588 research outputs found

    Designing smart garments for rehabilitation

    Get PDF

    A fabric-based approach for wearable haptics

    Get PDF
    In recent years, wearable haptic systems (WHS) have gained increasing attention as a novel and exciting paradigm for human-robot interaction (HRI).These systems can be worn by users, carried around, and integrated in their everyday lives, thus enabling a more natural manner to deliver tactile cues.At the same time, the design of these types of devices presents new issues: the challenge is the correct identification of design guidelines, with the two-fold goal of minimizing system encumbrance and increasing the effectiveness and naturalness of stimulus delivery.Fabrics can represent a viable solution to tackle these issues.They are specifically thought “to be worn”, and could be the key ingredient to develop wearable haptic interfaces conceived for a more natural HRI.In this paper, the author will review some examples of fabric-based WHS that can be applied to different body locations, and elicit different haptic perceptions for different application fields.Perspective and future developments of this approach will be discussed

    IMU-based human activity recognition and payload classification for low-back exoskeletons

    Get PDF
    Nowadays, work-related musculoskeletal disorders have a drastic impact on a large part of the world population. In particular, low-back pain counts as the leading cause of absence from work in the industrial sector. Robotic exoskeletons have great potential to improve industrial workers’ health and life quality. Nonetheless, current solutions are often limited by sub-optimal control systems. Due to the dynamic environment in which they are used, failure to adapt to the wearer and the task may be limiting exoskeleton adoption in occupational scenarios. In this scope, we present a deep-learning-based approach exploiting inertial sensors to provide industrial exoskeletons with human activity recognition and adaptive payload compensation. Inertial measurement units are easily wearable or embeddable in any industrial exoskeleton. We exploited Long-Short Term Memory networks both to perform human activity recognition and to classify the weight of lifted objects up to 15 kg. We found a median F1 score of 90.80 % (activity recognition) and 87.14 % (payload estimation) with subject-specific models trained and tested on 12 (6M-6F) young healthy volunteers. We also succeeded in evaluating the applicability of this approach with an in-lab real-time test in a simulated target scenario. These high-level algorithms may be useful to fully exploit the potential of powered exoskeletons to achieve symbiotic human–robot interaction

    Advances in Human Factors in Wearable Technologies and Game Design

    Get PDF

    Wearable Quarter-Wave Folded Microstrip Antenna for Passive UHF RFID Applications

    Get PDF
    A wearable low-profile inset-fed quarter-wave folded microstrip patch antenna for noninvasive activity monitoring of elderly is presented. The proposed antenna is embedded with a sensor-enabled passive radio-frequency identification (RFID) tag operating in the ultra-high frequency (UHF) industrial-scientific-medical (ISM) band around 900 MHz. The device exhibits a low and narrow profile based on a planar folded quarter-wave length patch structure and is integrated on a flexible substrate to maximise comfort to the wearer. An extended ground plane made from silver fabric successfully minimises the impact of the human body on the antenna performance. Measurements on a prototype demonstrate a reflection coefficient (S₁₁) of −30 dB at resonance and a −10 dB bandwidth from 920 MHz to 926 MHz. Simulation results predict a maximum gain of 2.8 dBi. This is confirmed by tag measurements where a 4-meter read range is achieved using a transmit power of 30 dBm, for the case where the passive wearable tag antenna is mounted on a body in a practical setting. This represents an almost 40% increase in read range over an existing dipole antenna placed over a 10 mm isolator layer on a human subject.Thomas Kaufmann, Damith C. Ranasinghe, Ming Zhou, and Christophe Fumeau

    Wearer-Centered Design for Animal Biotelemetry: Implementation and Wearability Test of a Prototype

    Get PDF
    In this paper we present an approach to designing wearer-centered biotelemetry for non-human (and human) animal wearers. Drawing from fundamental values and principles of user-centered design, we describe a wearer-centered framework to heuristically establish design requirements, which was used during a series of workshops to perform a requirements analysis for a cat-tracking device. The resulting requirements informed a feline-centered prototype whose wearability was evaluated with cat wearers. Compared to the wearability of previously tested off-the-shelf devices, our findings show an improvement and suggest that our framework-based approach can help design teams with a range of skills to systematically design for wearability

