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Abstract
Purpose Brain vessels are among the most critical land-
marks that need to be assessed for mitigating surgical
risks in stereo-electroencephalography (SEEG) implanta-
tion. Intracranial haemorrhage is the most common com-
plication associated with implantation, carrying significantly
associated morbidity. SEEG planning is done pre-operatively
to identify avascular trajectories for the electrodes. In current
practice, neurosurgeons have no assistance in the planning
of electrode trajectories. There is great interest in develop-
ing computer-assisted planning systems that can optimise the
safety profile of electrode trajectories, maximising the dis-
tance to critical structures. This paper presents a method that
integrates the concepts of scale, neighbourhood structure and
feature stability with the aim of improving robustness and
accuracy of vessel extraction within a SEEG planning sys-
tem.
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Methods The developed method accounts for scale and
vicinity of a voxel by formulating the problem within a multi-
scale tensor voting framework. Feature stability is achieved
through a similarity measure that evaluates the multi-modal
consistency in vesselness responses. The proposed measure-
ment allows the combination of multiple images modalities
into a single image that is used within the planning system
to visualise critical vessels.
Results Twelve paired data sets from two image modalities
available within the planning system were used for evalua-
tion. The mean Dice similarity coefficient was 0.89 ± 0.04,
representing a statistically significantly improvement when
compared to a semi-automated single human rater, single-
modality segmentation protocol used in clinical practice
(0.80 ± 0.03).
Conclusions Multi-modal vessel extraction is superior to
semi-automated single-modality segmentation, indicating
the possibility of safer SEEG planning, with reduced patient
morbidity.

Keywords Computer-assisted planning system · Vessel
extraction · Depth electrode insertion · Image-guided
surgery · Multi-modal segmentation

Introduction

The primary goal of epilepsy surgery is to remove the epilep-
togenic zone, the minimum amount of cortex that must be
resected to produce seizure freedom [3,16]. As the epilep-
togenic zone may not be associated with a clear structural
abnormality, intracranial electrodes must be used to record
the area of the brain where seizures start, known as the
seizure-onset zone (SOZ) [3]. Stereo-electroencephalogra-
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phy (SEEG) is the recording of the brain electrical activity
by depth electrodes implanted into the brain parenchyma to
precisely identify the SOZ. The major complication asso-
ciated with SEEG implantation is intracranial haemorrhage
with a risk that ranges from 0.6 to 2.7 % [13] and reported
morbidity and mortality of 5.6 % [2] and 1 % (or less) [13],
respectively. To reduce the risk of this and other associated
complications, it is necessary to identify electrode trajecto-
ries with adequate cortical coverage that pass through safe
avascular planes. This is done through pre-operative SEEG
planning.

In recent years, there has been great interest in the devel-
opment of computer-assisted planning systems for optimis-
ing intracranial depth electrode insertion [1,4,5,18]. These
methods require the effective extraction of critical brain
landmarks (such as vessels, ventricles and sulci), with high
accuracy and robustness. Despite this requirement, the tech-
niques used to extract the landmarks are very general and may
not be the best for this application. While some efforts have
been made to improve them [1,4], greater improvements yet
may be obtained using domain-specific knowledge. Further-
more, as pointed by Du et al. [4], the evaluation or validation
of the extraction of these brain landmarks is not included in
these studies, which hinders the identification of potential
problems of the currently used techniques. In this work, we
specifically address the extraction of the intracranial vascu-
lature within an SEEG planning system.

A key part of the landmark identification is the vessel
extraction. This, despite years of research [9], remains a
challenging problem. For this reason, Essert et al. [5], avoid
dealing with it directly. Instead, they segment the cortical
sulci under the hypothesis that vessels of interest are gener-
ally located there. Existing methods of vessel extraction still
tend to suffer from discontinuities (caused by low intensity
due to partial volume effects and noise) and false-positives;
both of these are undesirable as they can lead to invalid or sub-
optimal trajectories. A common solution, adopted by Bériault
et al. [1] and Du et al. [4], is the use of a vesselness fil-
ter [6,10,17] that enhances voxels within tubular structures.
These filters have been very successful thanks to the inclusion
of multiple spatial scales within their formulation, but lack
information about the surrounding structures. Also, despite
increased access to multi-modal images, particularly within
computer-assisted planning systems, very few methods have
exploited the information complementarity to improve ves-
sel extraction. Passat et al. [15] combined multiple MR
sequences to segment the superior sagittal sinus, but their
vessel extraction was only performed on a single image, with
a second modality used to provide a priori anatomical infor-
mation of the brain. More recently, Bériault et al. [1] used
susceptibility weighted imaging (SWI) and time-of-flight
(TOF) images within a planning system to segment veins
and arteries, but they do so in a separate fashion and leave

