3,294 research outputs found

    Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    Get PDF
    Recently CMOS Active Pixels Sensors (APSs) have become a valuable alternative to amorphous Silicon and Selenium Flat Panel Imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ā‰¤ 1.9%. The uniformity of the image quality performance has been further investigated in a typical X-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practise. Finally, in order to compare the detection capability of this novel APS with the currently used technology (i.e. FPIs), theoretical evaluation of the Detection Quantum Efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this detector compared to FPIs. Optical characterization, X-ray contrast measurements and theoretical DQE evaluation suggest that a trade off can be found between the need of a large imaging area and the requirement of a uniform imaging performance, making the DynAMITe large area CMOS APS suitable for a range of bio-medical applications

    Applications of Computer Vision Technologies of Automated Crack Detection and Quantification for the Inspection of Civil Infrastructure Systems

    Get PDF
    Many components of existing civil infrastructure systems, such as road pavement, bridges, and buildings, are suffered from rapid aging, which require enormous nation\u27s resources from federal and state agencies to inspect and maintain them. Crack is one of important material and structural defects, which must be inspected not only for good maintenance of civil infrastructure with a high quality of safety and serviceability, but also for the opportunity to provide early warning against failure. Conventional human visual inspection is still considered as the primary inspection method. However, it is well established that human visual inspection is subjective and often inaccurate. In order to improve current manual visual inspection for crack detection and evaluation of civil infrastructure, this study explores the application of computer vision techniques as a non-destructive evaluation and testing (NDE&T) method for automated crack detection and quantification for different civil infrastructures. In this study, computer vision-based algorithms were developed and evaluated to deal with different situations of field inspection that inspectors could face with in crack detection and quantification. The depth, the distance between camera and object, is a necessary extrinsic parameter that has to be measured to quantify crack size since other parameters, such as focal length, resolution, and camera sensor size are intrinsic, which are usually known by camera manufacturers. Thus, computer vision techniques were evaluated with different crack inspection applications with constant and variable depths. For the fixed-depth applications, computer vision techniques were applied to two field studies, including 1) automated crack detection and quantification for road pavement using the Laser Road Imaging System (LRIS), and 2) automated crack detection on bridge cables surfaces, using a cable inspection robot. For the various-depth applications, two field studies were conducted, including 3) automated crack recognition and width measurement of concrete bridges\u27 cracks using a high-magnification telescopic lens, and 4) automated crack quantification and depth estimation using wearable glasses with stereovision cameras. From the realistic field applications of computer vision techniques, a novel self-adaptive image-processing algorithm was developed using a series of morphological transformations to connect fragmented crack pixels in digital images. The crack-defragmentation algorithm was evaluated with road pavement images. The results showed that the accuracy of automated crack detection, associated with artificial neural network classifier, was significantly improved by reducing both false positive and false negative. Using up to six crack features, including area, length, orientation, texture, intensity, and wheel-path location, crack detection accuracy was evaluated to find the optimal sets of crack features. Lab and field test results of different inspection applications show that proposed compute vision-based crack detection and quantification algorithms can detect and quantify cracks from different structures\u27 surface and depth. Some guidelines of applying computer vision techniques are also suggested for each crack inspection application

