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1 Introduction 
How is the human body built and how does it function? What are the causes of 
disease, and where is disease located? Throughout the history of mankind these 
questions were answered by the use of invasive methods that included the 
“opening” of the human body, mainly cadavers. Thanks to these invasive 
techniques the first precise and complete anatomy works started to appear in 
the 16th century. The most influential works were published by Leonardo da 
Vinci [1] and the anatomist and physician Andreas Vesalius [2].  

The discovery of X-rays in 1895 [3], and their use for medical applications, 
introduced a new era, in which non-invasive imaging of the functioning human 
body became feasible. Nowadays, medical imaging includes many different 
imaging modalities, such as X-ray, computed tomography (CT), magnetic 
resonance imaging (MRI), ultrasound (US), nuclear and optical imaging, and 
has become an indispensable diagnostic tool for a wide range of applications. 
Initially, the application of medical imaging focused on the visualization of 
anatomy and on the detection and localization of disease. However, with the 
development of different modalities it has evolved into a much more versatile 
tool providing important information on e.g. physiology and organ function [4], 
biochemistry and metabolism using nuclear imaging (mainly positron emission 
tomography (PET) imaging [5]), molecular  and processes on the molecular 
and cellular level using molecular imaging techniques [6].  

For a long time, human observers’ knowledge, experience and pattern 
recognition abilities have been crucial in the interpretation of medical images. 
However, as the human eye is not capable of performing accurate 
quantification, many clinical decisions are made based on the visual estimate of 
disease progression. With the increasing amount of high dimensional data 
produced with MRI and CT scanners, and the need for objective quantification, 
the subjective human assessment of medical images has reached its limits. That 
is why there is a trend to enhance, assist or replace the work of the clinician by 
automatic image processing.  

Obtaining quantitative data from imaging data often requires the accurate 
delineation of the target anatomical or pathological region, a process which is 
called segmentation. The manual segmentation of structures in 3D images is 
tedious, error prone and very time consuming, which is why many researchers 
are investigating automatic approaches. Depending on the application, robust 
fully automatic segmentation is not always feasible. In this case, semi-
automated approaches are pursued, where the segmentation is e.g. initialized 
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and/or manually guided or corrected with the aim to accelerate the 
segmentation process while achieving good accuracy and reproducibility. 

In this thesis semi-automated algorithms for quantification of carotid artery 
atherosclerosis in computed tomography angiography (CTA) images are 
developed and evaluated. In the following sections, we discuss the background 
of atherosclerosis, CTA imaging and the contributions of our thesis. 

1.1 Atherosclerosis and the Carotid Artery 

The word atherosclerosis originates from the Greek words athero (meaning 
gruel or paste), and sclerosis (meaning hardness). The term refers to the deposit 
of calcium, fatty substances, cholesterol, cellular waste products and fibrin 
(collectively known as plaque) that builds up in the inner lining of the artery 
(Fig. 1.1).  

Atherosclerosis is a slow process, which may take many years before leading to 
symptoms. Increased atherosclerotic burden at the carotid bifurcation first 
builds up at the outer border of the carotid wall without narrowing of the lumen 

[7]. In the later stages of plaque progression the vessel lumen becomes 
compromised, eventually causing stenosis or occlusion. Carotid artery 
atherosclerosis may lead to ischemic stroke, which constitutes the third cause 

 

Figure 1.1 Normal (left) and atherosclerotic human artery (right) 
(http://www.tappmedical.com/atherosclerosis.htm) 
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of death worldwide and an important cause of disability. Ischemic stroke 
happens when there is a lack of blood supply to the brain. The most common 
cause (~50%) of an ischemic stroke is atherosclerosis of large vessels (carotid 
artery, vertebral artery and the Circle of Willis) [8] (Fig. 1.2). Some studies 
[9][10][11] show that plaque composition is an important risk factor for 
ischemic stroke. Furthermore, the plaque volume is a better descriptor of the 
severity of atherosclerotic disease than the degree of stenosis [12]. Therefore, 
automating the process of lumen stenosis grading and plaque component 
segmentation can have important clinical implications, supporting the decision 
towards medication treatment or surgery (carotid endarterectomy, angioplasty 
and stenting). 

1.2 Computed Tomography Angiography 

For a long time digital substraction angiography (DSA) has been the gold 
standard for visualizing lumen reduction in carotid arteries because of its high 
spatial (50μm) and temporal resolution (10ms). Two major trials that used 
DSA data, The North American Symptomatic Carotid Endarterectomy Trial 

 

Figure 1.2 An illustration of an occurrence of an ischemic stroke 
caused by the lack of blood supply to the brain.  
(http://www.nhlbi.nih.gov/health/health-
topics/topics/stroke/types.html) 
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(NASCET) [13] and the European Carotid Surgery Trial (ECST) [14], 
established luminal stenosis grade as an important criterion in deciding on 
treatment planning of patients with cerebral ischemia symptoms. However, 
there are a number of limitations of DSA. It is an invasive procedure that can 
only depict the intraluminal portion of the vessels. Furthermore, only a limited 
number of projections is typically obtained for actual luminal reduction 

 

Figure 1.3 Column A: three axial MDCT images of the carotid artery with 
atherosclerotic plaque. Column B: MDCT plaque morphology images based 
on differences in Hounsfield Units. Column C and D: Corresponding 
histological sections with Sirius Red (SR) and haematoxylin eosin (HE) 
staining, respectively). The blue regions in the MDCT morphology images 
correspond well with the lumen and calcifications (arrow) on HE stained 
histological sections. The red regions in the MDCT morphology images 
correspond well with the red collagen-rich regions in the SR stained 
histological sections. The yellow regions in the MDCT morphology images 
correspond well with lipid core (i.e. lipid, hemorrhage and necrotic debris) 
(arrowhead) regions on histology (the non-red regions on the SR stained 
sections that are not calcified areas on the HE stained sections). [18] 
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measurement, which may result in a wrong estimate of the maximum lumen 
reduction  

In view of the limitations of DSA, there is an increasing interest in CTA as a 
modality for assessing the carotid artery bifurcation. Computed tomography 
angiography is an imaging modality that can be used to accurately visualize the 
severity of luminal stenosis in 3D [15]. With CTA it is extremely easy to detect 
calcifications in the carotid artery (Fig. 1.3). CTA has also become an 
established method for successful artery calcium scoring in coronary arteries 
[16][17]. With the introduction of MultiDetector CT (MDCT) in 1998 fast 
imaging at high temporal and spatial resolution became possible. The main 
advantage of this technology compared with conventional mechanical spiral 
CT scanner is that it consists of multiple detector rows, which allow 
simultaneous acquisition of multiple slices. CT scanners using e.g. 16 and 64 – 
slice technology offer a very high spatial resolution and can generate very thin 
slices allowing the acquisition of isotropic voxels [18]. It has been shown, 
using 16-slice CT, that noncalcified coronary lesions could be detected with a 
reasonable sensitivity of 78% [19]. It has been also shown, with comparison to 
histology, that assessment of carotid atherosclerotic plaque components is 
feasible with MDCT using different plaque components Hounsfield units (HU) 
densities in vitro [20] and in vivo [21]. In Figure 1.3 an illustration from [21] of 
atherosclerotic plaques in MDCT cross-sectional slices and corresponding 
histology samples are shown.  

1.3 Quantification of Carotid Atherosclerosis 

Plaque in the carotid artery has a complex structure, and may consist of several 
components. The presence of plaque components (i.e. haemorrhage, fibrous 
tissue, lipid rich necrotic core, calcification), their percentage and their volume 
may be important in assessing the nature of the plaque, including its 
vulnerability to rupture. Determining such plaque characteristics manually is a 
tedious, and error-prone task, which could be facilitated much by (semi-
)automatic quantification approaches. The automatic analysis of carotid 
atherosclerotic plaque is a challenging task, owing to the limited contrast 
between the plaque components and the surrounding soft tissue. 

The purpose of the work described in this thesis is to develop and evaluate 
methods that allow automated quantification of atherosclerosis in the carotid 
bifurcation in CTA images. We aim to develop methods to quantify carotid 
artery stenosis and accurately segment the outer vessel wall and its plaque 
components from MDCT data. The methods are evaluated on large sets of 
MDCT imaging data.  
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This thesis is further organized as follows. Chapter 2 presents an automated 
method for carotid artery lumen segmentation in CTA. The method uses three 
user defined seed points, located in the common carotid artery (CCA), internal 
carotid artery (ICA) and external carotid artery (ECA) to extract the lumen 
centerline using a minimal cost path approach. The method is validated with 
respect to stenosis grading. In Chapter 3 the focus shifts to outer vessel wall 
segmentation. A novel method is presented which utilizes a variant of the 
lumen segmentation method from Chapter 2 as a starting point. Subsequently, a 
voxel based classification is used to separate inner and outer region of the 
vessel.  A machine learning algorithm is trained using spatial, intensity and 
Gaussian features. In Chapter 4 carotid artery plaque components are 
segmented using the method from Chapter 3 and applying different HU 
thresholds to segment different plaque components. The method is evaluated 
with respect to cardiovascular risk factors correlations with plaque component 
percentages and volumes. In Chapter 5 a novel level set based method is 
presented for outer vessel wall segmentation. Using HU thresholding, the 
method is evaluated with respect to plaque component volumes and 
percentages. Chapter 6 represents conclusion of this thesis with a summary.  

1.4 References 
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2 Semi-automatic Level-Set Based Stenosis 
Quantification of the Internal Carotid Artery 
in CTA 

This chapter is based on: 

D. Vukadinović. et al. Semi-automatic level-set based stenosis quantification of 
the internal carotid artery in CTA, manuscript in preparation. 

Abstract 

A semi-automatic carotid artery lumen segmentation method, aimed at accurate 
stenosis quantification, is developed and evaluated. The method is initialized 
with 3 user defined seed points: one in the common carotid artery (CCA), one 
in the internal carotid artery (ICA) and one in the external carotid artery 
(ECA). An initial centerline is extracted based on intensity statistics in the 
neighborhood of the seed points. This centerline is used to initialize a level set 
lumen segmentation that utilizes intensity statistics along the extracted path for 
defining the carotid artery lumen. A final centerline is extracted by 
skeletonization of the lumen segmentation. Lumen segmentation and centerline 
are then used for automated stenosis detection and quantification. Parameter 
settings are optimized for stenosis quantification accuracy on a training set of 9 
datasets.  

Stenosis grading is evaluated on 41 dataset from the carotid bifurcation 
segmentation and stenosis grading framework in CTA images (CLS2009 
framework). The mean stenosis quantification error was 19.3 % and 18.2 % for 
area stenosis and diameter stenosis respectively, and our method ranked second 
among the algorithms that have participated in the CLS2009 challenge.  

2.1 Introduction 

Stroke is one of the leading causes of death and a cause of major disability 
among the surviving individuals in the western world. The degree of carotid 
artery stenosis is an important factor in therapy selection, e.g. whether to 
perform carotid endarterectomy [1]. Carotid stenosis grading is currently 
increasingly performed using CTA, but this measurement is subject to inter-
observer variability [2]. Therefore, there is a large interest in methods that 
allow more objective grading of carotid artery stenosis from CTA data, using 
(semi-)automatic approaches.  
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Automatic methods for stenosis grading generally require lumen segmentation 
as a prior step. A variety of lumen segmentation methods exist. Those include 
methods based on the evolution of curves or surfaces (Lorigo et al. [3]; Zhuge 
et al. [4]; Yan and Kassim [5], Manniesing et al. [6], Scherl et al. [7], Krissian 
et al. [8], Cuisenaire [9], van Bemmel et al. [10]), model based approaches 
(Mille et al. [11], Wong et al. [12], Zuluaga et al. [13], Valencia et al. [14]), 
particle filtering (Florin et al. [15]) and graph-cuts (Boykov and Jolly [16], 
Homann et al. [17]; Schaap et al. [18], Freiman et al. [19], Gulsun et al. [20]). 
An overview of vessel segmentation techniques has been provided by Lesage et 
al.[21]. 

Compared to the quite extensive literature on vessel segmentation, relatively 
less work has focused on (semi-) automatic carotid artery stenosis grading. 
Results of semi-automatic stenosis grading methods for carotid arteries in CTA 
images have been reported by Berg et al. [22], Scherl et al. [7] and Wintermark 
et al. [23]. The evaluations have been carried out on different datasets and 
using different evaluation measures. Neither of these papers explicitly defines 
how stenosis is measured with automated methods.  

Several authors participated in the CLS2009 framework [24] where lumen 
segmentation and stenosis grading on CTA carotid artery data was evaluated on 
56 datasets using a standardized evaluation framework. Most of the lumen 
segmentation methods split the problem into two steps: (i) initial centerline 
extraction and (ii) subsequent lumen segmentation.  

A fully automated lumen segmentation method was proposed by Cuisenaire et 
al. [9]. The centerline of each vessel was first extracted using a fast marching 
algorithm The vessel lumen was segmented using 3D active objects initialized 
as a tube around the centerline. Krissian and Arencibia-García [8] first 
extracted an initial centerline using a minimal cost path based on a multi-scale 
vesselness filter response. After detecting the junction position and cutting or 
extending the paths based on the requested lengths, a level set segmentation 
was used for lumen segmentation.  Freiman et al. [19] used a two-phase graph-
based energy minimization approach initialized with start and end seed points 
inside the vessel. First, the weighted shortest path between the vessel seed 
endpoints based on image intensity, image intensities around the seed points, 
and vessel path geometric characteristics was computed. Subsequently a region 
of interest from the shortest path and the estimated vessel radius was derived, 
and the vessel boundaries were extracted by minimizing the energy on a 
corresponding graph cut. Gulslun et al. [20] used graph-cuts optimization 
techniques together with centerline models for segmenting the carotid arteries. 
They first extracted the centerline between the user placed seed points using a 
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minimal path method operating on a medialness map. The lumen of carotid 
arteries was then extracted by a graph-cut optimization technique using the 
detected centerlines as input. Mille et al. [11] based their algorithm on an 
extension of the minimal path method that models the vessel as a centerline and 
boundary. This is achieved by adding one dimension for the local radius around 
the centerline. Next step was the definition of the anisotropic local metrics to 
minimize. In order to deal with carotid stenosis or occlusions, the segmentation 
was refined using a region-based level set method derived from the Chan and 
Vese model [25].  

Three participants of the CLS2009 challenge evaluated their method with 
respect to stenosis grading. Valencia et al [14] proposed a lumen segmentation 
approach using right generalized cylinders (RGC) with piece-wise constant 
parameters to model carotid artery lumen. RGC were extracted using 2D 
contours extracted along the minimal cost path between two points [26].  

Zuluaga et al.[13] proposed an algorithm consisting of two stages: intensity-
based preprocessing using Dual Tree Complex Wavelet Transform filter [27] 
denoising and Fuzzy C-means classifier and model-based lumen delineation 
using elastic model and multi-scale eigen-analysis of the inertia matrix [28]. 
Stenosis quantification is performed on a plane-by-plane basis using 
isocontours. Wong et al [12] generated a centerline using a vesselness measure 
and minimal cost path search. The method used a 1D intensity model and 
resulted in a centerline with associated vessel radii. Segmentation and the 
stenosis grading were performed assuming circular lumen cross-sections. 
Reference part is 20 mm distal from the stenosis position and has a length of 10 
mm. The stenosis is calculated using NASCET [29] – like criteria defined by 
the CLS2009 organizers.  

Our contribution is a semi-automated method that improves on previous work 
of Manniesing et al. [6]. Manniesing et al. used three user–defined points to 
extract an initial centerline which is further used as an initial level set in order 
to segment the lumen. The cost function for the initial centerline extraction and 
the stopping function for the level set evolution use intensity and image 
gradient features. In this paper we present improvements on the vessel 
segmentation method of Manniesing et al. regarding the initial centerline 
extraction and level set evolution. We further adapted and optimized this 
method for accurate stenosis grading by performing parameter optimization.  In 
order to perform stenosis grading on the lumen segmentation we incorporated 
the centerline extraction method by Antiga et al [30]. Our method has been 
evaluated for stenosis grading using a publicly available framework for carotid 
lumen segmentation and stenosis grading [24]. 
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2.2 Materials and Methods 

The lumen segmentation method used for this study consists of two steps: an 
initial centerline extraction and subsequently a level set based lumen 
segmentation that utilizes the initial centerline for initialization of the levelset. 
In order to determine the stenosis degree the final centerline and the lumen 
cross sections orthogonal to the centerline are extracted from the lumen 
segmentation.  

We modified the method of Manniesing et al. [6] in the following way.  First, 
the robustness of the method was improved by integrating morphological 
operations in order to avoid leaking into bony structures which happens in our 
case because in the carotid artery challenge database the ICA seed points are 
mostly positioned more distally than the seed points used in their evaluation 
study [6]. Second, the initial centerline tracking was improved to cope with the 
higher stenosis degrees that were present in the challenge data compared to the 
data used in [6]. Third, for the same reason, the level set stopping function used 
for the lumen segmentation was adapted. We also added a final centerline 
extraction method [30] for stenosis grading calculation.  