it up to the human planner to combine the information from
the two modalities. Elsewhere, Hu et al. [8] have proposed
a bi-modal approach to 2D retinal vessel extraction using a
k-NN classifier trained on features from both modalities.

In this paper, we present a novel method that integrates the
concepts of scale, neighbourhood structure and feature sta-
bility with the aim of improving the robustness and accuracy
of vessel extraction within a computer-assisted SEEG plan-
ning system [19]. The method accounts for both the scale
and vicinity of a voxel by formulating the problem within
a multi-scale tensor voting framework. Feature stability is
achieved by introducing a similarity measure that accounts
for the multi-modal consistency in the vesselness responses.
The proposed measurement enables the combination of mul-
tiple responses into a single image that is used within the
planning system to visualise critical vessels. This article is
an extended version of Zuluaga et al. [20]; it explains the
methodology in more detail, extends the original method to
cope with an arbitrary number of images and proposes a
new way to consider multiple scales within the tensor voting
framework to improve the computational speed. A new set
of validation experiments is also included.

Method

The tensor voting framework [11] is a robust technique for
extracting structures from a cloud of points. It is based on the
principle that a set of unconnected tokens (i.e. points) can
exchange information within a neighbourhood that allows
one to infer the geometric structure in which a token lies. In
3D, it provides a way to estimate the likelihood that a token
lies on a surface, curve or junction (as opposed to being just
noise).

Tensor voting consists of three stages: token initialisa-
tion, where token locations are identified and their tensors
assigned; tensor voting, where tensors from a token and its
neighbours are combined; and analysis of voting results. In
order to give our method feature stability and scale invari-
ance, we add a data fusion step and then embed the different
components into a multi-scale framework. A diagram illus-
trating the proposed method is shown in Fig. 1.

Multi-scale framework and voxel selection

In previous work [20], we formulated the tensor voting
approach into a multi-scale framework by evaluating the
response of different scales at the data fusion stage and retain-
ing the maximum response through scales. This consists in
performing steps 2–5 in Fig. 1 for every scale and image
modality. As the tensor vote has to be computed every time,
this can be very computationally intensive. To reduce the
computational burden of the method, we now perform the
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Fig. 1 Vessel extraction diagram. After optimal scale selection,
images are converted into tokens through analysis of the Hessian matrix.
After voting, the resulting saliency maps are combined using the cosine

between the vectors defining orientation. The resulting probability map
is then visualised in the planning system

multi-scale analysis before the tensor voting step, rather than
at the final stage.

Let I (x) be an image and Hσ (x) be the Hessian matrix
at voxel x at scale σ . By means of the eigenvalues κi and
eigenvectors vi of Hσ (x), a vesselness function ν(x, σ ) [10]
is computed at a range of scales [σmin, σmax]. An “optimal
scale” image M(x) is constructed by finding the value of σ
with the maximum vesselness response at each voxel:

M(x) = σ ∗, σ ∗ = arg max
σmin≤σ≤σmax

ν(x, σ ). (1)

While the Hessian and its eigensystem are computed across
the full range of scales, all further calculations involving scale
analysis are performed using the scale defined by M(x). For
simplicity, we denote the Hessian at the locally optimal scale
as H(x).

We derive from this eigensystem the information about
which voxels are likely to belong to a vessel structure. The
eigenvalues of H(x) are ordered by their absolute value, so
that |κ3| ≥ |κ2| ≥ |κ1|. For bright vessels on a dark back-

ground, a voxel is expected to belong to a vessel only if
κ2 < 0 and κ3 < 0 [10]. Based on this information, voxels
that do not satisfy this condition for at least one scale can
be discounted in the further analysis. Voxels satisfying the
condition go on to take part in the tensor voting, with their
Hessian computed at the locally optimal scale. Under the
voting formalism, a voxel x considered for tensor voting is
called a token and is denoted as p.

