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Abstract

Performance of semiautomatic and interactive segmentation(SIS) algorithms are usually evaluated by

employing a small number of human operators to segment the images. The human operators typically

provide the approximate location of objects of interest and their boundaries in an interactive phase, which is

followed by an automatic phase where the segmentation is performed under the constraints of the operator-

provided guidance. The segmentation results produced from this small set of interactions do not represent the

true capability and potential of the algorithm being evaluated. For example, due to inter-operator variability,

human operators may make choices that may provide either overestimated or underestimated results. As

well, their choices may not be realistic when compared to how the algorithm is used in the field, since

interaction may be influenced by operator fatigue and lapses in judgement. Other drawbacks to using human

operators to assess SIS algorithms, include: human error, the lack of available expert users, and the expense.

A methodology for evaluating segmentation performance is proposed here which uses simulated Interaction

models to programmatically generate large numbers of interactions to ensure the presence of interactions

throughout the object region. These interactions are used to segment the objects of interest and the resulting

segmentations are then analysed using statistical methods. The large number of interactions generated by

simulated interaction models capture the variabilities existing in the set of user interactions by considering

each and every pixel inside the entire region of the object as a potential location for an interaction to be placed

with equal probability. Due to the practical limitation imposed by the enormous amount of computation for

the enormous number of possible interactions, uniform sampling of interactions at regular intervals is used

to generate the subset of all possible interactions which still can represent the diverse pattern of the entire

set of interactions.

Categorization of interactions into different groups, based on the position of the interaction inside the

object region and texture properties of the image region where the interaction is located, provides the oppor-

tunity for fine-grained algorithm performance analysis based on these two criteria. Application of statistical

hypothesis testing make the analysis more accurate, scientific and reliable in comparison to conventional eval-

uation of semiautomatic segmentation algorithms. The proposed methodology has been demonstrated by two

case studies through implementation of seven different algorithms using three different types of interaction

modes making a total of nine segmentation applications to assess the efficacy of the methodology. Application

of this methodology has revealed in-depth, fine details about the performance of the segmentation algorithms

which currently existing methods could not achieve due to the absence of a large, unbiased set of interac-

tions. Practical application of the methodology for a number of algorithms and diverse interaction modes

have shown its feasibility and generality for it to be established as an appropriate methodology. Development

of this methodology to be used as a potential application for automatic evaluation of the performance of SIS

algorithms looks very promising for users of image segmentation.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Image segmentation

Image segmentation is the process of partitioning the image into multiple segments for isolating the objects

of interest from the rest of the image. Figure 1.1(a) shows an image of two deer as the objects of interest and

Figure 1.1(b) shows those two deer, separated from the rest of the image i.e. segmented from the background

of the image.

Segmentation can be manual, automatic, or semiautomatic and interactive. Automatic segmentation

doesn’t require human interaction but semiautomatic and interactive segmentation (SIS) needs human in-

teraction for providing expert knowledge to the algorithm, where this interactive phase is followed by the

automatic phase.

Automatic segmentation is always preferable due to the labor-intensive and time-consuming nature of

manual segmentation. Some segmentation problems, however, are still very difficult to solve with fully

automatic methods especially when the number, size, and/or shape of objects of interest are arbitrary and

need to be both detected and segmented or where the imaging modality and acquisition protocols result in

indistinct boundaries between neighbouring objects. Difficult segmentation problems such as these occur

frequently in medical image analysis, for example, identification and segmentation of ovarian follicles in

ultrasonographic images [5, 114, 104], brain tumours and edema from MRI images [98, 145], and segmentation

of micro-calcifications in mammography [16, 23]. The best performance, to date, for an automatic method for

(a) (b)

Figure 1.1: (a) An image containing objects of interest and (b) Segmented objects
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segmenting ovarian follicle in ultrasound images has a detection rate of 79%, a misidentification rate of 29%

with average (std. dev.) boundary deviation of 1.1 ± 0.4mm [104] and a false detection rate of 22.51% [22].

Better detection and misidentification rates have been reported, but with no study of boundary accuracy

measures [63]. The detection problem contributes significantly to the difficulty of these problems compared

with problems where the number, shape, and position of objects of interest are known and/or very consistent,

e.g. brain caduate [150], lateral ventricle segmentation [150], and prostate segmentation [119].

1.1.2 Need for semiautomatic and interactive segmentation

Limitations of automatic methods for difficult segmentation problems encourage the use of semiautomatic

and interactive segmentation algorithms in which a human operator provides high-level contextual informa-

tion, mostly about the approximate location of the objects of interest and their boundaries, in an interactive

phase, which is followed by an automatic phase where the segmentation is performed under the constraints

of the operator-provided guidance. The interactive phase improves segmentation accuracy for these types

of problems at the cost of some amount of operator time, but much less than that required for manual

segmentation. In order to be effectively used in practical applications, good accuracy of segmentation for

any algorithm is not enough. High reproducibility of the algorithm is also essential. Reproducibility of a seg-

mentation algorithm is its ability to produce consistent segmentation results across different operators under

similar settings. Semiautomatic and interactive algorithms must be evaluated in terms of both reproducibil-

ity and accuracy to ensure that results are not only high quality, but also consistent within and between

users. Achieving this consistency for SIS algorithms is more challenging because the resulting segmentation

depends on the required parameters and information provided by the user through interactions. For almost

all segmentation problem instances, the number of possible correct interactions is enormous and segmentation

results are highly dependent on this diverse set of interactions. Thus, producing consistent segmentation is

a real challenge for any semiautomatic and interactive segmentation algorithm due to the high variability

in the patterns of interactions provided by different users. Hence, the evaluation of reproducibility becomes

very important for especially SIS algorithms.

1.2 Evaluation of SIS algorithms: standard approach

Humans are part of the process, and must be accounted for in the evaluation. Evaluation of any SIS algorithm

requires a large number of human operators who can use the segmentation application for segmenting the

images repeatedly to ensure that a significantly large number of possible diverse interaction patterns are used.

But to engage large numbers of human operators for an experiment is problematic due to the limitations

imposed by the logistic support, funding, and, in some cases, the unavailability of enough individuals with

sufficient specialized domain knowledge. That is why accuracy and/or reproducibility of SIS algorithms is

typically evaluated through segmenting a number of cases by a small number of experts in the problem
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domain who are well-trained in the use of the interactive segmentation system. In fact, this has been the

case with numerous recent studies that analyze intra- and/or inter-observer variability [17, 19, 26, 33, 38,

44, 70, 83, 86, 103, 116, 124, 126]. Of these, only the studies of Stammberger et al. [124] and Claudia et

al. [33] used more than 5 observers. The former used 7 observers, while the latter used 20 observers, but

subdivided their data so that each case was only segmented by 5 different observers. In all other cases,

no more than 5 observers segmented each case. Steger and Sakas’ 2012 study used only one observer and

did not consider reproducibility for their proposed interactive segmentation tool [126]. Even as many as 12

or 20 examples of interactive segmentations of an object does not adequately sample the range of different

possible observer interactions that would be expected to produce a correct segmentation – we call this the

set of correct interactions. Even for the simplest kind of interaction mode where the user has to select a

point known as a “seed point” or to draw a brush stroke somewhere within an object, it is not possible to

robustly characterize the inherent variability in segmentation accuracy resulting from the variations in seed

point placement (the underlying cause of inter- and intra-observer variability) using only a small number of

sampled interactions.

Recently, some authors have turned to constructing simulated observer models to take into account more

interactions per case, and to avoid observer variability. Moschidis et al. [92] has simulated two different

patterns of user interactions in order to avoid human involvement, where the number of foreground seeds

is varied from 1 to 30. For each initialization per number of seeds, 9 different perturbations of seeds pro-

duced from variable seed displacement operations were used to generate 9 segmentation outcomes and then

reproducibility of segmentation was evaluated by computing pairwise Tanimoto coefficient and measuring

the effect of this perturbation of the input seeds on the resulting segmentations. Only 9 sets of seeds does

not represent a very diverse set of examples of possible correct interactions. Nickisch et al. [96] investigated

“robot users” in the context of learning optimal parameters for interactive segmentation systems. The robot

user emulates the process of a user iteratively correcting incorrectly segmented areas (false negatives and

false positives) during which good parameters are learned. Robot users can be adjusted to exhibit different

behaviours and the authors use a small number of different robot observers to segment each case. However,

their robot users must be initialized with a fixed initial set of manually determined brush strokes which is

not a very diverse sampling of correct interactions.

1.3 Potential deficiencies with accounting for humans in evalua-

tion

From a very recent unpublished study (described in section 2.6), it has been known that humans, in aggregate,

and sometimes individually, distribute interactions uniformly throughout the object of interest i.e. they place

seed points everywhere in aggregate, but individually they may or may not. So, small number of samples,

provided by 3 to 5 typical human users, are not enough to capture the variabilities in the interaction patterns,
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aggregated across large number of users, over a long period. Thus, the main deficiency of existing evaluation

methods is that an insufficiently diverse sampling of the set of correct interactions are used to draw conclusions

about overall segmentation accuracy and reproducibility. Therefore, one must consider a diverse set of correct

interactions in order to compare algorithms fairly and take into account the consequences of poor choices that

might arise from fatigue or lapses in judgement on the part of the operator. Insufficient numbers of correct

interactions not only fail to include all types of interaction patterns but also is an obstacle for applying

statistical methods due to the lack of uniformity and balance in the samples. Consequently, conclusions

drawn based on these random and insufficient number of samples suffer from lack of confidence due to the

inappropriate method of analysis. Employing human operators for segmenting the images and evaluating

those segmentations, can give a rough idea about the segmentation performance but may not be able to

convey the complete information regarding the performance of the algorithm.

1.4 Problem statement

Considering the potential deficiencies with accounting for humans in evaluation, this study focuses on these

potential problems of the standard method for evaluating the SIS algorithms which can be briefly stated that

this method of evaluation is inaccurate due to the very small number of samples and accordingly doesn’t

convey the complete information about the performance of the algorithm. As a result, comparison among the

performances of different SIS algorithms based on the evaluation by standard method is not fair. It also fails

to reveal the underlying in-depth details regarding the performance of a SIS algorithm and consequently, is

not capable of discovering the subtle differences among the performances of different SIS algorithms. Thus,

to overcome these limitations, performance of these algorithms, in terms of different features and input

characteristics, must be scientifically explored.

1.5 Hypothesis

We hypothesize that large numbers of user inputs drawn from a uniform distribution of possible

inputs produces more accurate and richer comparisons of algorithms vs. Standard methods.

In order to test this hypothesis, large numbers of user interactions are generated programmatically, i.e.,

without using any human operator. These interactions are simulated using a component, developed for this

study, denoted as simulated interaction model, which is capable of generating large numbers of simulated user

interactions that are uniformly distributed over the space of the region to be segmented. For each object, all

the segmentations generated from the uniformly sampled set of possible interactions are evaluated in terms

of accuracy for all such interactions and also using interesting subsets of such interactions to capture the

potential variabilities in the set of interactions provided by the users.

Testing this hypothesis in this way is reasonable because it will be shown that a small numbers of random

interactions produce variable results. Knowing that humans, in aggregate, produce interactions, distributed

4



uniformly across the object, but an individual human may or may not distribute interactions evenly over the

object; supports the idea that, way more than 5 users are needed; so a large number of simulated interactions

drawn from a uniform distribution is a reasonable approach. It will be shown that non-uniform distribution

of interactions, such as interactions only near the central area of a region to be segmented, can turn out to

be either better or worse than a uniform spatial distribution of interactions depending on the algorithm.

It will be shown that, to properly characterize the mean and variance of segmentation accuracy, lots of

humans are needed. Our system can do that without employing lots of humans, can correctly characterize

the mean and variation of segmentation accuracy that would be produced by humans, and figure out whether

we should let humans be uniform random, or encourage them to place seed points in a different way for a

particular problem.

In order to test the hypothesis, a methodology will be proposed for extensive evaluation of SIS algorithms.

As a vehicle for the demonstration of the proposed methodology, two case studies will be conducted where

a medical image dataset will be segmented by nine segmentation applications using seven different SIS

algorithms and three different types of interaction modes. Then the resulting segmentations will be evaluated

following the steps of the proposed methodology.

1.6 Contributions

The overall contribution of this thesis is to introduce a methodology for evaluating SIS algorithms comprehen-

sively which provides a systematic approach to eliminate the drawbacks of the currently existing approaches.

Specific contributions of this work are:

1. The use of simulated interaction models to generate interactions programmatically is a very important

contribution of this study. It ensures that interactions are generated everywhere inside the object

region. This overcomes the problem of small sample size of existing methods by generating a large

number of interactions which is essential to ensure the presence of interactions throughout the object

region. Consequently, it replaces the role of human operator in the process of segmentation evaluation

which is an important achievement, since employing human operators has some drawbacks, including

human variability, human error, unavailability of expert users and expense.

2. Generating interactions throughout an image and then using these interactions for segmenting images

removes the variability of human users by considering all types of inputs including potentially bad

inputs. As a result, segmentations generated using all types of interaction patterns are now included

in the samples which are missing in existing methods. Consequently, analysis of the segmentation

performance is more accurate, comprehensive and reliable which would not be possible at all while

considering only a small set of segmentations produced from a set of potentially random interactions.

3. Due to the small number of interactions used in existing methods, the presence of interaction in all
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regions of the object area is not ensured and categorization of interactions is not possible. Evaluation of

the segmentation performance without categorizing the interactions may be misleading and unreliable

because overall performance of two (or more) algorithms obtained from considering few interactions,

may look similar due to the absence of diverse interactions in the sample. But, if performance of several

algorithms are compared after categorizing the interactions, segmentation results for different groups of

interactions may be different for these algorithms whereas overall performance may be still very close

or similar. This fine difference between the performance of several algorithms could not be discovered

without categorization of interactions and categorization of interactions could not be possible without

considering a large number of interactions that ensure the presence of interactions everywhere inside

the object region. This also discovers the properties of a segmentation algorithm in terms of the impact

of different groups of interactions. For example, some of the algorithms may be found sensitive to

the location of interactions whereas some other algorithms may not be that much sensitive, or some

algorithms may be affected by some of the image properties while some algorithms may not be affected

by those image properties that much, which we have already noticed.

4. A case study is used to demonstrate simulated interaction models. The case study adds credence and

confidence to the results using established statistical methods, which could not be achieved with current

algorithm evaluation practices. In order to investigate the impact of the position of interaction on the

resulting segmentation, values of Dice, RMSD and HD for all groups of interactions have been tested

to inspect whether there is any difference among the means of these values for different groups, i.e.,

whether values of these metrics for three groups of interactions come from the same distribution or not.

This hypothesis has been tested using a proper statistical method which most of the existing methods

do not follow. As well, six statistical methods have been applied to analyze the results to confirm

the validity of the conclusions drawn based on the outcome of the analysis. Conversely, many of the

existing methods did not apply proper statistical methods to support their findings and conclusions.

Hence the proposed methodology overcomes the flaws of existing methods and provides a scientific ap-

proach for in-depth performance analysis of the segmentation algorithms. Use of simulated Interaction

models and sound statistical methods have made our proposed methodology different from existing

methods by rectifying the effect of random nature of human observers and strengthening the method

of performance evaluation.

1.7 Outline

The rest of the thesis is organized as follows. Chapter 2 presents background on image segmentation, different

types of segmentation algorithms, interaction, different types of inputs used for user interaction, evaluation

of segmentation algorithms, including number of metrics used for measuring the segmentation results in

terms of accuracy, reproducibility and efficiency. In Chapter 3, the simulated interaction models which we
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use to generate interactions are defined and explained. Chapter 4 describes the case study to demonstrate

the proposed methodology using position of interaction as the criteria for categorizing of interactions. This

chapter presents the steps of the methodology along with experimental results and analysis. In Chapter

5, we give another case study using image properties as the criteria for categorization of interactions to

investigate the relation between the properties of image and the corresponding segmentation results. This

chapter describes several texture properties of the image dataset, used in the experiment, and presents the

comparative results with those image properties. An overall discussion on the significance of the results and

observations, advantages of the proposed methodology over the standard method, in addition with some

other issues related to the proposed methodology, has been presented in chapter 6. Chapter 7 presents the

conclusion about the study which includes the contribution of this work, several challenges in this area, some

open questions and directions for future research.
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Chapter 2

Background and Literature Review

2.1 Background

As this study deals with extensive evaluation of semiautomatic and interactive segmentation (SIS) algorithms,

basic information about the image segmentation and different types of segmentation algorithms need to be

discussed. As user interaction is an integral part of some types of segmentation algorithms, different types of

inputs used in the interaction taking place between the user and the algorithm will also need to be reviewed.

2.1.1 Image Segmentation

Image segmentation is the process of partitioning the image into multiple segments for isolating the objects of

interest from the rest of the image. Segmentation changes the representation of an image from a grid of pixels

into groups of pixels that form regions – a higher level of abstraction – which makes it easier to interpret

and analyze [101]. The general goal of segmentation is to divide an image into objects or regions that are

homogeneous in some sense or have some semantic connotation that can be useful for the subsequent stages

of a particular image processing or vision application. Subsequent processing steps mainly use higher-level

region information instead of having to scan all pixels. Thus, segmentation is a very important preprocessing

step for high level image processing tasks such as measurement, visualization, registration, reconstruction,

content-based retrieval etc. [100] where the ultimate results largely depend on the quality of the primary

segmentation [142]. Segmentation algorithms differ both in approach and the quality and nature of the

segmentation outcome depending on the various types of needs of the applications that use segmentation.

Partitioning the images roughly into similar regions is sufficient for some of the applications like multimedia

indexing and retrieval [86] whereas others need the objects in the images characterized according to concrete

semantic significance. Accuracy and precision are vital for some of the applications but some others consider

speed and automation as the most important criteria [86].

2.2 Types of segmentation algorithms

For many years, manual tracing was the only way of segmenting images for practical purposes, which is

time-consuming, labor-intensive, inaccurate and not reproducible in most cases. There has been intense
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research for the last few decades on making the segmentation process automatic so as not to require human

intervention. But to design a fully automatic segmentation algorithm that can segment images in all types

of applications with the desired level of accuracy, efficiency and precision is not yet successful due to the

differences in the image acquisition protocols and modalities, ambiguity in the image, biological variability

(for medical image) and is thus an unsolved problem, in general. One way to overcome this difficulty is to

incorporate high-level expert human knowledge into the segmentation algorithm. For this purpose, assistance

from a human operator is essential. Depending on the presence of the human interaction in the process, image

segmentation algorithms can be of two types: automatic, or semiautomatic (interactive). Semiautomatic and

interactive segmentation algorithms are similar in a sense that both require human intervention but are not

defined identically; the difference will be discussed in Section 2.2.2.

2.2.1 Automatic segmentation

Automatic segmentation does not require any human intervention for segmenting objects of interest in the

images because expert knowledge for detecting the desired objects is incorporated into the algorithm. In

the case of automatic segmentation, the user has no option to refine the results; so algorithms must be

robust to handle the differences in quality of the images due to phenomena such as noise, blur and sampling

artifacts caused by limitations of the acquisition modalities. For many applications, automatic segmentation

is challenging and not sufficiently reliable. A large volume of applications have already been developed based

on automatic segmentation, many of which are in the area of medical image analysis because successful

segmentation in medical images has potential in clinical applications like diagnosis, surgical planning and

radiation treatment planning. Up to now, most of the automatic medical image segmentation methods are

not robust enough to be practically used for clinical applications; that is why improvement in the accuracy

and robustness of automatic segmentation is a focus of current research efforts. Automatic segmentation

algorithms have been used to segment different types of objects and regions mainly in ultrasound, MRI and

CT images. Among the objects of interests are the brain [4, 109, 87, 37, 51, 105], brain tumours [70, 10], mouse

heart [60], prostate [72], articular cartilages of knee in MRI images [47], head structures in fetal MRI images

[66], esophagus [45], four-chamber heart [151], liver in CT images [111], coronary vessels in X-ray angiographic

images [120], lesion segmentation in breast ultrasound images [117], mammograms [73, 131, 146, 149], closed-

contour anatomical and pathological structures in confocal microscopy fluorescence images [24], RNA [147]

from Fluorescent Cellular images and unstained living cells [133] in bright-field microscope images.

2.2.2 Semiautomatic and Interactive segmentation

Segmentation algorithms that include human interaction are called interactive or semiautomatic. In such

algorithms there is an interactive phase where an operator provides guidance, followed by an automatic

phase that accomplishes the actual task of segmentation using the information provided. Human interaction

is mainly feasible for the applications where there is a need for accurate delineation of the objects and the
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number of images is not overwhelming such that human intervention for further correction or improvement of

the result in an iterative fashion is practical [100]. A good interactive segmentation algorithm should satisfy

the following criteria: user friendly interface, minimal amount of interaction, accurate and reproducible

segmentation results, fast enough to accommodate real-time visual feedback and interactive refinement and

smart and effective guidance for the user [140, 126].

Both semiautomatic and interactive segmentation require human interaction to assist the segmentation

process by providing expert knowledge into the segmentation algorithm, which may be information regarding

the different regions of the image corresponding to the objects and background, shape of the objects, intensity

of a specific region of the image, etc. Semiautomatic and interactive segmentation differs depending on the

role of the user input [58]. In the case of semiautomatic segmentation, user input is mainly used as an

initialization for the automatic phase of the segmentation algorithm. In interactive segmentation, user input

is used in the segmentation algorithm for producing a temporary result on which the user provides feedback.

So, a user can evaluate the result and if the result is not satisfactory, they can refine the result through an

iterative interaction procedure. Hence, interactive segmentation is an iterative process where the user input is

used repeatedly to improve the result. Interactive segmentation algorithms need to be fast enough to accept

user input iteratively and provide real time feedback for each instance of user input. But for semiautomatic

segmentation, moderate speed of the segmentation algorithm is good enough as the user input is accepted

only once at the initial phase. Based on these criteria, all the segmentation applications developed so far

that involve human interaction, may be regarded as either semiautomatic or interactive segmentation.

2.2.3 Interaction in image segmentation

A semiautomatic or interactive segmentation method consists of four main components: computational part,

interactive part, the user and the user interface [100]. The computational part is the set of programs written

for implementing the underlying segmentation algorithm. This is the main component capable of partition-

ing the objects of interest from the background of the image given the required parameters, specific to the

algorithm. The interactive part acts as an intermediary between the user and the computational part. It

converts the outcome produced by the computational part into visual feedback to the user and data input by

the user into parameters of the algorithm. Actual communication between the user and the computer takes

place via the user interface which includes physical input and output devices.

2.3 Types of input provided by user

Olabarriaga and Smeulders [100], in 2001, identified three main kinds of inputs for user-assisted segmentation:

setting parameter values, direct graphic input on the image and selecting from pre-set options in a menu.

During the last few years, after the publication of that survey paper, a large number of works based on
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interactive segmentation have been published but the modes of input through the interaction procedure still

fall into these three main categories.

2.3.1 Setting parameter values

Many of the interactive segmentation methods require a user to provide parameter values for the computa-

tional part of the algorithm. Usually these parameter values are supplied through a slider, dial, text box or

similar interaction method. Upon receiving these new parameter values from the user, the result is updated

and displayed on the screen so that he/she can evaluate it. Some of the examples of parameter values entered

by a user include the radius of the initial sphere; width of the narrow band and epsilon [71]; weighting param-

eter [71, 102]; radius of the spherical seed bubble for contour initialization and values and relative weights of

the parameters acting on the contour evolution [150]; and maximum size of the segmented region [121].

Setting parameter values is relatively easy to implement but the problem is that the user needs to have

sufficient knowledge about the parameters, their roles in the algorithm and impact on the resulting segmen-

tation. In this case, a user either has to be familiar with the segmentation application or needs to be properly

trained. Direct parameter input also has the limitation that not all types of information can be expressed

using this method. In cases where the user needs to indicate a point inside the target object, parameter

setting is not realistic, rather graphic input directly on the image is more reasonable.

2.3.2 Direct graphic input on the image

Direct graphic input is a common form of user interaction for entering parameters that are points or regions

of an image. A great number of segmentation applications are found in the literature that require the user to

directly draw scribbles or geometric shapes on the image, indicating a seed point or seed region to mark the

regions of the image for initializing the process of segmentation. Parameter values entered in this case are the

spatial positions in the image in the form of points, lines, rectangles or the intensity values of the image at

particular spatial positions. Most of the interactive segmentations are binary where foreground objects are

isolated from background and that is why interactions are mainly designed to supply information that can

be used for characterizing the foreground and background regions in the image. Several types of interactions

in the form of direct graphic input on the image have been employed so far depending on the types of images

and the respective applications. Interactive segmentation algorithms of this category can be further classified

into two classes: boundary based and region based.

2.3.2.1 Boundary-based interaction

For this class of segmentation algorithms, users need to interact directly on the boundary of the foreground

object with the help of a dynamically generated curve to obtain the desired segmentation boundary. Algo-

rithms of this class require the user to specify the boundary approximately. There are two main ways of

accomplishing this. One type, known as active contour models, requires the specification of an approximate
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boundary, that is usually drawn manually by the user or in some cases, is generated from a priori knowledge.

This approximate boundary evolves towards the true boundary by minimizing a cost functional based on

contour deformation and external constraint forces [69, 21]. Snake was the first active contour model, a

controlled continuity spline guided by the image forces and external constraint forces, proposed in 1987 by

Kass et al. [68, 69]. Image forces push the user specified curve toward the image features like dark lines, white

lines, edges, termination of line segments, etc. External constraint forces push the snake toward a desired

local energy minimum. Active contours largely rely on the values of the numerous number of parameters and

the quality of the initial contour [116]. Snake has further been improved by [129, 27, 28].

The other approach requires the user to specify sequential control points on or near the boundary, and

then the complete boundary is drawn by filling in the gaps between these points using a minimal path

approach [29, 9, 89, 90, 116, 88, 58, 83, 80, 3, 148, 143]. Live wire, also known as intelligent scissors was

the first algorithm of this type and was introduced in 1992 by Mortensen et al. [91] and Udupa et al. [136].

In this case, users have to interactively choose an optimal boundary segment by roughly tracing along the

boundary with the mouse. A minimum cost contour from the current cursor position back to the last “seed”

point along the object’ s boundary is determined by computing the shortest path using Dijkstra’s algorithm.

This minimum cost contour is continuously updated and displayed in real-time for the user so that more

seed points can be added if the computed path does not fit to the true boundary of the object. Some other

applications that use this method of interaction include the work in [138] where a point for initialization near

the expected object contour and several other control points are provided by the user to begin the search for

the optimal path among the edges in the image represented by a graph. Lazysnapping also uses this type of

boundary based interaction but not for generating the contour from scratch, rather to refine the boundary

of an already segmented object for a more accurate matching with the true boundary [79].

In addition to these methods of generating the complete contour by filling in the gaps between the user-

provided control points, there is another type of method where the user needs to draw the entire contour

roughly inside the object as an initialization of the segmentation process. This initial contour then evolves

to the true boundary of the object as a result of a segmentation algorithm. Some of the examples of this

type of method include the initial contour inside the object of interest in [145], initial approximate boundary

of the object of interest in [65], initial contour drawn by the user which is actually a seed contour used as a

training example and can be used to segment other image sequences of the same type [18].

2.3.2.2 Region-based interaction

Methods of this type require users to supply hints roughly to indicate which areas of the image belong to

foreground and background regions. Here users need not enclose the entire foreground object or edit the

entire boundary at pixel level. Users can provide these hints by clicking or drawing a few lines or curves

by dragging the mouse cursor while holding a button i.e. by scribbling on the foreground and background

regions of the image. In the case of multi-label segmentation, users need to do it for each region of the image
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users want to segment. The computational part of the underlying segmentation algorithm then employs these

user inputs for extracting foreground object from the background.

This method provides the user with an easier and quicker way of interaction and also users need not be

acutely accurate and attentive while marking the foreground and background regions in the image. Users

are free to work at any scale of the image. Segmentation results are generated, at least partially, even if the

user provides incomplete hints. As more hints are supplied, the foreground/background models become more

accurate. Several types of interaction modes are used for region-based interactive segmentation algorithms

and depending on the types of these interaction modes, these algorithms can further be classified into several

groups: Point-based interaction, Scribbles-based interaction, bounding-region based interaction.

2.3.2.2.1 Point-based interaction For this type of interaction, the user needs to indicate one or more

points, known as “seed points”, either inside or outside the target object by clicking the mouse on the image.

For most of the cases, a seed point placed inside the target object indicates the foreground and one placed

outside the target object indicates the background region in the image. Each single click adds the associated

pixel into the list of foreground or background pixels used as hard constraints for the segmentation process.