2.2.1 Initial Centerline Extraction 

The lumen centerline in contrast enhanced CTA consists of voxels with 
intensities ranging between the lower intensities of the surrounding soft tissue 
and higher intensities of bones and calcified tissue. We define an intensity 
range filter by multiplying two error functions which mask the lower and 
higher intensities respectively:  

(ݔ)ܲ  = ቆ12 + 12 erf ቆ(ݔ)ܫ − ߠ௟ߚ ቇቇ∙ ቆ12 − 12 erf ቆ(ݔ)ܫ − ߠ௨ߚ ቇቇ  . (1) 

Here I(x) is the image intensity at position x, θ is a user defined slope of the 
error functions and βl and βu are computed from the image as follows:  

௟ߚ  = ߤ − ݇௟ߚ    ߪ௨ = ߤ + ݇௨(2) , ߪ 

where μ and σ are intensity mean and variance of the neighborhood around the 
seed points and kl and ku are constants to be optimized with respect to stenosis 
degree for a value of θ = 20 as used in [6].  
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The initial centerline is extracted using Dijkstra’s algorithm which determines 
a minimum cost path between two seed points. The cost function used in 
Dijkstra algorithm is defined for each voxel x as the inverse value of P(x) from 
equation (1). In the remainder of this paper the resulting image of filtering 
CTA image with the band-pass filter (1) is named intensity-range image, while 
the inverse image of the intensity range image is called cost image.   

In [6] the authors use an additional factor in the intensity range filter (1) to 
remove imaging artifacts and surrounding anatomical structures (such as 
bones) from the image. This is achieved by locally (per slice) and globally 
calculating intensity variance.  

We did not implement this additional factor, for several reasons. First, the ICA 
seed points used in our study are positioned more distally, where the artery 
enters the skull. In this region the bone is more close to the artery making bone 
removal more challenging than in [6]. Second, the data used for this study has 
on average higher degrees of stenosis than the data in the study of Manniesing 
et al. Finally, the method based on local variance measurement would remove 
narrow stenotic lumen resulting in incorrect initial centerline extraction. 

Instead we use a morphological opening on the intensity range image in order 
to prevent leakage into bone. This method was found to be very effective in 
removing skull bones edges that are represented in the intensity range image as 
thin lines-like structures (Fig. 2.1). At the same time, morphological opening 
leaves bulb like structures (such as stenotic lumens) untouched.  

In [6] the cost value, C(x), is set to be in the range [1, 105]. Having a minimum 
cost prevents too long paths., However, in our training set this resulted in miss 
detected paths in a few datasets since shorter paths are favored even when they 
are partly incorrectly positioned (e.g. through the jugular vein). We resolved 
this issue by setting the minimum cost value to be close to zero: 

(ݔ)ܥ   = 1ܲ൫(ݔ)ܫ൯ –  1 + ,ߝ ܲ൫(ݔ)ܫ൯ > 10ିହ (ݔ)ܥ = 10ହ, ܲ൫(ݔ)ܫ൯ > 10ିହ , 
(3) 

where ε is chosen to be small: ε = 0.01. This change did not affect the correctly 
detected paths in the training set. 



14 

 

2.2.2 Lumen Segmentation 

For vascular lumen segmentation the geodesic active contours approach is used 
[6]. The approach is described by the following partial differential equation: 

௧ߔ  − ߔߘ௦௘௚௠ܨߘߙ + ௦௘௚௠(1ܨ − |ߔߘ|(௠௜௡݇ߛ = 0 , (4) 

where Ф is the level set function, α is a weighting term, Fsegm is the image-
based speed term for segmentation, and γ is the weighting term of the minimal 
curvature term kmin. The level set is initialized with the initial centerlines 
extracted in the previous step. The image based stopping function Fsegm is 
defined by the image intensity and image gradient: 

௦௘௚௠ܨ      = ቐ  ቆ− ݂ݎ݁ ቆ1 − ᇱߠ௟ᇱߚ ቇቇ ቆ݂݁ݎ ቆ1 − ᇱߠ௨ᇱߚ ቇቇ |݈ߘ| < ߬0 |݈ߘ| ≥ ߬ (5) 

௟ᇱߚ  = ᇱߤ − ௨ᇱߚ ᇱ݇௟ߪ = ᇱߤ +  ᇱ݇௨ (6)ߪ

 

Figure 2.1 Morphological opening applied on the intensity – range image to 
remove bony structures. Left: intensity-range image P(I(x) before opening; 
Center: P(I(x)) after opening is applied; extracted centerline position is 
indicated with a dot; Right: original CTA image. 
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ᇱߤ  = (1 − ௟ߤ(ߟ + ᇱߪ ௚ߤߟ = (1 − ௟ߪ(ߟ +  ௚ , (7)ߪߟ

where erf () is the error function, I denotes the image intensity, θ is the slope of 
the error functions,ܫߘ is the gradient, kl and ku are two constants and τ is the 
threshold on the gradient magnitude. The stopping function is constructed by 
using local and global intensity statistics derived from the neighborhood of the 
initial centerline points: σl and μl denote local standard deviations and means in 
a small circular neighborhood around the initial centerline as a function of the 
axial slice, while σg and μg are the global standard deviation and mean 
calculated over the initial centerline. η is a weighting parameter for balancing 
influence of the local and global estimates. The stopping function is set to have 
negative minimum value of -1 in order to prevent leaking in the neighboring 
structures usually occurring with strictly positive speed ranged functions only. 
In [6] small and consistent under-segmentation was observed and an additional 
dilation of the segmentation, φ, was introduced. This dilation parameter is 
optimized in the work described in this paper.  

In cases where the initial centerline is positioned at the border of the lumen, the 
neighborhood statistics is skewed to the lower intensity values. This may cause 
the segmentation to leak into the non-lumen lower intensity regions. In our 
adapted implementation this issue was solved by deriving the abovementioned 
statistics after discarding a portion, kbalance, of the points with the lowest 
intensity.  

For deriving the stenosis degree from the segmented lumen, we require a 
smaller carotid artery range than the range determined by the seed points 
provided by the CLS2009 framework. Therefore, we iteratively apply our 
segmentation method. We first determine centerline and lumen segmentation 
from the original seed points, and use this segmentation to determine the 
bifurcation region of interest. We then position new seed points closer to the 
bifurcation, referred to as cropped seed points in the remaining of this paper. 
The cropped seed points are placed in the center of mass of the lumen 
segmentation on the axial slice at fixed distances from the bifurcation slice.   

The method is rerun using the cropped seed points, resulting in the final 
segmentation. This rerun is done in order to achieve more accurate 
segmentation by avoiding external artery branches that are positioned more 
distally and to minimize leaking to other neighboring structures.  
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2.2.3 Final Centerline Extraction 

From the converged level set segmentation the zero level set is extracted. The 
extracted surface is then smoothed using the method by Taubin et al [31] in 
order to remove irregularities in the surface. Finally, the method of Antiga et al 
[30] is used to extract the ICA centerline given the smoothed surface and two 
cropped seed points: one in CCA and one in ICA. This analysis is only applied 
to the ICA, as the stenosis degree is calculated in the ICA in the CLS2009 
framework. This centerline extraction approach is based on solving the Eikonal 
equation on the Voronoi diagram embedded into the object, with wavefront 
speed inversely proportional to Voronoi ball radius values. 

2.2.4 Stenosis Degree Calculation 

Stenosis quantification is performed in the region between the cropped seed 
points positioned in CCA and ICA, using the method described by 
Hameeteman et al. [24]. Using the centerline extracted between these points, 
planes perpendicular to the centerline are determined. For every cross-sectional 
plane the contour that results from intersecting the original non-smoothed iso 
surface with the plane is determined [32]. The resulting contours are then used 
to calculate the cross-sectional area and minimal diameter of the vessel along 
the centerline. The resulting area and diameter curves are smoothed using a 
Gaussian kernel with a standard deviation of R mm. The minimal value of 
these smoothed curves is defined as the location of the stenosis. Using the 
found position, the degree of stenosis is then determined from the un-smoothed 
curve using both the minimum value and the average value of the distally 
positioned reference area. We use the following NASCET-like [29] criteria for 
the area-based stenosis grade Sa: 

 ܵa = 100% × ൬1 − ܽ௠ܽ௥ ൰ (8) 

where am is the minimal cross-sectional area along the CCA and ICA, and ar 
the average cross-sectional area over a 5mm long distal reference part of the 
ICA positioned 15 mm from the stenosis. For the diameter-based stenosis grade 
Sd we similarly use: 

 ܵd = 100% × ൬1 − ݀௠݀௥ ൰ (9) 

where dm and dr are the minimal and average reference cross-sectional 
diameter, respectively. The definition of the cross-sectional diameter is 
explained in [24].  
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2.3 Data and Experiments 

2.3.1 Data Description and Experiments 

The method was trained and evaluated using data from the CLS2009 
framework [24]. This framework contains 15 datasets for training and 41 for 
testing from three different sites, with varying stenosis degrees, and includes a 
manual reference standard. The region of interest in which lumen segmentation 
and stenosis grading was evaluated starts in the CCA 20 mm caudal of the 
bifurcation slice, and ends in ICA up to 40 mm distal to the bifurcation slice 
and includes the ECA up to between 10 and 20 mm distal of the bifurcation 
slice. Participants of the challenge should submit partial volume lumen 
segmentations and stenosis area and stenosis diameter gradings per dataset. The 
lumen segmentation performance is evaluated using Dice, mean surface 
distance and Hausdorff distance [24] and the stenosis grades are evaluated 
using absolute difference. 

2.3.2 Implementation 

The first two steps of the method, initial centerline extraction and lumen 
segmentation, use three seed points provided by the CLS2009 framework. The 
cropped seed points are positioned in CCA 20 mm caudal of the bifurcation 
slice, in the ICA at 40 mm cranial of the bifurcation slice and in ECA 20 mm 
cranial of the bifurcation slice. The full method was run using the cropped seed 
points. 

From the final level set image an iso surface is extracted and smoothed using 
VTK software. The final centerline is extracted from the smoothed isosurface 
using the VMTK package.  

Minimal area and minimal diameter search is performed in a region starting at 
1 mm distance distal to the bifurcation slice in ICA along the centerline and 
ending 20 mm under the last cropped seed point (ICA). The cross-sectional 
contours were sampled at 1 mm spacing along the centerline using the 
vtkCutter class. The reference area is a 5 mm length segment starting 15 mm 
distally to the minimal area or diameter cross-section.  



18 

 

In cases where the lumen segmentation was shorter than 20mm, both area and 
diameter stenosis were assigned a value of 100% since it means that there was 
a complete occlusion in the given dataset.  

 

Parameter Parameter’s description Range Optimized 
value 

τ Image gradient 
threshold [90 … 200] 100 

φ 
The post distance value 
to expand the final level 

set 
[0.0 … 1.0] 0.6 

η 

Balance parameter 
between local and 

global statistics along 
the centerline. 

[0.0 .. 1.0] 0.2 

ρ Initial distance of the 
GAC [0.1 … 1.5] 0.5 

α Advection coefficient  
in GAC 

[0, 10-4, 10-3, 10-

2], 0.001 

γ Curvature coefficient in 
GAC 

[0, 10-4, 10-3, … 
1.0] 0 

kbalance 
Lower intensity portion 

of initial centerline 
points. 

[0.3 … 0.7] 0.5 

R[mm] Gauss kernel used in 
stenosis calculation [1, 2, 3] 1 

kl 

Lower coefficient for 
cut – off values in 

intensity distribution 
equations. 

[0.8  ... 3] 1.2 

ku 

Upper coefficient for 
cut – off values in 

intensity distribution 
equations. 

[0.8  ... 3] 1.2 

Table 2.1 Results of the parameters tuning on the training set 
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2.3.3 Parameter Optimization on the Training Set 

We ran our centerline extraction algorithm on the fifteen training datasets of 
the CLS2009 framework. In three training datasets the ICA seed points were 
positioned within the region of interest where the stenosis area and diameter 
should be evaluated. Since our method stops at (or close to) seed points 
provided, we had to exclude these 3 datasets from the training sets. 
Additionally three datasets were excluded from training because the initial 
centerline was not correctly extracted and the subsequent lumen segmentation 
was not correct.  

We optimized ten parameters of the algorithm (see Table 2.1): τ - image 
gradient threshold in equation (5), φ - the post distance value to expand the 
final level set, η - balance in equation (7), ρ - initial distance of the GAC, α - 
advection coefficient from equation (4), γ - curvature coefficient from equation 
(4), R - Gauss kernel used in stenosis calculation, kl and ku - two coefficients 
from equations (2) and (6). These parameters were optimized on the training 
set for stenosis quantification accuracy. The optimization minimizes the mean 
value of both the area and diameter stenosis errors of the 9 nine remaining 
datasets from the training set. The stenosis error is defined as the absolute 
difference between measured stenosis and ground truth stenosis as provided by 
the CLS2009 framework.  

The parameters for the initial centerline extraction were taken from [6] since 
we assume that they do not influence the stenosis quantification accuracy. The 
parameters that were related to lumen segmentation were optimized following 
a multiresolution tuning. All parameters were optimized individually in the 
order listed in Table 2.1.  

2.3.4 Test Set Experiments 

Using the optimized parameters, the method was applied to the 41 test datasets 
of the CLS2009 framework. The method was evaluated against both lumen 
segmentation accuracy and stenosis degree quantification error.  

2.4 Results 

2.4.1 Parameter Optimization Results 

Parameters optimization results with respect to stenosis grading are presented 
in Table 2.1.  
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On the training set, the optimal settings resulted in a mean area and diameter 
stenosis error of 10% (p = 0.47) with average area stenosis error of 12.8% (p = 
0.56) and average diameter stenosis error of 7.2 % (p = 0.35).  

2.4.2 Results of the Carotid Challenge 

The results on the test data of the carotid artery challenge are presented in 
Table 2.2. Besides the results on all 41 datasets, the results after excluding 
different subsets of the test set are shown.  Datasets where the seed points in 
the ICA where incorrectly placed (3 datasets) resulted in an incorrect stenosis 
evaluation, and therefore we also present the results when excluding these 
cases.  

We also determine the accuracy of stenosis quantification if we would use only 
the datasets where the initial centerline was correctly extracted and the seed 
points in ICA were correctly positioned.  

2.5 Discussion 

We have proposed a semi-automatic method for lumen segmentation and 
stenosis quantification in CTA images and evaluated the method using the 
carotid challenge framework [24].  The method uses three seed points provided 

  Stenosis Lumen segmentation 

 
Number 

of 
datasets 

Area 
[%] 

Diam 
[%] 

Dsi 
[%] 

Dmsd 
[mm] 

Dhd 
[mm] 

All test set 
datasets 41 19.3 18.2 82.7 0.75 3.68 

Excluded  data 
with  wrongly 

placed ICA seed 
points (3) 

38 15.7 15.5 82.9 0.69 3.19 

Excluded data 
with incorrectly 
extracted initial 

CL(5) and 
wrongly placed 
ICA seed points 

(3) 

33 11.7 10.9 87.5 0.31 2.08 

Table 2.2 The results of our method on a complete test set data and subsets of 
the test set: lumen segmentation and stenosis quatification. 
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by the CLS2009 framework. The method has been optimized for stenosis 
quantification.  

On the 41 datasets of the test set, the method made higher stenosis error than 
on the training set: 19.3% for area and 18.2% for diameter stenosis. The total 
rank was 4.04 which correspond to the second position out of 4 methods that 
have participated in the challenge (Table 2.3). In the CLS2009 framework, 
three of the datasets have ICA initialization seed points erroneously positioned, 
as they are inside the region to be evaluated. Since stenosis quantification uses 
only ICA for evaluation, our method will not work in those cases. We, 
therefore, also evaluated our method on the remaining 38 datasets and the area 
and diameter stenosis error was reduced to 15.7% and 15.5% respectively. The 

 

Figure 2.2 Axial consecutive slices of carotid artery CTA scan with high 
stenosis (left), corresponding intensity-range images P(I(x)).  Crosses 
represent initial centerline points erroneously positioned in jugular vein.  
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total rank of our method on these 38 datasets was 3.96 and our algorithm scores 
as the best out of 4 stenosis challenge algorithms.  

In 5 datasets, initial centerline extraction, was unsuccessful, as parts of the 
initial centerline were positioned outside the arterial lumen. The main reason of 
the initial centerline error was lower contrast in some parts of the vessel caused 
by higher stenosis degree (Fig 2.2). In order to compare the stenosis grading 
success on the test set with the success on the train set, the method was 
evaluated when we excluded the datasets where the centerline extraction failed. 
The error decreased to 11.7% and 10.9% for area and diameter stenosis 
respectively, which is similar to the results on the training dataset where we 
also excluded failed centerlines and wrongly positioned ICA seed points.  