Token initialisation

The information contained in a token p is encoded on a
3D second-order, symmetric, nonnegative definite tensor T.
According to the spectrum theorem, T can be expressed as
the linear combination of three tensors:

T= (λ1 − λ2)(e1e1
T )+ (λ2 − λ3)

2∑

i=1

eiei
T + λ3

3∑

i=1

eiei
T ,

(2)
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Table 1 Eigenvalues λi and
eigenvectors ei of T for each
initial orientation initialisation

Initialisation Eigenvalues λi Eigenvectors ei

No preferred orientation 1: λ1 = λ2 = λ3 = K ei = (ei j ), ei j = δi j

2: λ1 = λ2 = λ3 = I (p)

3: λ1 = λ2 = λ3 = ν(p)

Hessian matrix 1: [λ1, λ2, λ3] = [|κ1|−1, |κ2|−1, |κ3|−1] [e1, e2, e3] = [v1, v2, v3]
2: [λ1, λ2, λ3] = [ν(p), 0, 0]

Structure tensor (λ1 − λ2) = ‖ � I‖2, λ3 = 0 e1e1
T = �I � I T , e2 = e3 = 0

Note that when no preferred orientation is used, three different saliency measurements can be used.
Similarly, two different configurations of the initial eigenvalues are proposed when using Hessian matrix
analysis

where λi are the eigenvalues obtained from the eigendecom-
position of T, with λ1 > λ2 > λ3 ≥ 0, and ei are the
corresponding eigenvectors.

While the tensor is most commonly expressed as a 3 × 3
matrix, it can be viewed as a 3D ellipsoid whose shape
describes the contribution of its different components in
Eq. 2. These components are known as the stick tensor S, the
plate tensor P and the ball tensor B. More precisely, through
expansion of the second and third terms, they are defined as:

S = (λ1 − λ2)
(

e1e1
T
)

P = (λ2 − λ3)
(

e1e1
T + e2e2

T
)

B = λ3

(
e1e1

T + e2e2
T + e3e3

T
)
. (3)

Each tensor component corresponds to a different type of
structural information: the stick tensor represents an elon-
gated ellipsoid encoding eccentricity with orientation e1, the
plate tensor represents a disc-shaped structure with normal
e3, and the ball tensor represents a round structure in which all
orientations are equally probable. The scalar values associ-
ated with each tensor are the saliency measurements of “sur-
faceness” (λ1−λ2), “curveness” (λ2−λ3) and “junctionness”
λ3. Points with very small eigenvalues are regarded as noise.

The scalar information contained in a greyscale image
needs to be encoded into a tensor that satisfies Eqs. 2–3 before
it can be used within the tensor voting framework. Depend-
ing on which tensor is assigned to the tokens in the token
intitialisation step, different aspects of image will inform the
final vessel segmentation. In this paper, we explore the three
alternatives presented below.

No preferred orientation

A common approach is to assign an isotropic, ball-shaped
tensor to each of the tokens [11,12]. All three eigenvalues of
a token’s tensor have the same value, K . While the tensors at
each token have the same shape, they can be given different
magnitudes (values of K ) according to their tokens’ vessel
salience score. In this way, tokens that are most likely to

be on the vessels are given greater importance in the final
segmentation. In this work, we experiment with using both
a token’s vesselness, ν(p), or its image intensity, I (p), as
salience score/weight.

Hessian matrix-based orientation

The analysis of the eigensystem of the Hessian matrix pro-
vides information about the orientations of structures within
an image [6]. Let us recall vi, the eigenvectors of H(p) at
the optimal scale, and |κ3| ≥ |κ2| ≥ |κ1|, its eigenvectors.
Tokens are initialised with a stick tensor S that has orien-
tation v1 (the eigenvector associated with κ1), the direction
along the vessel. The saliency of the stick tensor is obtained
by assigning the κ−1

i to the corresponding λi . As with the
ball tensor, it is possible to initialise the stick tensors with
different weights reflecting an initial estimate of a token’s
vesselness. Section “Experiments and results” compares the
results obtained when varying these values.