Examples of the methods that have used this kind of interaction are the interactive segmentation techniques

proposed by Boykov and Jolly [15] where user has to mark the foreground object and background by putting

seed points inside the target object and in the background area respectively, and magic wand [1], where the

process of segmentation starts with a user-marked point or region to compute a region of connected pixels

provided that all the selected pixels fall within some adjustable tolerance of the colour statistics derived from

the specified region. The user needs to click inside the target object on the image to set the gray value interval

for region growing algorithm and also needs to click on the image for specifying the leakage area generated

from the region growing algorithm [84]. A number of applications for liver tumor-segmentation require the

user to place one point roughly in the middle of the tumour and another point outside the tumour i.e. in the

surrounding liver tissue for specifying the maximal radius [75, 122]. Several other methods that have adopted

this type of interaction method which include the works in [36, 126, 71, 78, 41, 65, 152, 12, 36, 123, 25], where

a point inside the target object, selected by the user, has served as the seed point and in [12] where the seed

point was placed outside the object to indicate the background. Zadok et al. [11] has used this type of

interaction for user feedback to indicate the regions of disagreement i.e. to mark the wrongly labelled regions

in the initial segmentation through few mouse clicks.

Sadeghi et al. [112] proposed an interactive segmentation application where point-based interaction has

been used for providing seed points to indicate the foreground and background regions but still is different

from all other methods of the same type because a mouse has not been used as the input device, rather a novel

form of user input, eye gaze tracking, has been used for the first time in segmentation. Eye gaze tracking

previously had been developed primarily for disabled users who are physically or neurologically impaired and

unable to use keyboards and other pointing devices. Recent improvement in accuracy and decrease in the
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cost of eye gaze tracking and estimation systems have inspired the authors to introduce eye gaze as the form

of input in addition to keyboard and mouse which eventually has been proved to be an alternative medium

of interaction.

2.3.2.2.2 Scribbles-based interaction In this case, user has to draw scribbles on the image, mainly,

for marking the foreground and the background regions in the image. Based on the reviewed methods, this

is the most widely used and popular method of interaction. The user draws a few lines or curves on the

image by dragging the mouse cursor while holding a button. Two buttons of the mouse can be used for

marking foreground and background regions separately in two different colours. This type of high level pen-

type drawing does not require very accurate inputs, rather, the algorithm is expected to work so long as the

provided markups are correct.

Most of the algorithms of this type require the user to mark both the foreground and background by

drawing scribbles on the image which include the works [6, 8, 140, 2, 57, 7, 52, 112, 42, 77, 125, 99, 97, 40,

106, 3, 102, 79, 96, 113, 31, 46].

Some of the algorithms require the user to draw scribbles on the image but not exactly for marking the

foreground and background regions e.g. for segmenting different structural components in the image. In [30],

the user needs to mark the structurally important regions of an image. In the work of Zadok et. al. [11],

the user has to draw a ‘cross’ to isolate two foreground regions which were wrongly merged into a single

foreground region by the algorithm. In [35], the user needs to mark the regions needed for correcting the

segmentation by adding or removing those regions from the segmented region. In [123] the user is required

to draw a closed contour to specify a region inside the object and in [67] the user needs to draw a skeleton of

the expected shape of the target object called a ‘rack’. The user has to scribble on the image for extracting

the density value of the region of interest using the intensities of the spatial positions collected from those

scribbles [71]. The authors of [62] designed an algorithm where the user is required to draw the long axis of

the structure to be segmented on the image to mark the contour’s location and local coordinate system. In

[19] the user draws one or more spheres within the object of interest for initializing the model into the 3D

view. The authors of [19] designed an algorithm where the user is required to click and drag the mouse in

the regions of interest for sampling image values in order to set the free parameters of the speed function.

Yushkevich et. al. [150] have provided an user interface which has relieved the user from directly scribbling

on the image, rather the user can use that interface for placing one or more spherical seeds, of user chosen

radius, directly on the image.

2.3.2.2.3 Bounding region-based interaction For this interaction method, a user has to define a

region of interest containing the object to be segmented by dragging roughly a circle in the form of a closed

contour or a bounding box loosely around the object. The user need not specify the background as the

region outside the selected area is automatically considered background. This kind of interaction is simple

and user friendly but not always sufficient for complete segmentation. That is why this primary interaction
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can be considered as an initialization for the segmentation process because some additional interactions

for further editing of the resulting segmentation are usually needed for the complete segmentation of the

foreground objects. SIOX (Simple Interactive Object Extraction) [46] is an interactive segmentation tool

recently integrated into the popular imaging software GIMP as the ‘Foreground Select Tool’ where users

need to draw a rough circle surrounding the foreground object to be extracted. After extracting the region of

interest which contains the foreground objects, the user can optionally specify one or more foreground objects

by dragging a line or curve on these objects. These selections of foreground objects are optional in a sense that

sometimes the initial interaction appears to be sufficient for producing complete segmentation. After each

selection of the foreground objects, the resulting segmentation is updated and user can iterate the process

until the result is satisfactory. Hence, the first interaction for indicating the region containing the foreground

object is mandatory but the following interactions for selecting the foreground objects are for improving

the segmentation, when necessary. Another example of this type of interaction, used for initializing the

segmentation process, is Grabcut, [110] where the user has to drag a rectangle around the desired object which

indicates the outer region of the rectangle as the background and the inner region contains the foreground

objects. Here also, the initial interaction is sometimes sufficient for complete segmentation but not always.

In that case, further editing of the resulting segmentation is essential which can be done by dragging the

foreground brush and background brush on the wrongly labelled areas of the image. Blake et al. [13] require

the user to enclose the object boundary by tracing with a fat pen which defines the “trimap” with foreground,

background and unclassified labels.

Some other segmentation applications have also used the interaction method where the user-drawn marker

has to enclose the object of interests entirely such as the rectangle in [59, 81, 145], the marker surrounding

the object of interest in [125], and freehand closed contour for adding the surrounded region to the already

segmented region or for considering the surrounded region as the background in [84].

Some algorithms have used more than one approach in their applications among the above mentioned. One

example of this kind is Lazysnapping [79] which has combined both a region-based approach and boundary-

based editing at pixel level for taking the advantage of region based approach from its quick way of providing

hints and the ease and efficiency of boundary based interaction for making the boundary as accurate as

possible. Here users need to mark the foreground and background by drawing one or more lines with the

mouse on the original colour image with separate colours for indicating foreground and background. This

first step is for providing quick hints to the segmentation algorithm which works at a coarse scale. The second

step is for boundary editing which works at a finer scale or on the zoomed-in image where users can edit the

object boundary by using two user interface tools. One of these two user interface tools for polygon editing

provides users the ability to drag the vertex for modifying the shape of the polygon. Vertices can also be

added, deleted or grouped to be processed together using this tool. Using another tool, user can replace a

segment of a polygon by drawing a stroke.
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2.3.3 Selecting from pre-set options in a menu

For this kind of interaction strategy, the user selects an option from a predefined menu for providing infor-

mation to the algorithm where choices of the menu may be the values of parameters, object properties etc.

User may need to choose an option from a pull down menu, forms, group of radio buttons for selecting the

option from the list of entries [100]. Some of the examples of the this kind of interaction include the buttons

to choose the type of image information to be used for snake evolution [150], the command to accept or reject

the resulting segmentation [85, 134], to select among the templates to use for the object of interest [62], and

to choose the object property for assisting the segmentation process [61].

2.4 Evaluation of interactive segmentation methods

This thesis proposes methodology for extensive evaluation of SIS algorithms using simulated observer models.

Thus, we describe the current approaches for SIS algorithm evaluation here. This section focuses on different

criteria for evaluating segmentation results. Different metrics used for measuring these criteria also have been

explained in detail.

Segmentation algorithms are evaluated by assessing the quality of the experimental segmentations using

both qualitative and quantitative approaches. Visual inspection is the way of measuring the quality of the

experimental segmentations qualitatively. Experimental segmentations are compared with the ground truth

segmentations through visual inspection for assessing the degree of similarity between these segmentations.

But this qualitative assessment through visual inspection has not been proved to be sufficient for conclusive

evaluation of a segmentation algorithm for all the cases nor does it provide a convenient way to compare the

relative performance of different algorithms. Due to the lack of a standard framework for evaluating segmen-

tation algorithms, several factors have been adopted for assessing the effectiveness of segmentation results.

Validity, reproducibility and efficiency of these results have been evaluated quantitatively by measuring the

accuracy, precision and computational time of the experimental segmentations respectively [135, 19].

2.4.1 Accuracy

Ground truth of an image are the foreground pixels representing true object regions. Accuracy of segmen-

tation is the measure of the degree to which a delineation of the object agrees with the ground truth [86].

Accuracy of an experimental segmentation is usually evaluated by computing a measure of it’s similarity to

the ground truth and this similarity is usually measured using two types of criteria: the amount of volume

or region overlap between the segmentations, or overlap-based similarity and distance between the boundary

points of the segmentations, or distance-based similarity.

16



(a) (b) (c)

Figure 2.1: (a)Demonstration of TP, FP, TN, FN where the segmentations overlap (b) Object of
interest is totally surrounded by the segmented object. (c) Object of interest and segmented object
are totally disjoint

2.4.1.1 Overlap-based measures of accuracy

Several metrics based on region overlap have been used for measuring segmentation accuracy which are

mainly characterized by a similarity measure between experimental and ground truth regions or volumes.

While computing this similarity measure, region overlap is obtained in terms of the number of pixels or voxels

contained in that region. Following are some of the commonly used region overlap-based metrics found in

the literature:

Classification accuracy: This is the ratio of the number of correctly labelled pixels to the total number of

pixels in an image [92, 93]. If the pixels or voxels are classified into true positives (TP), true negatives (TN),

false positives (FP) and false negatives (TN) (Figure 2.1(a) demonstrates these quantities), then classification

accuracy can be represented as:

CA =
|TP |+ |TN |

|TP |+ |TN |+ |FP |+ |FN |
× 100% (2.1)

Examples of the segmentation applications that have used this metric for measuring accuracy include the

methods described in [92, 93, 94]

The opposite concept of this metric also has been used in the literature [57, 81] where the ratio of the

number of misclassified pixels to the total number of pixels in the original image has been used as a metric

referred to as the Misclassification rate(MR) and can be expressed as:

MR = 1− CA =
|FP |+ |FN |

|TP |+ |TN |+ |FP |+ |FN |
(2.2)

Some authors have used the idea of Misclassification rate in a slightly different way, using the terms error rate

[40] and segmentation error rate [13], where instead of considering the total number of pixels of the original

image, only unclassified pixels to be classified have been considered. In this case, pixels, that are assigned

labels from the user provided hints of foreground and background, are excluded from the total number of
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pixels in the original image. Exclusion of these user-labelled pixels is more reasonable because inclusion of

these pixels leads to lower misclassification rate than the actual rate.

Tanimoto coefficient: This is defined as the ratio of the area of region overlap between a segmented region

and the ground truth region to the area of the union of those regions. If S and G are the sets of pixels in the

segmented and ground truth regions respectively, Tanimoto coefficient is expressed as [48]

TC =
|S ∩G|
|S ∪G|

=
|TP |

|TP |+ |FP |+ |FN |
(2.3)

Tanimoto coefficient is also known as Jaccard index (JI) [48, 86].

Here the numerator S ∩ G is the region that is common to both S and G. The denominator S ∪ G denotes

the disagreement between the segmentations in addition to their agreement. This metric has a range of [0,1]

where 1 indicates the exact match between the the ground truth and the segmented images and 0 corresponds

to complete mismatch. This measure is not biased to the segmentation that generates overly large or small

number of segments and it penalizes false positives. This measure is not sensitive to small deviations in

the ground-truth creation and integrates the accuracy and recall measurement into one unified function

by involving both false positives and false negatives [48]. The Jaccard index has been used for evaluating

segmentation accuracy by the methods in [86, 99, 34, 93, 94]. This metric has been used in [52] in percentage

form by multiplying the value of Jaccard index by 100. A reformulated version of this metric is also used for

measuring boundary accuracy by incorporating a tolerance to error for the pixels near the border by defining

the sets of border pixels in a different way using fuzzy set theory to capture the inherent uncertainty in

the edge positions. The reformulated Jaccard index has been used for measuring accuracy by the methods

in [86, 99]. This Tanimoto coefficient/Jaccard index can be generalized to measure the similarity among n

segmentations S1, S2,....,Sn which then takes the following form called the Joint Tanimoto coefficient :

JTC =
∩ni=1|Si|
∪ni=1|Si|

(2.4)

JTC has the property that it is not restricted only to pair-wise similarity, rather it can compute similarity

among n segmentations directly without averaging the pair-wise results, unlike some other measures.

A metric known as volume overlap error has been used by several methods for assessing segmentation

accuracy for 3D image which is a different form of Jaccard index defined as the following expression:

V OE : (1− |S ∩G|
|S ∪G|

)× 100% =
|FP |+ |FN |

|TP |+ |FP |+ |FN |
= 1− TC (2.5)

where S and G are the volumes of resulting segmentation and ground truth reference respectively. Equation

2.5 is equivalent to the TC/Jaccard index; it has just been inverted to form a dissimilarity measure instead of

a similarity measure. In place of volume, area is considered when evaluating the segmentation of 2D image.

Several interactive segmentation methods have used this index for measuring accuracy of segmentation as
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described in [75, 125, 143, 122, 58].

Generalized Tanimoto coefficient: Crum et. al. [32] have derived the following general form of Tanimoto

coefficient for characterizing similarity measure of region overlap among several fuzzy segmentations at each

voxel for multiple labels for all pairs of segmentations using the results of fuzzy set theory:

TCPMF =

∑
pairs,k βk

∑
labels,l αl

∑
voxels,i min(Akli, Bkli)∑

pairs,k βk
∑
labels,l αl

∑
voxels,i max(Akli, Bkli)

(2.6)

where min(Akli, Bkli) denotes the amount of fuzzy intersection across all l labels for all k pairs of segmen-

tations at each voxel and max(Akli, Bkli) denotes the amount of fuzzy union in a similar way. αl is a

label-specific weighting factor that affects the relative contribution of each label to the overlap accumulated

over all labels and βk is a pair-specific weighting factor that affects how much each image pair contributes to

the overlap accumulated over all labels and pairs of images.

Different variants of TCPMF have been mentioned as the special cases of this general form and all of

these special cases have been referred to collectively as Generalized Tanimoto coefficient (GTC). Among

the different versions of GTC, the version most suited to measuring similarity between groups of binary

segmentations can be expressed as:

GTC =

∑
pairs,k

∑
voxels,imin(Aki, Bki)∑

pairs,k

∑
voxels,imax(Aki, Bki)

(2.7)

where (Aki, Bki) denotes the k-th pair of segmentations from the segmentation group, min(Aki, Bki) is the

smaller between the values of i-th voxel of that pair and max(Aki, Bki) is the larger similarly. Previously

described TC and Jaccard index are also the special cases of TCPMF for a pair of binary segmentation. One

thing that distinguishes the GTC from the other methods here is that it can intrinsically consider the mutual

similarity of more than two segmentations. With the other methods, similarity is computed pair-wise and

then averaged over the pairwise results to aggregate the overall similarity.

Dice coefficient: This metric was originally developed by Lee Raymond Dice in 1945 [39] for measuring

similarity between two sets. It is strongly and explicitly related to the Jaccard index but differs in the

normalizing factor in the denominator and is defined, in the context of similarity between two segmentations,

as the ratio of the region overlap to the region average of two segmentations, expressed as:

DC =
2|S ∩G|
|S|+ |G|

=
2|TP |

2|TP |+ |FP |+ |FN |
=

2 ∗ JI
1 + JI

(2.8)

where JI is the Jaccard index. While assessing the accuracy of segmentation using this metric, two segmenta-

tions will be the experimental and the ground truth segmentation and the amount of region area is measured

in terms of the number of pixels or voxels contained in that region. Similar to Jaccard index, this metric

also measures the actual agreement or coincidence of the ground truth foreground with the segmented image.

This same metric has been mentioned as the k index [102], Dice volume overlap [35] and Dice similarity
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coefficient [148, 35] by the authors in different works. This Dice coefficient can be generalized to measure

the similarity among n segmentations S1, S2,....,Sn which then takes the following form called the Joint Dice

Coefficient :

JDC =
n(∩ni=1|Si|)∑n

i=1 |Si|
(2.9)

JDC has the property that it is not restricted only to pair-wise similarity, rather it can compute similarity

among n segmentations directly without averaging the pair-wise results, unlike some other measures.

Dice coefficient has been used by the some of the methods of interactive segmentation for evaluating

segmentation accuracy e.g. in [102, 148, 35, 2, 65, 113].

True positive rate: This metric is defined as a ratio of the number of correctly labelled foreground pixels

to the number of total foreground pixels in the ground truth as follows [97]:

TPR =
|Ng ∩Nf |
|Ng|

=
|TP |

|TP |+ |FN |
(2.10)

where Nf is the set of pixels classified as foreground pixels and Ng is the set of pixels in the foreground

of the ground truth. It is the fraction of foreground pixels reported as being foreground pixels which has

also been mentioned as true positive, true positive fraction or sensitivity in the literature [19, 78, 11]. Some

applications have used this metric for measuring accuracy of segmentation such as [78, 11, 97, 19, 35].

This same metric has been mentioned as percent matching in [145] where it has been expressed in percentage

form.

False positive fraction: This is the ratio of the number of pixels that are in the background region but

classified as foreground pixels to the total number of foreground pixels in the ground truth [78]:

FP =
|Nf −Ng| ∩ |Nf |

|Ng|
=

|FP |
|TP |+ |FN |

(2.11)

where Nf is the set of pixels classified as foreground pixels, Ng is the set of pixels in the foreground of the

ground truth and Nb is the set of pixels in the background of the ground truth. This metric has been used

for evaluating segmentation accuracy by the methods described in [78]

False negative fraction: This is defined [97] as the ratio of the number of pixels that are in the foreground

region but classified as background pixels to the total number of foreground pixels in the ground truth [78] :

FN =
|Ng −Ng| ∩ |Nf |

|Ng|
=

|FN |
|TP |+ |FN |

(2.12)

where Nf is the set of pixels classified as foreground pixels, Ng is the set of pixels in the foreground of the

ground truth and Nb is the set of pixels in the background of the ground truth. This metric has been used

for evaluating segmentation accuracy by the methods described in [78]

False positive rate: This metric is defined [97] as a ratio of the number of pixels that are in the back-

ground region but classified as foreground pixels to the total number of background pixels in the ground truth :
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FPR =
|Nf −Ng| ∩ |Nf |

|Nb|
=

|FP |
|FP |+ |TN |

(2.13)

where Nf is the set of pixels classified as foreground pixels, Ng is the set of pixels in the foreground of the

ground truth and Nb is the set of pixels in the background of the ground truth. This metric has been used

for evaluating segmentation accuracy by the methods described in [11, 97].

There is a metric called specificity which is actually an inverted form of FPR and is defined as a ratio of

the number of correctly classified background pixels to the total number of background pixels in the ground

truth i.e. the fraction of background pixels classified as being background pixels [19].

Specificity =
|TN |

|FP |+ |TN |
= 1− FPR (2.14)

Several segmentation methods [19, 35] have measured segmentation accuracy using this metric. Specificity is

used together with sensitivity so that both false positives and false negatives are considered. As for example,

if an object of interest is totally surrounded by the segmented object(Figure 2.1(b)) sensitivity will be perfect

1.0 but actually the segmentation is not good at all which can be realized only when the specificity is also

considered.

Correspondence ratio: This metric has been defined as the following expression [145]:

CR =
|TP | − 0.5|FP |
|TP |+ |FN |

(2.15)

CR compares the segmented foreground with ground truth foreground in terms of correspondence in size

and location and balances the importance of FPs and FNs [145]. Example of the method that has used this

metric for assessing segmentation accuracy include the applications described in [145].

Overlap Metric: It is defined as the following expression [78]:

OM =
|TP |

1 + |FP |
(2.16)

where |TP | and |FP | denote the number of true positive and true negative pixels. Values of this metric are

also in the range [0,1] where value 1 indicates perfect match between segmented image and ground truth

image and value 0 means complete mismatch.

Some interactive segmentation methods have used this metric for measuring accuracy of segmentation such

as [78]

Relative volume difference: This metric is expressed as [75]:

RVD =
|S −G|
|G|

× 100% =
|FP | − |FN |
|TP |+ |FN |

(2.17)

Here, S and G denote the same meaning as described for VOE. Smaller value of this metric indicates better
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accuracy of segmentation. A negative value implies that the volume of experimental segmentation is smaller

than that of the ground truth segmentation.This metric is not a good measure of segmentation accuracy

because it measures the volume difference between the segmentations with respect to that of ground truth

which may be very small even zero for significantly different segmentations where segmentation accuracy is

actually very low. Even for a total mismatch between the completely disjoint segmentations (like Figure

2.1(c)), value of this metric may be zero which denotes the exact match theoretically, if the volumes of the

segmentations are exactly same. This metric has been used for assessing the accuracy of segmentation by

the methods proposed in [75, 143, 122].

A number of distance-based metrics have been used in the literature for evaluating accuracy where distance

can be computed between the boundary pixels of the segmentations or from the difference between the

pixel intensities of the segmentations. Distance-based metrics commonly used in the literature include Root

mean squared distance, Maximum symmetric surface distance, Hausdorff distance, Average symmetric surface

distance, L2 Distance as described below:

2.4.1.2 Distance-based measures of accuracy

Root Mean Squared Distance: It is the average minimum distance between two finite point sets. Let

G = {g1, g2, ..., gn} and S = {s1, s2, ..., sn} be two finite point sets, then root mean squared distance is defined

as [20]:

RMSD(S,G) =

√∑
s∈S(ming∈G d2(s, g))

N
(2.18)

where d(s, g) is the distance between s and g which may be Euclidean, Manhattan or any other metric of

spatial distance. In case of measuring accuracy of segmentation, S and G are the segmented and the ground

truth images respectively. This metric has been used for measuring segmentation accuracy in [20, 49, 122].

Mishra et. al. [88] have used Mean squared error (MSE) between the obtained contour and ground truth

contour for measuring accuracy which is the square of the RMSD in Equation 1. This metric measures the

minimum average deviation of the segmented boundary from the ground truth.

Maximum symmetric surface distance: This metric computes the maximum distance between the

experimental segmentation and the ground truth segmentation for 3D images. This distance measures the

maximum minimum point-wise distance between two point sets. It is defined as [75]:

MSD = max{max{dist(a, b)a∈S},max{dist(b, a)b∈G}} (2.19)

where S and G are the surfaces of the resulting segmentation and ground truth reference respectively. If S

and G are the set of points on the boundary of the segmented and ground truth images respectively then,

this distance is a measure of the maximum mismatch between the ground truth and segmented image which

is one aspect of accuracy. This metric has been used for evaluating segmentation accuracy by the proposed

methods described in [75, 125, 143, 122, 58]. This metric also can be used for 2D images where, in place

22



of surface, contour should be considered. This metric also has been referred to as Hausdorff Distance [64],

maximum point to surface distance [93, 94] and maximum surface distance [49].

Average symmetric surface distance: This is the general metric for computing the mean distance between

the experimental segmentation and the ground truth segmentation for 3D image. It is represented as the

following [75]:

ASD =

∑
a∈S min dist(a, b) +

∑
b∈G min dist(b, a)∑

S +
∑
G

(2.20)

where
∑
S and

∑
G are the number of pixels on the surfaces of the resulting segmentation and ground

truth reference respectively. It measures the minimum average symmetric deviation between the segmented

boundary and the ground truth boundary. This metric has been used for assessing segmentation accuracy

by the methods in [75, 125, 143, 122]. This metric also can be used for 2D image by replacing surface with

contour. Special cases of this metric are frequently used for 2D images and are referred to by different names.

Passat et. al. [102] have used the metric Mean point-to-set distance and Yao and Chen [148] have used

the metric Mean contour distance for measuring segmentation accuracy which are actually this same metric

but with slightly different mathematical representations. This metric has also been called Mean absolute

distance.

This metric is very similar to RMSD and MSE because basically all these metrics compute the average

distance between the boundaries of the experimental segmentation and the ground truth except that, by

squaring the distances in equation 2.19, larger disagreements between the surfaces/contours are penalized

more.

L2 Distance: It is the distance between the experimental segmentation and the ground truth segmentation,

expressed by the following equation:

L2 =‖ I − IG ‖2 (2.21)

where I and IG are the intensities of pixels of the segmented and the ground truth images respectively.

Distance of each pixel in the ground truth foreground to all the pixels in the segmented foreground are

summed together to get the value of this metric which is computationally very expensive. This metric is

not very good for measuring segmentation accuracy because two significantly different segmentations may

have smaller value for this metric than two nearly similar segmentations as the spatial distances between the

pixels of the foreground objects are not considered.

For example, image A in Figure 2.2 is very different from image B and very similar to image C if considered

pixel by pixel, but the value of this metric between image A and B is 215200, smaller than 217225, between

image A and C. Even two totally disjoint regions may have very small value for this metric which indicates

that the segmentations are nearly identical but practically that is a total mismatch. This metric has not

been used that much and only one segmentation method [57] has been found that has used this metric.
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(a) Image A (b) Image B (c) Image C

Figure 2.2: Image A is very different from image B and very similar to image C.

2.4.2 Reproducibility

Reproducibility, in general, refers to the consistency of the results from repeated measurements under the

same conditions. In case of image segmentation, reproducibility is the consistency of segmentation results

obtained from the segmentation application through interaction inputs provided by different users. It is also

known as repeatability or reproducibility of segmentation. Reproducibility is evaluated without the use of

the ground truth by computing the similarity of a group of experimental segmentations. For semiautomatic

and interactive segmentation, reproducibility is crucial because segmentation depends on parameters and the

information provided by the user through interactions. For almost all segmentation problem instances, the

number of possible correct interactions is enormous and segmentation results are highly dependent on this

diverse set of interactions. That is why producing consistent segmentation is a challenge for any interactive

segmentation algorithm due to the high variability in the patterns of interactions provided by different users.

Any of the metrics which are used for evaluating accuracy can also be used for assessing reproducibility if

that metric does not use ground truth explicitly and can be generalized to operate on groups of segmentations

(and not just a pair). Some of the metrics for evaluating segmentation accuracy based on region overlap

including Dice coefficient, Joint Dice coefficient, Tanimoto coefficient and Generalized Tanimoto coefficient,

are also used for assessing precision e.g. in [19, 92, 148]. Mean contour distance has been used for measuring

intra-user and inter-user reproducibility in [148].

When the similarity measure of an experimental segmentation is computed with respect to a ground truth

segmentation, it represents the accuracy of that experimental segmentation but when this similarity measure

is computed between two experimental segmentations, then it represents their mutual reproducibility. For

N experimental segmentations, it can be generalized to compute their mutual precision by averaging the

results obtained from all possible pairs of segmentations formed from N segmentations by using the metrics

like Dice coefficient, Tanimoto coefficient, etc. As for example, Cates et al. [19] have measured precision by

averaging the values of dice coefficients across all pairs of segmentations formed from ten (10) segmentations

and Moschidis et al. [92] have similarly used Tanimoto coefficient for measuring precision from nine (09)
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segmentations. But the metrics like Joint Dice coefficient (JDC), Joint Tanimoto coefficient (JTC) and

Generalized Tanimoto coefficient (GTC) can be used directly to compute the precision of N segmentations

without computing the precision from pairwise segmentations.

In addition with these metrics, some other metrics are used by the researchers for measuring the repro-

ducibility of segmentation and Coefficient of variation is one of them. It has been used in my study and

accordingly deserves the following description:

Coefficient of variation: It is a statistical metric expressed as the ratio of the standard deviation, σ,

of a random variable, to it’s mean µ:

CV =
σ

µ
(2.22)

There is no strict rule to interpret the value of CV but some authors, such as Tew et al. [130], have used

to an interpretation of CV suggested by Lellamo et al. [74], as < 10% (good), 10 – 25%(moderate), > 25%

(poor).

This metric is used for evaluating reproducibility and is computed from the values of other metrics of

measuring segmentation performance. For example, Byrum et al. [17] have used volume CV for measuring

reproducibility of brain and tissue segmentation volumes. There exist some other examples where volume

CV has been used for measuring reproducibility of segmentation such as [124, 26, 70, 122].