Three other methods participated not only in the lumen segmentation 
challenge, but also in the stenosis challenge CLS2009 [24]: Zuluaga et al. [13], 
Wong et al. [12] and Valencia et al. [14].  The stenosis area and diameter errors 
of our method and the method of Zulaga et al. are similar. On the all 41 data 
from the test set the algorithm of Zuluga et al. has higher rank but after 
excluding datasets where ICA seed point was position within evaluation region, 
our method scored better than the method of Zuluaga et al. The other two 
methods had higher error for both area and diameter stenosis (Table 2.3).  

To improve reliability of the method, initial centerline extraction success 
should be increased. One practical solution to this would be to place additional 
seeds points, e.g. at the bifurcation or at the stenotic region. This would 
facilitate a more robust stenosis grading, at the expense of limited additional 
user interaction. Alternatively, more robust automated approaches could be 
explored, e.g. by also integrating higher order image information, such as 
vesselness measures, in the minimum cost path approach. 

In conclusion, we developed a method for semi-automated stenosis grading of 
the internal carotid artery. Evaluation on a publicly available dataset showed 
promising results, demonstrating that semi-automatic stenosis grading is 
becoming feasible. 
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3 Segmentation of the Outer Vessel Wall of the 
Common Carotid Artery in CTA 

This chapter is based on: 

D. Vukadinović, T. van Walsum,  R. Manniesing, S. Rozie,  K. Hameeteman, 
T. T. de Weert, A. van der Lugt and  W. J. Niessen. Segmentation of the outer 
vessel wall of the common carotid artery in CTA, IEEE Transactions on 
Medical Imaging, 2010.  

Abstract 

A novel method is presented for carotid artery vessel wall segmentation in 
CTA data. First the carotid lumen is semi-automatically segmented using a 
level set approach initialized with three seed points. Subsequently, calcium 
regions located within the vessel wall are automatically detected and classified 
using multiple features in a GentleBoost framework. Calcium regions 
segmentation is used to improve localization of the outer vessel wall because it 
is an easier task than direct outer vessel wall segmentation. In a third step, 
pixels outside the lumen area are classified as vessel wall or background, using 
the same GentleBoost framework with a different set of image features. 
Finally, a 2D ellipse shape deformable model is fitted to a cost image derived 
from both the calcium and vessel wall classifications. The method has been 
validated on a dataset of 60 CTA images. The experimental results show that 
the accuracy of the method is comparable to the interobserver variability. 

3.1 Introduction 

One of the major causes of death in western world is atherosclerotic disease, 
which manifests itself as ischemic heart disease and ischemic stroke [1]. 
Atherosclerosis is a thickening of the arterial wall due to accumulation of 
atheromatous debris in the tunica intima and media. 

In carotid arteries, the main diagnostic criterion to assess the severity of 
atherosclerotic disease is the degree of stenosis or severity of luminal 
narrowing. Risk of (recurrent) stroke is related to the severity of stenosis [2]. 
However, the presence of a large atherosclerotic plaque is not always 
associated with luminal narrowing [3], which demonstrates that luminal 
narrowing alone is probably not a reliable marker for atherosclerosis. In 
addition, studies on carotid atherosclerotic plaque show that plaque 
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morphology and composition are also important in the risk assessment of 
patients with carotid artery stenosis [4][5].   

CT angiography has been shown to be successful in the assessment of luminal 
narrowing in the carotid artery [6]. The increased resolution in multidetector 
CT (MDCT) allows for the analysis of carotid atherosclerotic plaque as well as 
its different components.  Accurate quantification of plaque components from 
CTA data enables the study of the relation between plaque characteristics and 
clinical events. This could pave the way for improved diagnosis and risk 
prediction. 

The automatic analysis of the carotid atherosclerotic plaque from CTA data is a 
challenging problem, owing to the limited contrast between the plaque 
components and the surrounding soft tissue. The most important step towards 
automatic atherosclerotic plaque quantification is the difficult task of detecting 
the outer vessel wall boundary, which encloses both the vessel lumen and the 
atherosclerotic plaque. Once the outer vessel wall is defined and the lumen is 
segmented, it facilitates the further quantification of plaque, as recent studies 
have shown that the different plaque components have more or less distinctive 
ranges of Hounsfield Units (HU) [7][8].  

In this paper we propose a new method for outer vessel wall segmentation, 
which aims at achieving both a high level of automation and a high accuracy. 
The method consists of four steps (Fig. 3.1). First, the vessel lumen is 
segmented using a level set approach. Subsequently, using a set of image 
features, calcium objects which are part of the vessel wall are detected using a 
GentleBoost framework. Calcium objects classification is used as a 
preprocessing step for the outer vessel wall segmentation since it is much 
easier task to deal with and it can improve the accuracy of the segmentation.  In 
the third step pixels are classified as within or outside the vessel, using the 
same framework. Finally, an ellipsoid is fitted to the image that represents 
combined result of calcium and vessel classification. The resulting outer vessel 
wall is quantitatively evaluated on slices along the common carotid artery 
proximal to the bifurcation. A preliminary version of this approach has 
previously been presented [9]. Compared to this work, we introduce an 
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improved calcium detection scheme, we improve vessel boundary localization 
by incorporating Gaussian derivatives features in the inner and outer region of 
the vessel classification, we improve the model fitting by ensuring spatial 
continuity along the axial direction, and we perform a more elaborate 
validation study. The remainder of this paper is organized as follows: in 
Section 3.2 related work is discussed, followed by a description of the 
methodology in Section 3.3 Subsequently, in Section 3.4 we describe our 
experimental setup, including the data sets used, and the evaluation 
methodology. In Section 3.5 we present the results, followed by a discussion in 
Section 3.6 and a conclusion in Section 3.7. 

3.2 Related Work 

Whereas many methods for lumen segmentation have been reported in the 
literature (e.g. [10-20]), the segmentation of the outer vessel wall has received 
considerably less attention. Outer vessel wall segmentation of the carotid artery 
wall in CT is a difficult task owing to the low and varying contrast between the 
vessel wall and the surrounding tissue (Fig. 3.2), and the large variability in 
plaque morphology and composition.  

Some authors have addressed the segmentation of the outer vessel wall, both on 
CTA and MR data. Olabarriaga et al. [21] proposed a deformable model based 
segmentation of the lumen and thrombus in abdominal aortic aneurysms in 
CTA data. For the wall segmentation a gray level modeling approach with a 
KNN classifier using intensity profiles sampled along the surface normal was 
used.  

 

Figure 3.2 Example of a carotid artery CTA scan axial view (left), with contour 
drawn by a trained observer (center) and with different tissue shown in different 
colors (right): red – lumen, blue – non-calcified tissue with Hounsfield values 
(HV) ranging from 130 HU till luminal HU, green – fibrous tissue with HV 
ranging from 60-130 HU, yellow – lipid with HV ranging from 0-60 HU, white 
– calcium with HV above 130 HU. 
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The active shape model (ASM) based method by De Bruijne et al. [22], [23] 
also addressed aortic aneurysm segmentation. This method requires a manual 
delineation of the aneurysm in the first slice after which the contour propagates 
to the adjacent slices based on grey value similarity. A slice-by-slice control by 
the user is required.  

De Bruijne et al. [24] also proposed a 3D ASM which included a grey level 
appearance model which was based on non-parametric pattern classification. 
The user has to draw the top and bottom contours, and indicate the approximate 
aneurysm centre. Reported results are accurate, but the amount of interaction 
for initialization is still significant.  

A snake based method for defining the vessel lumen and wall boundaries in 
MR images of the carotid artery was proposed by Yuan et al. [25]. Adams et al. 
[26] proposed a similar method, deforming two initial contours in MR carotid 
images. Both methods require a high level of manual interaction. Adame et al. 
[27] proposed a gradient based ellipse fitting method combined with fuzzy 
clustering to outline the carotid artery outer vessel wall on MR images. The 
method requires manual interaction, namely a center point in the lumen, a seed 
point inside the lipid core and a circle that surrounds the vessel.  

 The work we present in this paper consists of three stages, i.e. feature 
extraction, pixel classification, and model fitting, and in this sense it is most 
similar to the work presented by Olabariaga [21] and De Bruijne [24]. 
However, in their work the segmentation of thrombus in abdominal aortic 
aneurysms was considered, and we here address the more challenging problem 
of automated carotid vessel wall segmentation and quantification in CTA 
datasets, which, to the best of our knowledge, has not been reported before. In 
addition, we introduce a separate calcium quantification step in our algorithm. 
Finally, we applied the GentleBoost framework to determine an optimal set of 
features, both for calcium detection and vessel wall classification. 

3.3 Methodology 

The first step of the method is level-set based lumen segmentation, initialized 
with three seed points: one in the common carotid artery (CCA), one in the 
internal carotid artery (ICA) and one in the external carotid artery (ECA). For 
more information on the lumen segmentation method, we refer to the work of 
Manniesing et al. [20].  

Subsequently, we apply a machine learning method that uses spatial location 
(distance to the lumen), (smoothed) intensity and Gaussian derivative features 
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and a set of size, intensity and shape features for classifying calcium candidate 
objects. A similar approach is adopted for classifying all pixels as inside or 
outside the outer vessel wall. Next, the segmentation is obtained by fitting a 2D 
ellipse to the pixel-based classification result, taking into account the position 
of previously automatically detected calcified regions and ensuring spatial 
continuity in the longitudinal direction. Each of the detection and classification 
steps is described in more detail below.  

3.3.1 Calcium Detection 

Trained observers strongly rely on the presence and location of calcified 
regions when manually drawing the vessel wall contour. It is therefore 
expected that including a separate calcium detection step in our automated 
processing improves subsequent vessel wall segmentation.  

 

 
  

 

Figure 3.3 Original image with the vessel wall contour drawn by a 
trained observer (top left), the mask image of true calcium on one slice 
(top right). Region outside the lumen in the original image on one slice 
thresholded with th = 130HU (bottom left), and with th = 320 HU 
(bottom right). 
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 Our automated calcium detection consists of three steps: 

1. The extraction of candidate calcium objects. 

2. The determination of features for these objects. 

3. The classification of the candidate objects as being calcifications or non-
calcifications.  

3.3.1.1  Candidate Objects Extraction 

In clinical practice, calcified regions are commonly characterized as those 
regions having a density higher than 130 HU [28]. However, in CT 
angiography, intensity values of the lumen and the tissues surrounding the 
carotid artery, such as bone structures or the internal jugular vein, may have 
values larger than 130 HU (Fig. 3.3). A consequence of this is that neighboring 
high HU regions merge with calcified regions in the process of candidate 
object extraction. Different threshold values ranging from 80 – 230 HU have 
been reported in the literature [29]. Isgum et al. in their work on calcium 
segmentation in contrast-enhanced CT of aorta [30] used 220 HU threshold due 
to the higher lumen attenuation. T. de Weert et al. [31] for calcium region 
segmentation in contrast enhanced intracranial carotid artery used threshold of 
500 HU in order to separate calcified regions from contrast material in the 
lumen. In our approach, the lumen has been segmented semi-automatically in a 
preprocessing step. Still, owing to partial volume effects at too low thresholds 
calcium candidate objects connect and grow too large (Fig. 3.3). Therefore, on 
the training set we empirically increased the HU threshold value until this 
undesired grouping of calcium objects did not occur. Eventually, a threshold 
value of 320 HU was selected. We also observed that the candidate calcium 
objects sometimes merged, in the training phase, with the external lumen which 
is usually not labeled by the observers. Therefore, if for the given dataset the 
average lumen HU value is higher than 320 HU, the threshold is set to the 
average intensity value of the lumen.  

The ground truth of calcified regions is obtained by the method described in [7] 
and [8] where thresholding is applied in the region between lumen and vessel 
wall in order to extract different plaque components, including calcium. 

Candidate objects are extracted from the thresholded images by means of 
connected component analysis, using 18-connectivity in three dimensions [32]. 
Only clusters of three or more connected voxels are considered valid calcium 
candidate objects. The objects smaller than 3 voxels are assumed to represent 
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noise. This was confirmed by the training data, where the smallest calcium 
object had a size of 11 voxels.  

3.3.1.2  Object Features 

For each candidate object a set of features is calculated. Below we discern 
between features computed using only the object information and those using 
both object information and neighboring pixel intensities. 

The features selected for the candidate objects were inspired by the work of 
Isgum at al. [30][33], who included spatial, size, intensity and shape features. 

Unlike in the work of Isgum et al., since in our case we have segmented lumen, 
spatial features are used to describe the position of the object relative to the 
position of the lumen. We assume the angular position not to be relevant, and 
therefore we only use the radial distance, which is defined as the shortest 
distance of the center of the object to the lumen on that slice. 

Other features are the volume, the maximum and average intensity value of the 
object, and a shape feature which describes the compactness of the object:  

ܥ  =  ଶ , (1)ܸߨଷ36ݏ

where s denotes the surface area of the object and V its volume. 

Calcified regions are always inside the vessel wall, i.e. close to both lumen 
(high intensities) and soft tissue (low intensities) (Fig. 3.4). Therefore, 
intensities of the neighboring pixels may help in discriminating calcium objects 
from non-calcium ones. Neighborhood information is included by extracting 
linear intensity profiles, which are locally oriented radially and tangentially 
with respect to the lumen. Linear profiles are extracted directly from the 
original image, from images smoothed with 2D Gaussian filters on multiple 
scales, and images filtered with oriented 2D Gaussian derivative filters, also on 
different scales. The oriented Gaussian derivatives were applied in the same 
direction as the linear profiles (Fig. 3.4). The first derivative of the Gaussian 
filter in the direction φ and at scale σ is obtained by convolving with the 
appropriate derivatives of the Gaussian Gσ: 

 ൬ ൰߶߲ܫ߲ = ݎ⃗) ∙ ఙܩ(ߘ ∗  (2) ,ܫ

where 
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ݎ⃗  = ,߶ݏ݋ܿ)  (3) .(߶݊݅ݏ
 

From each image tangential and radial profiles are extracted. Both profiles are 
21 pixels long and one pixel, center of mass of calcium object, is common for 
both profiles. That means that from the original image 41 pixels are extracted, 
each representing one feature. The same number of features is extracted from 
the first derivative image computed using a differential operator. Additionally, 
41 features per image are extracted from zeroth and first order Gaussian 
filtered derivative images at scales 1, 2, and 3 pixels which makes additional 
41x6 = 246 features. Five additional features are distance from the lumen 
center, maximum and average intensity value of the object, object volume and 
shape. This makes 333 features to describe one calcium candidate object.  

3.3.1.3  Candidate Object Classification 

Since computation of the complete feature set for all calcium candidate objects 
is computationally expensive, and there probably is redundancy in the feature 
set, a boosting  [34] method known as GentleBoost [35] is applied to select and 
combine a set of features which best discriminates between calcium and non-
calcium objects. The main difference between AdaBoost and GentleBoost is 
the way in which the estimates of the weighted class probabilities are used to 
update the regression function [35]. GentleBoost is assumed to converge faster 

 

Figure 3.4 Radial profile connecting the lumen center (C) with the 
center of mass of a calcium object, and the tangential linear profile 
drawn on the original image (left). The same profiles are also drawn on 
the first derivative image calculated in the direction connecting center 
of lumen and center of mass of the calcium object. 
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than AdaBoost [35], is simple to implement and numerically robust. In our 
application, especially for the classification between the inner and outer vessel 
region, there is a significant overlap for most features (Fig. 3.5). Performance 
of boosting methods on data which are generated by classes that have a 
significant overlap, in other words, classification problems where even the 
Bayes optimal prediction rule has a significant error has been discussed in [35]. 
It was concluded that in these cases GentleBoost performs better than 
AdaBoost since AdaBoost over-emphasizes the atypical examples, which 
eventually results in inferior rules.  

The outline of GentleBoost algorithm is presented in Algorithm 4 in Friedman 
et al. [35]. Boosting methods build “strong” classifiers from a combination of 
“weak” classifiers (learners). In the case of GentleBoost it is common to use 
simple functions such as regression stumps (e.g. [35-37]) as weak learners. A 
regression stump is a two-terminal nodes decision tree that selects a branch for 

 

Figure 3.5 Training samples from the inner – outer vessel region 
classification plotted in the feature space where the axes are the two 
best discriminating features for classification (see Table V). 800 
positive (squares) and 800 negative (circles) samples are randomly 
chosen from the training set (set I). 
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a given feature according to a threshold using a binary decision function. In 
this way “axes parallel” linear decision boundaries are produced. Friedman et 
al. [35] performed a simulation study in which they compared GentleBoost 
performance using stumps and more complex decision trees as weak learners. 
The conclusion was that for the two classes problem stumps outperform more 
complex decision trees as a base classifier. 