Structure tensor-based initialisation. Given �I (p),1 the
image gradient at a given token position p, Moreno et al. [12]
showed that the tensorised gradient, �I � I T , can be used
to initialise a stick tensor S at every token, giving a saliency
measurement ‖ � I‖2.

Table 1 summarises the values that are assigned to the
tensor’s eigenvalues, λi , and eigenvectors, ei, depending on
the type of used initialisation.

Tensor voting

After each token p is encoded as a tensor T in the form of
Eq. 2, it propagates structural information to its neighbours
in the form of a vote. Votes are combined through addition
at every token to infer the type of structure going through it.
More formally, the tensor voting at p is given by [12]:

1 For the sake of simplicity, we will drop the index term and the image
gradient at a given token position p will be expressed as �I for the
remaining of this article.
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Table 2 Feature maps 2-tuple
(s,w) definition

Map s w

S-Map λ1 − λ2 e1

C-Map λ2 − λ3 e3

J-Map λ3 Arbitrary

T V (p) =
∑

q∈χ

(
SV

(
v, Sq

) + PV
(
v, Pq

) + BV
(
v, Bq

))
,

(4)

whereχ denotes the neighbourhood of p, q a point belonging
to χ , SV, PV and BV the stick, plate and ball votes cast to
p by each component Sq, Pq, Bq of q and v = p − q. The
strength of the vote will be dependent on the norm of v, as
the influence of a point q should decay as its distance from p
increases. Here, q ∈ χ is defined as the window of size Np

at every token with

Np = 2M(p), (5)

where M(p) is the “optimal scale” image defined in Eq. 1.
The derivation of SV, PV and BV in Eq. 4 is extensive and

beyond the scope of this paper. We therefore only present
their formulation (see Appendix 6), mentioning that the ten-
sor voting procedure can be regarded as a tensor convolution
with a voting kernel which itself produces a tensor. The inter-
ested reader is referred to [11,12] for further details.

Voting analysis

As the result of the tensor voting is another tensor, it can
be decomposed as in Eq. 2. From this decomposition, three
feature vector maps, the surface (S-Map), the curve map (C-
Map) and the junction map (J-Map), are constructed. A voxel
of these maps contains a 2-tuple (s,w), where s is a scalar
indicating strength/saliency and w is a unit vector indicating
direction. Table 2 summarises the values for (s,w) within
the different feature maps.

In the context of our problem, we are interested in the
information provided by the S-map (first term of Eq. 2). For
a given tuple, we interpret s as a consensus measurement of
vesselness between a voxel and its neighbours and w as the
direction along the vessel.

Data fusion

Given two D-dimensional vectors, the cosine of the angle
between them is an index on the extent to which they are
aligned. As vessels are well-oriented structures, the cosine of
the direction vectors is a surrogate of vesselness consistency
between different images. Given two sets of tuples (s1,w1)

and (s2,w2) from vesselness maps obtained from two differ-
ent modalities after voting analysis, with ‖w1‖ = ‖w2‖ = 1,
it is possible to fuse the maps into a single one through the
following expression:

ϕ(p) = 0.5|w1 · w2|(s1 + s2), (6)

where · denotes the dot product between the two vectors. By
refactoring Eq. 6, the fusion can be extended to L different
image modalities through:

ϕ(p) = 1

L

L∑

i=1

si

L∑

j=1

(1 − δi j )|wi · wj|. (7)

The fusion scheme is a measure that rewards consensus and
punishes discord; the greater the angular distance between
the different directions, the more the absolute value of the
resulting output is reduced. When there is complete agree-
ment between modalities, the output is simply the average.
When their directions are perpendicular, the output drops to
zero to reflect a complete lack of certainty.

SEEG planning system integration

Similar to Bériault et al. [1] and Du et al. [4], the result-
ing vessel probability map, ϕ(p), is used as input of our
computer-assisted planning system [19]. As the electrode-
implanting trajectory needs to be further than a safety margin
from the critical tissue (vessels in this case), the probabil-
ity map serves as a measure of risk of crossing a vessel.
Within the planning system, the probability map is con-
verted into a 3D surface mesh object, coloured using a
pre-defined landmark colour scheme [19] and displayed
within the neuronavigation planning system along with other
brain structures (Fig. 3).