2.4.2.1 Evaluation of reproducibility

In order to measure the reproducibility of a segmentation, the impact of the user interaction on the resulting

segmentation needs to be investigated very rigorously. For this, different combinations of the correct interac-

tions should be considered such that the corresponding changes in the results can be inspected. By analyzing

the changes in the segmentation results generated using a large variety of possible interactions, impact of

the interactions can be quantitatively measured which clearly demonstrates the actual effectiveness of the

interactions. The best evaluation of reproducibility, in theory, would be to consider every possible correct

interaction, but to ensure the usage of all possible correct interactions is simply not practical for most of the

cases due to the extremely large number of combinations which leads to the question, how much is enough?

For this reason, while evaluating an interactive segmentation algorithm, large number of human operators are

required who can use the segmentation application for segmenting the images repeatedly which can ensure

that most of the possible interaction patterns will be accommodated. As a result, assessment of these large

number of segmentations will be statistically stable and significant which can make the assessment more

reliable.

But to engage large number of human operator for an experiment is a real problem due to the limitations

imposed by the logistic support, funding issue and and in some cases, the unavailability of enough individuals
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with sufficient specialized domain knowledge. That is why evaluation of accuracy and/or reproducibility

of interactive segmentation algorithms is typically performed by having a small number of experts in the

problem domain who are well-trained in the use of the interactive segmentation system segment a number of

cases. Indeed, this has been the case with numerous recent studies that analyze intra- and/or inter-observer

variability [17, 19, 26, 34, 38, 44, 70, 83, 86, 103, 116, 124, 126, 148]. Of these, only the studies of Stammberger

et al. [124] and Dach et al. [34] used more than 5 observers. The former used 7 observers, while the latter

used 20 observers, but subdivided their data so that each case was only segmented by 5 different observers.

In all other reviewed studies, no more than 5 observers segmented each case. Steger and Sakas’ 2012 study

used only one observer and did not consider reproducibility for their proposed interactive segmentation tool

[126]. Even as many as 12 or 20 examples of interactive segmentations of an object may not adequately

sample the range of different possible observer interactions that would be expected to produce a correct

segmentation – we call this the set of correct interactions. Even in the simplest of situations, where the

interaction is selecting a seed point somewhere within an object, it is not possible to robustly characterize

the inherent variability in segmentation accuracy due to variations in seed point placement (the underlying

cause of inter- and intra-observer variability) using only a small number of example interactions. Recently,

some authors have turned to constructing simulated observer models to take into account more interactions

per case, and to avoid human involvement in the process of evaluation. Moschidis et. al. [92] has simulated

two different patterns of user interactions in order to avoid human involvement where number of foreground

and seeds is varied from 1 to 30. For each initialization per number of seeds, 9 different perturbations of

seeds produced from variable seed displacement operations were used to generate 9 segmentation outcomes

and then reproducibility of segmentation was evaluated by computing pairwise Tanimoto coefficient and

measuring the effect of this perturbation of the input seeds on the resulting segmentations. Only 9 sets of

seeds, in general, does not represent a very diverse set of examples of possible correct interactions though it

depends a bit on the size of the objects involved and the image resolution. Nickisch et al [96] investigated

“robot users” in the context of learning optimal parameters for interactive segmentation systems. The robot

user emulates the process of a user iteratively correcting incorrectly segmented areas (false negatives and

false positives) during which good parameters are learned. Robot users can be adjusted to exhibit different

behaviours and the authors use a small number of different robot observers to segment each case. However,

their robot users must be initialized with a fixed initial set of manually determined brush strokes which is

not conducive to considering a very diverse sampling of correct interactions.

The main deficiency, therefore, of existing evaluation methods is that an insufficiently diverse sampling of

the set of correct interactions for each case are used to draw conclusions about overall segmentation accuracy

and reproducibility. Some subsets of correct interactions are more likely to occur than others due to the inter-

user variability and very small number of samples, and, depending on the automatic phase of the segmentation

algorithm, are more likely to result in a good segmentation. Therefore, one must consider a diverse set of

correct interactions in order to compare algorithms fairly and take into account the consequences of poor
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choices that might arise from fatigue or lapses in judgement on the part of the operator.

To overcome this deficiency, interaction models can be used where large number of user interactions are

generated programmatically in such a way that can represent uniform and densely sampled set of correct inter-

actions to capture all kinds of variability in the interaction pattern. Such an interaction model can overcome

the effect of randomly placed user interactions, if the interactions are generated systematically and sampling

uniformly from the set of all possible correct interactions. Statistical analysis of the metrics for evaluating

reproducibility computed from the segmentations obtained from these large number of programmatically

correct interactions can be a superior method of measuring reproducibility of interactive segmentation. In a

recent study by Haque et al. [54], such an interaction model has been simulated by generating large number

of densely sampled set of seed points programmatically for segmenting ovarian follicles in ultrasound images.

These seed points have been categorized into three types of patterns based on the locations of the seed points

with respect to the follicle centroid. Then the resulting segmentations have been analyzed statistically to

evaluate the impact of those interaction patterns on the resulting segmentations which reveals the extent of

variability in the segmentations due to the placement of the seed points inside the follicle.

2.5 Review of related works

According to my survey, no work has been found that has used the approach proposed in this thesis. That

is why, small number of research papers have been discussed here which, in a broad sense, can be connected

to the proposed idea. Recently, some authors have turned to constructing simulated observer models to

take into account more interactions per case, and to avoid human involvement in the process of evaluation.

Moschidis et. al. [92] has simulated two different patterns of user interactions in order to avoid human

involvement where number of foreground and seeds is varied from 1 to 30. For each initialization per number

of seeds, 9 different perturbations of seeds produced from variable seed displacement operations were used

to generate 9 segmentation outcomes and then reproducibility of segmentation was evaluated by computing

pairwise Tanimoto coefficient and measuring the effect of this perturbation of the input seeds on the resulting

segmentations. Only 9 sets of seeds does not represent a very diverse set of examples of possible correct

interactions.

Nickisch et al [96] investigated “robot users” in the context of learning optimal parameters for interac-

tive segmentation systems. The robot user emulates the process of a user iteratively correcting incorrectly

segmented areas (false negatives and false positives) during which good parameters are learned. Robot

users can be adjusted to exhibit different behaviours and the authors use a small number of different robot

observers to segment each case. However, their robot users must be initialized with a fixed initial set of

manually determined brush strokes which is not conducive to considering a very diverse sampling of correct

interactions.

In [127], Suinesiaputra et. al. have established a collaborative framework for building a community
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resource of consensus ground truth segmentations of left ventricle (LV) in cardiac MRI images. Lack of

publicly available image datasets and a common performance evaluation protocol has been considered as an

open problem in LV segmentation and to solve that problem, this framework has been initiated. Ground

truth for myocardium segmentations are built by applying consensus method using widely available images

as input taking from both manual and fully automatic segmentations. Three manual and two fully automatic

segmentation results served as the raters in the initial phase, but the ground truth can be refined iteratively

by the inclusion of automated results into the consensus under certain conditions. These consensus images

have been reported as more consistent than any other rater, even that with manual input. Similar resources

of consensus ground truth have also been established in other domains, for example in the segmentation of

the carotid arteries for stenosis evaluation [115, 53]; the detection of pulmonary nodules from lung CT images

[137, 95], airway tree segmentation [82], and brain image segmentation [118].

As this last work has pointed to the lack of a common performance evaluation protocol, my proposed

work can be related from that angle of view as my proposed evaluation technique using simulated observer

models can ultimately lead to the development of a new segmentation evaluation protocol which also may be

available online for public use.

2.6 Review of variabilities in user interactions

There are numerous studies which have investigated the variabilities in the segmentation results across differ-

ent users for SIS algorithms. These studies [107, 141, 132, 108, 43] have found enough evidence to show that

there are significant inter-user and intra-user variabilities in the segmentation results across different users.

These studies have evaluated these variabilities and analyzed different aspects of these variabilities. Some of

these studies have explained that, these variabilities in the segmentation results are the consequences of the

variabilities in the interaction patterns provided by the users as the segmentation results are not supposed to

be different if the interactions were same. Thus, these studies have indirectly deduced that the variabilities

also exist in the interactions provided by the users.

Very recently, an user study has been conducted in my lab by a student Yunxia Li, under the supervision

of Dr. Mark Eramian. This study has been just completed in the second week of August, 2016. Then Dr.

Mark Eramian has given me the data and allowed me to analyze the data in order to investigate the potential

variabilities in the interactions (seed point), provided by the users. In this study, 19 users segmented 75

images. I have analyzed the spatial positions of the seed points inside the foreground objects, for all 19 users,

for each image separately and found that the seed points were placed across the entire region of the objects.

Large variabilities were also observed in the spatial positions of the seed points, provided by each individual

user. Figure 2.3 shows three images containing all the seed points, provided by 19 users, where seed points

from each individual user are shown in different colours.

So, from these variabilities in the spatial positions of seed points, provided by the users, we can conclude
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(a) Image 1 (b) Image 2 (c) Image 3

Figure 2.3: Seed points provided by 19 individual users represented in different colours

Figure 2.4: Accuracy values for three different images for the seed points provided by 19 individual
users

that, as a group, the populations of seed points produced are spread uniformly around the entire area of

the object. In order to investigate the variations in the resulting segmentations, accuracy values, in term of

Dice coefficients, were also computed for the seed points provided by each individual user for each particular

image and significant variations were observed. Figure 2.4 contains three charts showing the accuracy values

for the same three images where we can observe significant variations among the accuracy values for all three

images, though extent of these variations are smaller for the image 2, than that for two other images.

Variations in the segmentation results, in term of Dice coefficients, are also shown against the set of seed

points in the foreground object, provided by each each individual user, with the corresponding accuracy

values in the table 2.1. From this table, it can be observed that the accuracy values are different, not only for

different seed point patterns, but also for similar seed point patterns, for some cases. Hence, it is apparent

that the seed points that seem similarly placed can result in quite different accuracies, as well as points that

are quite differently placed.

User Interactions Accuracy User Interactions Accuracy
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01 0.541 11 0.559

02 0.158 12 0.713

03 0.522 13 0.621

04 0.639 14 0.781

05 0.747 15 0.447

06 0.192 16 0.613

07 0.722 17 0
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08 0.843 18 0.200

09 0.249 19 0.790

10 0.821

Table 2.1: Interactions inside the foreground object provided by each individual user and correspond-
ing accuracy

So, from this data, we can see that segmentation accuracy can be highly sensitive to the exact seed point

placement and that similar sets of seed points can result in both very similar and very different accuracies.

This evidence strongly supports the need for evaluating algorithms with input from more than five users in

order to properly characterize the potential distribution (variability) of segmentation accuracy.
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Chapter 3

Simulated Interaction Models

3.1 Overview of Methodology

Our proposed methodology is designed for extensive evaluation of any SIS algorithm when the objects of

interest fall within a particular generic shape category denoted as star shape [139] defined with respect to

the centre of the object based on simple geometric properties. A shape is a star shape if there exists an interior

point p for which there is no straight line between p and a point on the boundary that is not completely

contained within the shape. This criteria is not as restrictive as it sounds which is apparent by the objects

having star shapes shown in Figure 3.1 obtained from [139]. Our methodology consists of several steps which

extensively evaluate the performance of a SIS algorithm.

1. Obtain the set of images with ground truth and choose the SIS algorithm and interaction

mode: This proposed methodology can be applied to any type of images like natural images, medical

images etc., for extensive evaluation of segmentation performance for any SIS algorithm. The type of

the images may also differ based on the acquisition technology, such as CT, ultrasound, MRI, etc. There

should be a sufficient number of images in the dataset to justify the statistical analysis based on several

statistical tests and, at the same time, not so many as to compromise practicality. The segmentation

algorithm can be any algorithm which can fit into the semiautomatic way of segmentation where the

algorithm starts working after being initialized with the required parameters supplied through user

interactions.

2. Generate the interactions programmatically: We define an interaction to be the data provided

by the operator to the automatic phase of a semiautomated segmentation algorithm. For example, in

the case of an algorithm that accepts seed points or brush-strokes supplied by the operator specifying

foreground and background areas, an interaction is a single seed point or brush stroke. A correct

Figure 3.1: Some objects with star shapes obtained from [139]
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interaction is one which provides contextual information that would be expected to produce a correct

segmentation, e.g., a seed point that is inside the object to be segmented, or a brush stroke that

correctly indicates areas of foreground and background. Any other mode of interaction used in the

semiautomatic or interactive segmentation applications, e.g. closed contour, can also be used in this

methodology.

Seed points, brush stroke and closed contour have been used as the means of supplying input parameters

to the algorithm by the users, for our experiments. For semiautomatic and interactive segmentation

applications, users specify the foreground and background regions using the interactions directly on the

image. Users’ action of supplying interactions have been simulated by generating those interactions

programmatically. Details of these three kinds of interactions and the procedure for generating those

interactions are described in Section 3.1.1.

3. Categorize the interactions: Programmatically generated interactions should be categorized based

on a criterion of interest to investigate whether there is any significant difference in segmentation

performance between the groups of interactions. One such criterion is position of the interaction with

respect to the object of interest, determined by the distance of the interaction from a landmark point

inside the object. As the interaction, particularly which one is used to mark the foreground, is placed

inside the foreground object; distance of an interaction can be measured from a landmark point inside

the object such as the object’s centroid. Another criteria can be the characteristics of the image in

the neighbourhood of the interaction. For example, interaction could be categorized by properties like

texture, intensity values, noise, etc.

4. Analyze the results using statistical methods: Several metrics are computed to evaluate the qual-

ity of the resulting segmentation. Then these segmentation results should be analyzed using statistical

methods in order to make the analysis robust, reliable and scientific. The main objective of the analysis

is to look for differences in performance among the interaction groups defined by the criteria chosen

in step 3. The presence of these differences determines the impact of the variation in the interaction

patterns on the resulting segmentations, providing an in-depth analysis of algorithm performance.

Dice coefficient, root mean squared distance (RMSD) and Hausdorff Distance (HD) are used for mea-

suring segmentation accuracy. Then values of these metrics are analyzed by applying several statistical

methods, which include mean, standard deviation, coefficient of variation (CV), regression, Wilcoxon

Rank-Sum test, Kruskal-Wallis hypothesis test, etc. Results of this analysis are represented by charts

and tables. Statistical analysis of the performance metrics between categories of interactions is discussed

in Section 4.3.

So, from this outline of the proposed methodology, it can be noted that the inputs of the methodology

are the image dataset with ground truth and the choice of the SIS algorithm. Then, the images of

the dataset are segmented by the SIS algorithm and these segmentations are evaluated in terms of
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accuracy and analyzed statistically. So, it is clear that the methodology doesn’t depend on the type of

the images, as long as the images are segmented by the SIS algorithm. Hence, this methodology should

work for any kind of image. Output of this methodology is the extensive evaluation of the performance

of the chosen SIS algorithm(s) in the forms of tables and charts.

3.1.1 Programmatic Generation of Interactions

The second step of the proposed methodology is to generate the user interactions, but not by employing

a human user, but rather by generating them programmatically. For each object to be analyzed, a set of

correct interactions needs to be generated. For this study, Seed point, brush stroke and closed contour are

used as the means of supplying input parameters to the algorithm by the users. Details of these three kinds

of interactions and the procedure for generating these interactions are described in the next few subsections.

3.1.1.1 Seed point Interaction

For seed point interaction, the user has to click once inside each object of interest to indicate the foreground

object, and the corresponding clicked point is known as the ‘seed point’. For each object to be analyzed,

a set of seed points is generated. As the seed points are the pixels inside the objects, theoretically all the

pixels within an object can be treated as seed points. Since using every pixel within an object as a seed point

would result in an excessive amount of data, seed point locations are sampled at regular intervals on a grid

with a variable spacing depending on object size. Seed point locations are sampled more sparsely for larger

objects to maintain computational feasibility. Grid spacing is determined using the following procedure:

1. Determine the approximate number of seed points N , for each object, to be used for segmenting the

object. The size of the object, in terms of total number of pixels, is used to determine this number.

The relationship between the object size and number of seed points need not be linear in order to limit

the number within a feasible range. For this purpose, a function can be developed which computes the

number of seed points for each object from the number of total pixels in that object. The function

can be determined empirically by testing different values for the feasible range. A feasible range of

seed points is important because it ensures the generation of a minimum number of seed points that is

enough to get sufficient number of segmentations needed for the statistical analysis and on the other

hand, it also ensures that number of seed points is not so large as to be computationally infeasible.

2. Determine the grid spacing as d
√
A/Ne where A is the area (in pixels) of the object (determined from

the ground truth). Total number of seed points obtained, using this grid spacing as the regular interval,

is not likely to be exactly N , but should be very close to N .

Figure 3.2 shows an object with the grids inside the object region. The distance between these gridlines

has been computed using this procedure. Each intersection point of the gridlines is the position of a seed

point.
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Figure 3.2: An object with grids inside the region where each intersection point of the grids represents
the position of a seed point.

3.1.1.2 Brush Stroke Interaction

For brush stroke interactions, our interaction model simulates the user’s interaction to draw one or more

scribbles for indicating the foreground and background regions. Accordingly, brush strokes have been gener-

ated for both foreground and background regions. For both cases, two types of strokes are generated: straight

and curved. For each object to be analyzed, a set of brush strokes is generated. Straight brush strokes are the

segments of straight lines but thickness of the strokes can vary between 3 and 5 pixels, which is the typical

range of brush stroke width used in almost all published works.

Straight brush strokes are generated randomly inside the object region. The size of these strokes are

varied within a particular range depending on the area of the object. The length of this stroke L satisfies

Equation 3.1:

strokeUnit× lim1 ≤ L ≤ strokeUnit× lim2. (3.1)

Here lim1 and lim2 are the lower and upper limits, respectively, and strokeUnit is the unit of length of a

stroke in pixels. The following heuristic formula using the diameter of the object determines the value of

strokeUnit where the relation between strokeUnit and diameter of the object is not linear:

strokeUnit =



l1, diameter ≤ d1

l2, d1 < diameter ≤ d2
...

ln, diameter > dn

(3.2)

Here d’s are pre-selected thresholds on the diameter, and the l’s are the corresponding stroke lengths. The

number of these strokes also depend on the area of the object. Another heuristic formula using the total

number of pixels numPixels within the object region determines the number of these strokes numStrokes:
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(a)

Figure 3.3: (a) Straight brush strokes within object region

numStrokes =



round(numPixels/f1), numPixels < t1

round(numPixels/f2), t1 ≤ numPixels < t2
...

round(numPixels/fn), numPixels ≥ tn

(3.3)

Here t’s are pre-selected thresholds on the number of pixels within the inner most region of the object and

f’s are the corresponding parameters to compute the number of strokes. Figure 3.3(d) shows straight brush

strokes generated inside the object. Here only some of the sampled straight brush strokes from the set of all

straight brush strokes are shown for better visibility.

Curved brush strokes are generated as segments of curves whose widths are also varied between 3 to 5

pixels, as these are the typical widths observed in existing implementations of SIS algorithms. These strokes

are segments of iso-contours of the distance transform of the object region and roughly parallel to the object

edge. The number of iso-contours in each object is determined by the average diameter of the corresponding

object and computed by Equation 3.4

numContour = round(maxDist/div) (3.4)

where maxDist is the maximum distance in the distance transform of the complemented ground truth of

each object and div is a number which depends on the feasible number of contour and is determined from

the width of the contour. For example, for width = 3, div can be, width+ 3 = 6 to allow some gap between

the contours. The number of strokes nStrokes obtained from each iso-contour is determined using Equation

3.5

nStrokes = round(numPixIsoCntr/strokeUnit) (3.5)

where numPixIsoCntr is the number of pixels on an iso-contour and strokeUnit is the unit of stroke length

in pixels, determined from the diameter of the object using Equation 3.2.
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Length of a stroke is equal to the strokeUnit for very small iso-contours, which produces only one stroke;

for all other cases, length of a stroke=strokeUnit − strokeGap, where strokeGap is the gap between two

successive strokes which is set at 8 pixels. The gap between iso-contours is 3 pixels.

Brush strokes for the background region are also generated as straight and curved strokes. For each

image, a fixed set of background strokes are used. As one of the objectives of this study is to investigate

the impact of the variations in the interaction patterns on the segmentation results, only foreground strokes

are variable; so that the corresponding difference in the result can be observed as the effect of the change in

the interaction. Each image is segmented once for each of the foreground strokes and thus the corresponding

changes in the segmentation results are observable because the changes in segmentation results are only

due to the changes in the foreground strokes. If background strokes were also variable, individual effect of

the changes in foreground and background strokes could not be distinguished. Moreover, for a particular

foreground stroke, a huge number of background strokes would be needed to generate the segmentations.

Thus, the number of segmentations generated for all foreground strokes combined with all sets of background

strokes opens up a gigantic combinatorial explosion. For these reasons, using a fixed set of background strokes

for each image is justified for this study, but studying the effect of varying background strokes at the same

time as varying foreground strokes is a huge undertaking that must be left to future work.

3.1.1.3 Closed Contour

This type of interaction mode is used to mark the foreground region. A user draws a closed contour inside the

foreground object. Two types of closed contours are generated. The first is the closed contours whose shape

are elliptical in general and do not depend on the shape of the object. The second is the iso-contours whose

shape are roughly parallel to the edge of the object. Live users are free to draw a closed contour anywhere

inside the foreground object; the simulated interaction model has a similar ability. In order to simulate the

actions of real users, closed contours are generated at different sizes where the range of size varies and is

directly proportional to the distance between the centroid and the nearest point on the boundary of the

foreground object. For generating large numbers of regularly sampled contours, the following procedure is

carried out:

• First, several curves inside the foreground region are determined. These curves follow the edge of the

foreground object and number of these curves is determined from the distance between the centroid

and the nearest point on the boundary of the foreground object. These curves serve as the base lines

for generating the closed contours.

• A set of points on each of these base lines are sampled at a regular interval and these points are used

as the centroid of the ellipses to be generated. Figure 3.4 shows the image of a foreground object

containing few base lines with one base line having two ellipses generated considering the centroids on

that base line.
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Figure 3.4: Example of a baseline with two ellipses having the centroids on it

(a) (b) (c) (d)

Figure 3.5: Ellipses of different orientations obtained by rotating the axes

• Lengths for the major and minor axes of the ellipses to be generated are computed which starts from

the base line closest to the object boundary (let us denote this base line as the first base line). The

distance between this first base line and closest point on the boundary of the object is used to compute

the length of the major axis. Thus, orientation of the major axis is tangent to the base line. The

length of the minor axis is then computed as minorLength = majorLength ∗ Ecc where Ecc is the

eccentricity of the foreground object. Lengths of major axis for all other base lines are computed by

successively increasing the length at a fixed rate and lengths of the minor axis are computed using the

same equation. Varying lengths of these axes are used to generate the closed contours of different sizes.

• Axes of the ellipse are also rotated with an equal increment for the angle to generate ellipses of varying

angles to enhance the degree of resemblance of the contours to the real ones drawn by humans. The

increment for the angle of rotation is also determined empirically considering the total number of

contours to be generated within feasible range, because rotating the axes produces a number of contours

of the same size but with different orientations; for example, if the increment for the angle of rotation

is 45 degree, the number of contours will be = 180/45 = 4. Figure 3.5 shows four ellipses of different

orientations obtained from rotating the axes.

• Another type of closed contour which are actually iso-contours are also generated to be used as the

initial contours to mark the foreground region. These iso-contours are roughly parallel to the edge or

boundary of the foreground object. The number of these contours depends on the size of the foreground

object and is determined from the distance between the centroid and the nearest point on the boundary
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(a) (b)

Figure 3.6: (a) An object with few generated closed contours inside the object region (b) An object
with some of the generated iso contours inside the object region .

of the foreground object using Equation 3.6.

numIsoContour = round(maxDist/div) (3.6)

where maxDist is the maximum distance in the distance transform of the complemented ground truth

of each object and div is a number which depends on the feasible number of iso-contours that fit

into the object area. The value of div is selected such that it ensures a minimum gap between two

successive iso-contours. This value can be varied empirically to control the number of contours to be

generated. Sizes of these contours are varied between the closest to the farthest from the boundary of

the foreground object.

Figure 3.6(a) shows an object with some of the closed contours of various sizes from the large set of

generated closed contours inside the object region and Figure 3.6(b) shows some of the generated iso-contours

inside the region of an object, both generated by the simulated interaction model. For better visibility, only

a few of the generated closed contours and iso-contours are shown; otherwise, each individual contour could

not be identified due to the high density of the contours.

3.1.2 Categorization of interactions

The proposed methodology requires that interactions should be categorized according to the position of

the interaction with respect to the object, where this position is numerically represented by the distance

of the interaction from the centroid of the object. For the seed point mode of interaction, seed points are

categorized into several groups considering the distance of the seed point from the centre of the foreground

object. To determine the category of a seed point, out of n categories in total, a binary ground truth image

(foreground pixels representing true object regions) is negated and then the distance transform of that image

is computed. From this transform, distance a of the seed point from the nearest boundary point is determined

and distance from the seed point to the centroid b is calculated using the Euclidean distance metric. The

seed point category c is then determined by a double threshold of the quantity a
a+b :
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c =



category 1, a
a+b ≤ 1/n

category 2, 1/n < a
a+b ≥ 2/n

...

category n, n− 1/n < a
a+b

(3.7)

For the brush stroke mode of interaction, two types of brush strokes, straight and curved, are generated,

where straight brush strokes are randomly generated inside the object region. Categorization of straight

brush strokes is different from that of seed points because the category of a seed point is determined by

the position of the interaction inside the object region with respect to the centroid of the object where the

interaction is fully contained within the same categorical area. But this technique of categorization fails due

to the randomly generated position of the straight brush stroke inside the object region where all the pixels

of a straight brush stroke may not belong to the same categorical area. In that case, the category of each

pixel of a straight brush stroke is first determined applying the same technique which is used for seed points

and the total pixel counts for each category is computed. Then the category of a straight brush stroke is

determined by majority vote of the categories of the individual pixels that comprise the straight brush stroke.

Curved brush strokes are categorized into several groups depending on the size of the foreground object.

The number of groups for categorization may vary between 1 and 3 and depends on the size of the object. As

curved brush strokes are the segments of iso-contours, the category of a brush stroke is determined from that

of the corresponding iso-contour i.e., categories of all the brush strokes originating from a single iso-contour

are the same. The category of an iso-contour is first determined and then that category is assigned to all

the brush strokes originating from that iso-contour. The category of an iso-contour is not directly computed,

rather the number of iso-contours for each category is computed, where category1 is for the innermost

region and other categories are assigned in ascending order for the regions located gradually toward the

object boundary. The total number of iso-contours is used to determine the number of iso-contours for each
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category using Algorithm 1:

input : Number of iso-contour nContour

output: Categories for each iso-contour

initialization;

if nContour = 1 then

category1←− 1;

category2←− 0 ;

category3←− 0 ;

else if nContour = 2 then

category1←− 1;

category2←− 0 ;

category3←− 1 ;

else

numForAllCategories←− floor(nContour/3);

rem←− mod(nLevel, 3);

category1←− numForAllCategories;

category2←− numForAllCategories;

category3←− numForAllCategories;

if rem = 1 then

category2←− category2 + 1 ;

else if rem = 2 then

category1←− category1 + 1 ;

category2←− category2 + 1 ;

end

end

Algorithm 1: Determining the number of iso-contour for all categories

Closed contour interactions are also categorized into groups depending on the size of the foreground

object. Categorization of closed contour is exactly same as that of straight brush strokes, where the category

of each pixel of a closed contour is first determined by applying a similar technique to that used for seed

point to compute the total pixel count for each category. Then the category of a closed contour is determined

by majority vote of the categories of the individual pixels that comprise the contour.

Another type of closed contour, which are actually iso-contours, are equidistant from the edge of the

object and accordingly, almost all the pixels of an iso-contour belong to the same categorical area. For

determining the category of an iso-contour, distances of all the pixels of an iso-contour from the boundary

of the foreground object are computed. Although these distances are supposed to be almost the same for all

the pixels, still the average of these distances are computed to avoid any unforeseen instances such as if the

contour is unusually wide, where some pixels of the contour may fall within another category. Then, this
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Figure 3.7: Mean and standard deviation (sample) of Dice, RMSD and HD for all nine algorithms

mean distance is used to determine the category of the iso-contour in the same way as it is determined for

seed point.

3.2 Evaluation methodologies

3.2.1 Traditional Methods

Existing approaches for evaluation of segmentation use small number of interactions provided by 3 − 5

human operators for each object to be segmented. This small number of interactions cannot be categorized

into different groups and consequently, analysis of the segmentation results based on the categorization of

interactions is not possible and hence can only produce the overall measurement of segmentation accuracy.