The weak stump classifier used in m-th round is given in this form: 

 ௠݂(ݔ) = ܽ௠ ∙ (݉)ݔ) > (ℎ௠ݐ + ܾ௠ , (4) 

where am, bm and thm are regression parameters and x(m) is the feature of the 
test sample x that is chosen in the m-th training round as the most 
discriminative one. The decision rule for test sample x is given by: 

(ݔ)ܨ  = ݊݃݅ݏ ൥ ෍ ௠݂(ݔ)ெ
௠ୀଵ  ൩ , (5) 

where M is the number of GentleBoost training rounds.  

3.3.2 Inner-Outer Vessel Region Classification 

In order to classify the image into two regions, inside and outside the vessel 
wall, we apply the same method as for calcium classification, albeit with 
different features. Furthermore, the classification is pixel-based, whereas for 
calcium segmentation the classification was object-based.  

3.3.2.1 Feature Selection 

Similar to the calcium case, the distance of each sample to the lumen and 
contextual features are considered. For representing contextual information, 
radial image intensity profiles, emanating from the lumen center were 
considered, similar to [21][22]. Profiles are extracted from the original image, 
images smoothed with 2D Gaussian filters at different scales, and directional 
2D Gaussian derivatives, also at different scales.  

Whereas GentleBoost is computationally a very cheap method, in case of pixel 
based classification, the testing phase can become computationally expensive if 
the number of features becomes very large. Therefore the sampling rate along 
the radial profiles is adapted to the scale of the applied Gaussian filters. The 
finest resolution uses the original image intensities and a profile samples 
spacing of one pixel. The next resolution level the image is convolved with a 
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Gaussian kernel with a width of one pixel and a sample spacing of two pixel; 
subsequent resolutions are obtained by doubling both the kernel width and the 
sample spacing (see Fig. 3.6).  

From each image, pixels are extracted along radial profiles. The first 18 
features are 9 pixels extracted from the original image (Fig. 3.6, top left) and 9 
pixels extracted from the first derivative image calculated by applying the 
differential operator. Ten additional features are extracted from the zeroth and 
first derivative computed at a scale of 1 pixel (Fig. 3.6, top right and bottom 

right). Finally, six more features are extracted from the zeroth (Fig. 3.6, bottom 
left) and first derivative calculated at a scale of 2 pixels. Together with the 
distance to the vessel lumen, this makes 35 features.  

 

 

Figure 3.6 One sample positioned on the vessel wall and features 
describing it: Original image and linear profile of length 9 pixels (top 
left), image smoothed with a Gaussian kernel of width one pixel and 
sampled with a spacing of two pixels (top right), image smoothed with a 
Gaussian kernel of width two pixels and sampled with spacing of four 
pixels (bottom left) and first derivative of image smoothed  with Gaussian 
kernel of width one pixel with the linear profile with sampling distance 
equal two pixels (bottom right). 
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GentleBoost classification results in an image h(x) which contains for each 
position in the image a value stating the confidence with which each pixel is 
classified as being inside or outside the vessel wall. For h(x)>0, the pixel x is 
classified as being outside the outer vessel wall contour, for h(x) <0, the pixel 
is inside the vessel; the confidence of this classification is given by the 
magnitude |h(x)| (Fig 3.7). The values in the classification image are in the 
range [-1, 1]. 

3.3.3 Ellipse Fitting 

The third step of the algorithm is to fit the vessel wall contour to the result of 
the classification. Similarly to the work by Adame et al. [27], we use prior 
information that the cross-sectional shape of the CCA is roughly elliptic. An 
ellipse is fitted to each of the classified transversal slices.  

The cost image to which the ellipsoid model is fitted is constructed by 
combining the confidence image constructed in the vessel wall classification 
(Fig. 3.7) with the position of automatically detected calcified regions.  On 
each slice, if a calcified region is detected, lumen and calcium are connected 
and h(x) is set to -1 for the pixels in between, i.e. it is highly unlikely that the 
vessel wall is positioned in between the calcium and lumen. This adapted h(x) 
is referred to as h’(x) in the remainder of the paper.  

In order to find the most optimal ellipsoid, the following cost function C is 
optimized: 

ܥ  = 1݊ ෍|ℎᇱ(ݔ௜)|௡
௜ୀଵ  , (6) 

where xi is a sample along the ellipse and n is the number of samples used to 
create an ellipse. The best ellipse has minimal C value.  

The ellipse model contains five degrees of freedom: two diameters (a, b), 
positions along the x and y axis (x, y), and angle of rotation (θ). An exhaustive 
search optimization is used to determine the ellipse with minimum cost in the 
first slice. In every next slice the initial position and search range of ellipse 
parameters depends on the ellipse parameters in the previous slice. In this way 
continuity along the axial direction is enforced, while simultaneously 
improving computation efficiency by restricting the search range for the 
exhaustive search.  
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The initial center of the ellipse on the slice i+1 is translated in 2D based on the 
displacement of the lumen center from slice i to slice i+1. The range for the 
angle of rotation θi+1 for the ellipse on the slice i+1 depends on the rotation θi 
and the ratio Ri between shorter and longer axis of the ellipse on slice i. The 
value of the ratio R describes the shape of the ellipse: the closer the R value is 
to 1.0, the more circular the ellipse is, and the larger the rotation range can be. 
If the ellipse is stretched in one direction, in the next slice we should limit the 
possible orientations of the ellipse to that direction, and thus have smaller range 
for valid values for θ. 

The remaining parameters, a, b, x and y depend linearly on the axis sizes in the 
previous slice ellipse. The exact parameter values used in the experiments are 
given in Section 3.4.4.3. 

3.4 Experimental Setup 

3.4.1 Input Data 

The CTA data were acquired on a MDCT scanner (Siemens, Sensation 16, 
Erlangen, Germany), with a standardized optimized contrast-enhanced protocol 
(120 kVp, 180 mAs, collimation 16_0.75 mm, table feed 12 mm/rotation, pitch 
1) and a slice thickness of 1.0 mm and a pixel size of 0.23 mm. More details on 
scanning protocol are presented in [7]. Only the scans reconstructed with b46 
kernel were used in our experiments.  

From a database containing 140 CTA carotid arteries from patients with 
transient ischemic attacks (TIA) symptoms we have selected 85 consecutive 
datasets. From these 85 datasets, 40 were randomly chosen for training (set I) 
and 40 were randomly chosen for testing (set II). The remaining 5 were used as 

 

Figure 3.7 Example of a confidence image h(x) (left), combination of the 
confidence image and the detected calcium region h’(x), i.e. cost image for 
the ellipse fitting (center), corresponding original image with the vessel 
wall points marked on it (right). 
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Number of 
datasets Name Description 

Observer who 
drew the ground 

truth 

40 I Training set A 

40 II Testing set A 

5 III 
Calcium 

classification 
optimization set 

A 

20 IV 
Interobserver 
variability test 

set 
B, C 

Table 3.1 Description of datasets used for training, testing and 
optimization. 

an optimization set (set III) in order to determine how many GentleBoost 
rounds should be used for the calcium objects classification. Additionally 20 
more carotid CTA datasets (set IV) were randomly chosen from the 46 datasets 
used in the interobserver study on carotid artery plaque by de Weert et al. [39]. 
These 20 datasets were also used for testing, resulting in 60 testing datasets. 
The datasets from set IV enable us to compare algorithm performance with 
interobserver variability. The datasets are described in Table 3.1. 

Three observers manually annotated contours and these contours are 
considered to be our ground truth. Observer A is an experienced resident in 
radiology with two years of experience on CTA and CT plaque analysis. 
Observer B is an experienced resident in radiology with four years of 
experience on CTA and CT plaque analysis. Observer C is an experienced CT 
technologist with two years of experience on CTA and CT plaque analysis.  

Contours used in the training phase (set I), testing phase (set II) and in the 
optimization phase (set III) are drawn by the same observer (A).  The contours 
from the test set IV used for the interobserver variability comparison are drawn 
by observer B and C. 

In all sets (I-IV) used in this work, the contours were drawn on the range of 
consecutive slices where the vessel wall was thickened. On average, 40 slices 
per dataset were manually annotated. This usually included CCA and ICA part 
since in the ECA plaque is rarely present. The evaluation is only performed in 
the CCA part since in the bifurcation region the elliptic deformable model is 
not suitable  
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3.4.2 Experiments Performed 

Using the proposed method we trained both the calcium classifier and the 
inside-outside vessel wall classifier on the 40 datasets in the training set. Vessel 
wall segmentation was subsequently quantitatively evaluated on the 60 datasets 
in the test sets II and IV.  

3.4.2.1  Calcium Segmentation – Training and Testing 

From the training set 347 candidate objects were extracted, 167 true positive 
and 180 false positive objects. For each candidate object 333 features were 
calculated.  

In the testing phase calcium candidate objects are extracted and the set of 
features described in the section 3.3.1.2 are calculated for each object. The 
classifier takes only the features selected in the training phase and based on the 
value calculated by (11) decides if the candidate object is calcium or not.  

We evaluated success of the classification with three criteria: sensitivity, 
specificity and accuracy.  

In our method we use only objects classified as positive (calcium) to change 
the confidence image h(x) in order to improve the ellipse fitting. Hence, 
classification of a background candidate object as calcium object will 
negatively affect segmentation accuracy, and therefore specificity as close as 
possible to 100% is desired, i.e. no background object should be classified as 
calcium region. 

We first explored how many iterations in the training of the GentleBoost 
algorithm were needed in order to achieve optimal classification, i.e. we aimed 
at establishing the minimal number of iterations for the classifier to converge. 
Hereto, a small optimization set III was randomly selected. This optimization 
dataset contained 42 candidate objects, 23 calcium and 19 non-calcium objects. 
Classification performance as function of the number of iterations was 
performed, and the minimal number of required iterations was determined.   

The evaluation on the test datasets II and IV was performed on CCA and ICA 
with a classifier trained with this number of iterations. The datasets included 
432 candidate objects, of which 265 calcium and 167 non-calcium. 
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3.4.2.2 Vessel Wall Segmentation – Training and Testing 

From the training set I 40000 samples (positions in the training images) were 
randomly selected, 10000 positive samples (inside vessel wall) and 30000 
negative samples (outside vessel wall).   

Comparable to the calcium classification, the optimal feature set for inner and 
outer vessel wall classification was determined in the training stage on the 
training set. Using the resulting optimal classifiers, vessel wall segmentation is 
quantitatively evaluated on the test set containing 60 datasets. Samples are 
collected, both for training and testing, in the same region of interest as for the 
calcium object classification.  

The first set of experiments was performed on the 40 datasets in the set II for 
which one manually annotated vessel wall is drawn by observer A, who also 
drew the ground truth contours in the training set I on which our method was 
trained. We investigated whether using Gaussian (derivative) features in 
addition to intensities increased the accuracy of vessel wall detection. 
Therefore, next to the classifiers trained with all features as described in 
Section 3.3.2, we used a classifier which was only trained using features 
extracted from the original image.  

In a second experiment the best performing classifier was applied to the set IV. 
In this set we compared the success of our method to the inter observer 
variability. 

3.4.3 Evaluation Measures 

In order to compare different outer vessel wall segmentations, we use two 
measures. The first measure is the Dice coefficient or similarity index SI, 
which measures the similarity of two segmentations: 

ܫܵ  = 2|ܺ ∩ ܻ||ܺ| + |ܻ| , (7) 

where X and Y denote the regions inside the contour.  This measure relates the 
over- and undersegmentation  to the size of the object to segment. 

The second measure is the absolute average distance between the contours, 
expressed in millimeters.  Both the average error measure per dataset (Ed) and 
per contour (E(k)) are determined, where the average error per contour is 
defined as 
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(݇)ܧ  = ∑ ܵ(݅)ே௜ୀ଴ܰ  , (8) 

with S(i) is the minimum Euclidian distance between position i along the 
ground truth c ontour (defined by N points) and the ellipse. 

Differences in measures between classification methodologies were tested with 
Wilcoxon’s matched pairs signed rank test [40] 

3.4.4 Parameters Values 

3.4.4.1 Calcium Segmentation 

In the calcium classification experiments the following parameter settings were 
used: the length of the linear profile was set to 21 pixels (4.92 mm) and the 
sampling distance is one pixel (0.23 mm). The profile length we assumed to be 
large enough to capture all relevant neighborhood information since the 
maximum calcium object diameter in our dataset was 4.6 mm long. Candidate 
objects were selected by thresholding in a region within 8 mm from the lumen 
boundary.  This range was selected since in the entire dataset the vessel wall 
was never further away than 7.1 mm.  

3.4.4.2 Vessel Wall Segmentation 

For the vessel wall profile a length of 9 pixels (2.1mm) was used. Training and 
testing samples were extracted from a region of interest within 8 mm from the 
lumen boundary.  

Parameter Range Discretization Step 

Diameter a [minLumenRadius + 2mm, 
maxLumenRadius+2mm] 

0.46 [mm] 

Diameter b [a, maxLumenRadius+2mm] 0.46[mm] 

Translation x [-0.94, 0.94] 0.46[mm] 
Translation y [-0.94, 0.94] 0.46[mm] 
Orientation θ [0,180] [deg] 5[deg] 

Table 3.2 Parameters of ellipse fitting using exhaustive search. The range 
and stepsize of the ellipse parameters on the first slice, on which an 
exhaustive search is performed. 
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3.4.4.3 Ellipse Fitting Parameters 

Ellipse fitting was performed on the image h’(x) as described in Section 3.3.3. 
In the first slice an exhaustive search strategy was used, while in all 
consecutive slices information from the adjacent slice was used. Table 3.2 
shows the range and discretization of the ellipse fitting parameters used in the 
first slice. As the processing starts at the proximal end of the carotid, far away 
from the bifurcation, with hardly any plaque burden, we chose the initial 
maximum ellipse diameter to be only slightly (2 mm) larger than the maximum 
lumen diameter on that slice. In all other consecutive slices an exhaustive 
ellipse fitting search with restricted parameters range was performed. The 
parameters values for this fitting process are listed in Table 3.3. 

In case the optimal ellipse still crosses a calcified region, a new fit was started, 
with a larger search range for the position of the ellipse center. The ellipse 
center translation range in this case in x and y direction is [-0.25·di, 0.25·di] 
where di is the larger diameter of the extracted ellipse in the previous slice i. 

3.5 Results 

3.5.1 Calcium Objects Classification 

In Fig. 3.8 sensitivity, specificity and accuracy of calcium object classification 
as a function of number of iterations used in the GentleBoost algorithm are 
shown. After 20 iterations the graphs converge, and specificity has reached 
100%, while accuracy and sensitivity were 94% and 90% respectively. 
Therefore, in the remainder of the experiments we used those 20 weak 

Parameter Range[mm] Discretization step[mm] 

Diameter a [0.875·aPreviousSlice, 
1.125·aPreviousSlice] 

0.23 

Diameter b [0.875·bPreviousSlice, 
1.125·bPreviousSlice] 

0.23 

Translation x [-0.23, 0.23] 0.23 
Translation y [-0.23, 0.23] 0.23 

Table 3.3 Parameters of ellipse fitting using non-exhaustive search. The 
range and discretization steps of the ellipse parameters for the exhaustive 
search with restricted search range in the adjacent slices. The values of the 
ellipse parameters depend on the ellipse parameters from the previous slice.  
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classifiers f for classification.  A sensitivity as close as possible to 100% is of 
importance, as it implies that the model fitting part of our method is only 
improved by the calcium detection and in no test case degraded by the 
misclassification of the background objects.  The first four features which are 
the most important for the calcium classification are shown in the Table 3.4.  

The training samples in the feature space of the first two features are shown in 
Fig. 3.9.  

Calcium detection in 60 datasets of set II and set IV in CCA and ICA, 
performed with the twenty features selected in the training experiment as a 
preprocessing step for vessel wall segmentation, also yielded good 
classification results. We achieved very high values for all measures: 
sensitivity of 93%, specificity of 99% and overall accuracy of 95%.  In the 
CCA specificity was 100%. 

3.5.2 Vessel Wall Segmentation 

The four most relevant features for inner-outer vessel region classification are 
shown in Table 3.5.  

To illustrate the degree of overlap between the classes 800 randomly selected 
positive and 800 randomly selected negative samples are plotted in the feature 

Feature 
description th a b error 

Distance from 
lumen [mm] 2.59 1.86 -0.91 0.13 

0-derivative, 
scale = 0.69mm, 

radial profile 
1.27 103 -1.60 0.88 0.36 

Max intensity 1.6 103 -1.13 0.68 0.68 

0-derivative, 
scale = 0.23mm, 

radial profile 
1.2 103 1.08 -0.57 0.70 

Table 3.4 Four most discriminative calcium object features. th, a, and b 
are the parameters of Gentle Boost classifier described in (4). The error 
parameter is the classification error on the training set when only the 
considered feature is used.  
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space spanned by the first two features from Table 3.5 (Fig. 3.5). It is clear that 
the problem to classify inner and outer region of the vessel is much harder than 
calcium – non-calcium object classification (Fig. 3.9).  