    Earables: Wearable Computing on the Ears

    Get PDF
    Kopfhörer haben sich bei Verbrauchern durchgesetzt, da sie private AudiokanĂ€le anbieten, zum Beispiel zum Hören von Musik, zum Anschauen der neuesten Filme wĂ€hrend dem Pendeln oder zum freihĂ€ndigen Telefonieren. Dank diesem eindeutigen primĂ€ren Einsatzzweck haben sich Kopfhörer im Vergleich zu anderen Wearables, wie zum Beispiel Smartglasses, bereits stĂ€rker durchgesetzt. In den letzten Jahren hat sich eine neue Klasse von Wearables herausgebildet, die als "Earables" bezeichnet werden. Diese GerĂ€te sind so konzipiert, dass sie in oder um die Ohren getragen werden können. Sie enthalten verschiedene Sensoren, um die FunktionalitĂ€t von Kopfhörern zu erweitern. Die rĂ€umliche NĂ€he von Earables zu wichtigen anatomischen Strukturen des menschlichen Körpers bietet eine ausgezeichnete Plattform fĂŒr die Erfassung einer Vielzahl von Eigenschaften, Prozessen und AktivitĂ€ten. Auch wenn im Bereich der Earables-Forschung bereits einige Fortschritte erzielt wurden, wird deren Potenzial aktuell nicht vollstĂ€ndig abgeschöpft. Ziel dieser Dissertation ist es daher, neue Einblicke in die Möglichkeiten von Earables zu geben, indem fortschrittliche SensorikansĂ€tze erforscht werden, welche die Erkennung von bisher unzugĂ€nglichen PhĂ€nomenen ermöglichen. Durch die EinfĂŒhrung von neuartiger Hardware und Algorithmik zielt diese Dissertation darauf ab, die Grenzen des Erreichbaren im Bereich Earables zu verschieben und diese letztlich als vielseitige Sensorplattform zur Erweiterung menschlicher FĂ€higkeiten zu etablieren. Um eine fundierte Grundlage fĂŒr die Dissertation zu schaffen, synthetisiert die vorliegende Arbeit den Stand der Technik im Bereich der ohr-basierten Sensorik und stellt eine einzigartig umfassende Taxonomie auf der Basis von 271 relevanten Publikationen vor. Durch die Verbindung von Low-Level-Sensor-Prinzipien mit Higher-Level-PhĂ€nomenen werden in der Dissertation anschließ-end Arbeiten aus verschiedenen Bereichen zusammengefasst, darunter (i) physiologische Überwachung und Gesundheit, (ii) Bewegung und AktivitĂ€t, (iii) Interaktion und (iv) Authentifizierung und Identifizierung. Diese Dissertation baut auf der bestehenden Forschung im Bereich der physiologischen Überwachung und Gesundheit mit Hilfe von Earables auf und stellt fortschrittliche Algorithmen, statistische Auswertungen und empirische Studien vor, um die Machbarkeit der Messung der Atemfrequenz und der Erkennung von Episoden erhöhter Hustenfrequenz durch den Einsatz von In-Ear-Beschleunigungsmessern und Gyroskopen zu demonstrieren. Diese neuartigen Sensorfunktionen unterstreichen das Potenzial von Earables, einen gesĂŒnderen Lebensstil zu fördern und eine proaktive Gesundheitsversorgung zu ermöglichen. DarĂŒber hinaus wird in dieser Dissertation ein innovativer Eye-Tracking-Ansatz namens "earEOG" vorgestellt, welcher AktivitĂ€tserkennung erleichtern soll. Durch die systematische Auswertung von Elektrodenpotentialen, die um die Ohren herum mittels eines modifizierten Kopfhörers gemessen werden, eröffnet diese Dissertation einen neuen Weg zur Messung der Blickrichtung. Dabei ist das