For example, existing approaches for evaluation of segmentation would have produced the segmentation

accuracy in terms of Dice, RMSD and HD as presented in the charts in Figure 3.7 for nine algorithms. These

nine algorithms have been implemented to demonstrate this proposed methodology through two case studies

described in Chapter 4. More specific information about these algorithms are mentioned in Table 4.1
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3.2.2 Mean segmentation accuracy within categories

Accuracy is computed for all segmentations using three different metrics: Dice coefficient, RMSD and HD.

Mean and standard deviation of the accuracies for the segmentations resulting from using the interactions

located within each object are computed. Then these values are categorized according to the groups of

interactions based on the positions of the interactions within the object region or texture properties of

the interactions. These mean values of accuracy in term of Dice, RMSD and HD are sorted according to

the size of the objects and represented in charts for all the interactions and for all groups of interactions

separately. Trends of these accuracy measures are determined and presented by linear regression lines known

as trend lines. These trend lines indicate the relation between the independent variable object size and the

segmentation results in term of accuracy. In order to determine the significance of these regressions, p values

of the regressions are computed.

Segmentation results are categorized according to the groups of interactions in order to examine whether

these results are same for all groups of interactions. This is accomplished by testing whether the accuracy

values for all three groups of interactions come from the same distribution. This is a hypothesis test where

the null hypothesis is that the metric values for three groups of interactions come from the same distribution.

Before testing this hypothesis, normality of the accuracy values should be tested. If the values are normally

distributed, this hypothesis can be tested by applying the Student’s T-test or classic one way ANOVA. But if

the values are not normally distributed, a non-parametric alternative, Kruskal-Wallis Test should be applied

which does not require the data to be normally distributed.

3.2.3 Coefficient of variation for lightweight evaluation of reproducibility po-

tential

Measuring the reproducibility of SIS algorithms is essential but expensive, whether done with humans (money

and time) or simulated Interaction models (computationally). We can quickly assess whether an algorithm is

likely to be reproducible before incurring such expense by computing Coefficient of variation (CV) of accuracy

measures. CV is the ratio of the standard deviation of a population to the populations sample mean. A

high CV implies high variability in the accuracy, and that the reproducibility is likely to be poor. However,

the converse that a low CV implies high reproducibility is not always true, since consistency of an accuracy

measure does not imply that any errors in accuracy are the same. Thus, if we observe a high CV of accuracy,

we may conclude that reproducibility is likely to be low, and not worth investigating in detail. CV of Dice

coefficient, RMSD and HD are computed from the segmentation results for each group of interactions. The

histograms of these CV values show their distribution and enables comparison of the algorithms with respect

to their potential reproducibility.

Computing CV can determine whether a SIS algorithm is likely to have poor or high reproducibility.

Reproducibility measure is likely to be different for different SIS algorithms and different interaction modes.
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Even for a particular algorithm, reproducibility may not be similar for different groups on interactions. This

possibility encourages us to inspect whether the CV values for three different groups of interactions are

different or not, from the statistical point of view. This investigation should include all the tests between all

possible pairs of interaction groups for each algorithm. For this, CV values of Dice, RMSD and HD for each

group of interaction are compared with that of two other groups of interactions to statistically test whether

the values for each pair of the group of interactions are same in term of population mean. In order to assess

whether the CV values come from the same population or not, a non-parametric statistical hypothesis test

named Wilcoxon rank-sum test (WRS) also known as Mann-Whitney U test is applied if the CV

values are not normally distributed.

44



Chapter 4

Segmentation of follicles in ultrasound images: A

case study of the proposed methodology using posi-

tion of interaction for categorization

The proposed methodology outlines the methods to evaluate the performance of any SIS algorithm ex-

tensively. In order to demonstrate the proposed methodology, a total of seven SIS algorithms combined with

three types of interaction modes, making a total of nine segmentation algorithms, were implemented and the

segmentation results were analyzed using the proposed methodology.

Table 4.1 gives a list of the algorithms, their abbreviated names used in the remainder of the text, the

interaction mode used for each algorithm, and a reference to the corresponding papers for further details.

For these experiments, a dataset of 32 ultrasound in vivo human ovarian images obtained from a previous

study [5] were used which were acquired using high-resolution Ultramark 9 and ATL HDI 5000 ultrasound

machines with 5–9 MHz multifrequency convex array transducers (Advanced Technologies Laboratories,

Bothell, WA). The size of each image is 640 × 480 pixels and the maximum number of follicles in an image

was fourteen. This dataset consists of 81 follicles with a diameter larger than 2.5mm. This is a significant

size threshold because even human observers have difficulty correctly identifying follicles of this size or

smaller. Manually delineated ground truth segmentations of these follicles were provided by a single, highly

experienced human operator.

Table 4.1: List of the algorithms and interaction modes used in our experiments

Name of the algorithm Acronym Interaction mode
Graphcut with Star shape Prior [139] GCSP Seed point
Graphcut with Star shape Prior [139] GCBS Brush stroke
Geodesic Star Convexity [52] GSC Brush stroke
Sequential Geodesic Star Convexity [52] GSCSeq Brush stroke
Trust region convexity [50] TRC Brush stroke
Onecut [128] Onecut Brush stroke
Distance Regularized Level Set Evolution [76] DRLSE Closed contour
Distance Regularized Level Set Evolution [76] DRLSEIC Closed iso-contour
Graphcut without Star shape Prior [14] GCnoSP Seed point
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(a) (b) (c)

Figure 4.1: (a) Piecewise cubic polynomial function used for determining the number of seed points
for each follicle. (b) Programmatically generated seed points inside each follicle in an ultrasound
image. (c) The large follicle is segmented once with each of the seed points shown while the remaining
follicles’ seed points (at the centroids of their regions) are held constant. This process is repeated for
each other follicle in the image.

4.1 Interaction models for generating interactions within follicles

For these segmentation applications, sets of correct interactions for three types of interaction modes were

generated. For each follicle to be analyzed, a set of seed points was generated for several segmentation

algorithms. Seed points were sampled on a grid with a spacing of between 2 and 14 pixels depending on

follicle size. The number of seed points to be used for the follicle was determined as a function of its area using

the cubic spline interpolation function shown in Figure 4.1(a). Interpolation points were selected empirically

based on the data set. This resulted in sets of seed points consisting of between 50 and 375 seed points for

each follicle.

Each follicle was segmented using each seed point from its set of correct interactions exactly once while

the seed points for any other objects in the image were held constant (Figure 4.1(c)). These constant seed

points were the centroids of the follicle region, determined from the ground truth. This method of generating

and using seed points for segmenting objects in images was published in 2013 [54].

For five algorithms, a set of brush stroke interactions were generated for each follicle to be analyzed.

Two types of brush strokes, straight and curved, were generated for both foreground (follicle regions) and

background regions. Straight brush strokes were generated randomly inside the follicle region. Sizes of the

straight brush strokes were determined using Equation 3.1 for lim1 = 0.6 and lim2 = 2.0. The value of

strokeUnit was computed using Equation 3.2 for n = 5 and the specific thresholds shown in Equation 4.1:

strokeUnit =



20, diameter ≤ 32

35, diameter ≤ 56

50, diameter ≤ 96

65, diameter ≤ 136

85, diameter > 136

(4.1)
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Figure 4.2: Straight brush strokes inside the follicle region

These thresholds have been determined empirically based on the diameters of the follicles considering the

fact that the maximum length of a stroke within a follicle should be roughly proportionate to the follicle size,

which of course, does not prevent generation of shorter strokes. The number of strokes for a follicle were

determined using Equation 3.3 for n=3 and replacing the parameters with the values in Equation 4.2:

numStrokes =


round(numPixels/140), numPixels < 1000

round(numPixels/150), 1000 ≤ numPixels < 2000

round(numPixels/200), numPixels ≥ 2000

(4.2)

Expected feasible numbers of strokes within follicle regions were considered for determining these values.

Figure 4.2 shows a few straight brush strokes randomly generated within a follicle region. Only a subset of

the generated strokes are shown to allow for better visibility; otherwise, strokes could not be individually

identified due to the high density of strokes.

Curved strokes were generated as the segments of iso-contours of the distance transform of the follicle

region. The number of iso-contours in each follicle, which varied between 1 to 14, was determined using

Equation 3.4 for div=6. The number of strokes in each iso-contour varied between 1 and 6 and was computed

using Equation 3.5. The length of each stroke varied between 27 to 77 pixels and were determined using

Equation 3.3. The gap between two successive iso-contours is 3 pixels and between strokes on the same

iso-contour is 8 pixels.

Brush strokes for the background region were also generated as straight and curved strokes but the number

of these strokes was not dependent on the background area, rather, it was determined empirically. Various

numbers of background strokes, starting from 1 as the number of strokes, were tested to determine the right

number of strokes that are good enough for producing the best possible segmentation with all other settings

being unchanged and seven strokes were found sufficient for most of the images. An exhaustive testing

approach was used for this empirical study. A fixed set of manually generated background strokes were used

for each image. Figure 4.3 shows an image with the generated curved brush strokes inside the ovarian follicle

in the ultrasound image.

The third type of interaction generated for two algorithms was closed contour. Two types of closed
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(a) (b) (c)

Figure 4.3: (a) Curved brush strokes inside the follicle (b) Curved brush strokes of three categories
shown in different colours (c) Each follicle is segmented using each brush stroke from its set of all brush
strokes exactly once while the brush strokes for any other follicle in the image are held constant

(a) (b)

Figure 4.4: (a) Closed contour and (b) Iso-contour inside the follicle region

contours were generated. One type of closed contours, elliptical in shape, was generated in different sizes

almost everywhere in the follicle area (Figure 4.4(a)).

Another type of closed contour were generated which was quite different, in shape and number, from the

first type. These were iso-contours and the number of these contours was much less compared to that of the

first type of contour due to the difference in shapes between these two types (Figure 4.4(b)). The number of

these contours was computed using Equation 3.6 using div = 1.5.

4.2 Categorization of interactions

In order to analyze the segmentation results, interactions were categorized according to the position of the

interaction inside the follicle region, where this position is numerically represented according to the distance

of the interaction from the centroid of the follicle. For seed point mode of interaction, seed points are
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categorized into three groups, denoted as peripheral, intermediate and central, considering the distance of

the seed point from the centre of the follicle using Equation 4.3 for n = 3 and where a is the distance of the

seed point from the nearest boundary point of the follicle and b is the distance of the seed point from the

centroid of the follicle.

c =


peripheral, a

a+b ≤ 1/3

intermediate, 1/3 < a
a+b ≥ 2/3

central, 2/3 < a
a+b

(4.3)

Curved brush strokes were categorized into two or three groups depending on the size of the follicle using

Algorithm 1 described in Section 3.1.2. For follicles having a diameter larger than 3.75 mm, sampled brush

strokes were categorized into three groups: central, intermediate and peripheral depending on their positions

within the follicle region from the centroid. For each follicle having a diameter between 2.5 mm and 3.75

mm, sampled brush strokes were similarly categorized into two groups: central and peripheral. Figure 4.3(b)

shows the central, intermediate and peripheral strokes in a follicle region.

Straight brush strokes were categorized into two or three groups depending on the size of the follicle.

The category of each pixel of a straight brush stroke is first determined applying the same technique which

is used for seed points and the total pixel counts for each category is computed. Then the category of a

straight brush stroke is determined by majority vote of the categories of the individual pixels that comprise

the straight brush stroke.

Closed contour type of interactions were categorized into two or three groups in the same way as brush

strokes. For determining the category of an iso-contour, distances of all the pixels of an iso-contour from the

boundary of the follicle were computed. Then, the mean of these distances were computed and was used to

determine the category of the iso-contour in the same way as for seed points.

4.3 Analysis of the segmentation results

After generating and categorizing the interactions, all the images of the follicle dataset having a total of

81 follicles with diameter > 2.5mm were segmented by nine segmentation applications using seven different

algorithms and three different interaction modes. Then the results were analyzed using several statistical

methods which will be explained in the next sub sections.

4.3.1 Mean Segmentation Accuracy Within Interaction Categories

Evaluation of segmentation results start with measuring the accuracy of segmentation using three metrics:

Dice, RMSD and HD. For each algorithm and each follicle to be analyzed, the accuracy of the segmentation

resulting from each generated foreground stroke was computed using each of the three accuracy measures.
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Mean and standard deviation of these metrics for each follicle were computed. According to the proposed

methodology, interactions were categorized into different groups and segmentation results were analyzed sepa-

rately for each group of interactions. This analysis revealed a detailed picture of mean segmentation accuracy

within interaction categories presented in figures 4.5 to 4.7. Large volume of findings and observations from

these figures can be generalized as a summary that, there can be significant variabilities in the resulting

segmentations depending on the position of interactions for individual follicles.

Figure 4.5 presents the mean and standard deviations (as error bars) of Dice for each follicle, grouped by

the overall, central, intermediate and peripheral group of interactions (the columns) for all nine algorithms

GCSP , GCBS, GSC, GSCSeq, TRC, Onecut, DRLSE, DRLSEIC and GCnoSP (the rows). Large

variations in the values of Dice coefficients can be observed from the error bars for two algorithms DRLSE

and DRLSEIC. These large variations indicate that these two algorithms perform poorly for this particular

segmentation problem i.e. more affected by the position of interactions. The follicle indices are positioned

on the horizontal axis in decreasing order of their cross-sectional diameter. A linear regression line, obtained

by using the function option ‘Linear Trendline’ (Excel 2011 for Mac, Microsoft Corporation), fit to this data

shows that Dice coefficients generally decrease for smaller follicles. For algorithms GCSP (top row) and

GCnoSP (bottom row), slopes of the linear regression lines not only show clear downward trend but also

the slopes are very similar for all groups of interactions, which indicate that for these two algorithms, Dice

coefficients decrease with decreasing follicle size no matter where the interactions are provided inside the

foreground. For all other algorithms, trends of the linear regression lines are slightly downward except for

the TRC algorithm (5th row from top to bottom). Slopes of the trend lines for the algorithms GCBS (2nd

row from top to bottom) and Onecut (6th row from top to bottom) are slightly downward and are similar

for all groups of interactions, which indicate that for these algorithms, Dice coefficients decrease very slightly

with decreasing follicle size for all types of interactions provided by users inside the foreground object i.e.,

the trend remains same with varying follicle size. For five other algorithms, slopes of the trend lines are

not similar for all kinds of interaction groups, which means that, for these algorithms, the trend varies with

varying follicle size depending on the type of the interaction group. These five algorithms, except for TRC,

have, in general, a very slight downward trend of the regression lines, but the slopes are not same for four

types of interaction groups. The slopes of the trend lines for the central interactions is largest compared to

that for intermediate and peripheral interactions and slopes of the trend lines gradually decrease from left

to right order i.e., from central to peripheral order. This indicates that the impact of the follicle size on the

Dice coefficients gets weaker as the interactions move from the central region to the peripheral regions inside

the foreground object. For the algorithm TRC, the trend line is almost horizontal for overall, intermediate

and peripheral categories, whereas the trend line is very slightly downward for central interactions, which

is an indication that for this algorithm, the Dice coefficient doesn’t change much with varying follicle size

except when the interactions are provided in the central follicle region.

Figure 4.6 presents the mean and standard deviations (as error bars) of RMSD for the overall, central,
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Figure 4.5: Mean and Standard Deviation of Dice with error bar for the overall, central, intermediate
and peripheral group of interactions from the left to right order respectively in each row for nine
algorithms GCSP , GCBS, GSC, GSCSeq, TRC, Onecut, DRLSE, DRLSEIC and GCnoSP from
the top to bottom row order respectively.
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Figure 4.6: Mean and Standard Deviation of RMSD with error bar for the overall, central, interme-
diate and peripheral group of interactions from left to the right order respectively in each row for nine
algorithms GCSP , GCBS, GSC, GSCSeq, TRC, Onecut, DRLSE, DRLSEIC and GCnoSP from
top to bottom row order respectively.
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Figure 4.7: Mean and Standard Deviation of HD with error bar for the overall, central, intermediate
and peripheral group of interactions from left to right order respectively in each row, for nine algorithms
GCSP , GCBS, GSC, GSCSeq, TRC, Onecut, DRLSE, DRLSEIC and GCnoSP from top to bottom
row order respectively.
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intermediate and peripheral group of interactions in the same fashion and arrangement of algorithms as in

Figure 4.5. From the charts in this figure, it is difficult to find out any general trend for the regression lines

because the trends are not similar for different algorithms. For algorithms GCSP (top row), Onecut (6th row

from top) and GCnoSP (bottom row) trend lines are almost parallel to the horizontal line which shows that

the segmentation results, in terms of RMSD, do not vary with varying object size for all types of interaction

patterns. For algorithms GSC (3rd row from), GSCSeq (4th row from top) and TRC (5th row from top),

trend lines are upward for all kinds of interaction groups, which indicate that RMSD values increase with

decreasing follicle size i.e., the segmentation results, in terms of RMSD, get worse as the object size gets

smaller. For algorithms GCBS, DRLSE and DRLSEIC, trend lines are slightly downward for all groups of

interactions which generally indicate that RMSD values decrease with decreasing size of the objects i.e., the

segmentation results, in terms of RMSD, get slightly better as the object size gets smaller. As the y-axes of

these charts represent the values of RMSD, the magnitude of these values give an idea about the performance

of the segmentation for a particular algorithm for a specific type of interaction pattern. From this view point,

the RMSD is relatively small for the algorithms Onecut, GCSP , GCnoSP , DRLSE and DRLSEIC, which

indicate that the segmentation results, for these algorithms are better compared to that of other algorithms.

On the other hand, large variations in the values of RMSD are observed for the algorithms GSC, GSCSeq

and TRC, which are the indications that, accuracy can vary a lot based on the choice of interaction location.

Another interesting findings from these charts is that, for all the algorithms, trends of the regression lines

are similar for all types of interaction groups i.e., the interaction pattern has little impact on the trend of

the RMSD values.

Figure 4.7 presents the mean and standard deviations (as error bars) of HD for the overall, central,

intermediate and peripheral group of interactions again in the same fashion and arrangement as in Figure 4.5.

The charts of Figure 4.7 do not show that the different algorithms have different trends with decreasing object

size. For algorithms GCSP (top row), TRC (5th row from top), Onecut (6th row from top) and GCnoSP

(bottom row), trend lines are almost parallel to the horizontal line, which indicates that the segmentation

results, do not vary with varying object size for all categories of interactions. For algorithms GSC (3rd

row from top) and GSCSeq (4th row from), trend lines are upward for all categories of interactions which

indicate that HD increases (worsens) with decreasing size of the objects. For algorithms GCBS, DRLSE and

DRLSEIC, trend lines are slightly downward for all types of interaction patterns which generally indicate

that HD decreases (improves) with decreasing size of the objects. From the charts of this figure, it can

be observed that the magnitude of HD are relatively small for the algorithms Onecut, GCSP , GCnoSP ,

DRLSE and DRLSEIC, which is an indication that the segmentation performance of these algorithms is

better than that of other algorithms. By contrast, large variations in the HD values are evident for the

algorithms GSC, GSCSeq and TRC, which imply that, accuracy can vary a lot based on the choice of

interaction positions. Like RMSD, linear regression lines show the same trends for all groups of interactions

for each particular algorithm which is an evidence that segmentation results, in terms of HD, do not depend
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much on the position of the interactions inside the follicle region.

In the last few paragraphs, mean segmentation results in terms of Dice, RMSD and HD are discussed

from the viewpoint of the impact of follicle size on these results. It was observed that the impact of object

size on the segmentation results were not consistent. For each metric, some algorithms are not sensitive

to the follicle size irrespective of the position of the interactions inside the follicle region, whereas there is

evidence of slight impact of the follicle size on the segmentation results for some of the algorithms. Again,

where impact of follicle size is evident, it is not same for all groups of interactions for some of the algorithms.

There are some algorithms too, for which impact is visible but the trends of the impact are similar for all

groups of interactions. Due to this diverse relation of follicle size with the segmentation result metrics, it

has become very important to assess the significance of these regressions in term of the predictor variable

i.e., independent variable, object size, on the response or dependent variable Dice, RMSD and HD. p values

for the independent variable tells us whether the independent variable has the predictive capability which is

statistically significant. An independent variable that has a low p value suggests that changes in the values of

independent variable are related to changes in the dependent variable. Conversely, a larger p value suggests

that changes in the independent variable are not associated with changes in the dependent variable.

Table 4.2 presents the p values of the regressions for Dice, RMSD and HD for overall, central, intermediate

and peripheral group of interactions for all nine algorithms. Significant p values in the table are shaded grey.

Significant p values suggest that for these regressions, changes in the follicle size are associated significantly

with the changes in the corresponding segmentation metric. We can observe that all the entries, except

one, for the algorithm GCSP have significant p values, which is almost same for algorithms GCBS, GSC,

GSCSeq and DRLSE, where all the entries, except two, have significant p values. This tells us that,

predictive capability of the independent variable follicle size on the dependent variable segmentation metric

are statistically significant for these cases. For algorithm DRLSEIC, all the entries for Dice, three entries for

HD and one entry for RMSD are significant, which suggests that this algorithm has significant relationship

for Dice and HD with follicle size. Algorithm TRC has all entries for RMSD and one entry for both Dice and

HD are significant, which means this algorithm has significant relationship between RMSD and follicle size.

All entries for Dice, for algorithms Onecut and GCnoSP and one entry for HD, for algorithm Onecut, are

significant, which suggest that predictive capabilities of follicle size on Dice are significant, but not significant

for RMSD and HD.

4.3.2 Analysis of Variance of Segmentation Accuracy Between Interaction Cat-

egories

In this section, Dice Coefficient, RMSD and HD values for each follicle are used to inspect whether these values

for three groups of interactions central, intermediate and peripheral come from the same distribution. If the

values for three groups of interactions come from the same distribution, that means there is no impact of the

position of the interaction on the resulting segmentation in term of that particular metric for that particular
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Table 4.2: P values of Dice, RMSD and HD regressions of three groups of interactions for all nine
algorithms

GCSP GCBS GSC GSCSeq TRC Onecut DRLSE DRLSEIC GCnoSP

Dice

Overall 0.00025 0.00475 0.00001 0.00004 0.40526 0.00179 0.86924 0.0019 0
Central 0.0002 0.00802 0 0 0.43104 0.00144 0.07762 0.00079 0
Intermediate 0.00018 0.15184 0 0 0.00003 0 0.00008 0.0343 0
Peripheral 0.0003 0.05392 0.00127 0.00262 0.92533 0.00209 0.00019 0.00441 0

RMSD

Overall 0.0003 0.00071 0.00043 0.00059 0.02651 0.84417 0 0.10105 0.99482
Central 0.04001 0.00031 0.0005 0.00053 0.04036 0.93618 0 0.00385 0.96316
Intermediate 0.0553 0.00079 0.78768 0.7547 0.04488 0.08301 3.2907E-13 0.06297 0.98582
Peripheral 0.0179 0.00021 0.0013 0.00194 0.03532 0.36417 0 0.91599 0.99354

HD

Overall 0.00172 0.00016 0.00408 0.00459 0.80257 0.40155 0 0.03054 0.72278
Central 0.00398 0.00006 0.0043 0.00401 0.9689 0.63492 0 0.00031 0.7062
Intermediate 0.00398 0.0008 0.34164 0.31872 0.00023 0.02089 1.11022E-15 0.01756 0.71587
Peripheral 0.00149 0.00012 0.01204 0.01515 0.33709 0.08533 0 0.83582 0.73073

algorithm. This is a hypothesis test where the null hypothesis is that the metric values for three groups

of interaction come from the same distribution. This hypothesis could be tested by applying the classic

one way ANOVA but as the values are not normally distributed, a non parametric alternative for classic

one way ANOVA, Kruskal-Wallis Test has been chosen which does not require the data to be normally

distributed. For each algorithm and each follicle to be analyzed, a Kruskal-Wallis test is performed for the

three populations consisting of the results from each category of interactions and a p value is obtained and

then the histogram of the p values have been computed for three different metrics.

Figures 4.8 to 4.10 show the histogram of the p values obtained for each follicle for the metric Dice,

RMSD and HD respectively, for each algorithm separately, where the range of the p values is divided into

six intervals: [0-0.05), [0.05-0.2), [0.2-0.4), [0.4-0.6), [0.6-0.8) and [0.8-1.0), represented by the x-axis, and the

y-axis represents the percentage of the p values that fall into each bin.

Figure 4.11 shows the same histograms for the metric Dice, RMSD and HD, but for all nine algorithms

combined together. Thus each bin contains nine values for nine algorithms represented by nine bars of

different colours. These aggregated histograms are useful to get the comparative view for all the algorithms.

The histogram for Dice coefficients shows that the percentages of p values in the first bin ([0-0.05)) are

quite large for all algorithms except the two algorithms GCSP and GCnoSP , where 2.5% and 0% of the p

values are in the first bin for these algorithms, respectively. The percentage of p values for other algorithms

ranges from 35% to 85%, where the algorithm DRLSEIC holds the top position. These percentage of p values

tell us that, for example, for 85% of the total follicles, null hypothesis is rejected by the Kruskal-Wallis Test

i.e., there is insufficient evidence to infer that Dice coefficients of three groups of interactions come from the

same distribution for 85% of the total objects of interest (follicles). For algorithm GCnoSP , none of the p

values are significant, which means the null hypothesis cannot be rejected, i.e., there is insufficient evidence

to say that Dice coefficients, for all the objects, do not come from the same distribution.

Histograms of p values for RMSD show trends similar to those for Dice coefficents except for the algorithm

DRLSE, for which only 8% of p values are significant, and the algorithms GCSP and GCnoSP , where 10%
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Figure 4.8: Histogram of p values obtained from Kruskal-Wallis Tests for Dice Coefficient for nine
algorithms

Figure 4.9: Histogram of p values obtained from Kruskal-Wallis Tests for RMSD for nine algorithms
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Figure 4.10: Histogram of p values obtained from Kruskal-Wallis Tests for HD for nine algorithms

Figure 4.11: Histogram of p values (aggregation of the same data presented in Figures 4.8 to 4.10)
obtained from Kruskal-Wallis Tests for Dice Coefficient, RMSD and HD for all nine algorithms
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and 0% of the p values are significant for these algorithms, respectively. For all other algorithms, percentage

of p values ranges from 30% to 80%, where again DRLSEIC is on the top position. Similar to Dice, the largest

percentage of p values in the last bin [0.8-1.0) is for the algorithm GCnoSP . Two other large percentage

of p values in this bin are for the algorithms GCSP and DRLSE. These values suggest that p values for

all the objects are insignificant for the algorithm GCnoSP and are insignificant for almost all the follicles

for the algorithms GCSP and DRLSE i.e., for these algorithms, there is insufficient evidence to conclude

that either all or almost all the RMSD values for three groups of interactions do not come from the same

distribution.

The histograms for HD values demonstrate trends similar to the Dice results, where the lowest percentage

of p values in the first bin are for the algorithms GCSP and GCnoSP which are 5% and 0%, respectively.

Besides these algorithms, the percentage of p values for other algorithms are in the range from 30% to 92%,

where the algorithm DRLSEIC is again on top with the largest percentage of p values. Algorithms GCnoSP

and GCSP have the largest percentage of p values in the last bin. These values indicate that the HD values

for all three groups of interactions come from the same distribution for all or almost all the objects for

algorithm GCnoSP and GCSP , respectively i.e., for these two algorithms, position of the interaction inside

the foreground objects has no significant impact on the resulting segmentation in term of HD.

4.3.3 Coefficient of Variation within Interaction Categories

For any kind of segmentation algorithm, accuracy is very important, but for a SIS algorithm, reproducibility

is also very crucial because a SIS algorithm may not be useful if it’s accuracy is good but reproducibility

is not. Coefficient of variation (CV) is used as a quick test to compute the potential reproducibility of all

the nine SIS algorithms. CV of the Dice coefficient, RMSD, and HD were computed from the segmentation

results generated by the nine combinations of seven algorithms and three interaction modes for each follicle.

This quick test is particularly useful to identify whether a segmentation algorithm has poor reproducibility,

which suggests that further exploration of that particular algorithm doesn’t look promising.

Histograms of the CV values of Dice, RMSD and HD for all nine algorithms for the 81 follicles are shown

in Figure 4.12. The range of CV values are divided into ten unequal intervals along the horizontal axis;

since most of the values are in the range of 0 to 0.2, this interval is divided into 9 bins which illustrate the

distribution of CVs within this range. CV values greater than 0.2 are included in a single bin. The vertical

axis represents the percentage of follicles for which the CV fell into the specified range. Values of CV of Dice,

RMSD and HD are computed for all of the nine algorithms. Then the CV values are categorized into four

groups: overall (includes all interactions generated), central, intermediate and peripheral. For each group of

interactions, CV of all nine combinations are presented together.