Experiments and results

Data

Blood vessel images for the computer-assisted planning
system [19] were acquired using 3D phase contrast MRI
(3DPC) and CT angiograms (CTAs). For our experiments,
we used twelve paired data sets of 3DPC and CTA available
within the planning system (informed consent obtained from
all the patients). The 3DPC data were acquired on a 1.5-
T Siemens Avanto MR scanner with voxel size resolution
0.8593 × 0.8593 × 1 mm3 and velocity encoding of 5 cm/s
in each direction. CTA images were acquired on a Siemens
SOMATOM Definition AS+ scanner with voxel size resolu-
tion 0.4296×0.4296×0.75 mm3. During image acquisition,
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the patient’s head was immobilised by placing a pad between
the head and the coil.

Gold standard generation

Three different observers (a neurosurgical trainee, a physicist
with 8-year experience in clinical neuroimaging and a master
student trained for the task) segmented blood vessels struc-
tures following the protocol typically used in clinical practice
for SEEG planning in the absence of a computer-assisted
planning system. The semi-automated annotation procedure
followed the steps described hereafter:

1. An intracranial space mask was applied to the CTA
image to remove skull and to the 3DPC image to remove
extracranial blood vessels.

2. Masked CTA and 3DPC were separately thresholded to
give an initial estimate of the vessels. The threshold was
defined by visually evaluating the resulting segmentation
and determining whether noise and blood vessels were
easy to distinguish and differentiate from each other with
minimal manual cleaning.

3. Small isolated clusters were removed based on diameter
size within MeshLab. The observers varied the threshold
until they considered the segmented result satisfactory
through visual inspection. Afterwards, large noise (e.g.
calcifications) was removed by manually editing the
images using MeshLab.

The six segmentations of the observers were combined into
a consensus agreement through a voting strategy in a similar
fashion as Hameeteman et al. [7].

Validation scheme

The proposed algorithm was evaluated on the twelve affinely
co-registered [14] data sets using ten different scales between
σmin = 1.0 and σmax = 4.5 distributed equally in a log space.

For a quantitative evaluation, each of the twelve vessel
images S was compared to the consensus agreement M using
the Dice similarity coefficient (DSC):

DSC = 2 × |S ∩ M |
|S + M | , (8)

where the intersection operation is the voxel-wise minimum
operation and | · | is the integration of the voxel values over
the complete image [7].

We used the DSC to assess the performance of our method
and that one of each observer w.r.t the consensus when doing
a semi-automated segmentation with a single modality as is
done in clinical routine. We could then compare the accuracy
of the proposed method to current practice.

Evaluation of different initialisation strategies

In Section “Token initialisation”, we presented different
strategies to initialise the token’s tensors. Initialisation
involves the definition of an initial orientation and the
saliency of the tensors. In order to determine the effects of ini-
tialisation in vessel extraction, we evaluated the performance
of the six different initialisation configurations (Table 1).

No preferred orientation

Three different saliency measurements were estimated to ini-
tialise ball tensors: a constant value for every tensor K = 1,
the image intensity at each token, λ1−3 = I (p), and a vessel-
ness measurement at each token λ1−3 = ν(p). We chose the
vesselness measurement proposed by Manniesing et al. [10]
due to its smoothness properties. In order to compute the ves-
selness function, we followed the guidelines reported in the
original publication [10].

Reported DSCs were 0.42 ± 0.04, 0.79 ± 0.03 and 0.89
± 0.04 for constant value, intensity-based and vesselness
measurement initialisation, respectively. Not surprisingly,
the use of a constant value to initialise the saliency gives
the worst results. This shows that the use of a priori informa-
tion to define initial saliency improves the vessel extraction
quality.

Hessian-based analysis initialisation

Two different initialisation schemes based on the analysis of
the Hessian matrix were evaluated: the use of the eigenvalues
κi of H , and a modified scheme to reflect a token’s vesselness.
For this second approach, we assigned the response of vessel-
ness filter [10], i.e. λ1 = ν(p), while the other two λ values
were set to zero. The DSC obtained using the response of ves-
selness filter (0.88 ± 0.04) was higher than the one obtained
by directly using the κi of the Hessian matrix (0.76 ± 0.05).