Verfahren weniger aufdringlich und komfortabler als bisherige AnsĂ€tze. DarĂŒber hinaus wird ein Regressionsmodell eingefĂŒhrt, um absolute Änderungen des Blickwinkels auf der Grundlage von earEOG vorherzusagen. Diese Entwicklung eröffnet neue Möglichkeiten fĂŒr Forschung, welche sich nahtlos in das tĂ€gliche Leben integrieren lĂ€sst und tiefere Einblicke in das menschliche Verhalten ermöglicht. Weiterhin zeigt diese Arbeit, wie sich die einzigarte Bauform von Earables mit Sensorik kombinieren lĂ€sst, um neuartige PhĂ€nomene zu erkennen. Um die Interaktionsmöglichkeiten von Earables zu verbessern, wird in dieser Dissertation eine diskrete Eingabetechnik namens "EarRumble" vorgestellt, die auf der freiwilligen Kontrolle des Tensor Tympani Muskels im Mittelohr beruht. Die Dissertation bietet Einblicke in die Verbreitung, die Benutzerfreundlichkeit und den Komfort von EarRumble, zusammen mit praktischen Anwendungen in zwei realen Szenarien. Der EarRumble-Ansatz erweitert das Ohr von einem rein rezeptiven Organ zu einem Organ, das nicht nur Signale empfangen, sondern auch Ausgangssignale erzeugen kann. Im Wesentlichen wird das Ohr als zusĂ€tzliches interaktives Medium eingesetzt, welches eine freihĂ€ndige und augenfreie Kommunikation zwischen Mensch und Maschine ermöglicht. EarRumble stellt eine Interaktionstechnik vor, die von den Nutzern als "magisch und fast telepathisch" beschrieben wird, und zeigt ein erhebliches ungenutztes Potenzial im Bereich der Earables auf. Aufbauend auf den vorhergehenden Ergebnissen der verschiedenen Anwendungsbereiche und Forschungserkenntnisse mĂŒndet die Dissertation in einer offenen Hard- und Software-Plattform fĂŒr Earables namens "OpenEarable". OpenEarable umfasst eine Reihe fortschrittlicher Sensorfunktionen, die fĂŒr verschiedene ohrbasierte Forschungsanwendungen geeignet sind, und ist gleichzeitig einfach herzustellen. Hierdurch werden die EinstiegshĂŒrden in die ohrbasierte Sensorforschung gesenkt und OpenEarable trĂ€gt somit dazu bei, das gesamte Potenzial von Earables auszuschöpfen. DarĂŒber hinaus trĂ€gt die Dissertation grundlegenden Designrichtlinien und Referenzarchitekturen fĂŒr Earables bei. Durch diese Forschung schließt die Dissertation die LĂŒcke zwischen der Grundlagenforschung zu ohrbasierten Sensoren und deren praktischem Einsatz in realen Szenarien. Zusammenfassend liefert die Dissertation neue Nutzungsszenarien, Algorithmen, Hardware-Prototypen, statistische Auswertungen, empirische Studien und Designrichtlinien, um das Feld des Earable Computing voranzutreiben. DarĂŒber hinaus erweitert diese Dissertation den traditionellen Anwendungsbereich von Kopfhörern, indem sie die auf Audio fokussierten GerĂ€te zu einer Plattform erweitert, welche eine Vielzahl fortschrittlicher SensorfĂ€higkeiten bietet, um Eigenschaften, Prozesse und AktivitĂ€ten zu erfassen. Diese Neuausrichtung ermöglicht es Earables sich als bedeutende Wearable Kategorie zu etablieren, und die Vision von Earables als eine vielseitige Sensorenplattform zur Erweiterung der menschlichen FĂ€higkeiten wird somit zunehmend realer

    Elbow exoskeleton mechanism for multistage poststroke rehabilitation.

