18 research outputs found

    Stability, Structure and Scale: Improvements in Multi-modal Vessel Extraction for SEEG Trajectory Planning

    Get PDF
    Purpose Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying signi cant associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer assisted planning systems that can optimise the safety pro le of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. Methods The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Results Twelve paired datasets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coe cient was 0.89 ± 0.04, representing a statistically signi cantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ±0.03). Conclusions Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity

    Contrast-enhanced micro-CT imaging in murine carotid arteries : a new protocol for computing wall shear stress

    Get PDF
    Background: Wall shear stress (WSS) is involved in the pathophysiology of atherosclerosis. The correlation between WSS and atherosclerosis can be investigated over time using a WSS-manipulated atherosclerotic mouse model. To determine WSS in vivo, detailed 3D geometry of the vessel network is required. However, a protocol to reconstruct 3D murine vasculature using this animal model is lacking. In this project, we evaluated the adequacy of eXIA 160, a small animal contrast agent, for assessing murine vascular network on micro-CT. Also, a protocol was established for vessel geometry segmentation and WSS analysis. Methods: A tapering cast was placed around the right common carotid artery (RCCA) of ApoE(-/-) mice (n = 8). Contrast-enhanced micro-CT was performed using eXIA 160. An innovative local threshold-based segmentation procedure was implemented to reconstruct 3D geometry of the RCCA. The reconstructed RCCA was compared to the vessel geometry using a global threshold-based segmentation method. Computational fluid dynamics was applied to compute the velocity field and WSS distribution along the RCCA. Results: eXIA 160-enhanced micro-CT allowed clear visualization and assessment of the RCCA in all eight animals. No adverse biological effects were observed from the use of eXIA 160. Segmentation using local threshold values generated more accurate RCCA geometry than the global threshold-based approach. Mouse-specific velocity data and the RCCA geometry generated 3D WSS maps with high resolution, enabling quantitative analysis of WSS. In all animals, we observed low WSS upstream of the cast. Downstream of the cast, asymmetric WSS patterns were revealed with variation in size and location between animals. Conclusions: eXIA 160 provided good contrast to reconstruct 3D vessel geometry and determine WSS patterns in the RCCA of the atherosclerotic mouse model. We established a novel local threshold-based segmentation protocol for RCCA reconstruction and WSS computation. The observed differences between animals indicate the necessity to use mouse-specific data for WSS analysis. For our future work, our protocol makes it possible to study in vivo WSS longitudinally over a growing plaque

    Contrast-enhanced micro-CT imaging in murine carotid arteries: A new protocol for computing wall shear stress

    Get PDF
    Background: Wall shear stress (WSS) is involved in the pathophysiology of atherosclerosis. The correlation between WSS and atherosclerosis can be investigated over time using a WSS-manipulated atheroscleroti

    Automated 3D segmentation and diameter measurement of the thoracic aorta on non-contrast enhanced CT

    Get PDF
    Objectives To develop and evaluate a fully automatic method to measure diameters of the ascending and descending aorta on non-ECG-gated, non-contrast computed tomography (CT) scans. Material and methods The method combines multi-atlas registration to obtain seed points, aorta centerline extraction, and an optimal surface segmentation approach to extract the aorta surface around the centerline. From the extracted 3D aorta segmentation, the diameter of the ascending and descending aorta was calculated at cross-sectional slices perpendicular to the extracted centerline, at the level of the pulmonary artery bifurcation, and at 1-cm intervals up to 3 cm above and below this level. Agreement with manual annotations was evaluated by dice similarity coefficient (DSC) for segmentation overlap, mean surface distance (MSD), and intra-class correlation (ICC) of diameters on 100 CT scans from a lung cancer screening trial. Repeatability of the diameter measurements was evaluated on 617 baseline-one year follow-up CT scan pairs. Results The agreement between manual and automatic segmentations was good with 0.95 ± 0.01 DSC and 0.56 ± 0.08 mm MSD. ICC between the diameters derived from manual and from automatic segmentations was 0.97, with the per-level ICC ranging from 0.87 to 0.94. An ICC of 0.98 for all measurements and per-level ICC ranging from 0.91 to 0.96 were obtained for repeatability. Conclusion This fully automatic method can assess diameters in the thoracic aorta reliably even in non-ECG-gated, non-contrast CT scans. This could be a promising tool to assess aorta dilatation in screening and in clinical practice