3.5.2.1 Influence of Using Gaussian Zeroth and First Order 
Derivative  

Vessel wall classification using Gaussian and intensity features was compared 
with classification using only intensity features on the set II. In Fig. 3.10, 
similarity indices (6) are given and Fig. 3.11 shows the average wall 
localization error in mm (7). For all datasets our method using Gaussian 
features and intensity features was better than the approach that uses intensity 
features only. The similarity indices and segmentation errors are listed in the 
Table 3.6. 

From the Table 3.6 we can see that the similarity index improved from 
88.5±3.3 % in the case where only intensity features were used to 91.3 ± 2.6 % 
when in addition the Gaussian derivatives features were used (p<0.0001). In 
addition, the segmentation error Ed, reduced from 0.58±0.18 mm3 to 0.43±0.13 
mm3 (p<0.0001).  

The first two rows of Fig. 3.12 show results on three consecutive slices from 
two of the datasets presented in Fig. 3.10 and Fig. 3.11.  

Feature description th a b error 
Distance from 
lumen [mm] 1.30 1.65 -0.78 0.27 

Original image 1.27 103 -1.21 0.54 0.47 
0-derivative, scale = 

0.23mm 1.05 103 -0.93 0.87 0.59 

0-derivative,scale = 
0.46mm, 1.34 103 -0.85 0.08 0.73 

Table 3.5 Four most discriminative inner – outer vessel region features. 
th, a, and b are the parameters of Gentle Boost classifier described with 
equation (4). The error parameter is the classification error on the 
training set when only the considered feature is used.  
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3.5.2.2 Segmentation Accuracy versus Interobserver Variability  

The similarity indices and segmentation error between the method’s results and 
the two manual tracings of the observers, and between two observers are shown 
in Fig. 3.13 and Fig. 3.14, respectively.  

In Table 3.7 the average values of the similarity index and segmentation error 
over the 20 datasets are listed. From Fig. 3.13 and 3.14 it can be observed that 
the interobserver error and the interobserver similarity index have the same 
order of magnitude as the difference between our method and the observers. It 
can also be seen that the performance of our method is slightly better when 
compared to observer B than observer C. The difference between the error of 
our method and the inter observer variability error, albeit small, is statistically 
significant (p=0.047 for observer B and p=0.004 for observer C).  The 
difference between similarity index between our method and observers and the 
similarity index between two observers is not statistically significant (p=0.067) 
for observer B, but it is significant for observer C (p=0.004). 

Sensitivity, Specificity and Accuracy of Calcium Objects 
Classification vs Number Of Iterations in GentleBoost 

Classifier Training
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Figure3.8. Sensitivity, specificity and accuracy of the calcium candidate 
object classification as a function of number of iterations performed 
during training of the classifier. The test is performed on the 5 carotid 
arteries from the optimization set (set III).  
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The last two rows of Fig. 3.12 show results on three consecutive slices from 
two of the datasets in Fig. 3.13 and Fig. 3.14.  

3.6 Discussion 

We presented and evaluated a new method for outer vessel wall segmentation, 
which is based on a combination of pixel-based classification and deformable 
model fitting.  

Method μ (SI) ± std. 
dev  [%] SI [min, max] μ (Ed) ± std. 

dev  [mm] 
Ed [min, 

max] 
With 

Gaussian  
and 

intensity 
features 

91.3 ± 2.6 [84.4, 95.3] 0.43±0.13 [0.22, 0.82] 

With only 
intensity 
features 

88.5±3.3 [80.0, 93.1] 0.58±0.18 [0.39, 1.15] 

Table 3.6 Similarity index and segmentation error on 40 scans. Similarity 
index and average segmentation errors, Ed, with standard deviations for all 40 
datasets (set II). 

Comparison μ (SI) ± std. 
dev  [%] 

SI [min, 
max] 

μ(Ed) ± std. 
dev  [mm] Ed [min, max] 

Our method – 
Observer B 90.5 ± 2.8 [83.2, 94.9] 0.48±0.14 [0.32, 0.93] 

Our method – 
Observer C 89.8±3.1 [82.1, 93.6] 0.53±0.17 [0.31, 1.05] 

Observer B –
Observer C 92.1±3.1 [84.4, 95.4] 0.42±0.16 [0.22,0.88] 

Table 3.7 Similarity index and segmentation error on 20 scans. Average 
similarity index and average segmentation errors, Ed, with standard deviations 
for all 20 datasets where comparison with the inter observer error is done (set 
IV).  
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First, candidate calcium objects are extracted and classified based on their 
features. Since calcium regions usually follow the shape of the outer vessel 
wall, next to candidate object intensity, volume, and shape features, both radial 
and tangential linear profiles have been included as features. In a feature 
selection phase, it was found that these profiles are very relevant in the 
classification process; next to features extracted from the radial and tangential 
profiles only distance from the lumen and maximum intensity of the candidate 
object are important for the classification success. The most relevant feature is 
the spatial position of the object relative to the lumen. This is not surprising 
given that the calcified regions are positioned very close to or touching the 
lumen boundary. Other features which best discriminate calcium and non-
calcium objects are the zeroth and first order Gaussian derivative of the radial 
intensity profile. Object volume only appears in one of the last iterations while 
shape information is not selected in any iteration. In previous work, Isgum et 
al. [33] also found that calcium shape and size features were not relevant in the 
detection of coronary calcifications. Our method for candidate object extraction 
may have affected the relevance of the shape and size features. As it is shown 
in Fig. 3.3, candidate objects represent in most of the cases only a part of the 
complete calcified region. This is due to the fact that in CTA data a higher HU 
threshold needs to be used than in non-contrast enhanced CT, to prevent 
contrast-enhanced veins to merge with the calcified regions. Shape information 
that may be discriminative between calcium and non-calcium objects is 
potentially lost owing to this undersegmentation. Average object intensity is 
also shown not to be relevant for calcium classification, whereas maximum 
intensity is one of the most relevant features. 

Whereas calcium classification achieved high specificity (99%), and sensitivity 
(93%), vessel wall segmentation can still be further improved by improving 
calcium classification. The second row of Fig. 3.12 shows an example where 
one calcium object is detected (left from the lumen) and the second one (under 
lumen) is not. It is clear that the vessel wall segmentation error would have 
been considerably smaller if both calcium objects would have been detected.  
False positive classification did not negatively influence the results, as the 
specificity of calcium detection is very high with only one background object 
classified as calcium. This did not have influence on the outer vessel wall 
segmentation since the misclassified object was located in the region of ICA, 
i.e. above the bifurcation.   

To classify pixels to belong to the inner or outer vessel region we applied the 
same classification framework with a different set of features. Voxel based 
classification was used and features were extracted from radial profiles.  
Distance from the lumen was the most informative feature. A comparison study 
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using only original intensity profiles and using additional profiles filtered with 
Gaussian filters and  directional Gaussian derivatives showed that the use of   
Gaussian features outperforms the approach using intensity features only.  We 
do not only add Gaussian blurring, but also Gaussian derivative features,   
which improves edge localization. The combination of these two groups of 
features improves the overall result.The difference between our method and 
both observers is in the same range as the interobserver variability. The average 
distance over 20 datasets from the set IV of our method compared to the 
observer B as the ground truth is 0.48 mm, and compared to observer C 0.53 
mm, while the inter observer variability (between observer B and C) is 0.42 
mm. The difference of 0.06 mm and 0.11 mm correspond to one quarter and 
one half of a pixel size respectively. The Wilcoxon test shows that the inter 
observer error is not significantly different compared to the error between 
automated segmentation and observer B. On the other hand, the error of our 
method compared to the observer C, albeit small, is statistically significantly 
different from the interobserver error.  

The data we used for training and testing consisted of a consecutive set of data 
acquired in our hospital, and was very diverse with respect to pathology 
(degree of stenosis, degree of calcifications). Therefore the training and 
evaluation sets were representative for the variability that occurs in clinical 
practice.  

Our algorithm is shown to be very robust when tested on a large dataset. This is 
a promising result with respect to the applicability in clinical practice. As 
described in the work of De Weert et al. [7,8], having a lumen and outer vessel 
wall contour is sufficient in order to characterize  three main plaque 
components (lipid, fibrous tissue and calcium) with an accuracy comparable to 
histology, which shows the large potential of the approach to be used in clinical 
practice for plaque characterization. There are, however, still a number of 
limitations. Our current algorithm is primarily slice based. Only calcium object 
detection is performed in 3D, and   the other 3D aspect of the algorithm is that 
ellipse fitting part relies on the ellipse fitting results of the neighboring slices. 
Another current limitation is that it assumes an elliptical cross section of the 
carotid artery; this assumption does not always hold in the small region around 
the bifurcation. Future work will therefore be directed to fitting more flexible 
3D models to the classification results. 

3.7 Conclusion 

We have presented a method for the segmentation of the carotid outer vessel 
wall in CTA scans, which combines classification of previously extracted 
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calcium objects and inner-outer vessel wall region with a parametric vessel 
shape model.  

The method has been evaluated on a dataset of 60 CTAs of the carotid arteries.  

The average similarity index between vessels segmented by our method and the 
vessels segmented by experienced observers was 91% and comparable to the 
similarity index between two observers.  

The results are highly encouraging with respect to the plaque quantification in 
medical practice. 
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Figure 3.9. Calcium objects samples plotted in the features space, where 
the axes are the two most discriminating features for classification, see 
table 3.4. 100 positive (squares) and 100 negative (circles) samples 
randomly chosen from the training set (set I) are plotted. 
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Figure 3.10 Similarity indices (according to equation (7)) for the vessel 
segmentation using intensity and Gaussian features (first column) and using 
only the features extracted from the original image (second column). The 
test is performed on the 40 carotid arteries (set II). 
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Figure 3.11 Segmentation errors (according to equation (8)) for the vessel 
segmentation using intensity and Gaussian features (first column) and for 
the classifier using only features extracted from the original image (second 
column). The test is performed on the 40 carotid arteries (set II). 
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Figure 3.12 Examples of vessel wall segmentation results. In all rows three 
consecutive slices of one dataset are shown. Yellow markers represent our 
method using Intensity and Gaussian Features, red markers represent the 
same method with Intensity Features only, blue markers represent the 
ground truth drawn by observer A, orange markers represent the ground 
truth drawn by observer B, and white markers represent the ground truth 
drawn by observer C. Top row: dataset 30 from figures 10 and 11 is 
presented illustrating that Gaussian features improve the segmentation. 
Second row: an example with high error which would be significantly 
reduced if misclassified calcium region (bottom left) was correctly classified 
as calcium - dataset number 22 from figures 10 and 11 is shown. In the third 
row dataset number 9 from figures 13 and 14 is shown. This is an example 
of our segmentation almost overlapping with the ground truth drawn by 
observer B, while making a big error compared to the observer C. In the 
bottom row dataset number 13 from figures 13 and 14 is shown. This is an 
example where error of our segmentation is very similar to the inter 
observer error and our segmentation is very similar to contours drawn by 
both observer B and observer C. 
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Figure 3.13 Similarity Index calculated as in (7) for three cases: our method 
with Gaussian and Intensity features used for the wall classification 
compared with the ground truth from observer B and observer C and 
comparison between two observers. The test is performed on the 20 carotid 
arteries where two observers (B and C), drew the ground truth (set IV). 
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Figure 3.14 Wall segmentation errors according to (8) for our method using  
Gaussian and Intensity features compared with the ground truth from the 
observer B and observer C, and comparison between two observers. The test 
is performed on the 20 carotid arteries for which reference contours by 
observers B and C were available (set IV). 
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4 Automated versus manual segmentation of 
atherosclerotic carotid plaque volume and 
components in CTA: associations with 
cardiovascular risk factors 

This chapter is based on: 

D. Vukadinović, S. Rozie, M. J. van Gils, T. van Walsum, R. Manniesing, A 
van der Lugt and W. J. Niessen. Automated versus manual segmentation of 
atherosclerotic carotid plaque volume and components in CTA: associations 
with cardiovascular risk factors, International Journal of Cardiovascular 
Imaging, May 2011. 

Abstract 

The purpose of this study was to validate automated atherosclerotic plaque 
measurements in carotid arteries from CT angiography (CTA). 

We present an automated method (three initialization points are required) to 
measure plaque components within the carotid vessel wall in CTA. Plaque 
components (calcifications, fibrous tissue, lipids) are determined by different 
ranges of Hounsfield Unit values within the vessel wall.  

On CTA scans of 40 symptomatic patients with atherosclerotic plaque in the 
carotid artery automatically segmented plaque volume, calcified, fibrous and 
lipid percentages were 0.97±0.51 cm3, 10±11%, 63±10% and 25±5%; while 
manual measurements by first observer were 0.95±0.60 cm3, 14±16%, 63±13%  
and 21±9% respectively and manual measurement by second observer were 
1.05±0.75 cm3, 11±12%, 61±11% and 27±10%.  

In 90 datasets, significant associations were found between age, gender, 
hypercholesterolemia, diabetes, smoking and previous cerebrovascular disease 
and plaque features. For both automated and manual measurements, significant 
associations were found between: age and calcium and fibrous tissue 
percentage; gender and plaque volume and lipid percentage; diabetes and 
calcium, smoking and plaque volume; previous cerebrovascular disease and 
plaque volume. Significant associations found only by the automated method 
were between age and plaque volume, hypercholesterolemia and plaque 
volume and diabetes and fibrous tissue percentage. Significant association 
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found only by the manual method was between previous cerebrovascular 
disease and percentage of fibrous tissue. 

Automated analysis of plaque composition in the carotid arteries is comparable 
with the manual analysis and has the potential to replace it.  

4.1 Introduction 

One of the major causes of death in the western world is atherosclerotic 
disease, which manifests itself as ischemic heart disease and ischemic stroke 
[1]. The amount of atherosclerotic disease in carotid arteries is normally 
expressed by the severity of luminal narrowing. Risk of (recurrent) stroke is 
related to the severity of stenosis [2]. However, the presence of a large 
atherosclerotic plaque is not always associated with luminal narrowing [3], 
which demonstrates that luminal narrowing alone is probably not a reliable 
marker of atherosclerosis. In addition, studies on carotid atherosclerotic plaque 
show that plaque morphology and composition are also important in the risk 
assessment of patients with carotid artery stenosis [4][5][6].  

Atherosclerotic plaque volume and composition can be determined with 
Magnetic Resonance Imaging (MRI) [7-10] and CT angiography (CTA) [11-
14]. CTA has established itself as an accurate modality to assess the presence 
of atherosclerotic disease and to grade the severity of stenosis [15]. Carotid 
plaques with a thin fibrous cap and a large lipid core are also considered to 
increase the risk for stroke [16][17], while plaques with high calcium content, 
especially when located superficially, are thought to be associated with a lower 
risk for stroke [18]. 

Manual measurement of plaque volume and the contribution of the different 
plaque components to the plaque volume in MRI or CTA data is a very labor 
intensive task. Several methods address the segmentation of the outer vessel 
wall and plaque components in both MRI and CTA data in carotid arteries [19-
24] as well as coronary arteries [25][26]. We previously developed an 
algorithm to automate the plaque measurements in CTA imaging data of the 
carotid arteries. In this algorithm we combined outer vessel wall segmentation 
[27] with lumen segmentation [28]. Once the outer vessel wall and lumen were 
segmented, the plaque components were segmented using distinctive ranges of 
Hounsfield Unit (HU) values [11]. However, with this algorithm the outer 
vessel wall was automatically segmented only in common carotid artery, while 
atherosclerotic disease is commonly present in both the common and internal 
carotid artery.   
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The purpose of this study was to develop and evaluate a method to obtain 
automated measurements of plaque volume and its components at the carotid 
bifurcation and to demonstrate that this method has potential to replace the 
manual measurements in terms of accuracy in plaque volume and plaque 
component characterization. Furthermore, we investigated whether in group 
associations studies similar trends can be found with automated processing. 
Hereto, the method validation consists of (1) evaluation of the accuracy by 
comparing differences between method and manual tracings with variability of 
manual measurements of different observers and (2) comparison of the 
associations between cardiovascular risk factors and plaque features as 
assessed with manual segmentation and automated segmentations.  

4.2 Materials and Methods 

4.2.1 Study Population 

From November 2002 to December 2005, patients with amaurosis fugax, TIA 
or minor ischemic stroke (Rankin score ≤ 3) were consecutively enrolled in the 
study cohort and clinical and research data were derived in a standardized way. 
Multi-detector CT angiography (MDCTA) of the carotid arteries was 
performed as part of a research protocol, approved by the Institutional Review 
Board. All patients gave written informed consent. All patients underwent 
neurological examination on admission and symptoms and risk factors were 
reported. Subsequently, all carotid arteries of those patients with symptoms in 
the anterior circulation were evaluated for the presence of atherosclerotic 
plaque. This validation study of the automated plaque segmentation has a 
retrospective study design. The main test set contained the symptomatic carotid 
artery from 90 randomly selected patients (63% male, mean age 67±11 years) 
from the group of patients with atherosclerotic plaque in the symptomatic 
carotid artery. The symptomatic carotid artery was the artery ipsilateral to the 
ischemic hemisphere, which was based on clinical symptoms and findings on 
MDCT of the brain. A subset of 40 datasets, which has a similar distibution of 
stenosis degrees as the full set, was used for the interobserver study.  

