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ABSTRACT 
 

Electroluminescence (EL) imaging is a fast and comparatively low-cost 

method for spatially resolved analysis of photovoltaic (PV) devices. A 

Silicon CCD or InGaAs camera is used to capture the near infrared 

radiation, emitted from a forward biased PV device. EL images can be used 

to identify defects, like cracks and shunts but also to map physical 

parameters, like series resistance. 

The lack of suitable image processing routines often prevents automated 

and setup-independent quantitative analysis. This thesis provides a tool-

set, rather than a specific solution to address this problem. 

Comprehensive and novel procedures to calibrate imaging systems, to 

evaluate image quality, to normalize images and to extract features are 

presented. 

For image quality measurement the signal-to-noise ratio (SNR) is obtained 

from a set of EL images. Its spatial average depends on the size of the 

background area within the EL image. In this work the SNR will be 

calculated spatially resolved and as (background independent) averaged 

parameter using only one EL image and no additional information of the 

imaging system. 

This thesis presents additional methods to measure image sharpness 

spatially resolved and introduces a new parameter to describe resolvable 

object size. This allows equalising images of different resolutions and of 

different sharpness allowing artefact-free comparison. 

The flat field image scales the emitted EL signal to the detected image 

intensity. It is often measured through imaging a homogenous light 

source such as a red LCD screen in close distance to the camera lens. This 

measurement however only partially removes vignetting – the main 

contributor to the flat field. This work quantifies the vignetting correction 

quality and introduces more sophisticated vignetting measurement 

methods. 
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Especially outdoor EL imaging often includes perspective distortion of the 

measured PV device. This thesis presents methods to automatically detect 

and correct for this distortion. This also includes intensity correction due 

to different irradiance angles. 

Single-time-effects and hot pixels are image artefacts that can impair the 

EL image quality. They can conceivably be confused with cell defects. 

Their detection and removal is described in this thesis. 

The methods presented enable direct pixel-by-pixel comparison for EL 

images of the same device taken at different measurement and exposure 

times, even if imaged by different contractors. 

EL statistics correlating cell intensity to crack length and PV performance 

parameters are extracted from EL and dark I-V curves. This allows for 

spatially resolved performance measurement without the need for 

laborious flash tests to measure the light I-V- curve.  

This work aims to convince the EL community of certain calibration- and 

imaging routines, which will allow setup independent, automatable, 

standardised and therefore comparable results. 

Recognizing the benefits of EL imaging for quality control and failure 

detection, this work paves the way towards cheaper and more reliable PV 

generation. 

The code used in this work is made available to public as library and 

interactive graphical application for scientific image processing. 
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1 INTRODUCTION 

The Global Marked Outlook for Solar Power 2016-2020 predicts a word-

wide installed solar power of 700 GWp. Currently more than seven percent 

of the annual domestic consumption in Germany, Greece and Italy are 

covered with this clean and sustainable energy source [1]. The sheer 

number of installed photovoltaic panels demands a highly automated 

monitoring to measure produced electricity and to assess the device 

condition. PV module defects, such as cracks, can be introduced during 

module shipment or installation. If these defects have a minor influence 

on PV performance, defect diagnosis is difficult using traditional I-V curve 

measurements.  

Electroluminescence (EL) imaging enables to detect and localise these 

extrinsic defects. It is often used to judge presumed warranty cases and 

to control quality during production. Though capturing the near infrared 

emission from a forward or reverse biased PV device, it enables non-

destructive mapping of intrinsic and extrinsic features of PV devices 

within seconds. Only a camera and a power supply are needed. However, 

to date EL imaging focusses mostly on manual and qualitative analysis.  

Since Fuyuki et al. [2] introduced EL, more than a decade has passed since 

science and industry adopted EL imaging for PV measurement.  

EL is found suitable for qualitative analysis including identification of 

shunts, pre-breakdown sites, cracks, broken fingers and interconnectors. 

Regarding quantitative analysis, diffusion length, local voltage and series 

resistance mapping for solar cells [3–6] as well as modules [7, 8] have 

been presented. Even an extensive analysis of module performance can 

be found [9]. Nowadays, EL can be applied using contact-less experimental 

setups [10] and even under daylight [11]. 
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 Problem 

EL images are not really comparable across different laboratories. Device 

position and orientation, resolution, sharpness, intensity distribution and 

vignetting are just a few causes for diverting results. Figure 1.1 shows 

three unprocessed EL images of the same PV device, imaged by different 

camera systems and laboratories. Although the device roughly aligns, an 

evaluation of image differences would include manual adjustment of 

image brightness and contrast. Further, features have to be manually 

detected and compared. The supposedly low investment costs for an EL 

system conceal the problem that to date most analysis is performed 

manually and by the human eye. This causes delays and subjective 

results. 

