberg, Ph.D. 5 Student Services in a University Setting . Walt Magnussen, Ph.D. 6 Administrative Services David E. O\u27Neill 7 The Business Side of Information Technology George Denbow 8 The Role of Consultants . David C. Metz Glossary Michelle Narcavag
    • …
    corecore