    Get PDF
    More than three million people are suffering from stroke in England. The process of post-stroke rehabilitation consists of a series of biomechanical exercises- controlled joint movement in acute phase; external assistance in the mid phase; and variable levels of resistance in the last phase. Post-stroke rehabilitation performed by physiotherapist has many limitations including cost, time, repeatability and intensity of exercises. Although a large variety of arm exoskeletons have been developed in the last two decades to substitute the conventional exercises provided by physiotherapist, most of these systems have limitations with structural configuration, sensory data acquisition and control architecture. It is still difficult to facilitate multistage post-stroke rehabilitation to patients sited around hospital bed without expert intervention. To support this, a framework for elbow exoskeleton has been developed that is portable and has the potential to offer all three types of exercises (external force, assistive and resistive) in a single structure. The design enhances torque to weight ratio compared to joint based actuation systems. The structural lengths of the exoskeleton are determined based on the mean anthropometric parameters of healthy users and the lengths of upperarm and forearm are determined to fit a wide range of users. The operation of the exoskeleton is divided into three regions where each type of exercise can be served in a specific way depending on the requirements of users. Electric motor provides power in the first region of operation whereas spring based assistive force is used in the second region and spring based resistive force is applied in the third region. This design concept provides an engineering solution of integrating three phases of post-stroke exercises in a single device. With this strategy, the energy source is only used in the first region to power the motor whereas the other two modes of exercise can work on the stored energy of springs. All these operations are controlled by a single motor and the maximum torque of the motor required is only 5 Nm. However, due to mechanical advantage, the exoskeleton can provide the joint torque up to 10 Nm. To remove the dependency on biosensor, the exoskeleton has been designed with a hardware-based mechanism that can provide assistive and resistive force. All exoskeleton components are integrated into a microcontroller-based circuit for measuring three joint parameters (angle, velocity and torque) and for controlling exercises. A user-friendly, multi-purpose graphical interface has been developed for participants to control the mode of exercise and it can be managed manually or in automatic mode. To validate the conceptual design, a prototype of the exoskeleton has been developed and it has been tested with healthy subjects. The generated assistive torque can be varied up to 0.037 Nm whereas resistive torque can be varied up to 0.057 Nm. The mass of the exoskeleton is approximately 1.8 kg. Two comparative studies have been performed to assess the measurement accuracy of the exoskeleton. In the first study, data collected from two healthy participants after using the exoskeleton and Kinect sensor by keeping Kinect sensor as reference. The mean measurement errors in joint angle are within 5.18 % for participant 1 and 1.66% for participant 2; the errors in torque measurement are within 8.48% and 7.93% respectively. In the next study, the repeatability of joint measurement by exoskeleton is analysed. The exoskeleton has been used by three healthy users in two rotation cycles. It shows a strong correction (correlation coefficient: 0.99) between two consecutive joint angle measurements and standard deviation is calculated to determine the error margin which comes under acceptable range (maximum: 8.897). The research embodied in this thesis presents a design framework of a portable exoskeleton model for providing three modes of exercises, which could provide a potential solution for all stages of post- stroke rehabilitation

    Auxilio: A Sensor-Based Wireless Head-Mounted Mouse for People with Upper Limb Disability

    Full text link
    Upper limb disability may be caused either due to accidents, neurological disorders, or even birth defects, imposing limitations and restrictions on the interaction with a computer for the concerned individuals using a generic optical mouse. Our work proposes the design and development of a working prototype of a sensor-based wireless head-mounted Assistive Mouse Controller (AMC), Auxilio, facilitating interaction with a computer for people with upper limb disability. Combining commercially available, low-cost motion and infrared sensors, Auxilio solely utilizes head and cheek movements for mouse control. Its performance has been juxtaposed with that of a generic optical mouse in different pointing tasks as well as in typing tasks, using a virtual keyboard. Furthermore, our work also analyzes the usability of Auxilio, featuring the System Usability Scale. The results of different experiments reveal the practicality and effectiveness of Auxilio as a head-mounted AMC for empowering the upper limb disabled community.Comment: 28 pages, 9 figures, 5 table
    • 

    corecore