    Quantitative electroluminescence measurements of PV devices

    Get PDF
    Electroluminescence (EL) imaging is a fast and comparatively low-cost method for spatially resolved analysis of photovoltaic (PV) devices. A Silicon CCD or InGaAs camera is used to capture the near infrared radiation, emitted from a forward biased PV device. EL images can be used to identify defects, like cracks and shunts but also to map physical parameters, like series resistance. The lack of suitable image processing routines often prevents automated and setup-independent quantitative analysis. This thesis provides a tool-set, rather than a specific solution to address this problem. Comprehensive and novel procedures to calibrate imaging systems, to evaluate image quality, to normalize images and to extract features are presented. For image quality measurement the signal-to-noise ratio (SNR) is obtained from a set of EL images. Its spatial average depends on the size of the background area within the EL image. In this work the SNR will be calculated spatially resolved and as (background independent) averaged parameter using only one EL image and no additional information of the imaging system. This thesis presents additional methods to measure image sharpness spatially resolved and introduces a new parameter to describe resolvable object size. This allows equalising images of different resolutions and of different sharpness allowing artefact-free comparison. The flat field image scales the emitted EL signal to the detected image intensity. It is often measured through imaging a homogeneous light source such as a red LCD screen in close distance to the camera lens. This measurement however only partially removes vignetting the main contributor to the flat field. This work quantifies the vignetting correction quality and introduces more sophisticated vignetting measurement methods. Especially outdoor EL imaging often includes perspective distortion of the measured PV device. This thesis presents methods to automatically detect and correct for this distortion. This also includes intensity correction due to different irradiance angles. Single-time-effects and hot pixels are image artefacts that can impair the EL image quality. They can conceivably be confused with cell defects. Their detection and removal is described in this thesis. The methods presented enable direct pixel-by-pixel comparison for EL images of the same device taken at different measurement and exposure times, even if imaged by different contractors. EL statistics correlating cell intensity to crack length and PV performance parameters are extracted from EL and dark I-V curves. This allows for spatially resolved performance measurement without the need for laborious flash tests to measure the light I-V- curve. This work aims to convince the EL community of certain calibration- and imaging routines, which will allow setup independent, automatable, standardised and therefore comparable results. Recognizing the benefits of EL imaging for quality control and failure detection, this work paves the way towards cheaper and more reliable PV generation. The code used in this work is made available to public as library and interactive graphical application for scientific image processing

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing

    Feasibility Study of Infrared Detection of Defects in Green-State and Sintered PM Compacts

    Get PDF
    The electric Joule heating of solid materials through direct current excitation can be used to generate a temperature profile throughout a powdermetallic (P/M) compact. When recording the surface temperature distribution with an infrared (IR) camera important information regarding the integrity of the sample can be gained. This research will concentrate on the formulation of a mathematical model capable of predicting the temperature distribution and heat flow behavior in P/M parts and its relations to the supplied current, injection method, geometric shape as well as the thermo-physical properties. This theoretical model will subsequently be employed as a tool to aid in the actual measurements of infrared signatures over the sample surface and their correlation with the detection of surface and subsurface flaws. In this work we will develop the theoretical background of IR testing of green-state and sintered P/M compacts in terms of stating the governing equations and boundary conditions, followed by devising analytical and numerical solutions. Our main emphasis is placed on modeling various flaw sizes and orientations in an effort to determine flaw resolution limits as a function of minimally detectable temperature distributions. Preliminary measurements with controlled and industrial samples have shown that this IR testing methodology can successfully be employed to test both green-state and sintered P/M compacts

    Towards accessible content creation of real world objects for virtual environments

    Get PDF
    3D reconstruction is the general problem of creating 3D models from real world objects. In today\u27s movie and games industry,there is an increasing demand for using real world content as assets in production. In general, however, 3D reconstruction is achallenging problem, and current techniques only allow for production-ready results given a combination of expensive equipment andspecific expertise.This thesis is a collection of three papers that address various aspects of this general problem of 3D reconstruction,with the aim of lowering the bar for making usable real world content.In Paper I, we address the problem of storing and streaming time varying geometry for e.g.\ free-viewpoint video, whichotherwise has too high bandwidth requirements to be streamed efficiently. We use a memory-efficient structure based on compressedvoxels to store the data, in which we can send only incremental updates to the geometry in each frame.In Paper II, we implement an end-to-end real-time pipeline for free-viewpoint video communication.The pipeline uses a set of ordinary webcams as input and do all processing on a single desktop computer. Even with theselimitations, we show that we can produce free-viewpoint video with agreeable quality in real-time.Paper III addresses the problem of accessible and accurate modeling of static real-world objects.Given a set of calibrated input images, we have developed an interactive tool that makes 3D reconstruction with multi-view stereo moreaccessible. This interactive reconstruction has several advantages over automatic 3D scanning, since we obtain correct topology by designas well as information about visibility and foreground segmentation