Structure tensor-based initialisation

Tokens initialised through the tensorised image gradient were
assigned a saliency measurement equal to the squared gradi-
ent magnitude ‖�I‖2. The value used for the Gaussian kernel
size involved in the computation of the structure tensor was
obtained from the multi-scale analysis. A DSC of 0.65±0.04
was reported.

Summary

Table 3 summarises the mean Dice score coefficients obtained
when comparing the proposed method, using the three
different initialisation strategies (no preferred orientation,
Hessian-based and structure tensor-based), to the consensus

123



Int J CARS

Table 3 Dice score coefficients obtained using the three different ini-
tialisation strategies: no preferred orientation, Hessian-based analysis
and structure tensor-based initialisation

No orientation Hessian analysis Structure tensor

DSC 0.89 ± 0.04 0.88 ± 0.04 0.65 ± 0.04

M . For no preferred orientation and Hessian-based initial-
isation schemes, only the best performing configuration is
reported (i.e. using the vesselness filter result). The obtained
DSCs using no orientation (0.89 ± 0.04) and Hessian-based
initialisation (0.88 ± 0.04) indicate similar performance.
Performance using structure tensor initialisation, on the other
hand, appears to be worse (0.65 ± 0.04). A visual inspection
of the probability maps ϕ obtained through each strategy
(Fig. 2) showed that structure tensor-based initialisation
tends to extract big vessels, but fails in the extraction of the
small ones, explaining its lower DSC.

Multi-modal versus single-modality extraction

To evaluate the relevance of the multi-modal approach, we
compared the proposed method with the results obtained
when using a single modality. We evaluate the results
obtained when combining the two modalities through:

ϕmin(p) = min(s1, s2)

ϕmax(p) = max(s1, s2). (9)

It should be noted that the min and max operations are used
instead of the logical AND and OR operators, since the
images are probabilistic, rather than binary maps.

Results show that when using a single image modality,
CTA tends to perform better than 3DPC (Fig. 4). By com-
bining the modalities through the min and max operations,
the performance w.r.t 3DPC is improved, but it degrades per-

formance of CTA. To understand this behaviour, we visually
inspected the maps obtained through both methods. When
using min, weak vesselness responses and discontinuities are
propagated into the final map. On the other hand, max favours
continuity, but at the cost of increasing the number of false-
positives mainly close to boundaries. As a result of this, the
DSC can drop dramatically in some cases (see outliers for
max in Fig. 4). The proposed method offers a productive bal-
ance between the two: False-positives diminish where there
is no directionality agreement and weak vesselness responses
are not suppressed.

Multi-modal extraction versus single-modality
observers

The mean Dice coefficients obtained when comparing our
method and the observer’s annotations to the consensus M
are summarised in Table 4. The DSC of the proposed multi-
modal approach is superior to the one obtained by the best
performing rater using a single modality. Although CTA
images have richer vessel content that is reflected in better
rater segmentations, 3DPC contains complementary infor-
mation that is exploited by the proposed algorithm. A visual
comparison of obtained vesselness maps with a consensus
map is given in Fig. 3 to further illustrate the performance
of our method w.r.t. the current semi-automated approach
(Fig. 4).

Computational time

To demonstrate the improvement in computational time due
to the modification of the multi-scale analysis, we compared
the execution times of the current method and the original
one [20] as a function of the number of scales. Both meth-
ods were executed on a PC with a quad-core processor (2.13

Fig. 2 Probability maps ϕ obtained using, from left to right, no pre-
ferred orientation, Hessian-based analysis and structure tensor-based
initialisation. The response of a vesselness filter [10] was used as initial
saliency measurement for the first two cases. The approaches using the

response of the vesselness filter are more sensible to fine structures. The
structure tensor approach fails to detect small vessels, but has a strong
response in large vessels
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Table 4 Mean ± standard deviation of the Dice similarity coefficient (DSC) when comparing our method and the observers annotations to the
consensus agreement