59



4.3.3.1 Dice CV

The first column (from left to right) in Figure 4.12 shows histograms of the Dice coefficient CV values for all

of the nine algorithms for 81 follicles calculated for the overall, central, intermediate and peripheral groups

of interactions.

From the figure for Dice for the group overall, it can be observed that for three algorithms GCBS, Onecut

and GCnoSP , more than 50% and for algorithm GCSP more than 30% of CV values are in the first bin

(0 – 0.0025). So reproducibility, in general, for these four algorithms might be potentially high. Again,

among these four algorithms, 90% (highest percentage) CV values for Onecut algorithm are in the first bin

which clearly keeps it in the leading position in term of potentially high reproducibility. For algorithms

DRLSE and DRLSEIC, 71% and 45% CV values are in the last bin (0.2 – 1.0) and these are the only two

significant frequency values in this nine which indicate that, in general, these two algorithms do not have

high reproducibility.

For the interactions located in the central region of the foreground object, for seven algorithms out of

nine, except DRLSE and DRLSEIC, more than 50% CV values are in the first bin(0 – 0.0025) and among

these seven, more than 70% CV values for five of them are in the first bin (0 – 0.0025), except GCSP and

TRC, for which 54% and 65% CV values are in that range. These values are a clear indication that when

the interactions are provided in the central region of the foreground object, segmentation reproducibility

might be potentially high for most of the algorithms and interaction modes. For two algorithms, DRLSE

and DRLSEIC, only 3% and 17% CV values are in this range, which is an evidence that segmentation

reproducibility of these two algorithms are poor even when the interactions are provided in the central

region. The highest percentage of CV values for these two algorithms are in the range 0.2 to 1.0, which also

proves the poor reproducibility of segmentation of these algorithms. For this category of interactions, Onecut

algorithm again takes the leading position, which is a clear indication that this algorithm has the greatest

potential for good reproducibility.

For the intermediate category of interactions, four algorithms GSC, GSCSeq, Onecut and GCnoSP

have more than 70% CV values in the first bin(0 – 0.0025) and three other algorithms GCSP , GCBS and

TRC have more than 30% values in this range, whereas two other algorithms DRLSE and DRLSEIC have

very small percentage ( less than 10%) of CV values in this range. These numbers show that for this group

of interactions, the aforementioned four algorithms might have high segmentation reproducibility whereas

three other aforementioned algorithms are average and last two algorithms are poor in terms of potential

reproducibility of segmentation. The last range of CV values has got only a single significant frequency value,

which is for the algorithm DRLSE, which is different from the previous two groups of interactions because

the algorithm DRLSEIC has a very small percentage of CV values in this range. This phenomenon can be

explained in a way that for the algorithm DRLSEIC, intermediate group of interactions are actually closer

to the boundary of the foreground object compared to the central group of interactions, which forces the

segmented boundary close to the actual boundary of the object.
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Three algorithms GCBS, Onecut and GCnoSP have more than 50% and three other algorithms GCSP ,

GSC and DRLSEIC have more than 30% CV values in the first bin (0 – 0.0025) for the peripheral group of

interactions. The Onecut algorithm is again on top in terms of CV, as it was for all other group of interactions.

A moderate CV for the algorithm DRLSEIC is not surprising because, for all other algorithms except

DRLSEIC, peripheral interactions are located in a corner area compared to the object boundary whereas

for the algorithm DRLSEIC, peripheral interactions are closest to the true boundary, as the interactions

are closed contours and almost all the pixels of that contour are in the peripheral region.

4.3.3.2 RMSD CV

The second column (from left to right) in Figure 4.12 shows the distribution of CV values for overall, central,

intermediate and peripheral interactions for RMSD for all nine combinations of algorithms and interactions.

Six algorithms GCBS, GSC, GSCSeq, TRC, Onecut and GCnoSP have more than 50% CV values in

the first bin(0 – 0.0025) for overall group of interactions which is an indication that these algorithms are

reasonably good candidates for high segmentation reproducibility for all kinds of interaction patterns. One

important observation here is that the two algorithms DRLSE and DRLSEIC have no CV values in this

bin at all; rather, 75% CV values of these algorithms are in the last bin(0.2 – 1.0) which suggests that these

two algorithms have low reproducibility.

For the central group of interactions, the six algorithms GCBS, GSC, GSCSeq, TRC, Onecut and

GCnoSP have more than 70% and GCSP algorithm has almost 50% CV values in the first bin (0 – 0.0025)

which indicates that all these algorithms are likely to have good segmentation reproducibility when interac-

tions are provided in the central region. Algorithms DRLSE and DRLSEIC have most of their CV values

in the last bin(0.2 – 1.0), with no other algorithm having a significant percentage of CV values in this bin,

which again shows the trend that these algorithms have poor reproducibility even for the interactions placed

in the central region.

For the intermediate group of interactions, more than 75% of CV values are in the first bin(0 – 0.0025),

for algorithms GSC, GSCSeq, TRC, Onecut and GCnoSP whereas 34% and 47% CV values are in this

bin for the algorithms GCSP and GCBS, respectively. Very small percentage of CV values in the first bin

and largest percentage of CV values in the last bin(0.2 – 1.0) for the algorithms DRLSE and DRLSEIC

again indicate segmentation reproducibility of these algorithms are not good, rather might be worse than the

overall and central group of interactions. The frequency of CV values for this group of interactions are roughly

smaller in the first bin and larger in the last few bins compared to the central group of interactions, which

represents the fact that overall potential segmentation reproducibility gets a little worse when interactions

are shifted from the central to intermediate region.

Potential segmentation reproducibility of the algorithms in term of RMSD CV gets even worse when

the interactions are placed in the peripheral region, which is evident in the bottom chart of the second

column (from left to right) in Figure 4.12. Five algorithms GSC, GSCSeq, TRC, Onecut and GCnoSP
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Figure 4.12: Coefficient of variation of Dice, RMSD and HD for four groups of seed points
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have more than 50% CV values in the first bin(0 – 0.0025) and the smallest percentage of CV values in this

bin is for the algorithm DRLSE as was true for all other groups of interactions. The largest percentage

of CV values in the last bin (0.2 – 1.0) is again for the algorithms DRLSE and DRLSEIC, which show

the same trend that segmentation reproducibility of these two algorithms is poor for peripheral interactions.

Algorithm DRLSEIC has close to 30% CV values in the first bin, which indicates that potential segmentation

reproducibility of this particular algorithm gets gradually better when interactions move from central to

peripheral region, which is an opposite trend compared to all other algorithms. This trend can be explained

by the fact that the iso-contour actually gets closer to the actual object boundary in the order from central to

peripheral regions, which is completely opposite to other interaction modes. DRLSEIC is the only algorithm

whose potential segmentation reproducibility gets better for the interaction order from central to peripheral;

though, in general, its potential reproducibility is not good, which can be recognized by the large frequency

of CV values in the last bin. The potential reproducibility of algorithm DRLSE is the poorest among all

the algorithms, which is evident by the largest frequency of CV value in the last bin, but the trend is not

similar to algorithm DRLSEIC.

The potential segmentation reproducibility of the Onecut algorithm is the best among all the algorithms,

which can be observed by the largest percentage of CV values in the first bin for all groups of interactions.

It was also true when segmentation reproducibility was measured using Dice CV.

4.3.3.3 HD CV

The third column (from left to right) in Figure 4.12 shows the distribution of HD CV values for overall,

central, intermediate and peripheral interactions for all nine combinations of algorithms and interactions.

For all the interactions together, the six algorithms GCBS, GSC, GSCSeq, TRC, Onecut and GCnoSP

have more than 60% and algorithm GCSP has 36% CV values in the first bin(0 – 0.0025). Algorithms

DRLSE and DRLSEIC have almost no CV values in the first bin, whereas these algorithms have almost

80% CV values in the last bin. These numbers represent the fact that these six algorithms have high chance

of being reproducible, whereas algorithms DRLSE and DRLSEIC appear to have poor reproducibility.

Another algorithm which has a significant percentage of CV values in the last bin is GCSP which has some

small percentage of CV values spread across several bins.

All algorithms, except DRLSE and DRLSEIC, have more than 60% CV values in the first bin (0 –

0.0025) for the central group of interactions whereas algorithms DRLSE and DRLSEIC have only a small

percentage of CV values in this bin. These two algorithms not only have the highest percentage but also

have the only significant percentage of CV values in the last bin. These numbers indicate that, except for

DRLSE and DRLSEIC, all other algorithms are likely to have higher reproducibility.

Similar to overall group, the same seven algorithms have more than 50% CV values in the first bin(0

– 0.0025) for the intermediate group of interactions, whereas algorithms DRLSE and DRLSEIC have a

small percentage of CV values in this bin. Similar to the overall and central group of interactions, the largest
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frequency values in the last bin are for the algorithms DRLSE and DRLSEIC. In this case, percentages of

CV values are larger than that for central group of interactions.

For the peripheral group of interactions, the six algorithms GCBS, GSC, GSCSeq, TRC, Onecut and

GCnoSP have more than 50% and the two other algorithms GCSP and DRLSEIC have more than 30%

CV values in the first bin. Only algorithm DRLSE has small percentage of CV values in this range. A

significant percentage of CV values for algorithm DRLSEIC is notable here because most of the algorithms

have smaller frequency of CV values in this bin compared to central and intermediate group of interactions.

Algorithms DRLSE and DRLSEIC still have the highest frequencies of CV values in the last bin, though

for both of them, frequency of CV values are smaller than for the intermediate group of interactions.

Like Dice coefficient and RMSD, algorithm Onecut has again the largest percentage of HD CV values in

the first bin (0 – 0.0025) for three groups of interactions, which suggests that Onecut algorithm is the best

candidate among all algorithms in term of potential segmentation reproducibility. In this case, GSC and

GCnoSP algorithms are very close to Onecut algorithm in terms of distribution of CV values. Algorithms

DRLSE and DRLSEIC, like Dice coefficient and RMSD, have the highest percentage of CV values in the

last bin, which is further evidence that these two algorithms exhibit poorer segmentation reproducibility

than all other algorithms. The frequency of CV values for algorithm DRLSEIC is almost similar for central,

intermediate and peripheral group of interactions, though for algorithm DRLSE, these are dissimilar for

different groups of interactions. One interesting point to observe here is that the three bins of CV values

from second to fourth, contain very few CV values.

4.3.4 Significance test of CV for pairs of interaction groups

From the analysis of the last section, we found that some algorithms have poor reproducibility and some

other algorithms have the possibility of having high reproducibility using CV of three accuracy measures. We

noticed that reproducibility was not same for all algorithms and all interaction modes. Even for a particular

algorithm, reproducibility was not similar for different groups of interactions. This encouraged us to inspect

whether the CV values for three different groups of interactions are different or not, from the statistical point

of view. We sought to test this between all possible pairs of interaction groups for each algorithm. The CV

values of Dice, RMSD and HD for each group of interactions are compared to that of two other groups of

interactions to statistically test whether the values for each pair of interaction groups come from the same

population. In order to assess this, a non-parametric statistical hypothesis test named Wilcoxon rank-sum

test (WRS), also known as the Mann-Whitney U test , is applied as the CV values are not normally

distributed. For each of the nine algorithms, CV values of Dice, RMSD and HD for each group of interactions

are paired forming a total of six pairs: overall and central, overall and intermediate, overall and peripheral,

central and intermediate, central and peripheral and intermediate and peripheral. Six pairs for each of the

metrics Dice, RMSD and HD have made total 6x3 = 18 combinations for each of the nine algorithms. Each

pair of the CV values are tested by the WRS test and a p value as the outcome of the test is reported. Table
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4.3 shows the p values for all the tests using all pairs of CV values for all nine algorithms. According to the

hypothesis of the WRS test, a p value <0.05 indicates that the null hypothesis that two samples come from

the same population is rejected i.e., the pair of CV values are significantly different. On the other hand, p

value >0.05 indicates there is insufficient evidence of difference between the two samples to conclude that

they are drawn from different distributions. P values <0.05 in the table are shaded gray. 117 out of 162

entries in the table are less than 0.05, which indicates that 72% of the p values are significant i.e., for these

cases, CV values of two groups are different. Some of the interesting facts can be observed from this table

which need to be explained are given below:

• For all three metrics Dice, RMSD and HD, all the p values in the topmost row are significant i.e.,

the CV values for the overall and central group of interactions come from different populations for all

nine algorithms. This is a clear indication that segmentation results for the interactions in the central

region are different than the average segmentation results obtained from considering the whole set of

interactions.

• For the metric Dice, all the p values in the fifth row (from the top) are significant i.e., the Dice CV

values for the central and peripheral group of interactions do not come from the same population for all

of the nine algorithms. This shows that segmentation results for the central interactions are different

than that for peripheral interactions. For the metric HD also, all the p values, except for the algorithm

DRLSEIC, are significant, which indicates that interactions in the central region generate different

segmentation results than that for the interactions in the peripheral region.

• For the pair of interactions in the central and intermediate regions, p values are significant for all

three metrics, for all algorithms except DRLSEIC. This points to the fact that the segmentation

results generated by the central and intermediate interactions are different, except for the algorithm

DRLSEIC, for which there is no significant evidence that the means are different. It also indicates

that interactions in the central region are not only different from the peripheral region but also from

intermediate regions on average.

• The largest and second largest number of non significant p values are found in the third and last rows

for each metric Dice, RMSD and HD, which means that, in most cases, there is insufficient evidence to

conclude that the mean performance metrics differ significantly between the intermediate and peripheral

regions.

• From the viewpoint of each individual algorithm, the GSC algorithm has the highest number of sig-

nificant p values (17 out of 18 entries) which makes the algorithm most sensitive to the position of the

interaction inside the foreground object. By contrast, GCBS and Onecut algorithm have the lowest

and second lowest number of significant p values, which means there is little evidence to conclude that

these algorithms are greatly sensitive to the position of interactions.
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Table 4.3: P values of Dice, RMSD and HD CV between different groups of interactions for all nine
algorithms

GCSP GCBS GSC GSCSeq TRC Onecut DRLSE DRLSEIC GCnoSP
Overall and
Central

1.1672e-06 3.2493e-10 1.1793e-32 6.1627e-32 7.1029e-27 6.7891e-07 1.1223e-07 0.0068817 1.0741e-19

Dice

Overall and
Intermediate

0.0058 0.61457 4.2399e-20 1.156e-18 0.0006595 0.054298 0.33176 7.351e-08 8.311e-06

Overall and
Peripheral

0.7809 0.43159 0.0005772 0.00027051 1.4573e-10 0.080093 9.9147e-05 7.4021e-18 0.71308

Central and
Intermediate

0.0028 6.4306e-08 1.0865e-07 8.6638e-08 8.2464e-15 0.0044224 0.0002066 0.76806 7.4555e-11

Central and
Peripheral

9.1029e-06 3.1614e-07 4.4222e-26 4.341e-25 4.6272e-18 0.0051626 9.0098e-09 0.00083798 7.1451e-20

Intermediate
and Periph-
eral

0.0207 0.80435 9.5063e-14 1.4593e-12 0.96087 0.92613 5.0944e-05 1.6997e-06 4.9715e-06

Overall and
Central

2.3647e-06 5.9566e-11 3.2094e-14 3.0957e-14 9.6484e-12 4.9984e-07 0.00015673 5.3221e-09 6.7315e-19

Overall and
Intermediate

0.00421 0.74846 9.5058e-05 0.0010704 0.012497 0.020442 0.043044 3.3134e-08 3.8476e-08

RMSD

Overall and
Peripheral

0.8374 0.66185 0.8175 0.48666 0.6114 0.0018664 0.057341 5.8836e-12 0.87447

Central and
Intermediate

0.0132 2.1039e-08 6.4962e-05 1.1215e-05 1.1732e-05 0.017211 0.046607 0.075002 2.7018e-10

Central and
Peripheral

1.7319e-06 8.0056e-08 2.7046e-12 2.6634e-10 9.2565e-09 0.087599 0.1399 0.43324 6.9009e-19

Intermediate
and Periph-
eral

0.0033 0.84167 0.00062545 0.021939 0.070158 0.58298 0.97818 0.014434 4.0925e-08

Overall and
Central

2.8023e-08 4.4888e-08 3.0705e-11 4.5404e-12 1.1054e-10 4.3254e-06 6.0133e-08 1.1881e-10 9.6985e-11

Overall and
Intermediate

0.0039 0.90651 4.9308e-05 0.00085136 0.016019 0.017114 0.20806 7.6983e-09 0.00090676

HD

Overall and
Peripheral

0.8019 0.35433 0.0472 0.13328 0.18867 0.10355 0.10166 4.8013e-11 0.0095579

Central and
Intermediate

1 3.4354e-07 0.012909 0.0010164 3.2766e-05 0.042627 4.661e-05 0.089054 7.6751e-08

Central and
Peripheral

1.5782e-07 1.758e-05 5.3654e-06 4.7046e-07 2.2006e-06 0.0033033 0.0046939 0.99554 2.9474e-09

Intermediate
and Periph-
eral

0.0186 0.36138 0.031299 0.06481 0.35969 0.39515 0.44215 0.13684 0.26279

4.4 Results and Discussion

Based on the statistical analysis of the results obtained using groups of correct interactions for the nine

segmentation applications of seven algorithms combined with three interaction modes, we have the following

main results:

1. Reproducibility of segmentation measured by CV of Dice, RMSD and HD, in general, indicate that for

all of the algorithms except DRLSE, reproducibility worsens in the order of central to the peripheral

group of interactions i.e., for better reproducibility, user interactions should be positioned in the central

region and peripheral region should be avoided. This result would not be realized by traditional

approaches because they do not categorize interactions to determine the impact of the position of

interactions on the reproducibility of segmentation.

The magnitude of the gradual change is higher for Dice CV compared to RMSD CV and HD CV

i.e., impact of interaction position on the reproducibility of segmentation is more apparent when it is

measured by Dice CV. This is evident by the concentration of high frequencies in the first bin which

is smaller in the histogram of Dice CV compared to that of RMSD and HD (Figure 4.12). This result

also could not be achieved by standard evaluation methods due to the absence of the categorization of

interactions.
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Onecut is the best among the algorithms in term of potential reproducibility for all groups of interactions

measured by all three metrics. GCBS, GCnoSP are the next two best algorithms which also perform

well in terms of reproducibility for all groups of interactions, but the two other algorithms GSC and

GSCSeq perform well only when the interactions are positioned in the central and intermediate regions.

In general, it is also true that when interactions are provided in the central region, almost all the

algorithms perform well except the algorithm DRLSE which suggests that this algorithm may be not

suitable for semiautomatic segmentation for this particular image dataset. These differences in the

impact on the reproducibility of segmentation among the different groups of interactions could not be

attained with standard methods because they would have computed CVs only for the whole set of

interactions.

Segmentation performance, in term of potential reproducibility, of algorithm DRLSEIC is also poor,

which is not unexpected. Interestingly, its performance gradually degrades for the groups of interactions

in the order from peripheral to central, which is contrary to all other algorithms. This is because the

interactions get closer to the true boundary of the object in the order of interaction groups from central

to peripheral, which is explained in detail in Section 4.3.3.1. Frequencies of CV values are flat and small

in the middle bins of the histogram and get slightly larger for the interaction groups in the order from

central to peripheral which is similar to the general trend of the segmentation reproducibility getting

worse in the same order. Without categorizing the interactions, we could only know the overall trend of

reproducibility for this algorithm and this interesting difference among the effect of different interaction

groups could not be discovered.

Here, it is to be noted that, reproducibility is only a measure of consistency of segmentation performance

and an algorithm could be precisely reproducible but very poor from the standpoint of accuracy.

2. Potential reproducibility of segmentation is not same when the interactions are placed anywhere inside

the object region compared to when they are placed in the central region, which is clearly evident

by the first rows (from top to bottom order) for all three metrics Dice, RMSD and HD in table 4.3.

Potential reproducibility of segmentation are not same when these are compared between the central

and peripheral interactions, which is also true between the interactions provided in the central and

intermediate regions. For some of the algorithms, mean Dice CV, RMSD CV and HD CV values are also

not the same between the intermediate and peripheral interaction groups, but for some other algorithms,

these values come from the same distribution. This suggests that the difference between the intermediate

and peripheral interactions, in terms of corresponding impact on segmentation reproducibility, are not

always significant. Number of pairs of interaction groups that do not exhibit significant differences, in

term of CV values, is smallest for Dice and gradually increases for RMSD and HD, which tells us that

the difference between the potential segmentation reproducibility, in terms of CV, are more apparent

when these results are measured by RMSD and HD than Dice. These subtle differences among the effect

of different interaction groups on segmentation reproducibility could not be obtained using standard
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methods because they do not categorize interactions and does not employ statistical hypothesis testing

to analyze segmentation performance.

3. The impact of object size on the resulting segmentations is not the same for all algorithms and not

same for all groups of interactions too. Four trends are observed in the charts of the Figure 4.5 for

Dice:

(a) Mean Dice decreases with decreasing follicle size and the slope of the trend line is same for all

groups of interactions. Algorithms GCSP , GCBS and GCnoSP fall into this category.

(b) Mean Dice decreases with decreasing follicle size but slope of the trend line is not same for all

groups of interactions. Algorithms GSC, GSCSeq and DRLSEIC are included in this category.

(c) Mean Dice almost does not change with the follicle size and this trend is same for all groups of

interactions. Algorithm Onecut belongs to this category.

(d) Mixed trends for different groups of interactions for each particular single algorithm i.e., mean

Dice may decrease, increase or remain almost constant with decreasing follicle size for different

groups of interactions. This category includes algorithms TRC and DRLSE.

For RMSD, there were also four trends observed in Figure 4.6:

(a) Mean RMSD decreases with decreasing follicle size and the slope of the trend line is same for all

groups of interactions. Algorithms GCBS and DRLSE fall into this category.

(b) Mean RMSD decreases with decreasing follicle size but slope of the trend line is not same for all

groups of interactions. Algorithm DRLSEIC is included in this category.

(c) Mean RMSD almost does not change with the follicle size and this trend is same for all groups of

interactions. Algorithms GCSP , Onecut and GCnoSP belong to this category.

(d) Mean RMSD increase with decreasing follicle size for different groups of interactions. This category

includes algorithms GSC, GSCSeq and TRC.

Figure 4.7 for HD also presents four kinds of trends which are exactly same as that for RMSD but the

list of the algorithms for each type of trend are not same.

(a) Mean HD decreases with decreasing follicle size and the slope of the trend line is same for all

groups of interactions. Algorithm GCBS belongs into this category.

(b) Mean HD decreases with decreasing follicle size but the slope of the trend line is not same for all

groups of interactions. Algorithms DRLSE and DRLSEIC are included in this category.

(c) Mean HD almost does not change with the follicle size and this trend is same for all groups of

interactions. Algorithms GCSP , Onecut, GCnoSP and TRC fall into this category.

(d) Mean HD increase with decreasing follicle size for different groups of interactions. This category

includes algorithms GSC and GSCSeq.
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Existing evaluation approaches compute means for the whole set of interactions i.e., does not categorize

the interactions into different groups and does not sort the mean according to the object size. All of

these findings could not have been discovered without categorizing interactions into different groups

and using statistical methods for analyzing the segmentation results.

4. The impact of object (follicle) size on resulting segmentations are diverse and do not follow any par-

ticular pattern. For some of the cases, there is no impact at all and for some of the cases, different

patterns of impact were observed. Even whenever impacts are evident, not all of them are significant.

Significance of these impacts, assessed by the p values of the regressions between the individual metric

and object (follicle) size, partly represented by the trend lines in figs. 4.5 to 4.7, suggest that for 31.48%

cases, p values are not significant. This tells us that for these cases, object size doesn’t have predictive

capability on the response or dependent variable Dice, RMSD or HD, which means that the changes in

the values of these metrics are not associated with the changes in object (follicle) size. According to

the proposed methodology, applying the method of statistical analysis, including the use of trend lines

and testing significance of the regressions, helped to discover this fine detail about the impact of object

size on segmentation results, which couldn’t be possible using standard methods of evaluation.

5. In order to understand the impact of position of the interaction inside the object on the segmentation,

testing of the hypothesis, whether the Dice, RMSD and HD values for three groups of interactions for

each object come from the same distribution, has been conducted for all algorithms. Results of the

hypothesis tests show that, for 41%, 31% and 35% of objects (follicles) respectively for Dice, RMSD

and HD, metric values do not come from the same distribution considering all nine algorithms. This

indicates that, in general, segmentation results differ, depending on the position of the interaction inside

the object. This impact again varies depending on the algorithm itself and the particular metric being

used for evaluating the segmentation results. These findings could have been revealed only by applying

statistical methods for analyzing segmentation results based on categorization of interactions.

Results of this study have revealed many subtle details about the performance of nine segmentation

algorithms, which allow us to know about the real characteristics and true capability of each algorithm.

Knowing this detailed performance is significant because segmentation performance varies for various reasons

which include the algorithm itself, interaction modes, interaction positions, object size, image quality, etc. For

comparing the performance of several algorithms, existing methods use only a small number of segmentations

for each case, employing on average 3 to 5 human operators. The drawback of these traditional methods is

that, there are significant variabilities in the interaction patterns provided by the human operators and a

small number of interactions are not enough to capture these variabilities. As the success of SIS applications,

in the real world, depends on the end users; they should be informed the best practices for the SIS algorithms

to obtain the best possible outcome and for this reason, exploration of the SIS algorithms, in terms of the

fine detail and subtle differences regarding the segmentation performance, is essential. This kind of study, for

scientifically evaluating the performance of SIS algorithms, can reveal some additional valuable information
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about the performance of SIS algorithms, which could not be discovered by the standard method of evaluation

due to the following reasons:

1. 3-5 interactions is an insufficiently diverse sampling of the interactions that would be expected to

produce a correct segmentation.

Due to these reasons, our proposed methodology employs simulated Interaction models which overcomes

the shortcomings of the existing methods in the following ways:

1. A far more diverse and comprehensive sampling of the set of interactions, expected to produce a correct

segmentation, are considered.

2. Use of statistical methods for analyzing the results has made this proposed methodology reliable and

sound. In order to investigate the impact of the position of interaction on the resulting segmentation,

values of Dice, RMSD and HD for all groups of interactions have been tested to inspect whether there

is any difference among the means of these values for different groups i.e., whether values of these

metrics for three groups of interactions come from the same distribution or not. This hypothesis has

been tested using statistical methods, which most of the existing methods do not follow.

Hence the proposed methodology overcomes the flaws of the currently existing methods and provides a

scientific approach for in-depth performance analysis of the segmentation algorithms. Use of simulated

interaction models and sound statistical methods have made our proposed methodology different from

the existing methods by capturing the variabilities in the set of user interactions and revealing subtle

differences in the performance of different algorithms that can not be elucidated by established methods.

4.5 Summary of results

The comprehensive description of the results in the last section is very useful to know about the in-depth

details and analysis; but to get a brief picture about the relative performance of the nine algorithms is not easy

due to the high volume of the results. This section presents the summary of the results, which helps to get an

overview about the results at a glance. Figure 4.13 shows the mean and standard deviation of the accuracy

measures of the segmentation results in terms of Dice, RMSD and HD for all nine algorithms categorized into

overall and three groups of interactions. This figure provides an opportunity to see the comparative results

for all nine algorithms as a whole and also categorically based on the groups of interactions. From this

figure, it is evident that the algorithms GSC, GSCSeq and Onecut are the top three algorithms considering

the segmentation results in term of the Dice coefficient. But the Dice coefficients for different groups of

interactions are not consistent, rather variations among these values are visible. In term of consistency of the

performance metric Dice coefficients among different groups of interactions, algorithms GCnoSP , Onecut,

GCBS and GCSP are superior than other algorithms, which is clearly visible. So, in order to assess the

performance of the algorithms, both mean accuracy and consistency of the performance metrics among the
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categories of interactions should be considered. While selecting an algorithm for a particular application

based on performance, a trade-off between mean accuracy and consistency of the performance metrics is

essential. From this viewpoint, algorithm Onecut can be a good choice. But if mean accuracy is considered

more important for a particular application and consistency of the performance metric is bit ignored provided

that the placement of the interactions inside the object region can be controlled, then algorithms GSC and

GSCSeq can be better choices. Hence, this comparative view helps users to decide which algorithm to use

for a particular application depending on the requirement.