4.2.2 Training set for Automated Method 

The parameter settings for the automated method were previously trained on 40 
manually annotated datasets, which are not part of the 90 datasets for which the 
method is evaluated. Furthermore this training was manually annotated by a 
different observer than the two observers who annotated the imaging data 
reported on this study. Hence, a possible bias of the method to one of the 
observers is prevented. 
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4.2.3 Scan Protocol and Image Reconstruction 

CTA of the carotid arteries was performed on a 16-slice MDCT system 
(Siemens, Sensation 16, Erlangen, Germany) with a standardized optimized 
contrast-enhanced protocol (120 kVp, 180 mAs, collimation 16×0.75 mm, 
table feed 12 mm/rotation, pitch 1) [29]. All patients received 80 ml contrast 
material (Iodixanol 320 mg/ml, Visipaque, Amersham Health, Little Chalfont, 
UK), followed by 40 ml saline bolus chaser, each at an injection rate of 4 
ml/sec. Synchronization between the passage of contrast material and data 
acquisition was achieved by real-time bolus tracking at the level of the 
ascending aorta. Image reconstructions were made with a 120-mm field of 
view, a matrix size of 512×512, a slice thickness of 1.0 mm, an increment of 
0.6 mm, and an intermediate reconstruction filter (B46f). 

4.2.4 Plaque Volume and Composition Measurements 

To define different plaque components by using different HU ranges, it is 
sufficient to have a segmentation of the carotid artery outer vessel wall and the 
lumen [11] 

4.2.4.1 Automated Segmentation of the Outer Vessel Wall and 
Lumen 

An automatic method using a three-point initialization was used to segment the 
outer vessel wall of the carotid artery in CTA [27][30]. First, the vessel lumen 
was segmented using a level set approach [28], using an initialization point in 
the common, internal and external carotid artery. Subsequently, using a set of 
image features, calcium objects which are part of the vessel wall were detected 
using a GentleBoost framework [27]. Calcium object classification is used as a 
preprocessing step for the outer vessel wall segmentation since it is a much 
easier task than outer vessel segmentation and it can improve the accuracy of 
outer vessel wall segmentation. In the third step probability images were 
created that indicate the likeliness of a voxel lying within or outside the vessel, 
using the same GentleBoost framework. Each voxel is represented by a set of 
descriptive features: distance of the pixel to the lumen center and a set of 
contextual features. Contextual features in this case are radial image intensity 
profiles emanating from the lumen center. These profiles are extracted from the 
original image, the image smoothed with 2D Gaussian filters at different scales 
and directional 2D, Gaussian derivatives also at different scales. Based on this 
set of features, a GentleBoost classifier is trained to classify each pixel as being 
inside or outside vessel wall.  The classifier provides a confidence measure 
which reflects the likelihood that a pixel lies inside or outside the vessel.  
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Finally, ellipsoids are fitted using both the calcium and vessel classification 
results.   

4.2.4.2 Manual Segmentation of the Outer Vessel Wall and Lumen 

Images of carotid arteries that contained plaque were analyzed using custom-
made quantitative image analysis software, developed using MeVisLab (MeVis 
Research, Bremen, Germany). Using this software, regions of interest (ROI) 
were manually drawn over the outer vessel wall contour in consecutive axial 
MDCTA images (Fig. 4.1). Since the observers placed the ROI over the outer 
vessel wall contour, the ROI consisted of both plaque and lumen. The 
window/level setting was fixed at 1200/800 HU for all measurements.  

To assess the border between lumen and atherosclerotic plaque it was 
necessary to draw a second ROI close to the lumen in each image. Normally, 
the lumen area was then automatically differentiated from atherosclerotic 
plaque based on the adjusted cut-off value. But in those plaques in which 
calcifications bordered the lumen and the two dense structures merged with 
each other, lumen area and calcifications had to be separated by manual 
drawing. One observer (S.R.) who was blinded to other clinical information, 
manually drew lumen and outer vessel wall contours. A second observer 
(M.G.) performed the manual segmentations in the interobserver dataset. A 
third observer (T.W.) performed manual annotation of the training set on which 
our automated method was trained.  

4.2.4.3 Calculation of the Volume of Plaque and the Components 

Having the carotid artery vessel wall and lumen segmented, different HU 
ranges were used to define different plaque components. The cut-off point for 
the distinction between calcifications and fibrous tissue was set at 130 HU, the 
value currently used for calcium scoring. The cut-off point for the distinction 
between fibrous tissue and lipid was set at 60 HU as determined in previous 
studies [11]. We adjusted the cut-off point for the distinction between 
atherosclerotic plaque and vessel lumen for each patient on the basis of the full-
width-half-maximum principle (mean lumen attenuation plus mean fibrous 
tissue attenuation (≈ 88 HU) divided by two). The pixels surrounding the vessel 
lumen, with a density between 130 HU and the adjusted cut-off value, were 
considered to be fibrous tissue.  

The plaque volume and the volume of the plaque components were calculated 
by multiplying the number of pixels of the total atherosclerotic plaque or its 
components, with the pixel size and the slice increment. The proportion of 
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plaque components was calculated as the ratio of volume of the component to 
the total plaque volume multiplied by 100. As an example, in Fig. 4.1 a cross-
sectional slice with outer vessel wall and all three plaque components in 
different colors automatically segmented and manually segmented by two 
observers is shown.  

4.2.5 Cardiovascular Risk Factors 

We obtained clinical measures and information on risk factors and medication 
during the patient’s visit at the outpatient clinic. Subjects were categorized as 
currently, ever, or never smoking. Hypertension was defined as systolic blood 
pressure over 140 mmHG and/or diastolic blood pressure over 90 mmHg 
during two episodes of at least 15 min of continuous noninvasive blood-
pressure measurement and/or treatment with antihypertensive medication. 
Blood pressure-lowering drugs comprised ACE inhibitors, calcium-antagonists, 
beta-blockers, and diuretics. Hypercholesterolemia was defined as fasting 
cholesterol over 5.0 mmol/l and/or use of cholesterol-lowering drugs. Diabetes 
was defined as fasting serum glucose levels over 7.9 mmol/l, nonfasting serum 
glucose levels over 11.0 mmol/l, or use of antidiabetic medication. Information 
was collected on previous cardiovascular events and conditions (myocardial 
infarction, atrial fibrillation, angina pectoris, chronic heart failure, coronary 
artery bypass grafting) and previous cerebrovascular events. 

4.2.6 Statistical Analysis 

Both for automated and manual measurements (2 observers), plaque and plaque 
component volumes and proportions were presented on 40 datasets with mean 
± (SD). The differences between automated and manual measurements and 

   

Figure 4.1 Different plaque components on one cross sectional slice 
segmented by the automated method (left), observer S.R. (center) and 
observer M.G. (right). lumen,  fibrous,  lipids, calcium     
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those between the measurements of two observers are presented with mean 
values and standard deviations. The differences between the automated and 
manual measurements (2 observers) on 40 datasets were plotted against the 
mean value of the measurements (Bland-Altman plot), they were evaluated 
with paired Student t-test and the correlation between the measurements by the 
two methods was evaluated by Pearson’s correlation coefficient (RP). Bland-
Altman plots are plotted in Excel. Limits of agreement are calculated as 
average difference ± 1.96 · standard deviation of the difference.  

The differences between automated and manual measurements on 90 datasets 
(1 observer) are presented with mean values and standard deviations and the 
correlation was evaluated by RP. 

Both for automated and manual measurements (1 observer) we determined the 
associations between cardiovascular risk factors and PV and plaque 
composition on 90 datasets using univariable linear regression. Multivariable 
analysis was not performed for two reasons. Firstly, the focus of the study was 
to show that automated method can replicate the associations between 
manually measured plaque components and cardiovascular risk factors. 
Second, we did not focus on the assessment of independent associations 
between risk factors and plaque characteristics as this was not possible due to 
limited sample size.  Because the distribution of plaque volume was skewed, 
we used a log10 transformation prior to statistical analysis. Similarly, for 
proportion of plaque components we used square root (sqrt) transformation.  

P values <0.05 were considered statistically significant. Statistical analyses 
were performed using SPSS software (version 15.0, Inc., Chicago, Illinois). 

4.3 Results 

4.3.1 Baseline Clinical Characteristics 

The baseline characteristics are presented in Table 4.1.  
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4.3.2 Plaque Measurements: Comparison to Interobserver 
Variability 

Table 4.2 shows lumen, plaque volume, plaque component volumes and plaque 
component proportions assessed by the automated method and by the manual 
methods (two observers) in 40 datasets. The differences between the automated 
and the manual method and between the manual measurements of two 
observers are also shown. The differences between automated method and both 
observers were in the same range as the differences between observers. 

The difference between the automated method and first observer manual 
measurements of PV, calcified, fibrous and lipid percentages were 
0.02±0.24cm3, -4±6%, -0±8% and 4±7% respectively. The differences between 
automated method and second observer manual measurements of PV, calcified, 
fibrous and lipid percentages were -0.09±0.43cm3, -1±4%, 2±8% and -1±9% 
respectively. The differences between two observers manual measurements of 
PV, calcified, fibrous and lipid percentages were 0.11±0.29cm3, 3±5%, 2±6% 
and -5±7% respectively. Similar differences were found between automated 
plaque measurements and manual measurements performed on 90 datasets by 
observer S.R. 

Fig.4.2. shows regression plots and Pearson’s correlation coefficient (RP) 
between automated and manual measurements by both observers of plaque 
features on 40 datasets. For PV, calcium, fibrous and lipid contribution 

Characteristics N=90 

Age [years; mean ±SD] 67±11 

Male sex [%] 63 

Hypertension [%] 84 

Hypercholesterolemia [%] 85 

Diabetes Mellitus [%] 24 

Smoking: current or past [%] 44 

Previous cardiac disease [%] 35 
Previous cerebrovascular disease 

[%] 31 

Table 4.1 Demographic and clinical characteristics of 90 patients 
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correlation coefficients between automated and manual measurements of 
observer S.R. and M.G. were: 0.92 and 0.83; 0.94 and 0.94; 0.79 and 0.73 and 
0.57 and 0.52 respectively. Correlation coefficients between automated and 
manual measurements by observer S.R. on 90 datasets of PV, calcium, fibrous 
and lipid contributions were 0.89, 0.86, 0.77 and 0.55 respectively.  

From the Bland–Altman plots, in Fig. 4.3, it can be observed that the difference 
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Figure 4.2 Regression plots showing the comparison between automated 
and manual measurements in 40 datasets. 
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between automated and manual measurements of plaque volume increases 
when the volume increases. Similarly, the difference between automated and 
manual measurements of plaque components proportions increase with the 
components proportions.  

4.3.3 Risk factors Associations with Plaque Features: 
Comparison Between Manual and Automated 
Measurements. 

Table 4.3 shows the associations between cardiovascular risk factors and 
automatically assessed and manually assessed plaque volume and plaque 
component percentages on 90 datasets. Mostly, similar associations were found 
with automatically and manually assessed plaque features and cardiovascular 
risk factors. 

Older patients had significantly larger PV measured by the automated method, 
whereas the association with manually assessed PV was not significant 
(p=0.065). Male patients had significantly higher plaque volume for both 
automated and manual plaque measurements. Patients with 
hypercholesterolemia had significantly lower plaque volume when measured 
with the automated method, and not when measured manually. Patients who 

Figure 4.3 Bland-Altman plots of plaque volume and plaque 
components percentages assessed by automated method and 
manual method by two observers in 40 datasets. 
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were smokers and patients who had a history of cerebrovascular disease had 
significantly higher plaque volume for both automated and manual plaque 
measurements.  

For both automated and manual plaque measurements older patients had a 
significantly higher calcium contribution and a significantly lower fibrous 
contribution. Male patients had a significantly higher lipid contribution for both 
automated and manual plaque measurements. Patients with diabetes had a 
significantly higher calcium contribution for both automated and manual 
plaque measurements and a significantly lower fibrous contribution when 
measured with the automated method and not when measured manually.  

Patients with a history of cerebrovascular disease had a significantly lower 
fibrous contribution when measured manually and not when measured 
automatically.  

4.4 Discussion 

In this study we presented a method for automated plaque volume and plaque 
composition assessment. Furthermore, we evaluated its accuracy (i) with 
respect to manual tracings, and (ii) its ability to replicate associations between 
plaque characteristics and cardiovascular risk factors. 

With respect to segmentation accuracy, we showed that the differences in 
estimating plaque volume and plaque components between our automated 
method and expert observers are in the same range as interobserver variability. 
The results show some bias between the observers and between observers and 
the method. All automated volume measurements values are larger than 
volumes measured by observer S.R and smaller than the volumes measured by 
observer M.G with the exception of calcium volume and fibrous contribution.  
All the volumes and proportion differences between two observers were 
statistically significant, although these differences were small. The statistically 
significant difference is a consequence of a persistent, albeit small, 
oversegmentation of most plaque components by observer M.G compared to 
observer S.R. The differences between automated method and observer S.R 
were significant for calcium volume and proportion and lipid proportion. None 
of the differences between automated method and observer M.G. were 
significant. The differences between automated method and observer S.R were 
larger than the differences between automated method and observer M.G for 
more measurements: calcium volume, fibrous volume, calcium proportion and 
lipid proportion. In a previous interobserver study of plaque and plaque 
components assessment with CTA, in which three observers manually 
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annotated 46 CTA datasets [14], the differences of plaque volume and all 
plaque components were significant between at least one pair of observers [14]. 
Pearson’s correlation coefficients between automated and manual 
measurements of both observers for PV and plaque contributions were mostly 
similar as shown in Fig. 4.2.  

In a second evaluation, we showed that associations between cardiovascular 
risk factors and automated plaque measurements were mostly similar to the 
associations found with manual plaque measurements. Seven associations were 
significant for both the automated and manual plaque measurements; one was 
significant for the automated method and almost significant for manual method 
and three were significant for only one of the methods. The associations that 
were found to be significant for both manual and automated measurements 
have also similar correlation coefficient values.  

To our knowledge, this is the first study that compares cardiovascular risk 
factors associations with manually and automatically assessed plaque volume 
and plaque components. When comparing our results with results of a previous 
study in which the association between cardiovascular risk factors and 
manually assessed plaque volume and plaque components was evaluated in 57 
symptomatic carotid arteries [31], we found more associations. This can 
possible be explained by the larger number of datasets that is used in our study. 
In the previous study age and smoking were related to plaque volume, which is 
confirmed in our current study. In the previous study, patients with 
hypercholesterolemia had significantly less lipid and more calcium; these 
associations were not confirmed. A reason for this could be that automated 
results are the least similar to manual ones in case of lipids contribution 
(Rp=0.55). Calcium proportion is shown to be underestimated by the automated 
method..  

In previous studies from our institute on CT based plaque assessment [11], [29] 
and [14], different datasets were used than in this paper. The 57 datasets used 
to relate manually derived plaque measurements to cardiovascular risk factors 
in [31] are a subset of the 90 datasets used in this paper. Compared to this 
work, we thus both extended the dataset, and we investigated the influence of 
automated plaque assessment, in order to try to replace laborious manual 
plaque segmentation.  

Manual quantification takes on average around 30 minutes per carotid artery. 
This time period depends on the lesion length. The automated method takes on 
average around 6 minutes on a single CPU 2GHZ, RAM 24 GB computers. 
Manual plaque segmentation is not applicable in clinical setting, because it is 
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too time-consuming. Automated plaque assessment already is considerably 
faster and improved implementation and hardware could reduce processing 
time such that it would become acceptable in clinical workflow. Also, this 
automated tool can be used in larger datasets for the investigation of 
associations between plaque volume / composition and risk factors or recurrent 
ischemic events and for longitudinal studies on plaque imaging.  

4.5 Study Limitations 

A limitation of our study is that we do not have a definite gold standard. The 
scarcity of histological carotid plaque specimens hampers the validation of 
automated plaque volume and composition assessment on a sizeable dataset. 
We therefore compared results from automated plaque segmentation with those 
from manual plaque segmentation-a method previously validated against 
histology-thus indirectly evaluating the performance of our automated method.  

A second limitation of our study is that we used CT data from a single vendor, 
collected at a single site.  Our automated method might perform less on data 
from different CT-scanners, different sites or using different image protocols. 
However, the underlying method is generic and if required can be tuned to 
different systems by using new training on data. A third limitation concerns the 
plaque segmentation method that uses distinctive ranges of Hounsfield Unit 
(HU) values [11]. There is some overlap between the HU of lipid and fibrous 
tissue and no distinction can made between lipid and intraplaque heamorrhage, 
which is thought to be an important feature in plaque vulnerability assessment 
as well [9]. 