Our method Observer 1 Observer 2 Observer 3

3DPC CTA 3DPC CTA 3DPC CTA

DSC 0.89 ± 0.04 0.35 ± 0.10 0.76 ± 0.04 0.37 ± 0.10 0.80 ± 0.03 0.37 ± 0.09 0.79 ± 0.03

Fig. 3 3DPC (first column) and CTA images (second column), superposed vesselness map generated by the proposed method over 3DPC (third
column) and consensus for two subjects (fourth column)

Fig. 4 Boxplots displaying the DSC for the proposed method, the
single-modality results (without data fusion) using CTA and 3DPC, and
data fusion through min and max operators. The red cross represents
an outlier

GHz). Figure 5 shows the reported execution times along
with the Dice score coefficients obtained by each method.
Results show that the computational time of the new approach
decreases at no cost to the method’s accuracy, which remains
unchanged.

Integration into the SEEG planning system: visual
assessment

Figure 6 presents different examples of the visualisation
within the SEEG planning system. Furthermore, we compare

the results obtained with the proposed method (Fig. 6 bot-
tom, left) with the extracted vessels when 3DPC and CTA are
processed separately (Fig. 6, bottom, right). The images show
how the developed method combines the information coming
from both modalities while remaining robust to noise.

Discussion

Brain vessels are among the most critical landmarks that
need to be assessed in order to mitigate surgical risks [4].
Traditionally, the procedure of extracting vessels (and other
structures) is performed in a semi-automated manner by an
expert inspecting an image. This is time-consuming, diffi-
cult and prone to errors due to the complexity of the vessel
network. The development of fully automated and robust
methods that can reduce the workload is highly desirable.
Here, we have presented a fully automated method that
integrates scale, neighbouring structure and feature stabil-
ity within a single framework to improve vessel extraction
within an SEEG planning system.

The proposed method is built upon the tensor voting
framework [11]. We have extended it by introducing the
evaluation of multiple scales and by using complementary

123



Int J CARS

Fig. 5 Average execution times of the proposed approach (fast) and our original formulation Zuluaga et al. [20] as a function of the number of
scales. Dice score coefficients (DSCs) for both methods are also displayed to show that speedup of the method is not at the cost of accuracy

sources of information to reduce noisy structures and to
improve the connectivity of voxels. Although we have eval-
uated the proposed framework with two image modalities in
this work, its formulation is generic enough that it can be
applied to any number of modalities.

The tensor voting framework requires encoding of grey-
scale information into a tensorised form. We have evaluated
a set of different alternatives for tensor initialisation, which
include the use of no priors, zero-order (intensity), first-order
(the structure tensor) and second-order information (Hessian-
based). Our results have shown that the information derived
from the analysis of the Hessian matrix, when used to ini-
tialise saliency, provides the best results. Results also show
that the selection of optimal saliency measures is more criti-
cal than initial tensor orientations. The Dice score coefficients
obtained when using vesselness measures as saliency were
the highest, independently of the tensor orientation used (no
orientation or Hessian-based). On the other hand, changes in
the type of saliency measurement used for initialisation did
greatly influence the extraction accuracy.

By comparing our method with its single-modality equiv-
alent (e.g. tensor voting without data fusion), we have shown
that the use of multiple image types increases performance.
This is simply explained by the complementary informa-
tion offered by the different images. We have also found
that the way the information from all sources is combined
influences the algorithmic performance. Through the use of
a priori knowledge on tubular structures, we favour the fusion
of well-aligned objects. Many of the previously seen false-

positives are absent form the final probability map as a result,
particularly along the brain boundaries.

It is common to find weak vesselness responses in different
regions of the vessel tree in both 3DPC and CTA, and dis-
continuities are likely to appear there if a single modality is
used for visualisation. By combining several modalities, the
response of weak vessels increases, improving the continu-
ity of the vessel tree and its visualisation within the planning
system. The improvement in the continuity of the vessel tree,
combined with a decrease in false-positives detected, should
lead to a better path planning.