Figure 4.13 also shows the mean and standard deviation of the RMSD values where algorithms Onecut,

DRLSE, DRLSEIC, GCSP and GCBS have the lowest values (low RMSD values indicate good accuracy

and vice versa), but in terms of consistency among the values for different groups of interactions, algorithms

Onecut, GCnoSP and GCSP are better than other algorithms. So considering both mean accuracy and

consistency of the performance metrics among the groups of interactions, algorithm Onecut is on top.

When overall mean accuracy of segmentation results are considered in HD, algorithmsOnecut, DRLSEIC,

GCSP , GCBS and DRLSE have the best values but consistency of the performance metrics among the

values for different groups of interactions for algorithms DRLSE and DRLSEIC are very poor. In this

regard, algorithms Onecut, GCnoSP and GCSP have better consistency of the performance metrics than

other algorithms. Hence, considering the balance between mean accuracy and consistency of the performance

metrics among the groups of interactions, algorithm Onecut secures the top position.

Figure 4.14 shows the percentage of follicles having significant p values indicating whether Dice, RMSD

and HD values for different groups of interactions come from the same distribution or not. For all three

accuracy measures, algorithm DRLSEIC has the highest percentage of follicles having significant p values,

which means that Dice, RMSD and HD values for the highest percentage of follicles do not come from the same

distribution for this algorithm. Algorithms Onecut and DRLSE have one of the three highest percentages

of follicles having significant p-values for all three accuracy measures. Algorithm GCnoSP has the lowest

percentage of follicles having significant p values for all three accuracy measures i.e., percentage of follicles is

lowest for this algorithm where Dice, RMSD and HD values do not come from the same distribution.

Figure 4.15 presents the percentage of CV values in the range [0-0.0025] for all three accuracy measures

Dice coefficient, RMSD and HD for all nine algorithms. Algorithm Onecut has the highest percentage of CV

values in that range, and algorithms GCnoSP and GSC are among the top three for two accuracy measures

among the three for each case. Algorithms DRLSE and DRLSEIC have the lowest percentage of CV values

for all three accuracy measures.

So, after scrutinizing all these results at a glance, performance of the algorithm Onecut sounds very

promising and holds the top position considering the mean accuracy and consistency of performance metrics

among the different groups of interactions, whereas algorithms GCSP , GCnoSP , GCBS are also fairly good

in term of overall performance. Performance of the algorithms TRC, DRLSE and DRLSEIC do not look

promising as a whole and should be less preferred for this type of segmentation application.
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Figure 4.13: Mean and standard deviation of Dice, RMSD and HD for all groups of interactions for
all algorithms

Figure 4.14: Percentage of follicles having significant p values for Dice, RMSD and HD for all
algorithms
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Figure 4.15: Percentage of CV values in the range [0-0.0025] for Dice, RMSD and HD for all algo-
rithms
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Chapter 5

Segmentation of follicles in ultrasound images: A

case study of the proposed methodology using local

image properties for interaction categorization

The methodology for evaluating the performance of semiautomatic and interactive segmentation (SIS)

algorithms, described in Chapter 3, specified two potential criteria for categorizing the interactions. The first

was categorizing by spatial position, which was demonstrated in Chapter 4.

The second option was the categorization of interactions by the properties of the image in the vicinity

of the interactions. More specifically, these particular regions of the image can be characterized by the

properties like texture, intensity values, noise, etc. The methodology for evaluating the performance needs

to be adapted in order to reflect the required change in categorization and statistical analysis, which were

steps 3 and 4 respectively in the proposed methodology. Before going into the details of the case study, some

basic background information about the image texture properties related with this study is presented in the

next section.

5.1 Image Texture Properties

Textures are complex visual patterns composed of entities or sub patterns, that have characteristic brightness,

colour, slope, size, etc. Texture can be easily perceived by humans and is considered to be a rich source of

visual information. There is no generally agreed upon formal or complete definition of texture. Texture can

be characterized by the spatial arrangement of colour or intensities in an image. It is a repeated arrangement

of primitive elements over the region of an image. It is not a characteristic of a pixel, rather property of a

group of pixels. Many researchers have accepted the definition of texture as the variation in the grayscale

intensity values in the spatial domain, as this definition has been proven appropriate in a wide range of

applications and has been studied intensely during the last few years.

Haralick [55] proposed the use of gray level co-occurrence matrix (GLCM), one of the most widely used

general-purpose methods of texture analysis, which defines texture as the spatial distribution of pairs of gray

values from which various second-order features are derived. It considers the association between two pixels;

the first pixel is known as a reference and the second is known as a neighbour pixel.
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Figure 5.1: A 4×4 image and its GLCM for displacement d = (1, 0)

A GLCM is a matrix where the number of rows and columns is equal to the number of gray levels, G,

in the image I defined as I(x, y), 0 ≤ x ≤ Nx − 1, 0 ≤ y ≤ Ny − 1 where Nx and Ny are the dimensions of

the image along the X and Y axis. The gray level co-occurrence matrix P θd of size G×G for a displacement

vector d = (∆x,∆y) and direction θ is defined as follows. The element (i, j) of P θd is the relative frequency of

the pair of pixels having the gray levels i and j, where the pixels are separated by the displacement d within

a given neighbourhood.

P θd (i, j) = #{((p, q), (r, s)) : I(p, q) = i, I(r, s) = j} (5.1)

where (p, q), (r, s) ∈ Nx ×Ny; (r, s) = (p+ ∆x, q + ∆y).

Figure 5.1 shows the co-occurrence matrix P θd with displacement d = 1 and the direction is horizontal

(θ = 0). This spatial relationship considers the horizontally adjacent pixels. The co-occurrence matrix can

be normalized by dividing by the sum of all of its entries. Normalized co-occurrence matrix is represented

here as pθd.

From the co-occurrence matrix, Haralick proposed thirteen texture features. Among these, four features:

energy, contrast, correlation and homogeneity, were used for this study. These four features were selected

because they are well known and proven general-purpose features that are readily present for characterizing

the texture properties of ultrasound grayscale images which constitute the dataset used in this study. These

four features are described as follows:

5.1.1 Energy

This texture feature is also denoted as angular second moment (ASM) feature.

Energy =

G−1∑
i=0

G−1∑
j=0

pθd(i, j)
2 (5.2)
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It is a measure of homogeneity of the image and indicates the uniformity of texture [55]. When pixels are

very similar, only a few gray levels will be available, producing a GLCM containing only a few elements with

relatively large values, which will result in high sum of squares i.e., energy value.

5.1.2 Contrast

Variations of the intensity or gray level value between the reference and neighbouring pixel is measured by

contrast.

Contrast =

G−1∑
n=0

n2


G−1∑
i=0

G−1∑
j=0;|i−j|=n

pθd(i, j)

 (5.3)

For equal values of i and j, the pixel is on the diagonal and i− j = 0 which represent pixels that are exactly

similar to their neighbour, so they are assigned a weight of 0. If difference between i and j is 1, there is a

small contrast, and the weight is 1. If i and j differ by 2, contrast increases and the weight is 4. The weights

continue to increase quadratically as (i− j) increases.

5.1.3 Correlation

Correlation measures the linear dependency of gray level values between the pixels at the specified positions

relative to each other.

Correlation =

G−1∑
i=0

G−1∑
j=0

pθd(i, j)
(i− µx)(j − µj)

σxσy
(5.4)

where µx, µy and σx, σy are the means and standard deviations of px and py.

µx =

G−1∑
i=0

G−1∑
j=0

i · pθd(i, j) µy =

G−1∑
i=0

G−1∑
j=0

j · pθd(i, j) (5.5)

σx =

√√√√G−1∑
i=0

G−1∑
j=0

(i− µ)2pθd(i, j) σy =

√√√√G−1∑
i=0

G−1∑
j=0

(j − µ)2pθd(i, j) (5.6)

It shows the relation of a reference pixel to its neighbour where 0 is uncorrelated and 1 is perfectly correlated.

5.1.4 Homogeneity

This feature is also denoted as the inverse difference moment (IDM) feature.

Homogeneity =

G−1∑
i=0

G−1∑
j=0

pθd(i, j)

1 + |i− j|2
(5.7)

IDM weight value is the inverse of the Contrast weight. It measures the closeness of the distribution of the

GLCM elements to the GLCM diagonal. High homogeneity of any texture means that there are a lot of
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pixels with the same or very similar gray level value along the GLCM diagonal i.e., large number of nonzero

entries are concentrated along the diagonal or close to the diagonal.

5.2 Evaluation of SIS algorithms following the methodology

5.2.1 Segmentation and Generation of Interactions

The first step of the methodology is to segment the set of images using an SIS algorithm for a particular type

of interaction mode. In order to demonstrate the proposed methodology, a total of seven SIS algorithms were

combined with three types of interaction modes, making a total of nine segmentation applications. These

have been implemented and used to segment the set of images described in Chapter 4. The second step of

the methodology is to generate interactions programmatically, which was described in Section 4.1 for three

interaction modes. In the next section (5.2.2), the procedure used for categorizing interactions into groups by

similarity of local image features is described. Section 5.2.3 describes the analysis of these groups of features

using the methods established in Chapters 3 and 4.

5.2.2 Categorization of interactions

All the interactions of three types: seed point, brush stroke and closed contour, are categorized based

on the values of several image features, including the aforementioned four GLCM texture features. Each

interaction is categorized for each feature separately. For each feature, categorization is performed by grouping

interactions into three groups which have ‘low’, ‘medium’ and ‘high’ values for each feature. ‘Low’, ‘medium’

and ‘high’ ranges for a feature value are found by grouping the feature values into three categories using the

K-means clustering algorithm. As in Chapter 4, interactions are categorized in order to investigate variations

in segmentation performance between categories. In contrast to Chapter 4, interaction categories in this

experiment are based on local image intensity and texture features, rather than spatial location.

5.2.2.1 Image features for each interaction

A number of image features are computed for each interaction to be used for categorization of the interactions

as described in the previous section.

For seed points, the following features are used where window size 1 was used for calculating the GLCM:

• GLCM Contrast

• GLCM Correlation

• GLCM Entropy

• GLCM Homogeneity

• Seed point intensity
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Features Acronyms Range of Values
Seed point intensity SPI 0-36 36-72 72-180

Mean neighbour pixel intensity NMI 0-38.0617 38.0617-73.0247 73.0247-192.4198
Std Dev of neighbour pixel intensity NSI 0-8.3919 8.3919-17.1498 17.1498-70.5652

Mean contrast MC 0-113.1452 113.1452-427.1738 427.1738-1172.6262
Mean correlation MCR 0-0.47322 0.47322-0.86593 0.86593-1.0

Mean energy ME 0-0.050624 0.050624-0.16424 0.16424-0.32988
Mean homogeneity MH 0-0.32513 0.32513-0.49806 0.49806-0.83024

Table 5.1: Features and bins used for seed point interaction

• Mean intensity of pixels within a 10-pixel radius of the seed point

• Standard deviation of intensity of pixels within a 10-pixel radius of the seed point

For brush strokes and closed contours, the following features are used where all pixels belonging to the

interaction were included in the GLCM:

• GLCM Contrast

• GLCM Correlation

• GLCM Entropy

• GLCM Homogeneity

• Mean intensity of all pixels in the interaction

• Standard deviation of all pixels in the interaction

• Mean over all pixels, p, in the interaction, of the mean intensity of pixels within a 10-pixel radius of p

• Mean over all pixels, p, in the interaction, of the standard deviation of intensity of pixels within a

10-pixel radius of p

5.2.2.2 Categorization using image features

For each feature, low, medium and high ranges for the feature are established using K-means clustering of the

feature values recorded over all interactions. Table 5.1, 5.2, 5.3 and 5.4 present the names of the features with

their acronyms used throughout this chapter and corresponding ranges obtained from K-means algorithm for

each of the feature values for the seed point, brush stroke, closed contour and closed iso-contour interactions,

respectively.

All the interactions for each of the interaction modes seed point, brush stroke, closed contour and closed

iso-contour are grouped into the three ranges determined for each of the feature values. For each group of

interactions defined in this way, the aggregate performance of the segmentations produced by the interactions

in the group are determined in terms of Dice, RMSD and HD. This grouping of interactions allow us to

understand the distribution of the feature values across the interactions and corresponding mean segmentation

results tell us about the relation of these feature values to the segmentation results. However, histograms
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Features Acronyms Range of Values
Mean Intensity of the pixels MI 0-36.6 36.6-69.0286 69.0286-142.9356
Std Dev of pixel Intensity SI 0-7.4172 7.4172-16.0033 16.0033-48.995

Mean neighbour pixel intensity NMI 0-37.0004 37.0004-67.9921 67.9921-144.6095
Std Dev of neighbour pixel intensity NSI 0-6.954 6.954-13.412 13.412-41.7785

Mean contrast MC 0-42.8025 42.8025-229.6551 229.6551-849.2246
Mean correlation MCR 0-0.44411 0.44411-0.8422 0.8422-1.0

Mean energy ME 0-0.052468 0.052468-0.13834 0.13834-0.27694
Mean homogeneity MH 0-0.32218 0.32218-0.47625 0.80553-1.0

Table 5.2: Features and bins used for brush stroke interaction

Features Acronyms Range of Values
Mean Intensity of the pixels MI 0-35.3846 35.3846-64.8199 64.8199-115.3481
Std Dev of pixel Intensity SI 0-6.1525 6.1525-12.094 12.094-35.1476

Mean neighbour pixel intensity NMI 0-35.6296 35.6296-64.3135 64.3135-113.4973
Std Dev of neighbour pixel intensity NSI 0-6.5721 6.5721-12.3621 12.3621-38.0648

Mean contrast MC 0-41.9104 41.9104-158.9534 158.9534-886.1909
Mean correlation MCR 0-0.43463 0.43463-0.83656 0.83656-1.0

Mean energy ME 0-0.028037 0.028037-0.068989 0.068989-0.28928
Mean homogeneity MH 0-0.31497 0.31497-0.46858 0.81314-1.0

Table 5.3: Features and bins used for closed contour interaction

Features Acronyms Range of Values
Mean Intensity of the pixels MI 0-26.7439 26.7439-39.4167 39.4167-75.4812
Std Dev of pixel Intensity SI 0-6.743 6.743-13.6407 13.6407-32.1475

Mean neighbour pixel intensity NMI 0-33.6823 33.6823-49.2474 49.2474-76.0547
Std Dev of neighbour pixel intensity NSI 0-6.2592 6.2592-11.9467 11.9467-24.4362

Mean contrast MC 0-47.254 47.254-159.425 159.425-663.472
Mean correlation MCR 0-0.44631 0.44631-0.83175 0.83175-1.0

Mean energy ME 0-0.027805 0.027805-0.071746 0.071746-0.25301
Mean homogeneity MH 0-0.31159 0.31159-0.4656 0.4656-0.78875

Table 5.4: Features and bins used for iso-contour interaction
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of the interactions associated with the corresponding segmentation results do not necessarily confirm any

significant impact of the feature values on these segmentation results. Existence and extent of this impact is

measured by the statistical analysis, which is explained in the next section.

5.2.3 Analysis of the results using statistical methods

In order to investigate whether local image properties have any impact on segmentation, the relation between

image properties of the interactions and corresponding segmentation results need to be studied. For SIS

algorithms, interactions are used to generate segmentations, and image properties of the interactions are

computed. After computing the image properties, interactions are categorized into three groups according to

the feature values selected as thresholds. Then means of the corresponding resulting segmentations according

to the interaction categories based on feature values are computed.

5.2.3.1 Mean segmentation accuracy among the groups of interactions based on feature values

Here we present the mean Dice, RMSD and HD values of the segmentations generated by the interaction

groups. Tables 5.5 to 5.10 present the segmentation performance metrics for each group of interactions.

5.2.3.1.1 Brush Stroke Interactions Table 5.5 presents the mean Dice coefficient values for the groups

of brush stroke interactions generated by the algorithms GSC, GSCSeq, TRC, Onecut, and GCBS. Some

of the key points from these results are summarized as follows:

• Among the eight features, exactly the same trend is observed for four features MI, NMI, MCR and ME

where number of strokes is lowest for the highest range of the intensity, but mean Dice value is highest

for these strokes for almost all algorithms except one algorithm TRC.

• The results for MH are similar to those for MI, except the behaviour of algorithm TRC has been

replaced by the algorithm GSC in this case.

• For SI, the trend is same, i.e., mean Dice value is highest for the strokes in the third bin but the difference

is that it is true for all algorithms, whereas for the features MI, NMI, MCR and ME, algorithm TRC

is an exception. It suggests that segmentation results are relatively better when the strokes are placed

in the region where variability of the pixel intensities are higher.

• NSI as a feature yields the opposite trend of the features MI, NMI, MCR and ME where mean Dice is

smallest for the third bin for all the algorithms except TRC. This is an example which could never be

discovered by the existing standard evaluation methodologies.

• For the feature MC, mean Dice is highest for the third bin for the algorithms GSC, GSCSeq and

Onecut, whereas mean Dice is lowest for this bin for the algorithms TRC and GCBS.
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Table 5.5: Dice values of the segmentations generated by algorithms GSC, GSCSeq, TRC, Onecut
and GCBS for brush stroke interactions categorized according to the thresholds of the eight feature
values.

Feature Range of Values Number of Stroke GSC GSCSeq TRC Onecut GCBS

Mean Intensity(MI)
0-36.6 560 0.83072 0.83491 0.65264 0.72125 0.56664
36.6-69.0286 322 0.93068 0.92248 0.58406 0.92497 0.73567
69.0286-142.9356 69 0.95937 0.95207 0.5817 0.95667 0.76925

Stdev Intensity(SI)
0-7.4172 632 0.87253 0.87363 0.61776 0.81015 0.63282
7.4172-16.0033 271 0.87157 0.86647 0.63618 0.79484 0.6471
16.0033-48.995 48 0.90506 0.90266 0.64271 0.8403 0.66609

NbrMeanIntensity(NMI)
0-37.0004 538 0.83151 0.83621 0.65184 0.72449 0.56862
37.0004-67.9921 339 0.92267 0.91493 0.59062 0.90588 0.72157
67.9921-144.6095 74 0.95861 0.95163 0.57797 0.95786 0.76686

NbrStdevIntensity(NSI)
0-6.954 577 0.88176 0.88117 0.60768 0.82512 0.64654
6.954-13.412 274 0.86993 0.86855 0.65007 0.79521 0.63371
13.412-41.7785 100 0.83942 0.83863 0.64926 0.73769 0.6059

Mean Contrast(MC)
0-42.8025 711 0.89263 0.89107 0.6267 0.83169 0.64227
42.8025-229.6551 225 0.81657 0.82289 0.61294 0.73535 0.61288
229.6551-849.2246 15 0.84589 0.77157 0.67903 0.73103 0.84872

Mean Correlation(MCR)
0-0.44411 131 0.83656 0.84851 0.62127 0.70287 0.50964
0.44411-0.8422 248 0.84407 0.83757 0.65824 0.7226 0.60246
0.8422-1.0009 572 0.89538 0.89406 0.61023 0.86796 0.68376

Mean Energy(ME)
0-0.052468 862 0.87325 0.87238 0.62448 0.80305 0.64277
0.052468-0.13834 69 0.86154 0.86437 0.6375 0.83209 0.54715
0.13834-0.27694 20 0.94467 0.93241 0.56962 0.90533 0.77293

Mean Homogeneity(MH)
0-0.32218 430 0.85491 0.8545 0.61717 0.78 0.62397
0.32218-0.47625 376 0.89132 0.88755 0.62363 0.81652 0.64977
0.47625-0.80553 145 0.88818 0.89051 0.64697 0.86442 0.65284

Table 5.6 shows the analogous results for RMSD. From these results, some of the interesting observations

are stated as follows:

• RMSD values are very small for the algorithm Onecut for all features (High values of RMSD indicate

poor accuracy and vice versa).

• For MI and NMI, RMSD values are smallest in the high range compared to the strokes for two other

ranges for the algorithms GSC, GSCSeq and TRC. For this range, RMSD values for the algorithms

GSC, GSCSeq andOnecut are very small compared to two other algorithms. For particularly algorithm

Onecut, RMSD values are small for all three ranges. These fine details about the performance of the

algorithm with respect to the local image properties is an example which could not be achieved through

the conventional evaluation methodologies due to the absence of large number of regularly sampled

interactions and categorization of interactions based on the feature values.

• The trends for SI feature are similar to those for MI. RMSD values are lowest for the third range but

the magnitude of the RMSD values are much larger than that for MI, except for the algorithm Onecut.

• For the feature SI, RMSD values are highest for the third range for the algorithms GSC, GSCSeq and

TRC compared to that for two other ranges.

• RMSD values are lowest for the third range for all algorithms for the feature MC. RMSD value is very

small for the third range for algorithm GCBS.
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Table 5.6: Segmentation result RMSD for algorithms that used brush strokes interactions

Feature Range of Values Number of Stroke GSC GSCSeq TRC Onecut GCBS

Mean Intensity(MI)
0-36.6 560 43.6608 42.8925 46.5645 5.2844 11.9902
36.6-69.0286 322 16.9823 17.7819 33.6892 2.6231 16.7194
69.0286-142.9356 69 4.7324 5.5656 21.5925 4.7968 20.0092

Stdev Intensity(SI)
0-7.4172 632 30.4615 30.4627 40.0219 4.2669 14.3347
7.4172-16.0033 271 36.233 35.5424 42.2696 4.3067 12.912
16.0033-48.9946 48 24.4599 25.9407 34.6886 5.6473 19.1688

NbrMeanIntensity(NMI)
0-37.0004 538 43.3572 42.8289 46.5375 5.3788 12.1896
37.0004-67.9921 339 19.3588 19.4838 34.713 2.6427 15.9946
67.9921-144.6095 74 4.8114 5.5824 21.7442 4.6646 20.2512

NbrStdevIntensity(NSI)
0-6.954 577 27.2219 27.0847 38.2467 4.3722 15.3026
6.954-13.412 274 37.6297 37.522 42.6763 4.3575 12.8885
13.412-41.7785 100 42.2731 42.2071 46.5234 4.1817 11.1774

Mean Contrast(MC)
0-42.8025 711 29.1781 29.0023 38.9841 4.086 15.4467
42.8025-229.6551 225 40.5231 40.3476 45.731 5.2183 10.8659
229.6551-849.2246 15 25.4361 28.7142 27.1178 3.7051 3.424

Mean Correlation(MCR)
0-0.44411 131 49.4491 46.1881 57.6939 3.2664 10.9512
0.44411-0.8422 248 46.6897 47.0922 45.8228 6.331 12.72
0.8422-1.0009 572 21.3077 21.6785 34.0769 3.7358 15.5413

Mean Energy(ME)
0-0.052468 862 30.9447 30.8328 40.0859 4.4296 13.8123
0.052468-0.13834 69 46.2566 45.3257 49.1782 3.1583 18.7829
0.13834-0.27694 20 18.9402 21.2098 23.3304 4.9328 13.8284

Mean Homogeneity(MH)
0-0.32218 430 32.8269 33.6516 41.9904 4.6604 13.9754
0.32218-0.47625 376 29.104 28.1473 39.7899 4.3928 14.2666
0.47625-0.80553 145 35.6593 35.0068 37.2213 3.3051 14.5182

• Trends for MCR are similar to those of MC except for the algorithm Onecut, for which all three RMSD

values are very small but the lowest value is for the first range instead of the third range as in the case

of all other algorithms.

• MCR also shows trends similar to those for ME, except for the algorithm GCBS.

• For the feature MH, RMSD values, for each particular algorithm, are close for all three ranges. Beside

the smallest for the algorithm Onecut, RMSD values are also reasonably small for the algorithm GCBS.

Table 5.7 shows the results for HD (High HD values indicate poor accuracy and vice versa). From these

results, some of the interesting observations are stated as follows:

• HD values are smallest for the algorithm Onecut for all features among all algorithms.

• For the features, MI and SI, HD values are lowest for the third range for algorithms GSC, GSCSeq

and TRC, whereas HD values are highest for this range for two other algorithms.

• An almost similar trend, like that described in the previous two bullet points, is also observed for the

feature NMI, except for the algorithm TRC for which lowest HD value is for the second range.

• Trend for the feature NSI is just opposite to that for the features MI and SI i.e., HD values are highest

for the third range for algorithms GSC, GSCSeq and TRC and lowest for the third range for two other

algorithms.
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Table 5.7: Segmentation result HD for algorithms that used brush strokes interactions

Feature Range of Values Number of Stroke GSC GSCSeq TRC Onecut GCBS

Mean Intensity(MI)
0-36.6 560 69.9194 68.7222 88.2278 10.9733 24.5167
36.6-69.0286 322 31.5615 32.8513 63.9334 7.6085 34.9135
69.0286-142.9356 69 15.2451 16.793 70.2599 14.1366 43.5166

Stdev Intensity(SI)
0-7.4172 632 51.4628 51.4452 77.9521 9.7696 29.7976
7.4172-16.0033 271 58.4845 57.7642 82.08 9.9875 26.5642
16.0033-48.9946 48 41.5783 42.7882 69.4302 14.3624 40.4816

NbrMeanIntensity(NMI)
0-37.0004 538 69.3663 68.506 88.9237 11.16 24.9411
37.0004-67.9921 339 35.1243 35.4851 64.2623 7.4804 33.3611
67.9921-144.6095 74 15.451 16.7848 70.4891 13.9253 43.8704

NbrStdevIntensity(NSI)
0-6.954 577 47.2737 47.175 77.2937 10.1633 31.6244
6.954-13.412 274 60.0489 59.9639 81.4533 10.0807 27.0224
13.412-41.7785 100 66.3926 65.7119 79.2538 9.4409 23.2267

Mean Contrast(MC)
0-42.8025 711 49.3989 49.0865 76.0379 9.712 31.6323
42.8025-229.6551 225 65.1846 65.1576 89.6853 11.3885 23.8322
229.6551-849.2246 15 38.6926 44.0215 39.9916 6.8495 8.0879

Mean Correlation(MCR)
0-0.44411 131 73.9172 68.9688 102.3032 6.8954 22.1767
0.44411-0.8422 248 74.6088 74.6763 83.3029 12.7837 25.4944
0.8422-1.0009 572 38.7822 39.627 71.2958 9.6097 32.7734

Mean Energy(ME)
0-0.052468 862 52.1036 51.9622 78.2644 10.2093 28.6898
0.052468-0.13834 69 69.6951 68.3493 83.181 7.451 38.3753
0.13834-0.27694 20 32.3637 35.6877 81.9304 12.7949 29.7812

Mean Homogeneity(MH)
0-0.32218 430 54.9069 56.1379 81.6625 10.4051 29.3043
0.32218-0.47625 376 49.6765 48.3057 78.3659 10.322 29.3083
0.47625-0.80553 145 55.4632 54.6142 70.7696 8.3804 30.0229

• HD values are lowest for the third range for all algorithms for the feature MC. Beside the smallest for

algorithm Onecut, HD value for third range for algorithm GCBS is also very small.

• For feature MCR, HD values are lowest for third range for algorithms GSC, GSCSeq and TRC.

• For the feature MH, RMSD values, for each particular algorithm, are close for all three ranges.

5.2.3.1.2 Closed Contour Interactions Table 5.8 presents results for algorithm DRLSE which uses

closed contour interactions. Some of the key points from these results are explained below:

• For three features, MI, SI and NMI, segmentation results are best for the low feature values among all

three ranges in term of all three metrics Dice, RMSD and HD.

• Segmentation results in term of RMSD and HD are best for the high feature values among all three

bins for the feature NSI.

• For the feature MC, best segmentation results in term of all three metrics Dice, RMSD and HD are for

the high feature values.

• For the feature MCR, best value of Dice and worst values of RMSD and HD are for the high feature

values among the three ranges.