As a final limitation, the comparison of cardiovascular risk factors associations 
with manually and automatically segmented plaque components does only 
indicate that the automated method can be used to find similar associations in a 
group study. It does not provide information on the method applicability on a 
single subject.  

4.6 Conclusion 

We presented an approach to automatically segment outer vessel wall and 
plaque of carotid artery in CTA and to automatically assess plaque volume and 
plaque components. The results were validated with respect to manual tracings 
and interobserver variability. Furthermore, the associations between 
cardiovascular risk factors and plaque volume and plaque component 
contributions assessed by our automated method and a manual method were 
compared. We have shown that the difference between our automated method 
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and the observers is in the range of the variability of the observers, and hence 
can be applied for automated analysis in large studies.  
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5 Region Based Level Set Segmentation of the 
Outer Wall of the Carotid Bifurcation in CTA 

This chapter is based on: 

D. Vukadinović, T. van Walsum, S. Rozie, T.T. de Weert, R. Manniesing, A. 
van der Lugt and W. J. Niessen. Carotid Artery Segmentation and Plaque 
Quantification in CTA, IEEE International Symposium on Biomedical 
Imaging, 2009 

Abstract 

This paper presents a level set based method for segmenting the outer vessel 
wall and plaque components of the carotid artery in CTA. The method employs 
a GentleBoost classification framework that classifies pixels as calcified region 
or not, and inside or outside the vessel wall. The combined result of both 
classifications is used to construct a speed function for level set based 
segmentation of the outer vessel wall; the segmented lumen is used to initialize 
the level set. The method has been optimized on 20 datasets and evaluated on 
80 datasets for which manually annotated data was available as reference. The 
average Dice similarity of the outer vessel wall segmentation was 92%, which 
compares favorably to previous methods. 

5.1 Introduction 

Cardiovascular diseases are a main cause for morbidity and mortality 
worldwide [1]. One of the main causes of cardiovascular diseases is 
atherosclerosis, which can be effectively imaged with CT Angiography (CTA) 
[2]. The severity of stenosis caused by atherosclerosis in the carotid bifurcation 
is an important risk factor for stroke [3]; however, luminal stenosis as a 
parameter of carotid artery disease does not necessarily reflect the amount of 
atherosclerosis [4]. Quantification of plaque features may therefore provide a 
better diagnosis and prediction of cardiovascular events. This quantification 
requires segmentation of the lumen and outer vessel wall. 

Many authors addressed the problem of outer wall segmentation and plaque 
quantification on both MRI and CT data. Olabarriaga et al. [5] proposed a 
deformable model based segmentation of the lumen and thrombus in 
abdominal aortic aneurysms in CTA data. For the wall segmentation a gray 
level modeling approach with a KNN classifier using intensity profiles sampled 
along the surface normal was used. The active shape model (ASM) based 
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method by De Bruijne et al. [6,7] also addressed aortic aneurysm segmentation. 
This method requires a manual delineation of the aneurysm in the first slice 
after which the contour propagates to the adjacent slices based on grey value 
similarity. A slice-by-slicecontrol by the user is required. De Bruijne et al. [8] 
also proposed a 3D ASM which included a grey level appearance model which 
was based on non-parametric pattern classification. The user has to draw the 
top and bottom contours, and indicate the approximate aneurysm centre. 
Reported results are accurate, but the amount of interaction for initialization is 
still significant. 

A snake based method for defining the vessel lumen and wall boundaries in 
MR images of the carotid artery was proposed by Yuan et al. [9]. Adams et al. 
[10] proposed a similar method, deforming two initial contours in MR carotid 
artery images. Both methods require a high level of manual interaction. Adame 
et al. [11] proposed a gradient based ellipse fitting method combined with 
fuzzy clustering to outline the carotid artery outer vessel wall on MR images. 
The method requires manual interaction, namely a center point in the lumen, a 
seed point inside the lipid core and a circle that surrounds the vessel. 

Liu et al. [12] proposed a method for carotid plaque segmentation in MRI using 
probability maps utilizing morphology information.  

In this paper a novel method for carotid artery outer vessel wall segmentation 
in CTA is presented, which is an extension of work we previously presented 
[13, 14]. The main contribution of our work is that we combine voxel 
classification with a 3D level set segmentation for the carotid artery outer 
vessel wall rather than 2D ellipsoid fitting, which allows application of the 
method for segmenting the whole carotid bifurcation. Additionally, we evaluate 
the method proposed on a large number of CTA datasets. 

A similar method has been reported for segmenting abdominal aortic 
aneurysms, where a support vector machine classifier is used to control a level 
set based segmentation. [15]. 

The remainder of this paper is organized as follows: In Section 5.2 the 
methodology is presented. In Section 5.3 the experimental set up is described 
followed by a discussion and conclusion in Section 5.4.  
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5.2 Methodology 

5.2.1 Overview 

The method consists of four steps. First, the vessel lumen is segmented using a 
level set approach initialized with three seed points indicated by the user in the 
CCA, ICA and external carotid artery (ECA); for detailed information on the 
lumen segmentation we refer to the work by Manniesing et al. [16]. 
Subsequently, using a set of image features, calcium objects which are part of 
the vessel wall, are detected using a GentleBoost classifier [13]. In the third 
step voxels are classified as within or outside the vessel, using the same 
classification method [13]. Then segmentation is performed by fitting a model 
to the classification image. In this work, a 3D region based level set method is 
applied which segments the outer boundary using the calcium and inner-outer 
vessel region classifications results to create a speed function. The 
classification process and the level set method are described in more detail 
below.  

5.2.2 Calcium and Vessel classification 

Calcified regions are important markers for determining the outer vessel wall 
location. As described in [13], the region of interest around lumen is 
thresholded with high threshold, Th = 320HU. In this way candidate objects are 
extracted which are further classified as true or false calcified regions. 

 

Figure 5.1 An example of a classification result, showing the confidence 
image with darker regions more likely belonging to the inside of the outer 
vessel wall. The black mask highlights negative values in the image. The 
light contour represents the ground truth for the outer vessel wall as drawn 
by an experienced clinician. 
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Classification is done based on a set of features, i.e. spatial, size, intensity and 
shape features [13].  

For vessel classification, each pixel in the region of interest around lumen is 
described with a set of contextual image features extracted from radial profiles 
positioned radially from the lumen center.  These features are used to classify 
each pixel as being inside or outside vessel wall [13].  

As described in [13], calcium and inner-outer vessel region classification are 
combined by connecting lumen and calcified region since we are certain that 
this region is inside the vessel. In this way confidence image is created with 
negative values inside and positive values outside ranging from -1 to 1(Fig 
5.1).   

5.2.3 Region Based Level Set Outer Vessel Wall Segmentation 

Atherosclerotic plaque is usually present around the bifurcation. That is why it 
is essential that plaque is segmented in the region including bifurcation. Level 
sets are suitable for representing complex geometries. We therefore apply a 
region based level set [17] to segment the carotid artery outer vessel wall, using 
the the classification results.  

The resulting image of the combined calcium and inner-outer vessel region 
classification represents the confidence that a pixel belongs to the vessel region 
(Fig 5.1): the confidence image values are negative inside and positive outside 
with values ranging between -1 and 1. In case of a perfect classification, the 
vessel wall should pass through the zero values of the confidence image. 
However, simply thresholding the classification image will result in 
disconnected regions, and does not account for potential classification errors. 
Therefore, we use a region based level set segmentation to obtain one 
connected region with smooth boundaries. In the original paper of Chan and 
Vese on region based level set segmentations [17], the energy function that is 
minimized is defined as follows: 

,ଵܿ)ܨ  ܿଶ, (ܥ = ߤ ∙ (ܥ)ℎݐ݃݊݁ܮ ଵߣ+ + න ,ݔ)ܫ| (ݕ − ܿଵ|ଶ݀ݕ݀ݔ௜௡௦௜ௗ௘(஼) + 
ଵߣ+ න ,ݔ)ܫ| (ݕ − ܿଵ|ଶ݀ݕ݀ݔ௢௨௧௦௜ௗ௘(஼) , (1) 

where:  
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ܥ  = ,ݔ)} (ݕ ∈ Ω: ,ݔ)߶ (ݕ = (ܥ)݁݀݅ݏ݊݅ {0 = ,ݔ)} (ݕ ∈ Ω: ,ݔ)߶ (ݕ > (ܥ)݁݀݅ݏݐݑ݋ {0 = ,ݔ)} (ݕ ∈ Ω: ,ݔ)߶ (ݕ < 0},  

ߗ ⊂ ℝௗ is the image domain and I: ߗ > ܴ and μ ≥ 0, λ1, λ2 ≥ 0 are parameters, 
I is a given image, c1 is the average intensity value of i inside C and c2 the 
average value of I outside C.  

In our case, we want to penalize positive values inside and negative values 
outside the zero level set. In order to achieve this, we choose constants c1 and 
c2 to be equally distant from zero with c1 negative and c2 positive. We choose 
c1=-0.5 and c2=0.5 considering the values of I image. 

The speed function for the level set evolution is calculated by minimizing (1) 
with the Euler-Lagrange equation while taking into account the sign of image I 
values inside and outside zero level set. The level set evolution equation for the 
confidence image becomes: 

ݐ߲߶߲  = (߶)ߜ ൤ݒ݅݀ ߤ ൬ ൰|߶ߘ|߶ߘ + ܫ)ଵߣ + 0.5)ଶ − ܫ)ଶߣ − 0.5)ଶ൨  
݅݊ (0, ∞) ×  (2) ,ߗ

where  is a level set function.  

The above equation (2) is the implicit active contour model implemented in 
this paper. The lumen segmentation dilated with a “shape” structuring element 
of “size” pixels is used to initialize the level set.   

5.2.4 Plaque Segmentation 

Using the carotid artery vessel wall and lumen segmented, different HU ranges 
were selected to define different plaque components. The cut-off point for the 
distinction between calcifications and fibrous tissue was set at 130 HU, the 
value currently used for calcium scoring. The cut-off point for the distinction 
between fibrous tissue and lipid was set at 60 HU as determined in previous 
studies [18]. We adjusted the cut-off point for the distinction between 
atherosclerotic plaque and vessel lumen for each patient on the basis of the full-
width-half-maximum principle (mean lumen attenuation plus mean fibrous 
tissue attenuation (in our case the average was 88 HU) divided by two). The 
pixels surrounding the vessel lumen, with a density between 130 HU and the 
adjusted cut-off value, were considered to be fibrous tissue. We implemented 



84 

 

the carotid artery outer vessel wall segmentation using the ITK (Insight Tool 
Kit) implementation [19].  

5.3 Experiments and Results 

5.3.1 Data Selection 

From a database containing CTA datasets with manually segmented carotid 
arteries, we randomly selected 20 datasets that had the common, internal and 
external carotid artery annotated. The CTA data were acquired on a MDCT 
scanner (Siemens, Sensation 16, Erlangen, Germany), with a slice thickness of 
1.0 mm and a pixel size of 0.23 mm.  

5.3.2 Parameter Selection  and Evaluation 

The level set integration time step was set to 0.01. The remaining parameters of 
the method were curvature weight μ and the weights for inside and outside zero 
level set terms, λ1, and λ2. Pilot experiments showed that λ2 should be equal or 
larger than λ1, i.e. the negative values outside zero level set should be penalized 
more than positive values inside the zero level set. This was caused by the 
frequent occurrence of misclassified pixels inside the contour in the 

 

Figure. 5.2 Similarity indices between manual and automated 
segmentations of 20 CTAs of carotid arteries with μ=1 and λ1 and λ2 
ranging from 1 to 6.2 with 0.4 steps keeping λ1>λ2. 
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neighborhood of calcified regions (Fig 5.1). Note that this problem can not be 
addressed by increasing the curvature weight, as that would also result in 
misclassifying calcified regions. Additionally, from the pilot experiments it 
was concluded that the curvature term, μ, should be smaller than λ1 and λ2.  

The final levelset result is determined by the ratios between the three 
parameters, the magnitude of the parameters (while maintaining the ratios) only 
changes the convergence speed. We optimized level set parameters on 20 
CTAs of carotid arteries by fixing μ to 1.0 and varied λ1 and λ2 from 1.0 to 6.2 
in steps of 0.4. Similarity indices are shown in Fig. 5.2.  

Maximum Dice similarity index of 91.7% was reached for λ1 = 1.8 and λ2 = 4.2 
and standard deviation was 2%. 

The average Dice similarity index over additional 80 datasets using optimized 
set of parameters was 91.61%, and a standard deviation was 3%. Example 
segmentations are shown in Fig 5.3. 

Plaque segmentation on 80 datasets reached an average similarity index of 
80.43% with standard deviation of 6%. An example of plaque components 
segmented on one cross-sectional slice with the automated method and 
manually is shown in Fig. 5.4.  

Figure 5.5 shows areas of total plaque and different plaque components 
according to the manual observer and those derived from our automated 
method. The correlation coefficient between method and manual segmentation 
is low (R2 = 0.46) in the case of lipid volume. This is probably die to the fact 
that lipid tissue is usually located at the boundary of the vessel wall and has 
small size. Therefore differences in outer vessel wall segmentation primarily 

 

Figure5.3. Three crossectional slices around carotid artery bifurcation. 
Black mask is segmentation by our method, contour is the ground truth 
drawn by a clinician.  

 



86 

 

lead to differences in the fibrous tissue and lipid class. Indeed, inter observer 
error is also especially high for the lipid area [14]. 

Correlation coefficients between manual and automated plaque and plaque 
components volumes are similar for the proposed method to the ones we 
previously achieved with 2D ellipse fitting on 5 datasets [14]. However, 
similarity between automated and manual measurement of total plaque area is 
much higher for the new method (73% compared to 81%). 

The automated level set segmentation of the outer vessel wall was accurate, 
with slightly higher average similarity index compared to method where ellipse 
fitting was used (92% versus 91%) [14]. 

5.4  Conclusion 

We presented a method to segment the outer vessel wall of the carotid 
bifurcation in CTA. In contrast to previous work, where we used a slice-based 
fixed ellipse-shaped model for the common carotid artery, we now use a 
levelset based segmentation, which allows segmentation of the complete 
bifurcation. The experiments show that the levelset based approach achieves an 
average Dice similarity for the vessel of 92%. The method thus has large 
potential for the automated quantification of carotid artery plaque components. 

 

Fig. 5.4 Different plaque components on one crossectional slice segmented 
by the automated method (left) and manually (right). lumen, fibrous,  
lipids, calcium. 
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6 Summary and Conclusion 
This thesis reports on the development and evaluation of automated methods 
for carotid lumen and carotid atherosclerotic plaque segmentation and 
quantification in CTA data. These methods were evaluated in various ways: 
with respect to stenosis degree, plaque volumes correlation with cardiovascular 
risk factors, similarity indices of lumen and vessel segmentation volumes, 
correlation coefficients and Bland – Altman plots of plaque components and 
lumen volumes. Manual measurements by clinical experts served as reference 
standard in these evaluations. 

In Chapter 2 we described an automated carotid lumen segmentation method 
which was optimized for accurate stenosis quantification. The method uses 
three user – defined points (in the common, internal and external carotid artery) 
to extract centerlines that are used to initialize a level set method to segment 
the carotid artery lumen. The level set is steered by intensity statistics obtained 
from the intensities around the initial centerlines and the image intensity 
gradient. In order to determine the stenosis degree a new centerline is obtained 
from the segmentation and the lumen cross sections orthogonal to the 
centerline are extracted from the smoothed lumen segmentation surface. The 
stenosis area and diameter degree results were compared with manual 
measurements on 41 datasets from a standardized stenosis grading evaluation 
framework for CTA images of the carotid bifurcation. The mean stenosis 
quantification error was 19.3 % and 18.2 % for area stenosis and diameter 
stenosis respectively, and our method ranked second among four algorithms 
that have participated in the CLS2009 carotid challenge. The results show that 
automated stenosis grading is becoming feasible. The lumen segmentation 
similarity index of our method compared to the ground truth was 83%, while 
the average interobserver variability between three observers was 92%.  

In Chapter 3 a method for automated outer vessel wall segmentation of the 
carotid artery was presented. The method uses a lumen segmentation approach 
similar to the method presented in Chapter 2. Given the lumen segmentation, 
calcified regions located inside the carotid artery were segmented using a 
GentleBoost framework that utilizes a number of spatial, shape, intensity and 
Gaussian image derivative features. Calcified region segmentation was used as 
a preprocessing step to outer vessel wall segmentation, to ensure that 
calcifications are included in the vessel wall. Next, a GentleBoost voxel based 
classifier was trained using spatial, intensity and Gaussian image derivative 
features to classify each voxel as being inside or outside the carotid artery. 
Finally, a 2D ellipse shape deformable model was fitted to a cost image derived 
from both the calcium and vessel wall classifications. The method was 
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evaluated by comparison with manually delineated outer vessel wall on 60 
datasets. The average similarity index between vessels segmented by our 
method and the vessels segmented by experienced observers on 40 datasets was 
91.3%. Additionally, the results were compared with interobserver variability 
on 20 datasets. Two experienced observers manually delineated the carotid 
artery outer vessel wall. The similarity indices between our method and the 
observer’s segmentation were 90.5% and 89.8%, while the similarity index 
between two observers were 92.1%. The results showed that the difference 
between the method and the manual observers is comparable to the difference 
between two observers.  