The comparison of the proposed method with human
raters has shown that the use of combined image modalities
represents an advantage w.r.t current practice. The presented
results are more accurate than a human observer using a sin-
gle modality. However, the method has some limitations that
need to be solved before it can be deployed in clinical prac-
tice. While discontinuities are reduced w.r.t single-modality
segmentation, they can still appear in small branches. Fol-
lowing the principle of using complementary sources of
information (i.e. different image modalities of the same
object/anatomical structure), a natural extension of the pre-
sented approach to solve this limitation is to combine the
outputs obtained when processing different sources of infor-
mation (e.g. zero-, first- and second-order information or
S-,C- and J-maps) into a single probability map. As an exam-
ple, the structure tensor provides the best results on larger
vessels but not performs poorly on small vessels (Fig. 2).
Under this scenario, the best features of each source of infor-
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Fig. 6 Integration into the
computer-assisted planning
system. On top, examples of
displayed extracted vessels
using different colour schemes.
On bottom left, display of a
segmented vascular tree
contrasted with the combined
single-modality segmentation,
right, from 3DPC (blue) and
CTA (gold). The results
obtained with the proposed
method contain less noise

mation would be exploited instead of just keeping the one
that overall performs best.

Regarding computational time, which is a key feature if
an algorithm is to be translated into the clinic, we have refor-
mulated the multi-scale analysis to reduce the time required
to extract the vessel tree. The results show that the new for-
mulation is nearly four times faster than the original one [20]
at no cost for the vessel extraction accuracy.

Conclusions

In this paper, we have presented a vessel extraction method
for the identification of critical landmarks within a computer-
assisted SEEG planning system. The main feature of this
method is that it integrates scale, neighbouring structure and
feature stability within a single framework. The introduc-
tion of a voting neighbourhood within the well-established
multi-scale approach and the use of complimentary sources
of information reduces noisy structures and improves the
connectivity of the voxels belonging to vessels. The results
presented here demonstrate the superiority of our method
to the semi-automated single-modality segmentation, indi-
cating the possibility of safer SEEG planning with reduced
patient morbidity.

Acknowledgments The authors thank Dr. Mark White from the
National Hospital for Neurology and Neurosurgery (London, UK) for

the provided support and Ninon Burgos and Carole Sudre for their help
in the revision of this text.

Conflict of interest M.A. Zuluaga, R. Rodionov, M. Nowell, S.
Achhala, G. Zombori, A.F. Mendelson, M.J. Cardoso, A. Miserocchi,
A.W. McEvoy, J.S. Duncan and S. Ourselin declare they have no conflict
of interest. This publication presents independent research supported by
the Health Innovation Challenge Fund (HICF-T4-275), a parallel fund-
ing partnership between the Department of Health and Wellcome Trust.
The views expressed in this publication are those of the authors and not
necessarily those of the Department of Health or Wellcome Trust.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

Appendix: Stick, plate and ball tensor voting

For the sake of completeness, we present in this section the
expressions for SV, PV and BV, the stick, plate and ball votes.
Further details on the mathematical derivation of the three
expressions can be found in [11,12].

Stick tensor vote

Given Sq, which encodes the orientation of the normal at
point q, a vote casted from q to p can be defined as:

SV(v, Sq) = s1s

[
R2θ Sq RT

2θ

]
, (10)
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where θ represents the angle defining the orientation of v, R2θ

is a rotation w.r.t the axis v × (Sqv), and s1s is a decaying
function used to weight the vote and defined as:

s1s(v, Sq) =
{

e
− l2+bκ2

ρ2 : θ ≤ π/4
0 : otherwise,

(11)

where l denotes the arc length, κ the curvature, ρ is a scale
parameter associated with the window size Np, and b is a
parameter that can be adjusted to give more importance to
the curvature (b = ‖v‖2/4, [12]).

Plate tensor vote

Given SPq(β), a stick inside a plate P , a plate vote is defined
as the aggregation of stick votes cast by all the stick tensors
SPq(β) that constitute Pq. It is defined as:

PV(v, Pq) = λ1Pq

π

∫ 2π

0
SV(v, SPq(β))dβ. (12)

Ball tensor vote

Let SB(φ,ψ) be a unitary stick tensor expressed in spherical
coordinates with orientation (1, φ, ψ). Similar to the plate
tensor vote, a ball vote can be obtained through the aggre-
gation of the stick votes within the surface � of the unitary
sphere:

BV(v, Bq) = 3λ1Bq

4π

∫

�

SV(v, SBq(φ,ψ))d�. (13)
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