• Segmentation results in term of Dice and HD are for the high feature values for the feature ME.
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Table 5.8: Segmentation results for DRLSE algorithm that uses closed contour interactions

Feature Range of Values Number of Contours Dice RMSD HD

Mean Intensity(MI)
0-35.3846 2535 0.60715 6.1221 18.9106
35.3846-64.8199 749 0.56774 16.7056 43.4965
64.8199-115.3481 110 0.12585 25.1819 123.8315

Stdev Intensity(SI)
0-6.1525 2122 0.69412 8.2596 21.256
6.1525-12.094 988 0.41675 9.4564 33.2373
12.094-35.1476 284 0.32931 13.8459 57.0245

NbrMeanIntensity(NMI)
0-35.6296 2464 0.60769 6.2307 19.1827
35.6296-64.3135 813 0.5728 15.331 39.7912
64.3135-113.4973 117 0.12962 25.5153 124.1216

NbrStdevIntensity(NSI)
0-6.5721 2169 0.68316 9.9613 25.6841
6.5721-12.3621 923 0.38147 8.588 36.0536
12.3621-38.0648 302 0.47793 4.2021 17.0605

Mean Contrast(MC)
0-41.9104 2348 0.57366 10.0929 31.7228
41.9104-158.9534 947 0.6034 7.0084 19.2684
158.9534-886.1909 99 0.6034 4.7152 14.205

Mean Correlation(MCR)
0-0.43463 570 0.57529 5.7615 18.853
0.43463-0.83656 959 0.5781 6.0719 20.262
0.83656-1.0005 1865 0.5876 11.6327 34.2956

Mean Energy(ME)
0-0.028037 2747 0.59629 9.4578 28.3096
0.028037-0.068989 365 0.55884 6.5771 20.3144
0.068989-0.28928 282 0.48299 8.5844 31.764

Mean Homogeneity(MH)
0-0.31497 1542 0.60574 7.6811 21.9902
0.31497-0.46858 1295 0.5984 10.9698 33.4622
0.46858-0.81314 557 0.48334 8.5311 30.3345

• For the feature MH, segmentation results in term of Dice, RMSD and HD are best for the low feature

values.

5.2.3.1.3 Iso-Contour Interactions Table 5.9 shows results for algorithm DRLSEIC which uses closed

iso-contour interactions. Some of the important observations from these results are explained below:

• Segmentation results are best in terms of RMSD and HD for the medium feature values and best in

terms of Dice for the high feature values for the feature MI.

• For the feature, MC and SI, segmentation results are best in terms of all three metrics for the high

feature values.

• Best Dice value is for the high feature values and best RMSD and HD values are for the low feature

values for the feature NMI.

• For the feature, NSI, best Dice value is for the low feature values and best RMSD and HD values are

for the high feature values.

• Dice and RMSD values are very close for all three ranges for the feature MCR.

• Segmentation results are best in term of all three metrics Dice, RMSD and HD for the low feature

values for feature ME.
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Table 5.9: Segmentation results for DRLSEIC algorithm that uses closed iso-contour interactions

Feature Range of Values Number of Contours Dice RMSD HD

Mean Intensity(MI)
0-26.7439 783 0.7837 6.3126 14.0607
26.7439-39.4167 154 0.6799 4.1431 7.6381
39.4167-75.4812 335 0.80325 13.017 26.9442

Stdev Intensity(SI)
0-6.743 818 0.78249 8.1558 17.9547
6.743-13.6407 356 0.74574 7.431 14.7365
13.6407-32.1475 98 0.83542 6.3732 13.0508

NbrMeanIntensity(NMI)
0-33.6823 873 0.77373 6.2298 13.6073
33.6823-49.2474 284 0.75713 10.8026 22.7647
49.2474-76.0547 115 0.84301 12.478 24.9375

NbrStdevIntensity(NSI)
0-6.2592 911 0.80181 9.1232 19.8007
6.2592-11.9467 277 0.72067 5.1565 9.8832
11.9467-24.4362 84 0.68284 2.403 5.1906

Mean Contrast(MC)
0-47.254 927 0.78717 8.4024 17.6002
47.254-159.425 314 0.73934 6.5164 14.809
159.425-663.472 31 0.82506 3.4309 7.9584

Mean Correlation(MCR)
0-0.44631 191 0.76351 6.5221 13.9011
0.44631-0.83175 348 0.76924 5.5477 11.4946
0.83175-1 733 0.78296 9.2294 19.8594

Mean Energy(ME)
0-0.027805 1062 0.78773 7.5567 16.3985
0.027805-0.071746 131 0.71525 8.6883 17.7959
0.071746-0.25301 79 0.72362 9.8498 18.5533

Mean Homogeneity(MH)
0-0.31159 551 0.76563 6.803 15.0593
0.31159-0.4656 542 0.80795 7.8838 16.9783
0.4656-0.78875 179 0.7132 10.7263 20.7387

• For the feature MH, best Dice and best RMSD and HD values are for the medium and high feature

values respectively.

5.2.3.1.4 Seed Point Interactions Table 5.10 shows results for algorithms GCSP and GCnoSP that

use seed point interactions. Some of the key points from these results are stated below:

• For the feature SPI and NMI, Dice values are best for the high feature values for both the algorithms;

for GCSP algorithm, both RMSD and HD values are best for the low feature values whereas these

values are best for the medium feature values for GCnoSP algorithm.

• The best Dice values are for the low feature values and best RMSD and HD values are for the high

feature values for both the algorithms for the feature NSI.

• The best segmentation results in term of Dice, RMSD and HD are for the high feature values for both

the algorithms for the feature MC and MH.

• For the feature MCR, best RMSD and HD values are for the low feature values for both the algorithms

whereas Dice values are best for the high and low feature values for algorithms GCSP and GCnoSP ,

respectively.

• Best Dice values are for the high feature values for both the algorithms and best RMSD and HD values

are for the medium feature values for GCSP algorithm and for the high feature values for GCnoSP

algorithm, respectively, for the feature ME.
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Table 5.10: Segmentation results for algorithms GCSP and GCnoSP that use seed point interactions

Feature Range of Values
Number Dice RMSD HD

of Contours GCSP GCnoSP GCSP GCnoSP GCSP GCnoSP

SP Intensity(SPI)
0-36 2517 0.619 0.534 10.836 17.510 23.859 36.863
36-72 2532 0.741 0.575 11.264 11.691 25.419 25.903
72-180 464 0.773 0.648 17.785 14.371 42.956 32.965

NbrMeanIntensity(NMI)
0-38.062 2645 0.617 0.532 10.859 18.005 23.921 37.842
38.062-73.025 2459 0.748 0.574 11.351 10.337 25.605 23.379
73.025-192.420 409 0.793 0.782 18.123 16.125 44.277 36.350

NbrStdevIntensity(NSI)
0-8.392 3363 0.724 0.618 12.131 17.380 27.214 37.208
8.392-17.150 1658 0.634 0.462 10.996 13.583 25.166 28.970
17.150-70.565 492 0.626 0.478 10.206 9.040 22.556 20.113

Mean Contrast(MC)
0-113.145 5189 0.689 0.578 11.869 16.033 26.739 34.359
113.145-427.174 268 0.643 0.427 8.455 12.985 19.263 27.794
427.174-1172.626 56 0.860 0.743 3.429 4.660 7.730 10.262

Mean Correlation(MCR)
0-0.473 447 0.705 0.605 7.439 10.772 17.487 24.172
0.473-0.866 1744 0.593 0.502 10.866 14.559 23.729 31.574
0.866-1.007 3322 0.736 0.571 12.575 17.292 28.640 36.497

Mean Energy(ME)
0-0.051 5131 0.683 0.549 11.752 15.595 26.404 33.516
0.051-0.164 261 0.753 0.586 8.900 13.627 20.214 27.639
0.164-0.330 121 0.767 0.741 11.775 11.778 29.652 27.530

Mean Homogeneity(MH)
0-0.325 2576 0.666 0.508 12.028 17.275 27.284 36.694
0.325-0.498 2278 0.700 0.585 11.651 13.960 25.868 30.609
0.498-0.830 659 0.732 0.632 9.897 12.727 22.965 26.501

In general, a lot of fine details about the segmentation performance of nine segmentation applications

have been revealed through this case study of the proposed methodology. This has been possible due to

categorization of interactions and use of sound statistical methods, which are two integral components of

the proposed methodology. Conventional evaluation approaches would have presented the results in an

aggregated form, which would have failed to discover the in-depth details of the results. For example, this

evaluation methodology has provided the the opportunity to examine the relation between the feature values

with the corresponding segmentation accuracies by partitioning the feature values into three ranges. As a

result, we can find out, for example, which range of values for a particular feature is associated with best

segmentation results in term of Dice, or which range of values for a particular feature is typically related

with poor segmentation results. We also can look for the values of one or more particular features for which

segmentation results are especially good for a particular SIS algorithm while overall segmentation results

are poor for that algorithm. We also may be interested to know, for example, if there are any features for

which segmentation results for a particular SIS algorithm is not affected at all, i.e., the segmentation results

are similar irrespective of the feature values. Many other interesting details and surprising trends, concealed

inside the segmentation results, can be unearthed through this methodology. Hence, this methodology of

evaluation works like a data mining tool which can help to discover the underlying interesting patterns

from the huge amount of segmentation results. For example, we have found that, for algorithm GCSP ,

segmentation results are best in term of Dice, RMSD and HD when values of the feature, MC, are in the

third i.e. the highest range, which couldn’t be discovered if the interactions were not categorized based

on feature values. It is because a relatively small number of interactions were included in that range but

corresponding mean values of Dice, RMSD and HD were in the high end, which could not be identified if the
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mean were computed over the entire set of these metric values. Another example can be mentioned where we

have observed that for the algorithms GSC and GSCSeq, mean RMSD values for all the ranges of the feature

MH are fairly close, but for these same algorithms, mean RMSD values for all three ranges of the feature MI

are significantly different, which couldn’t be recognized by the existing approach of evaluation because the

aggregate or overall mean RMSD values for both the features are very similar. Thus it can be concluded that

this methodology can discover the underlying fine details and interesting trends hidden in the segmentation

results of different SIS algorithms which could not be recognized otherwise due to the insufficient number of

segmentations and consequent aggregate approach of result analysis.

5.2.4 Significance test of the results for the bins of image properties

Segmentation results are categorized according to the groups of feature values, which provides a comparative

analysis about the relation of the image properties on the resulting segmentation. Several tables in the

previous section presented the results based on the categories of the feature values which is actually not an

indication, at least statistically, whether the observed effect was likely to be real or did not arise by chance.

In order to find this impact, metric values for each of the categories based on feature values should be tested

statistically. Ideally this is a hypothesis test where the null hypothesis is that the metric values for three

groups of interaction come from the same distribution. This hypothesis could be tested by applying the

classic one way ANOVA but as the values were tested using one-sample Kolmogorov-Smirnov test for the

null hypothesis that the sample data comes from a standard normal distribution, against the alternative that

it does not come from such a distribution and were found not to be normally distributed with p = 0.0021 with

5% significance level, a nonparametric alternative for classic one way ANOVA, the Kruskal-Wallis Test, has

been chosen which doesn’t require the data to be normally distributed. For each algorithm, three categories

of Dice, RMSD and HD values based on the feature values are tested and corresponding p values are presented

in tables, where shaded cells indicate significant p values i.e. the cells with p < 0.05.

Table 5.11 shows the p values of Kruskal-Wallis Test among the three groups of Dice, RMSD and HD

values based on the categories of the eight feature values for the algorithms GSC, GSCSeq, TRC, Onecut

and GCBS which uses brush stroke interaction mode.

Here, it can be observed that all the p values for the three groups of Dice, RMSD and HD values for

the features MI, NMI and MCR are significant for all these five algorithms. This suggests that the three

groups of Dice, RMSD and HD values for these three features for these five algorithms do not come from the

same distribution i.e., these values are significantly different. This means the effects, of groups of interactions

categorized based on these feature values, on segmentation results are different and are likely to be real. For

the feature MC, all the p values except one are significant. MH has the least number of significant p values,

which tells us that the segmentation results of these five algorithms are least affected by this feature in the

region of image where the interactions are placed.

Table 5.12 shows the p values of Kruskal-Wallis Test among the three groups of Dice, RMSD and HD
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Table 5.11: P values of the categories of feature values for brush stroke interaction

Algorithm Metric MI SI NMI NSI MC MCR ME MH

GSC
Dice 1.45E-82 0.00069 3.91E-74 0.0026 6.06E-17 1.63E-26 7.56E-05 7.63E-05

RMSD 8.77E-36 0.0324 7.04E-32 0.00016 0.00073 1.80E-27 0.0011 0.5856
HD 2.20E-31 0.0762 1.22E-27 0.000144 6.39E-05 8.96E-26 0.00599 0.8889

GSCSeq
Dice 7.67E-64 0.00223 1.07E-54 0.000506 2.96E-17 8.19E-22 0.000587 6.37E-05

RMSD 5.22E-30 0.0599 1.19E-27 5.75E-05 0.00443 2.75E-23 0.001 0.3958
HD 1.95E-28 0.0506 4.07E-26 0.000176 0.00182 1.54E-21 0.0069 0.429

TRC
Dice 6.32E-14 0.1321 2.74E-12 4.35E-05 0.04604 1.96E-05 0.0992 0.01835

RMSD 1.27E-10 0.0814 8.40E-11 0.389 0.00256 1.64E-12 0.00077 0.1168
HD 3.03E-14 0.07435 7.11E-15 0.3579 1.69E-05 1.79E-12 0.6225 0.07426

Onecut
Dice 5.43E-94 0.04893 7.45E-81 2.89E-09 8.52E-18 2.21E-44 0.1651 2.48E-05

RMSD 1.39E-32 0.0126 6.78E-35 0.1936 0.000403 2.01E-15 0.4421 0.4936
HD 5.62E-07 0.00018 3.28E-07 0.2011 0.445 1.06E-07 0.06704 0.3826

GCBS
Dice 3.47E-25 0.2189 1.85E-20 0.1506 2.41E-08 2.72E-17 1.31E-05 0.5967

RMSD 1.16E-29 0.00018 4.60E-25 7.48E-06 3.14E-11 5.53E-21 0.20932 0.7553
HD 3.84E-31 3.62E-05 2.20E-26 2.30E-05 6.41E-09 1.17E-20 0.1187 0.9561

Table 5.12: P values of the bins of feature values for closed contour interaction

Algorithm Metric MI SI NMI NSI MC MCR ME MH

DRLSE
Dice 2.66E-46 3.18E-167 7.08E-49 2.68E-136 0.8233 0.01346 0.000753 3.38E-09

RMSD 6.44E-108 1.14E-07 6.11E-84 8.89E-45 8.90E-16 1.25E-32 0.10917 1.54E-15
HD 3.62E-130 7.70E-29 3.48E-108 9.84E-33 2.54E-27 3.98E-24 0.12881 2.03E-21

DRLSEIC
Dice 4.51E-13 6.95E-09 5.33E-08 1.63E-18 1.60E-07 0.0271 0.2704 0.000119

RMSD 3.09E-36 0.01591 8.50E-16 5.70E-39 0.0044968 4.68E-15 0.18481 0.001221
HD 4.58E-47 5.35E-05 1.55E-17 1.69E-53 0.0012 3.40E-18 0.2547 0.00019

values based on the categories of the eight feature values for the algorithms DRLSE and DRLSEIC, which

uses closed contour interaction mode.

These results of the significance test indicate that all the p values for the three groups of Dice, RMSD and

HD values for the algorithms DRLSE and DRLSEIC for all the features except MC and ME are significant.

This indicates that the three groups of Dice, RMSD and HD values for these two algorithms for the features

MI, SI, NMI, NSI, MCR and MH do not come from the same distribution i.e., these values are significantly

different. This suggests that the segmentation results of these two algorithms are likely to be affected by the

values of these six features of the image region where the interactions are located. All the p values except

one for the feature MC are significant, whereas only one p value for the feature ME is significant. Table 5.13

shows the p values of Kruskal-Wallis Test among the three groups of Dice, RMSD and HD values based on

the categories of the seven feature values for the algorithms GCSP and GCnoSP , which uses seed point

interaction mode.

This table of p values presents that all the p values are significant, which tells us that the three groups

of Dice, RMSD and HD values for the algorithms GCSP and GCnoSP for all the features are significant.

This is an indication that the effects of all seven features on the segmentation results are likely to be real.

So it can be concluded that for most of the algorithms, segmentation results are, in general, likely to
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Table 5.13: P values of the bins of feature values for seed point interaction

Algorithm Metric SPI NMI NSI MC MCR ME MH

GCSP
Dice 6.79E-100 1.61E-104 3.03E-41 2.46E-22 2.08E-61 0.0315 0.00039

RMSD 9.65E-74 4.30E-83 2.07E-16 2.12E-30 6.50E-51 1.13E-09 2.29E-13
HD 5.41E-85 1.91E-95 7.46E-19 1.36E-35 9.99E-49 2.55E-11 1.41E-12

GCnoSP
Dice 3.19E-27 1.93E-55 2.44E-110 1.06E-73 4.02E-26 6.51E-05 5.46E-53

RMSD 3.77E-40 5.85E-98 1.91E-88 8.97E-21 5.72E-15 0.00055157 3.38E-22
HD 2.02E-43 3.20E-92 3.15E-77 4.70E-30 5.13E-13 2.84E-14 4.63E-24

be affected by some or all of the features. It is interesting to observe that the relation between the image

features and segmentation results varies depending on the algorithm itself and the metric used for measuring

the accuracy of segmentation.

5.3 Summary of results

This section presents the results briefly as a summary so that the entire results can be observed at a glance.

These summarized results provide an overall picture to get a comparative view about the effect of different

image features on the segmentation results. Figures 5.2 to 5.4 show the values of the Dice coefficient, RMSD

and HD for five algorithms GSC, GSCSeq, TRC, Onecut and GCBS categorized into three ranges of values

for eight features. It can be observed from this figure that, in general, Dice coefficients have variations for

three ranges of values for almost all features for these five algorithms i.e., all these eight features have effect

on the segmentation results for these five algorithms. Trends of the variations in the Dice coefficients for

three ranges of feature values are different for the features i.e., for some features, Dice coefficients increase

in the order of low, medium and high feature values for some algorithms, whereas for some other features,

the opposite trend is observed for some algorithms and for some cases, mixed trends are observed. The

extent of the variations in the values of Dice coefficients for three ranges of feature values also differ for

these algorithms. Dice coefficients for algorithms GSC, GSCSeq, TRC and GCBS have variations for three

ranges of values for the features MC, MI, NMI, MCR and ME. Dice coefficients for the algorithm Onecut

vary significantly for three ranges of values for almost all features except SI.

RMSD values for the algorithms GSC,GSCSeq and TRC vary for three ranges of values for all features.

RMSD values for the algorithm Onecut has slight variation for three ranges of feature values except MCR.

Visible variations in the values of RMSD for three ranges of values for all features except MH are observed

for the algorithm GCBS.

HD values for the algorithms GSC and GSCSeq have significant variations for the three ranges of values

for almost all features except MH. HD values for the algorithm TRC varies for three ranges of feature values

except NSI and ME. Small variations in the HD values for three ranges of values for all features except NSI

and MH are observed for the algorithm Onecut. Variations in the HD values for three ranges of feature

values are visible for all the features except MH for the algorithm GCBS.
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Figure 5.2: Dice values for five algorithms that used brush stroke interactions for three ranges of
different feature values
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Figure 5.3: RMSD values for five algorithms that used brush stroke interactions for three ranges of
different feature values
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Figure 5.4: HD values for five algorithms that used brush stroke interactions for three ranges of
different feature values
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Figure 5.5: Dice values for two algorithms that used contour interactions for three ranges of different
feature values

Figures 5.5 to 5.7 presents the values of Dice coefficient, RMSD and HD for two algorithms DRLSE

and DRLSEIC categorized into three ranges of values for eight features. This figure shows that the Dice

coefficients for three ranges of feature values varies a lot for the features MI, SI, NMI and NSI for the

algorithm DRLSE, whereas variations for other features are very small. Variations in the Dice coefficients

are very small for three ranges of values for all features for the algorithm DRLSEIC i.e., this algorithm is

less affected by the feature values than the algorithm DRLSE.

Large variations in the RMSD values for three ranges of feature values are visible for all features except

ME and MH for the algorithm DRLSE. These variations are large for all the features except SI, ME and

MH for the algorithm DRLSEIC.

HD values for three ranges of feature values vary a lot for the features MI, NMI and SI, whereas other

features have less visible effect on the HD values for the algorithm DRLSE. Overall variations in the HD

values for three ranges of feature values for the algorithm DRLSEIC are small for all features except MI

and NSI.

Hence, for contour interactions, image features have more visible effect on the segmentation results for

the algorithm DRLSE than the algorithm DRLSEIC.

Figures 5.8 to 5.10 presents the values of Dice coefficient, RMSD and HD for two algorithms GCSP and

GCnoSP categorized into three ranges of values for seven features. Slight variations in the Dice coefficients

for three ranges of feature values for the features ME and MH and moderate variations for other features are

observed for the algorithm GCSP . These variations are large for the features NMI and MC and moderate
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Figure 5.6: RMSD values for two algorithms that used contour interactions for three ranges of
different feature values

Figure 5.7: HD values for two algorithms that used contour interactions for three ranges of different
feature values

94



Figure 5.8: Dice values for two algorithms that used seed point interactions for three ranges of
different feature values

for other features for the algorithm GCnoSP .

RMSD values for three ranges of feature values for the algorithm GCSP vary widely for the features SPI,

NMI and MC, whereas moderate variations are observed for other features. These variations are large for

the features NMI, MC, NSI, MCR and SPI and moderate for two other features for the algorithm GCnoSP .

Large variations in the HD values for three ranges of values for the features SPI, NMI and MC and

moderate variations for other features are evident for the algorithm GCSP . HD values for the features SPI,

NMI, NSI and MC vary largely for the algorithm GCnoSP whereas these variations are small for other

features.

Considering these summarized results for seed point interactions, effects of the image features on these

segmentation results are roughly similar. Overall results suggest that the extent of the effect of image features

on the algorithm GCnoSP is slightly more than the algorithm GCSP .
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Figure 5.9: RMSD values for two algorithms that used seed point interactions for three ranges of
different feature values
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Figure 5.10: HD values for two algorithms that used seed point interactions for three ranges of
different feature values
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Chapter 6

Discussion

Chapters 4 and 5 presented experimental results and analysis of two case studies to demonstrate the

proposed methodology. This chapter discusses those results along with some other issues related with the

methodology.

6.1 Significance of the results and observations

Chapters 4 and 5 presented, in depth, the quantitative results with analysis of the case studies. Here we

consolidate those results and discuss their overall meaning. The following are the implications of the results

and the observations of Chapters 4 and 5 as a whole:

• The generation of a large number of interactions across the entire object region by simulated interaction

models is essential for evaluating the performance of SIS algorithms. Small numbers of interactions

supplied by human users are not enough for this purpose due to the insufficient number of samples and

natural inter-user variability.

• The categorization of interactions into different groups of interest is important to examine the existence

of the effect of interactions on the segmentation results. In cases of any recognized impact, categorization

is also essential to determine the extent of this impact. Large numbers of interactions, categorized into

several groups, helps to discover subtle differences in the performances of the SIS algorithms. The

categorization of interactions is not possible for the standard methods due to the small number of

interactions inside the object region.

• It was shown that the spatial position of interactions can impact the segmentation results. These effects

were found to be diverse depending on the object-size, interaction mode and the SIS algorithm in use.

Knowing that this can occur is beneficial for human operators because they can potentially utilize such

knowledge while providing interactions for an application to maximize outcomes.

• Image properties in the vicinity of interactions were also found to impact segmentation performance

for some of the SIS algorithms, and these impacts were also found to be diverse depending on the

specific image properties and the SIS algorithms studied. Interactions were categorized based on the

image properties and variations in the results were also observed for different groups of interactions.
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(a) (b)

Figure 6.1: An object with seed points generated by the (a) simulated interaction models (b) hu-
man operators. Blue, green and red seed points are peripheral, intermediate and central seed points
respectively.

Knowledge of these impacts can be useful to understand the effect of the image properties on the

performances of SIS algorithms.

6.2 Efficacy of the methodology

This section explains the advantages of the proposed methodology over the standard methods by demon-

strating the difference with the standard methods, in terms of the working principle and the corresponding

outcome, using examples of three different interaction modes.

6.2.1 Seed point example

The proposed methodology uses simulated interaction models to generate large numbers of seed points to

consider the segmentation results for the seed points across the entire object region to evaluate the perfor-

mance of SIS algorithms. These large numbers of seed points are categorized into several interaction groups

in order to verify the impact of the position of interactions on the segmentation results. But the standard

methods use a small number of human operators to evaluate the segmentation performance of SIS algorithms.

Moreover, interactions provided by these human operators are not free from inter-operator and intra-operator

variability. Mean segmentation results computed from these small number of random and variable samples

fail to represent the true picture regarding the performance of the SIS algorithm.

For this example, Figure 6.1 shows two objects, one with seed points provided by five instances of human

operators (for this application one seed point is needed to segment an object) and one with seed points

provided by the simulated interaction models. Table 6.1 shows the mean accuracies for these seed points

overall and for the three groups of seed points. It can be observed that the accuracy values are different

for the two methods and more importantly, overall mean values for the standard method are computed only

from five samples whereas those values for the proposed methodology are computed using a large number of

samples. Moreover, the proposed methodology can generate enough seed points for each group, whereas the
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Table 6.1: Comparison between the proposed methodology and the standard method for seed point
interactions.

Proposed methodology Standard method
Need human user? No Yes
Number of generated samples Large Very small
Categorization Effective Not functioning
Mean accuracy (Dice) (overall) 0.846 0.867
Mean accuracy (Dice) (central) 0.870 0.897
Mean accuracy (Dice) (intermediate) 0.861 0.881
Mean accuracy (Dice) (peripheral) 0.835 0.863

Figure 6.2: A histogram of accuracy values for the seed points generated by the simulated interaction
model.

standard method has only one or two seed points. So, the accuracy values are not only different but also

statistical significance is not testable for the standard methods due to the insufficient number of samples.

Thus, the mean accuracy values, obtained from the standard method, do not convey the complete information

regarding the performance of the algorithm. Hence, the evaluation of the performance of a SIS algorithm,

by standard methods, may give an inaccurate and partial information about that algorithm. For example, a

histogram, like the one in Figure 6.2, can be built from the large number of accuracy values (here it is Dice

coefficients) for the proposed methodology, which can help us to get an idea about the overall distribution of

the accuracy values, but there is no way that the 5 seed points in 6.1 can capture the shape or the summary

statistics of that distribution in general.

Depending on the presence or absence of potentially bad inputs in the samples, standard methods may

significantly underestimate or overestimate the segmentation performance, as the small number of samples

are not enough to capture the variability in the interaction patterns provided by the human operators.

Standard methods could work fine if enough people are available to do the segmentations, but that is

prohibitively expensive and the proposed methodology offers a more effective alternative for a tiny fraction

of the financial and human effort costs.
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(a) (b)

Figure 6.3: An object with brush strokes generated by the (a) simulated interaction models (b)
human operators

Table 6.2: Comparison between the proposed methodology and the standard method brush stroke
interactions.

Proposed methodology Standard method
Mean accuracy (RMSD) (overall) 17.578 15.784
Mean accuracy (RMSD) (central) 16.733 15.976
Mean accuracy (RMSD) (intermediate) 17.893 16.782
Mean accuracy (RMSD) (peripheral) 18.409 No value

6.2.2 Brush stroke example

For this example, Figure 6.3 shows two objects with brush strokes provided by human operators and by

simulated interaction models. Table 6.2 shows the mean accuracies (here it is in RMSD) for these brush

strokes overall and for the three groups of brush strokes. It is observed that the accuracy values are different

for the two methods, and, more importantly, overall mean values for the standard methods are computed only

from a few samples whereas those values for the proposed methodology are computed using a large number of

samples. Moreover, the proposed methodology can generate enough brush strokes for each group whereas the

standard methods have very few or even zero brush strokes for the intermediate and the peripheral regions.

So, the accuracy values are not only different but also categorization is not effective for the standard methods.

Thus the mean accuracy values obtained from the standard method fail to convey the complete information

about the performance of the algorithm. Trends of the accuracy values, for different groups of interactions,

can be determined for the proposed methodology; but for the standard method, observing trends, based on

a small number of samples, is not sensible.
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(a) (b)

Figure 6.4: An object with closed contours generated by the (a) simulated interaction models (b)
human operators

Table 6.3: Comparison between the proposed methodology and the standard method.