In Chapter 4 an automated atherosclerotic plaque measurement approach for 
carotid arteries using the method described in Chapter 3 was validated by 
comparing associations of cardiovascular risk factors with plaque volume and 
plaque composition. Using the carotid artery vessel wall and lumen 
segmentation, different Hounsfield unit ranges were used to define 
calcifications, fibrous tissue and lipids within the plaque. These Hounsfield 
ranges were previously validated using histology. On 40 datasets the automated 
method was evaluated by comparing plaque volume, plaque component 
volumes and plaque component percentages measured with the automated 
method with the measurements of two experienced observers. The differences 
in measurements between the automated method and the observers were 
comparable to interobserver variability. On an additional 60 datasets, the 
automated plaque and plaque components measurements were associated with 
cardiovascular risk factors: age, gender, hypercholesterolemia, hypertension, 
diabetes mellitus, smoking, previous cardiac disease and previous 
cerebrovascular disease. We showed that associations between cardiovascular 
risk factors and automated plaque measurements were mostly similar to the 
associations found with manual plaque measurements. Seven associations were 
significant for both the automated and manual plaque measurements; one was 
significant for the automated method and almost significant for manual method 
and three were significant for only one of the methods. The associations that 
were found to be significant for both manual and automated measurements also 
had similar correlation coefficient values.  This study demonstrated that our 
automated measurements can potentially be used to replace manual 
measurements in large imaging studies which aim to associate plaque 
characteristics with cardiovascular risk factors.  

In Chapter 5 a novel level set based method was used in order to segment the 
carotid outer vessel wall in CT. The method uses a GentleBoost classification 
framework that classifies pixels as calcified region or not, and inside or outside 
the vessel wall as in Chapter 2. The combined result of both classifications is 
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used to construct a speed function for level set based segmentation of the outer 
vessel wall; the segmented lumen is used to initialize the level set. The level set 
method was a modified version of Chan and Vese region based level set 
approach [2]. The method was evaluated on 80 datasets for which manually 
annotated data was available as a reference. The average Dice similarity index 
of the outer vessel wall segmentation was 92%, which compared favorably to 
previous methods. Plaque segmentation on 80 datasets reached an average 
similarity index of 80% which is substantially better than the result (73%) we 
obtained with the method described in Chapter 3 and 4, albeit on a different 
dataset.  

In summary, this thesis describes methods that were developed and evaluated 
for automated assessment of atherosclerotic disease in the carotid arteries. The 
image processing methods utilize deformable models and machine learning 
algorithms and are trained using a dataset of annotated images. Several 
features, related to image intensity, spatial location, and object shape are used 
to automatically delineate vessel wall and lumen boundary of the carotid artery 
in MDCT data.  Thereby, a number of parameters important for atherosclerotic 
disease quantification can be obtained: stenosis degree, plaque thickness, 
plaque volume and plaque composition. The automated outer vessel wall 
algorithms were evaluated on large datasets. The results showed that the errors 
of our methods were within the interobserver variability. Comparison of 
association of manual and automated measurments with cardiovascular risk 
factors showed that our methods can be used for automated analysis in large 
studies. To the best of our knowledge, these studies are the first to evaluate the 
segmentation of the outer vessel wall of the carotid artery in CTA. The 
automated outer vessel wall and plaque segmentation tool based on the 
methods presented in Chapter 3 and Chapter 4 was used in a clinical study that 
quantified temporal changes in carotid atherosclerotic plaque volume and 
composition using MDCT data [3]. This study indicates that the automated 
measurement of plaque volumes improves reproducibility. When we compare 
our results, obtained with a semi-automated plaque segmentation method, with 
the inter-observer reproducibility found in a previous study in which plaque 
segmentation was performed manually, inter-observer reproducibility 
improved; coefficient of variation for plaque volume was 15% compared to 23-
34% found with the manual segmentation method [3]. De Weert et al. 
demonstrated that their moderate inter-observer reproducibility was partly due 
to the difficulty of defining the exact plaque range; consensus about the 
segmentation range improved the reproducibility [4].  Therefore, defining a 
fixed range around the bifurcation may further improve inter-observer and 
intra-observer reproducibility of the automated plaque measurements presented 
in this thesis. The automated stenosis grading method presented in this thesis 
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achieved reasonable similarity with the manual stenosis measurements. The 
method was evaluated by participating in a challenge [1] using data from three 
different vendors. Validation within the context of a challenge ensures that the 
results of our method can objectively be compared to other algorithms. 
Furthermore, the availability of datasets of multiple vendors in the challenge, 
ensures that there is no bias of the result to a specific imaging protocol. In 
comparison with other participants the method scored second out of four 
participants.  

The evaluation studies on plaque volume and plaque composition have some 
limitations. One of the limitations is that we do not have a definite gold 
standard for plaque volume and plaque components. Only in a limited number 
of cases, histological specimens are available. We therefore compared results 
from automated plaque segmentation with those from manual plaque 
segmentation - a method previously validated against histology – thus 
indirectly evaluating the performance of our automated method. Another 
limitation is that the validation of our outer vessel wall and plaque 
segmentation methods were validated on CTA data from a single vendor at a 
single site. The methods may perform worse using data from different vendors 
or different sites. On the other hand, our methods performed very robustly 
when tested on large datasets. These are very promising results with respect to 
the possible application in clinical practice. It has to be stressed however, that 
the comparison of cardiovascular risk factors associations obtained with 
manually and automatically segmented plaque and its components does not 
provide information on the method applicability on a single subject. We can 
only conclude that the method can be used used to find similar associations in a 
group study.  

In order to segment the carotid outer vessel wall, we used a two step method, in 
which first voxels were classified, and then a geometric model was fitted to the 
classification results. Both ellipse fitting (Chapter 3) and level set evolution 
(Chapter 5) have been used on the result of the voxel based inner – outer vessel 
region classification.  Less shape restricted and 3-dimensional level set method 
performed substantionally better in plaque segmentation.  The automated 
levelset segmentation of the outer vessel wall had slightly higher average 
similarity index compared to method where ellipse fitting was used (92% 
versus 91%). However, similarity between automated and manual 
measurement of total plaque area is much higher for the level set method: 81% 
versus 73%.   

The voxel based classification features were calculated in axial slices. We 
expect the classification results to improve if the features would be extracted 
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from the slices orthogonal to the centerline of carotid lumen. Also, segmenting 
each plaque component separately instead of using different HU ranges within 
segmented outer vessel wall could be a more successful path towards 
determining plaque composition.  

In this thesis we concentrated on analyzing carotid artery CTA data. In contrast 
to CT, MRI is capable of visualizing multiple aspects of the plaque, including 
e.g. fibrous cap rupture and intraplaque hemorrhage. The latter plaque features 
are highly associated with plaque rupture and ischemic events [5-9]. 
Intraplaque hemorrhage has also been associated with an accelerated plaque 
growth [8]. Using intensity information from different MRI sequences would 
probably improve the accuracy of the classifier presented in Chapter 3. 
Similarly, the application of dual-energy CT may provide more accurate 
measurements of soft-tissue components of the plaque, since it allows the 
removal of calcifications [10]. As the presented methods in this thesis are 
generic, we expect that the presented approach can also be successfully be 
applied to these imaging modalities, and other vessel anatomies. 
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Samenvatting 

Dit proefschrift rapporteert over de ontwikkeling en evaluatie van 
geautomatiseerde methoden voor de segmentatie en kwantificatie van het 
lumen en atherosclerotische plaque compositie in de halsslagader op basis van 
CT angiografie beelden (CTA). Deze methoden werden geëvalueerd op 
verschillende manieren: we hebben de segmentatie van het lumen en mate van 
vernauwing vergeleken met een referentie-standaard, en daarnaast gekeken 
naar de correlatie van plaque volume en compositie met cardiovasculaire 
risicofactoren. Handmatige metingen door klinische experts werden gebruikt 
als de referentie-standaard in deze evaluaties.  

In hoofdstuk 2 beschreven we een geautomatiseerde  segmentatie methode 
voor het bepalen van het lumen van de halsslagader. De methode is 
geoptimaliseerd voor een nauwkeurige kwantificatie van vernauwingen in het 
lumen. De methode start met het aangeven van drie initialisatie punten door de 
gebruiker (in de gemeenschappelijke, interne en externe halsslagader) om de 
middellijnen van de vaten te bepalen. Deze middellijnen worden vervolgens 
gebruikt om een level set methode te initialiseren om het lumen van de 
halsslagader te segmenteren. De level set wordt aangestuurd door 
intensiteitsstatistieken die verkregen zijn op basis van de intensiteiten rond de 
initiële middellijnen en de intensiteiten in het beeld. Om de mate van 
vernauwing te bepalen wordt er op basis van de segmentatie eerst een nieuwe 
middellijn bepaald en vervolgens wordt het lumen doorsneden loodrecht op 
deze nieuwe middellijn. Hierna werden de oppervlakte en diameter vergeleken 
met handmatige metingen op 41 datasets, die in het kader van de CLS2009, een 
grote evaluatie-studie voor het verwerken van CTA-beelden van de 
halsslagader, zijn verkregen. De gemiddelde fout in de kwantificatie van de 
vernauwing was 19,3% en 18,2% voor respectievelijk de oppervlakte 
vernauwing en diameter vernauwing, en onze methode eindigde op de tweede 
plaats tussen vier algoritmen die deelgenomen hebben aan de CLS2009 
evaluatie. De resultaten laten zien dat geautomatiseerde bepaling van lumen 
vernauwing binnen handbereik is. De mate van overlap van onze lumen 
segmentatie met de referentie-standaard was 83%, terwijl de gemiddelde 
variabiliteit tussen drie manuele metingen 92% was.  

In hoofdstuk 3 is een methode voor geautomatiseerde segmentatie van de 
vaatwand van de halsslagader gepresenteerd. De methode maakt gebruik van 
een lumen segmentatie aanpak die vergelijkbaar is met de methode beschreven 
in Hoofdstuk 2. Gegeven de lumen segmentatie, worden eerst verkalkte 
gebieden die zich in de halsslagader bevinden gedetecteerd en gesegmenteerd 
via de GentleBoost methode, die een aantal ruimtelijke, vorm, en intensiteit 
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kenmerken gebruikt om te bepalen of een gebiedje met hoge intensiteit een 
verkalkt gebied is of niet. De segmentatie van het verkalkte gebied word als 
voorbewerkingsstap gebruikt voor de vaatwand segmentatie, om ervoor te 
zorgen dat de verkalkte gebieden zich binnen de vaatwand bevinden. 
Vervolgens wordt een GentleBoost voxel gebaseerde classificator getraind om 
de vaatwand te extraheren. De classifator maakt daarbij gebruik van spatiële 
informatie,  intensiteit en  afgeleide kenmerken, om elke voxel te classificeren 
als binnen of buiten de halsslagader. Tot slot wordt een 2D ellipsoide model 
gebruikt om, aan de hand van de calcium- en vaatwand classificaties, te 
bepalen waar de vaatwand zich bevindt. De methode werd geëvalueerd door 
vergelijking met handmatig annotaties van de vaatwand op 60 datasets. De 
gemiddelde overlap van vaten gesegmenteerd op basis van onze methode en de 
vaten gesegmenteerd door ervaren waarnemers op 40 datasets was 91,3%. 
Daarnaast werden de resultaten vergeleken met de overlap tussen twee 
waarnemers op 20 datasets. Over deze 20 datasets was de overlap van de 
segmentatie van onze methode en die van beide waarnemers 90,5% en 89,8%, 
terwijl de overlap van de segmentaties van de twee waarnemers 92,1% 
bedroeg. De resultaten laten zien dat het verschil tussen onze methode en de 
handmatige waarnemers vergelijkbaar is met het verschil tussen twee 
waarnemers, en dat de methode dus gebruikt kan worden om de waarnemer te 
vervangen. 

In hoofdstuk 4 werd een geautomatiseerde methode, die atherosclerotische 
plaque in de halsslagaders kan bepalen, gevalideerd. We valideren de methode 
door correlaties van cardiovasculaire risicofactoren met plaque volume en 
plaque samenstelling te bepalen. We hebben dit zowel voor de handmatige en 
automatische analyse van de plaque gedaan, en bepalen of de correlaties met de 
handmatige methode gereproduceerd kunnen worden met de automatische 
methode. We maakten gebruik van de eerder beschreven methoden om het 
lumen en de vaatwand van de halsslagader te bepalen. Vervolgens werden 
verschillende Hounsfield Unit drempels gebruikt om gebieden met 
calcificaties, vezelig weefsel en lipiden te definiëren. Deze drempels zijn  
gevalideerd in eerder onderzoek met behulp van histologie. Eerst is een 
validatie toegepast op  40 datasets, om plaque volume en plaque compositie  
gemeten met de manuele en automatische methode te vergelijken . De 
verschillen in metingen tussen de geautomatiseerde methode en de waarnemers 
waren vergelijkbaar met variabiliteit tussen waarnemers. Op nog eens 60 
datasets werd het geautomatiseerd verkregen  plaque volume en de plaque 
compositie geassocieerd met cardiovasculaire risicofactoren: leeftijd, geslacht, 
hypercholesterolemie, hypertensie, diabetes mellitus, roken, eerdere hart-en 
vaatziekten en eerdere cerebrovasculaire ziekte. We toonden aan dat associaties 
tussen cardiovasculaire risicofactoren en geautomatiseerde plaque metingen 
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over het algemeen vergelijkbaar waren met de associaties gevonden met 
handmatige plaque metingen. Zeven associaties waren significant voor zowel 
de automatische en handmatige plaque metingen; één was significant voor de 
automatische methode en bijna significant voor handmatige methode en drie 
waren significant voor slechts een van de methoden. De associaties die 
significant bleken te zijn voor zowel handmatige als geautomatiseerde 
metingen hadden ook vergelijkbare correlatiecoëfficiënten. Deze studie toonde 
aan dat onze geautomatiseerde metingen mogelijk kunnen worden gebruikt om 
handmatige metingen te vervangen, wat een belangrijke ondersteuning zou 
betekenen voor    grote beeld studies die gericht zijn op het associëren van 
plaque kenmerken met cardiovasculaire risicofactoren. 

In hoofdstuk 5 is een nieuwe level set methode geïntroduceerd voor het 
segmenteren van de vaatwand van de halsslagader in CTA beelden. Ook deze 
methode maakt gebruik van een GentleBoost kwalificatie methode welke 
pixels classificeert als verkalkte regio of niet, en binnen of buiten de vaatwand 
zoals beschreven in hoofdstuk 2. Het gecombineerde resultaat van beide 
classificaties wordt gebruikt om een snelheidsfunctie te construeren voor level 
set gebaseerde segmentatie van de buitenste vaatwand; het gesegmenteerde 
lumen van de halsslagader wordt gebruikt om de level set te initialiseren. De 
genruikte level set methode is een aangepaste versie van Chan en Vese level set 
benadering. De methode werd geëvalueerd op 80 datasets, en handmatig 
geannoteerde data werden gebruikt als een referentie. De gemiddelde overlap 
van de vaatwand  segmentatie was 92%, wat beter was dan de overlap die 
gerapporteerd is in studies uitgevoerd met andere methoden. Plaque 
segmentatie bij 80 datasets bereikte een gemiddelde overlap index van 80%, 
wat aanzienlijk beter is dan het resultaat (73%) dat verkregen is met de 
werkwijze beschreven in hoofdstuk 3 en 4. Hierbij moet worden opgemerkt dat 
dit resultaat verkregen is met een andere dataset. 

Samenvattend zijn in dit proefschrift methoden voor de automatische 
beoordeling van atherosclerose in de halsslagaders ontwikkeld en geëvalueerd. 
De gebruikte beeldverwerkingsmethoden maken gebruik van vervormbare 
modellen en patroon herkenningstechnieken, die getraind zijn met behulp van 
een dataset van geannoteerde afbeeldingen. Met de ontwikkelde technieken kan 
relevante informatie over de atherosclerotische halsslagader automatische 
workden verkregen, zoals de mate van stenose, de plaque dikte, het plaque 
volume en de plaque samenstelling. Uit evaluaties van de algoritmes, zowel op 
nauwkeurigheid van het sementatie resultaat, als op het vermogen om 
correlaties met risicio-factoren die in eerdere studies zijn gevonden te 
repliceren, blijkt dat de methoden veel potentie hebben om manuele analyse 
van CTA data van de halsslagader te vervangen. Voor zover wij weten, zijn dit 
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de eerste studies die de segmentatie van de buitenste vaatwand van de 
halsslagader in de CTA hebben geëvalueerd.  
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