    Towards Highly-Integrated Stereovideoscopy for \u3ci\u3ein vivo\u3c/i\u3e Surgical Robots

    Get PDF
    When compared to traditional surgery, laparoscopic procedures result in better patient outcomes: shorter recovery, reduced post-operative pain, and less trauma to incisioned tissue. Unfortunately, laparoscopic procedures require specialized training for surgeons, as these minimally-invasive procedures provide an operating environment that has limited dexterity and limited vision. Advanced surgical robotics platforms can make minimally-invasive techniques safer and easier for the surgeon to complete successfully. The most common type of surgical robotics platforms -- the laparoscopic robots -- accomplish this with multi-degree-of-freedom manipulators that are capable of a diversified set of movements when compared to traditional laparoscopic instruments. Also, these laparoscopic robots allow for advanced kinematic translation techniques that allow the surgeon to focus on the surgical site, while the robot calculates the best possible joint positions to complete any surgical motion. An important component of these systems is the endoscopic system used to transmit a live view of the surgical environment to the surgeon. Coupled with 3D high-definition endoscopic cameras, the entirety of the platform, in effect, eliminates the peculiarities associated with laparoscopic procedures, which allows less-skilled surgeons to complete minimally-invasive surgical procedures quickly and accurately. A much newer approach to performing minimally-invasive surgery is the idea of using in-vivo surgical robots -- small robots that are inserted directly into the patient through a single, small incision; once inside, an in-vivo robot can perform surgery at arbitrary positions, with a much wider range of motion. While laparoscopic robots can harness traditional endoscopic video solutions, these in-vivo robots require a fundamentally different video solution that is as flexible as possible and free of bulky cables or fiber optics. This requires a miniaturized videoscopy system that incorporates an image sensor with a transceiver; because of severe size constraints, this system should be deeply embedded into the robotics platform. Here, early results are presented from the integration of a miniature stereoscopic camera into an in-vivo surgical robotics platform. A 26mm X 24mm stereo camera was designed and manufactured. The proposed device features USB connectivity and 1280 X 720 resolution at 30 fps. Resolution testing indicates the device performs much better than similarly-priced analog cameras. Suitability of the platform for 3D computer vision tasks -- including stereo reconstruction -- is examined. The platform was also tested in a living porcine model at the University of Nebraska Medical Center. Results from this experiment suggest that while the platform performs well in controlled, static environments, further work is required to obtain usable results in true surgeries. Concluding, several ideas for improvement are presented, along with a discussion of core challenges associated with the platform. Adviser: Lance C. PĆ©rez [Document = 28 Mb

    Active and Passive Thermography for the Detection of Defects in Green-State Powdermetallic Compacts

    Get PDF
    Despite its maturity, the powder metallurgy (PM) fabrication process continues to rely heavily on indirect methods to determine and predict the quality of its compacts early in the manufacturing line. Currently, the most comprehensive testing is performed on sintered parts, resulting in higher cost and increased waste. This dissertation addresses the need of early inspection by developing a novel approach whereby PM compacts are tested in the green-state without intrusion and with minimal cost per compact tested. The method is based on an infrared detection scheme with two fundamental embodiments. For high resolution applications, or offline testing, an active thermography approach is adopted; electric energy is deposited into the compact in a contact-less fashion to evaluate all parts for cracks, inclusions, or delaminations. As an alternative, for lower resolution high-yield applications, a system based on a passive thermography approach is developed. This system relies on residual heating emanating from the process. Thermal data is then collected and analyzed in an effort to yield part integrity and process stability information. In this dissertation we will discuss our design approach, theoretical modeling aspects, and a proof-of-concept instrument with associated data processing software. We will first describe the underlying physical principles, followed by predictions from the modeling formulation, including a solution of the heat equation. As part of our experimental data processing, we will present results that are collected both in a laboratory setting and in an industrial manufacturing line. The integrity of the compacts is carried out with the aid of a specialized software package
    • ā€¦
    corecore