Proposed methodology Standard method
Mean accuracy (HD) (overall) 72.676 65.042
Mean accuracy (HD) (central) 46.337 46.469
Mean accuracy (HD) (intermediate) 50.691 48.973
Mean accuracy (HD) (peripheral) 97.772 90.568

6.2.3 Closed contour example

For this example, Figure 6.4 shows two objects with closed contours provided by five typical human operators

and by the simulated interaction models. Table 6.3 shows the mean accuracies (here it is in HD) for these

closed contours overall and for the three groups of closed contours. It can be observed that the interactions

are generated across the entire object region for the proposed methodology, whereas a large area has no

interaction at all for the standard method. Thus, the accuracy values for the proposed methodology are

obtained by considering the interactions from all areas whereas those values for the standard method are

computed based on interactions only from a few regions of the object. Hence, the proposed methodology

can generate enough closed contours for each group whereas the standard methods have very few or even

zero closed contours for the intermediate and the peripheral regions. So, the accuracy values are not only

different but also not plausible from the viewpoint of statistical soundness due to the insufficient number of

samples for the standard methods. Thus the mean accuracy values, obtained from the standard method, do

not convey complete and accurate information regarding the performance of the algorithm.
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6.3 Relation between accuracy and spatial position of interactions

6.3.1 Impact of position of interactions on accuracy

One of the important findings of this work is that the position of interactions has impact on the segmentation

results. Although users of SIS algorithms, while providing interactions, can roughly notice these impacts by

observing the variations in the results, this is not definitive. Without any formal study, it not possible to

validate and evaluate these impacts, as the impacts may be variable for different positions of interactions

and trends of these variations also may not be similar. Moreover, these impacts may vary depending on the

shapes and sizes of the objects, interaction modes and the algorithms in use. The proposed methodology

provides a systematic and comprehensive way to consider all these factors as a whole. This work has revealed

the in-depth details regarding these impacts which can help us to grasp an overall picture with respect to

different algorithms and groups of interactions. This work has found enough evidence to validate the existence

of the impact of position of interactions on the segmentation results. This general finding leads to the more

specific question of whether this impact is same for all the interactions. The answer has been found to be

“no”, because these impacts vary depending on the position of the interactions. In general, the trends of

variation in the results improve as interactions move from the peripheral region towards the central region

of the object, but the magnitudes of these variations are not always the same. It varies for different images

and even for a single image, it varies for different objects as well. Although all the images of the dataset

were ultrasonic imaging, the image properties of the images in terms of texture, brightness, noise, intensity

distribution were not same across images and objects within an image. As the SIS algorithms use these

image properties for segmentation, the existence of differences in the magnitudes of these variations is not

surprising, but these subtle differences could not be observed for a small number of segmentations, because the

variations in the image properties among the different object regions could not be significant enough to cause

the differences in the segmentation results. These impacts again vary for different algorithms and interaction

modes. For a particular algorithm and interaction mode, these variations with respect to the position of

interactions are sometimes very subtle. This may be because there are differences in the working principles

of the SIS algorithms i.e., different SIS algorithms use different number of image properties in different ways

for segmentation. Moreover, different sets of pixels are collected for different interaction modes; for example,

a single pixel is stored for a seed point, whereas a set of pixels are collected for a brush stroke or a closed

contour. Though for each seed point, a set of neighbouring pixels are also collected, but still the sets of

collected pixels for the interactions of different modes are also different, due to the differences in the forms of

these interaction modes. As a result, intensity distribution or other image properties for the interactions, of

different modes, may be different. Hence, the combined effect of different SIS algorithms and the interaction

modes may be strong enough to produce those subtle differences in the segmentation results. This work shows

that the algorithms GCnoSP , GCBS and Onecut are less affected by the position of interactions and the
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largest impacts are visible for the algorithms DRLSE and DRLSEIC. More specifically, large variations in

the values of Dice coefficients are observed for the two algorithms DRLSE and DRLSEIC, which indicate

that, the segmentation results are more affected by the positions of interactions for these two algorithms.

Large variations in the values of RMSD are observed for the algorithms GSC, GSCSeq and TRC, which

are the indications that, accuracy can vary a lot based on the choice of interaction location, which is exactly

same for HD values, for the same algorithms and this is why we need to sample the set of interactions densely

when evaluating algorithms.

But these general trends are not exactly the same for all interactions modes i.e., for a particular algorithm,

variations in the results for different interaction groups are not the same for all interaction modes. The reasons

behind these differences may lie in the working principles of these algorithms, as the first three algorithms are

from the same family of graphcut, which use an appearance model whereas the last two are from the family of

level set algorithms which work on the evolution of the contour of the segmented region. Appearance models

of grayscale images seem to be more suitable for the graphcut family of algorithms than for the level set

algorithms. So, one of the main differences of this proposed methodology from the standard methods is the

capability of this methodology to reveal the subtle variations in the impacts for the position of interactions

in conjunction with different algorithms and interaction modes.

6.3.2 Significance of this impact

Evidence of the impact of position of interaction on the segmentation results has validated the concept that

the position of interaction inside the object region is important and it has effect on the segmentation results.

Having this knowledge, users now know that interactions should be placed carefully inside the object region

in order to obtain the best possible segmentation. Variations in the impacts for different interaction modes

and different algorithms give users a comparative view which can guide them to adapt their usual practice

of providing interactions.

6.4 Relation between accuracy and image properties

6.4.1 Existence of association between image properties and accuracy

Like position of interactions, image properties also have effect on the segmentation results, although, not

all image properties affect all algorithms. Several image properties (i.e., features of the image regions) were

computed for all the algorithms and the corresponding segmentation results were analyzed to inspect the

impact of those features on the results. In order to analyze the effect, interactions were categorized based

on the feature values. Some of the features have no significant effect on the segmentation results for some

of the algorithms, but some features have significant impact on the results for some of the algorithms and

those impacts are diverse. Most of the features used here originated from the variations of intensity values
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of the image and some of the algorithms use intensity values in different ways for segmentation. That is

why the effect of some of the features on the segmentation results are very likely. As the feature values

across the image regions are not homogenous, interactions have different feature values, depending on the

particular regions of the image where the interactions are placed and are categorized based on these values.

As the distribution of the feature values across the image regions do not follow any regular pattern, large

numbers of interactions are essential to accommodate all the variabilities for proper study of the effect on

the segmentation results. This is the point where the standard methods fail due to the insufficient number

of randomly placed interactions. This work shows that, in general, the extent of the impacts varies a lot

depending on different features for different algorithms. For example, segmentation results get better when

the values of mean contrast vary from low to high. The likely explanation for this effect is that for the

image regions with high contrast, foreground objects become more distinguishable from the background; so

the algorithms which use the variations of intensity values for separating objects from background are likely

to perform well. This is not surprising, but algorithms are not normally compared by their performance in

at different contrast (or other feature) levels, which is something that our method enables. Segmentation

performance, for some of the algorithms, also got better when the values of mean intensity of the neighbouring

pixels (NMI) increased. This can be explained by considering that ultrasound images contain some scattered

dark spots in the background, usually marked as background by the users, and the follicle regions are also

blackish, and are sometimes attached with those dark spots. This makes the technique of separating the

follicles from the dark spots harder, especially for the algorithms which rely on the intensity distribution

for segmentation. For this, slightly brighter follicles are easier to separate from the background, resulting in

better segmentations. For the feature NSI (mean standard deviation of the intensity values of neighbouring

pixels), segmentation results, for some of the algorithms, got worse in the order of these feature values from

low to high. The explanation for this trend may be that the larger variations of intensity values, inside the

follicle area, make these objects more non-homogenous, causing the segmentation to be harder. Again, this

is expected, but our method enables us to quantify and compare an algorithm’s sensitivity to variance to

other algorithms.

Hence, it is clear that each algorithm is affected by some of the features, but not by all the features. The

reasons behind these different effects lie in the working principles of the algorithms. Different algorithms

use image properties in different ways and that is why different features have different impacts on the

outcomes of the algorithms. For example, some algorithms use local variations of intensity values, whereas

some algorithms use intensity values in a larger scale, such as global texture features. Consequently, all the

features are not equally connected with all the algorithms which eventually introduce the differences in the

outcomes. From the viewpoint of the users, SIS algorithms should be designed with the minimal sensitivity

to image properties, because the users do not like to pay attention to the image properties while providing

interactions for an SIS application. Although it is obvious that the effects of image properties cannot be

totally eliminated, efforts should be made to minimize it. Even if the effects cannot be minimized, efforts
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should be directed towards minimizing algorithm sensitivity to those features that cannot easily be perceived

by users. Thus the methodology provides a way to characterize the interactions in terms of image features,

which creates the opportunity to categorize the interactions and, thereby, examine the impacts on the results,

and compare segmentation algorithms in new ways.

6.4.2 Significance of this association

The relation of the image features to the segmentation results, discovered by the proposed methodology, can

make the users more aware of how they should be placing the interactions inside the image regions. If the users

are informed about the effects of the features, they can use this knowledge to provide the interactions more

carefully to obtain the best possible segmentation. Diverse impacts of the features on the results for different

algorithms can be used as the clues to discover the underlying basis for the segmentation performance of the

algorithms. In order to understand the extent of the impact of each individual feature, an algorithm can be

tested on the images having different values of each particular feature, while values of other features are kept

constant, and corresponding change in the result can be observed to verify the effect and then this process

should be iterated for all the features, which have an effect on that particular algorithm, according to the

evaluation by the proposed methodology. Using this knowledge of the effect of each individual feature, users

can choose the regions inside the object which are supposed to produce better segmentation. For this, users

should be able to recognize the presence and magnitude of the features from the image visually. Features

which have effects on the results but are not perceivable visually should be identified and investigation is

required to understand how the working principle of the algorithm can be modified to minimize the effect

of those features on the algorithm. In this way, algorithms can be redesigned and evaluated again by the

methodology to assess the improvement. Iteration of this process can help to design the algorithm such that

only the visually perceivable features are used, so that the users can apply that knowledge to maximize the

outcome.

6.4.3 Open questions

The number and types of the image features used for this work were selected considering the image dataset

in use. One can argue that some other image features could be more appropriate or the number of image

features could be different, etc. This intuition points to the natural question: how can we understand that

these features are the most appropriate? How do we know how many features are enough? These questions

eventually lead to the more structured query: is it possible to develop a mechanism which can determine

the number and kinds of image features considering the image dataset and the algorithms in use? Before

addressing these issues, it should be noticed that the effect on each algorithm is the combined effect of several

features, where the number of features are variable. So, the effect of each individual feature is still unknown.

In order to understand this individual effect, an algorithm can be tested on the images having different values

of each particular feature, while values of other features are kept constant and corresponding change in the
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result can be observed to verify the effect, and then this process should be iterated for all the features. Once

the individual effect is known, the working principle of an algorithm can be tested by successively excluding

a feature from the set of features until the performance does not degrade. This will give us an idea about

the minimum number of required features for the algorithm. This process can be iterated using different

combinations of features, even including features which were not tested before. This can suggest the most

appropriate set of features to maximize the performance of the algorithm. This whole procedure should be

tested on different types of images to determine the required set of features for a particular type of image.

6.5 Training human operators to use SIS algorithms

6.5.1 Effect of the methodology on users

Evidence of potential impact of interaction positions and image properties on the resulting segmentations,

in terms of the variations in the segmentation results for different groups of interactions, implies that the

position of interaction inside the image region is important to maximize the segmentation results. The extent

of these variations in the results suggests that interactions should be placed in the regions which potentially

produce better segmentations instead of placing randomly inside the object region. Hence, one of the effects of

this work is that, the positional and image feature sensitivities that our work elucidates can be used to inform

best practices for training users to provide the interactions for maximizing the segmentation performance by

choosing the potentially good regions and avoiding the bad ones.

6.5.2 Significance of this effect

The information about the interaction patterns in terms of potential capability to produce good or poor

segmentation results is useful because the users can use this information for producing good segmentation

results. But, on the other hand, it may be a concern for the users whether this knowledge will add any

extra cognitive load on the users because users now are not free to place the interactions anywhere inside

the image regions, rather they have to apply this knowledge while placing the interactions. Another concern

may be whether using this knowledge will make the users slower (i.e., reduce throughput) while using an

image segmentation application. A user study could be conducted to find the answers of the following specific

questions:

• How much extra cognitive load will the said knowledge add on users? Increase of cognitive load could

be determined from the extra time spent by the users for segmenting the same set of images using the

same software for providing the interactions, applying the knowledge and without the knowledge. In

order to measure the cognitive load subjectively, the most commonly used assessment tool NASA task

load index (TLX) tool [56] can be used.

• Will this affect throughput? The answer to the first question wold answer this question as well because
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(a) (b)

Figure 6.5: Two images with two rectangular areas, for each, showing the qualitative feature values
for these areas.

the evidence of extra time spent for providing the interactions using the knowledge, may make the users

slow and thereby decreasing the throughput.

• Will this be really beneficial despite the cognitive load on the users? Answer of this question could be

found by considering the extra cognitive load, throughput and the gain in the accuracy. If the amount

of extra load is not excessive and if the gains in the accuracy are found to be significant, that will

indicate a real benefit for the users.

Depending on the findings of the user study, a trade-off may be necessary for the balance the extra

workload with the gain in accuracy and the throughput. Whether the extra workload is acceptable or not

can be determined by comparing the time spent for providing the interactions using and not using the

knowledge. If the extra time spent is small compared to the time spent for the standard approach, then it

should be acceptable. In this case, the environment, where the SIS applications are usually used should also

be considered to check whether the extra time is allowable in that environment.

Another important issue here is, how to train the users to recognize the important image properties and

to utilize the good areas, and avoid the bad ones while providing interactions. As previously mentioned, user

training could include training in recognizing potentially good and poor areas in terms of image properties,

but the problem is to recognize those areas in the image. In this regard, users will have to rely on their

visual perception. So, users need to be trained from the images with the demonstration of different image

properties like the following in figure 6.5.

In these two images, two rectangular areas in each image are shown with the qualitative measures of

four image features for those areas, from which users can get idea about the visual perception of the image

properties, and can be trained to recognize the potentially good and bad areas.
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6.6 Selection of interaction modes and SIS algorithms to be used

in an application

6.6.1 Choice of algorithm and interaction mode

The proposed methodology has been demonstrated by two case studies through implementation of seven dif-

ferent algorithms using three different interaction modes, making a total of nine segmentation applications,

to assess the efficacy of the methodology. The evaluation of the relative performances of different algorithms

have provided the opportunity to assess the suitability of an algorithm for a particular segmentation applica-

tion. This work has also opened up the opportunity to assess whether a particular interaction mode has any

effect on the performance of an algorithm, or in other words, which interaction mode is more appropriate for

an algorithm.

6.6.2 Open questions

The opportunity for comparing the algorithms in terms of relative performances has also raised some questions

which need to be addressed. One question may be whether it is possible to determine the best possible

algorithm for a particular application and for a particular dataset? Knowing that there is evidence of a

relationship between the performance of an algorithm and the interaction mode from [144], natural curiosity

leads to the question: is it always possible to determine which interaction mode is best for a particular

algorithm? The answer to this question can be found by evaluating the performance of an algorithm for a

particular segmentation problem using different interaction modes. Even knowing this answer, it is not known

whether the effects of the interaction modes on the performance of a particular algorithm are independent.

So, the next relevant question may be: are there any inherent benefits to a particular interaction mode that

are independent of the underlying algorithm? Knowing this answer can help to distinguish between the

combined impacts of the interaction modes and the algorithms on the segmentation performance. In order to

answer this question, several algorithms can be applied to a particular segmentation problem by combining

several interaction modes with each of the algorithms. Then, examining the corresponding segmentation

performances, it is possible to get the answer but not always guaranteed.

6.6.3 Future work

In order to determine the best possible algorithm for a particular segmentation application, commonly used

SIS algorithms should be classified into several groups. Then each type of algorithm can be tested for different

types of images and different types of objects to be segmented, and thus a general method can be developed

to determine the best possible algorithm depending on the type of the image and the interaction mode. In

the same fashion, each type of algorithm can be tested for different types of interaction modes and thus a
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general technique can be devised to find out whether the performance of the algorithm differs depending on

the interaction mode.

6.7 Background interactions

6.7.1 Need for automatic generation

For SIS algorithms, like foreground interactions, background interactions are also supplied by users for mark-

ing the background regions of the image. Foreground interactions were generated by the simulated interaction

models but background interactions were generated manually. Attempts for automatic generation of back-

ground interactions were not successful due to the differences in the noise, texture, brightness and intensities

of the pixels in the background area. The judicious choice of the locations for the placement of brush strokes

in the background region is essential in order to capture the variability in the said image properties. This

cannot be achieved when background interactions are generated randomly in the background area and thus,

are not assured to be positioned in the areas which can ensure to capture all kinds of variability. This results

in producing some very poor segmentations which are not even suitable to be included in the process of

evaluation. As a result, the number of admissible segmentations turns out to be very small, or even zero,

especially for very small-sized objects. According to the methodology, each image is segmented once for all

the interactions generated within the foreground objects, while interactions in the background region remain

constant. As the interactions in the background region are constant for a particular image, these interactions

should not be placed in the areas which lead to extremely poor segmentation, thereby resulting in inadequate

number of segmentations required for the evaluation process. As the automatically generated interactions

can be placed anywhere within the background region, this enhances the possibility of producing extremely

poor segmentation. In order to develop this methodology as a complete tool for automatic evaluation of SIS

algorithms, background interactions also need to be generated automatically. Manual generation of back-

ground interactions is cumbersome and time consuming, which imposes a practical limitation on using this

methodology as a tool for automatic evaluation of SIS algorithms.

6.7.2 Future work

Programmatic generation of interactions requires techniques for characterizing the background area in terms

of image properties. Programmatically generated interactions, in terms of the image properties, need to

be collectively equivalent to the background area. This means that the mean feature values computed

from the entire background area should be very similar to that computed considering the total pixels of

all the interactions. An algorithm is required to determine the number and locations of interactions in the

background region of the image provided that the image properties of that interactions are equivalent to

that of the background area. This could be done by generating background interactions randomly with the
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following initialization:

• Number of interactions=1

• Width of the interaction=1 pixel

• Length of the interaction= smallest from a range determined from empirical study

Values of image features could be computed from the pixels of the interactions and compared to that of

the background area to verify the similarity. This process could iterate by incrementing the values of these

three parameters within a range and each time feature values could be compared to check for the similarity

with that of the background area. Once the feature values become similar, then the iteration should stop

and the generated interactions can be used as the background interactions. This technique may not look

very concrete because the number of iterations may vary within a wide range and may be computationally

expensive but could be a good point to start. On the whole, it is challenging but essential for the automatic

generation of background interactions.
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Chapter 7

Conclusion

This thesis has introduced a novel way of evaluating the performance of semiautomatic and interactive

segmentation (SIS) algorithms. In this chapter we summarize our contributions and state some of the

challenges and open questions in research on this topic.

7.1 Contributions

This thesis has proposed a methodology for evaluating the segmentation performance of SIS algorithms which

is a significant step toward the development of a framework to automatically get an extensive evaluation of

any SIS algorithm without employing human operators. This is a very significant achievement because the

use of human operators to segment images for evaluating the segmentation imposes practical limitations on

the number of segmentations which is not sufficient for comprehensive analysis of an algorithm’s performance.

In addition with this insufficient number of samples, natural inter-user variability is another major problem

which makes the evaluation even more difficult and unreliable. Use of simulated interaction models to

generate the interactions programmatically has made it possible to replace the human operator for providing

user interactions. Use of simulated interaction models has solved the problem of an insufficient number

of user interactions by generating a large number of interactions. It also has been capable to capture the

variabilities in the set of user interactions by ensuring the presence of interactions everywhere inside the

region of the foreground object using the method of sampling at a regular interval. The capability of the

simulated interaction models to generate the interactions of all commonly used modes has made it practically

useful.

Introducing the concept of categorizing the interactions according to different criteria for the purpose of

in-depth analysis of the segmentation results is another contribution. This idea has provided the possibility

of extensive evaluation well beyond that of conventional aggregate evaluation. Differences in the existence

and extent of impact of interactions on segmentation, depending on the relative position or image properties,

can be determined using the categorization of interactions. This allows characterization of the interactions

into different groups and thereby relate these groups of interactions to the potential capability to produce

good or poor segmentation. This information can be used to guide the users in order to avoid the bad choices

of interactions for obtaining the best possible segmentation for a particular SIS algorithm.
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Use of appropriate statistical methods for analysis of segmentation result is a significant step to achieve

reliability in the process of evaluation because conclusions based on an analysis that lacks the proper statistical

evidence may be unfounded. This methodology incorporates guidelines to evaluate the segmentation results

using series of proper statistical tests that ensures the validity of the conclusion drawn based on the analysis.

Our case studies demonstrated that we were able to show that among the algorithms tested for the follicle

image dataset, algorithms Onecut, GCBS, GCnoSP were superior, while considering both mean accuracy

and consistency of the performance among the interaction categories. Algorithms GSC and GSCSeq were

superior, if mean accuracy is considered more important than consistency. These results hold only for this

particular application and set of algorithms; however, the methodology is such that other algorithms and

interaction modes could easily be added for even richer comparison, and other datasets can be easily studied

yielding similar kinds of results specific to that dataset.

7.2 Challenges

This study is a step toward the automatic extensive evaluation of SIS algorithms. Two case studies demon-

strated how the proposed methodology can be applied to evaluate the segmentation performance for seven

algorithms and three interaction modes for a particular type of images. Although these two case studies used

ultrasound images, this methodology can be applied for any type of images provided that the image proper-

ties should be selected considering the types of the images. In order to upgrade this proposed methodology

to a framework, all types of SIS algorithms and existing interaction modes should be included to make it

generalized.

Two case studies here have used a particular data set containing 33 ultrasound images of ovarian follicles.

Ovarian follicles have a particular type of shape and this methodology has been designed to work for a class

of shape which not only includes the follicles but also a large number of objects in the real world. Still, this

methodology will not work for some of the shapes, especially for the objects with non-star shape. One of

the special cases for the objects, not supported by this methodology, is the objects that have one or more

long thin elongated parts. Even if objects of this shape are segmented reasonably well by the SIS algorithms,

still there will be problem to generate a sufficient number of interactions and categorize them, especially

categorization with respect to the position of interactions.

This methodology has used several texture features for characterizing and categorizing interactions for

extensive evaluation of segmentation performance. These features were suitable for the dataset used in the

case study, but may not be appropriate for any type of dataset. So, a technique should be incorporated into

the methodology which will select the proper number and kinds of features for a particular dataset. This can

be challenging as there is no definite procedure yet to determine the perfect combination of features for any

dataset.

Developing a tool for fully automatic evaluation using this methodology will face some challenges in
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the sphere of practical implementation too. Especially for large datasets, generation of a large number of

interactions may be computationally infeasible for practical use. Using statistical methods for result analysis

also may be expensive and complicated when it will be integrated into a single application.

7.3 Open questions

Simulated interaction models are capable of generating large numbers of interactions programmatically only

for foreground regions because these regions have limited area and interactions can be generated anywhere

inside the regions. For background regions, manually generated interactions have been used, as program-

matic generation of these interactions was not successful due to the reasons explained in the Section 3.1.1.2.

Generating interactions manually for background region appears to be a cumbersome and time consuming

task but not as much as it sounds to be because number of these interactions is not large and same set of

interactions are used for a particular image for all instances of segmentations. Still, the obvious question is:

• Is it possible to generate the interactions for the background region automatically, provided that these

will capture the variations of the image properties for the background region? If it is not possible, then

how can we tackle the combinatorial problem of combining sets of background interactions with sets of

foreground interactions, and having to keep the background strokes constant as a control?

In order to determine the number, size and density of interactions for all objects of interest, several

heuristic formulas have been used based on the empirical studies of the particular dataset used. Determining

the parameter values for these heuristic formulas, separately for each individual dataset, is not ideal as it is

tedious and time consuming. So, it is natural to find out the answer to the following question:

• Is it possible to develop models for determining the values of these parameters that will work for any

dataset without empirical study?

In spite of these challenges and unsolved issues, this methodology looks promising, as it can be very much

beneficial for the users of image segmentation, if it can be upgraded to an application for practical use for

extensive evaluation of segmentation performance of SIS algorithms.
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Song, Nicholas Tustison, Brian Avants, James C. Gee, Marius Staring, Stefan Klein, Berend C. Stoel,
Martin Urschler, Manuel Werlberger, Jef Vandemeulebroucke, Simon Rit, David Sarrut, and Josien
P. W. Pluim. Evaluation of registration methods on thoracic ct: The empire10 challenge. IEEE
Transactions on Medical Imaging, 30(11):1901–1920, November 2011.

[96] Hannes Nickisch, Carsten Rother, Pushmeet Kohli, and Christoph Rhemann. Learning an interactive
segmentation system. In Proceedings of the Seventh Indian Conference on Computer Vision, Graphics
and Image Processing (ICVGIP 2010), pages 274–281, 2010.

[97] Jifeng Ning, Lei Zhang, David Zhang, and Chengke Wu. Interactive image segmentation by maximal
similarity based region merging. Pattern Recognition, 43(2):445–456, February 2010.

[98] Neil Nirkbeck, Dana Cobzas, Martin Jagersand, Albert Murtha, and Tibor Kesztyues and. An inter-
active graph cut method for brain tumor segmentation. In Workshop on Computer Vision, pages 1–7,
University of Alberta, AB, Canada, 7–8 December 2009.

[99] Alexandre Noma, Ana B.V. Graciano, Roberto M. Cesar Jr, Luis A. Consularo, and Isabelle Bloch.
Interactive image segmentation by matching attributed relational graphs. Pattern Recognition,
45(2012):1159–1179, 2012.

[100] S.D. Olabarriaga and A.W.M. Smeulders. Interaction in the segmentation of medical images: A survey.
Medical Image Analysis, 5(2):127–142, June 2001.

[101] Nikhil R Pal and Sankar K Pal. A review on image segmentation techniques. In Pattern Recognition,
volume 26, pages 1277–1294, 1993.

[102] Nicolas Passat, Benoit Naegel, Francois Rousseau, Meriam Koob, and Jean-Louis Dietemann. Inter-
active segmentation based on component-trees. Pattern Recognition, 44(10–11):2539–2554, October
2011.

[103] Sayan D. Pathak, Vikram Chalana, David R. Haynor, and Yongmin Kim. Edge-guided boundary
delineation in prostate ultrasound images. IEEE Transactions on Medical Imaging, 19(12):1211–1219,
2000.

[104] Bozidar Potocnik and Damjan Zazula. Automated analysis of a sequence of ovarian ultrasound images.
part i: segmentation of single 2d images. Image and Vision Computing, 20:217–225, 2002.

[105] Marcel Prastawa, John H. Gilmore, Weili Lin, and Guido Gerig. Automatic segmentation of mr images
of the developing newborn brain. Medical Image Analysis, 9(5):457–466, 2005.

[106] Alexis Protiere and Guillermo Sapiro. Interactive image segmentation via adaptive weighted distances.
IEEE Transaction on Image Processing, 16(4):1046–1057, April 2007.

[107] Milloni R, Sbrignadello S, Tura A, lori E, Murphy E, and Tessari P. The inter- and intra-operator
variability in manual spot segmentation and its effect on spot quantitation in two-dimensional elec-
trophoresis analysis. Electrophoresis, 31(10):1739–1742, May 2010.

[108] Anjana Rajkumar, Jose Dolz, Hortense A. Kirisli, Sonja Adebahr, Tanja Schimek-Jasch, Ursula Nestle,
Laurent Massoptier, Edit Varga, Pieter Jan Stappers, Wiro J. Niessen, and Yu Song. User interaction
in semi-automatic segmentation of organs at risk: a case study in radiotherapy. Journal of Digital
Imaging, 29(2):264–277, April 2016.

121



[109] Nathalie Richard, Michel Dojat, and Catherine Garbay. Automated segmentation of human brain mr
images using multi-agent approach. Artificial Intelligence in Medicine, 30(2):153–175, February 2004.

[110] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Interactive foreground extraction
using iterated graph cuts. ACM Transactions on Graphics, 23(3):309–314, 2004.

[111] Laszlo Rusko, Gyorgy Bekes, and Marta Fidrich. Automatic segmentation of the liver from multi- and
single-phase contrast-enhanced ct images. Medical Image Analysis, 13(6):871–882, December 2009.

[112] M. Sadeghi, G. Tien, G. Hamarneh, and M.S. Atkins. Hands-free interactive image segmentation using
eyegaze. In SPIE Proceedings on Medical Imaging 2009: Computer-Aided Diagnosis, February 2009.

[113] Jakob Santner, Thomas Pock, and Horst Bischof. Interactive multi-label segmentation. In Asian
conference on Computer vision, volume 1, pages 397–410, 2010.

[114] G.E. Sarty, W. Liang, M. Sonka, and R. A. Pierson. Semi-automated segmentation of ovarian follicular
ultrasound images using a knowledge-based algorithm. Ultrasound in Medicine and Biology, 24(1):27–
42, January 1998.

[115] Michiel Schaap, Coert T. Metz, Theo van Walsum, Alina G. van der Giessen, Annick C. Weustink,
Nico R. Mollet, Christian Bauer, Hrvoje Bogunović, Carlos Castro, Xiang Deng, Engin Dikici, Thomas
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