    Automated Quantification of Atherosclerosis in CTA of Carotid Arteries

    Get PDF
    How is the human body built and how does it function? What are the causes of disease, and where is disease located? Throughout the history of mankind these questions were answered by the use of invasive methods that included the “opening” of the human body, mainly cadavers. Thanks to these invasive techniques the first precise and complete anatomy works started to appear in the 16th century. The most influential works were published by Leonardo da Vinci and the anatomist and physician Andreas Vesalius. The discovery of X-rays in 1895, and their use for medical applications, introduced a new era, in which non-invasive imaging of the functioning human body became feasible. Nowadays, medical imaging includes many different imaging modalities, such as X-ray, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), nuclear and optical imaging, and has become an indispensable diagnostic tool for a wide range of applications. Initially, the application of medical imaging focused on the visualization of anatomy and on the detection and localization of disease. However, with the development of different modalities it has evolved into a much more versatile tool providing important information on e.g. physiology and organ function, biochemistry and metabolism using nuclear imaging (mainly positron emission tomography (PET) imaging), molecular and processes on the molecular and cellular level using molecular imaging techniques

    The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    Get PDF
    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low-and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource

    Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading

    No full text
    International audienceThis paper describes an evaluation framework that allows a standardized and objective quantitative comparison of carotid artery lumen segmentation and stenosis grading algorithms. We describe the data repository comprising 56 multi-center, multi-vendor CTA datasets, their acquisition, the creation of the reference standard and the evaluation measures. This framework has been introduced at the MICCAI 2009 workshop 3D Segmentation in the Clinic: A Grand Challenge III, and we compare the results of eight teams that participated. These results show that automated segmentation of the vessel lumen is possible with a precision that is comparable to manual annotation. The framework is open for new submissions through the website http://cls2009.bigr.nl. The final accepted version of this paper is published in Medical Image Analysis, vol 15(4) ,doi:10.1016/j.media.2011.02.00

    Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading

    No full text
    This paper describes an evaluation framework that allows a standardized and objective quantitative comparison of carotid artery lumen segmentation and stenosis grading algorithms. We describe the data repository comprising 56 multi-center, multi-vendor CTA datasets, their acquisition, the creation of the reference standard and the evaluation measures. This framework has been introduced at the MICCAI 2009 workshop 3D Segmentation in the Clinic: A Grand Challenge 111, and we compare the results of eight teams that participated. These results show that automated segmentation of the vessel lumen is possible with a precision that is comparable to manual annotation. The framework is open for new submissions through the website http://cls2009.bigr.nl. (C) 2011 Elsevier B.V. All rights reserved

    Methodology for extensive evaluation of semiautomatic and interactive segmentation algorithms using simulated Interaction models

    Get PDF
    Performance of semiautomatic and interactive segmentation(SIS) algorithms are usually evaluated by employing a small number of human operators to segment the images. The human operators typically provide the approximate location of objects of interest and their boundaries in an interactive phase, which is followed by an automatic phase where the segmentation is performed under the constraints of the operator-provided guidance. The segmentation results produced from this small set of interactions do not represent the true capability and potential of the algorithm being evaluated. For example, due to inter-operator variability, human operators may make choices that may provide either overestimated or underestimated results. As well, their choices may not be realistic when compared to how the algorithm is used in the field, since interaction may be influenced by operator fatigue and lapses in judgement. Other drawbacks to using human operators to assess SIS algorithms, include: human error, the lack of available expert users, and the expense. A methodology for evaluating segmentation performance is proposed here which uses simulated Interaction models to programmatically generate large numbers of interactions to ensure the presence of interactions throughout the object region. These interactions are used to segment the objects of interest and the resulting segmentations are then analysed using statistical methods. The large number of interactions generated by simulated interaction models capture the variabilities existing in the set of user interactions by considering each and every pixel inside the entire region of the object as a potential location for an interaction to be placed with equal probability. Due to the practical limitation imposed by the enormous amount of computation for the enormous number of possible interactions, uniform sampling of interactions at regular intervals is used to generate the subset of all possible interactions which still can represent the diverse pattern of the entire set of interactions. Categorization of interactions into different groups, based on the position of the interaction inside the object region and texture properties of the image region where the interaction is located, provides the opportunity for fine-grained algorithm performance analysis based on these two criteria. Application of statistical hypothesis testing make the analysis more accurate, scientific and reliable in comparison to conventional evaluation of semiautomatic segmentation algorithms. The proposed methodology has been demonstrated by two case studies through implementation of seven different algorithms using three different types of interaction modes making a total of nine segmentation applications to assess the efficacy of the methodology. Application of this methodology has revealed in-depth, fine details about the performance of the segmentation algorithms which currently existing methods could not achieve due to the absence of a large, unbiased set of interactions. Practical application of the methodology for a number of algorithms and diverse interaction modes have shown its feasibility and generality for it to be established as an appropriate methodology. Development of this methodology to be used as a potential application for automatic evaluation of the performance of SIS algorithms looks very promising for users of image segmentation
    corecore