 

 
Figure 1.1: Unprocessed example images from EL Round Robin (Section 
7.2) of the same device (ID ‘Mod6’) taken by three camera systems  
(A, C, G); Image intensity range same for all images  

 Thesis 

This thesis provides not a specific solution but rather a tool-set to 

standardize EL measurements, to normalize their output, to calculate 

difference images and to assess measurement uncertainty. Figure 1.2a 

displays images from Figure 1.1 after the proposed image correction 

routine. The routine aligns every device and the same position and 

therefore allows a direct pixel-by-pixel comparison (Figure 1.2b). The 

quality of the corrected images is mainly influenced by noise and 

sharpness of the raw images. It can be evaluated through spatially 

resolved uncertainty maps (Figure 1.2c).  
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Figure 1.2: a) Same EL images as in Figure 1.1 after the proposed image 
correction routine; b) relative difference image to camera ‘I’ (not 
shown); c) Image uncertainty from image noise (red) and sharpness 
(green) 

Difference images, calculated from corrected EL images, will be used to 

extract features, such as cracks and inactive areas (Figure 1.3).  

 

a)  b)  

Figure 1.3: a) Corrected EL image of a PV module (ID ‘M1’ from Section 
7.1); b) Extracted features of the same device (red: cracks, green: 
inactive areas)   

These feature maps will be used for statistical analysis and to quantify 

breakage. In Figure 1.4 cell averages of 40 individual EL measurements 

were analysed. Figure 1.4a shows a correlation between the length of 

introduced cracks and EL intensity decrease of the affected cell. Figure 

1.4b shows that this intensity decrease is around three times larger in EL 

images, captured at 10% short circuit current, relative to those at 100%. 
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a) b)  

Figure 1.4: Example statistical analysis of 10 EL measurements for 
every cell of four modules (ID ‘M1’-‘M4’ from Section 7.1);  
a) EL intensity decrease vs relative crack length;  
b) EL intensity decrease of EL image at 10% 𝑰𝑰𝒔𝒔𝒔𝒔 (short circuit current) vs 
100% 𝑰𝑰𝒔𝒔𝒔𝒔  

 Objectives 

After a brief background on the photovoltaic effect and the EL 

measurement method (Chapter 2), camera calibration routines to 

measure dark current, lens distortion and flat field are described 

(Chapter 3). Therein methods to estimate image quality and image 

sharpness are provided. 

An integral image correction procedure aims to remove the influence 

from camera and perspective (Chapter 4). The detection of micro-cracks 

and inactive areas from EL difference images is discussed in Chapter 5.  

The spatially resolved measurement uncertainty assigns every pixel of an 

EL image a standard deviation (Chapter 6). The introduced image 

correction routine is subsequently applied to two test cases (Chapter 7). 

Section 7.1 analyses EL images obtained the same measurement system 

of eight modules after different treatment steps. In a statistical analysis, 

a link between EL signal and device performance is established.  

Section 7.2 analyses EL images of ten modules and five one-cell mini 

modules from 14 different imaging systems. The imaging systems are 

rated regarding image quality and the visibility of features, relative to 

image resolution and sharpness. 
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2 BACKGROUND 

This chapter covers the physical principle of photovoltaic devices and EL. 

It describes extraction of PV performance parameters and compares EL 

measurement to other imaging-based measurements.       

 Photovoltaic Devices 

Most commercially available crystalline silicon PV modules consists of a 

single string of solar cells connected in series, typically 60 or 72 cells 

(Figure 2.1a). Commonly, three bypass diodes across cells 1-20, 30-40 and 

50-60 are connected to reduce the self-damage potential and the influence 

of partial shading or defective cells on the overall power generation. The 

cells used to manufacture one module are pre-sorted in the factory, into 

bins of similar current generation. Most solar cells consist of a back 

contact, an n or p-type silicon base, screen-printed fingers for current 

collection and busbars for cell-to-cell interconnection (Figure 2.1b).  To 

create the diodes (positive to negative) p-n junction, dopants such as 

phosphorus and boron and used. Boron used in the Silicon base causes a 

scarcity of free electrons. Boron-doped Si wafers are therefore labelled p-

type.   

 

 
a) 60-cell PV module with three 
bypass diodes [12] 

 
b) Crystalline solar cell 
 

Figure 2.1: Schematic of a PV device  
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2.1.1 THE PHOTOVOLTAIC EFFECT 

If the energy of a photon absorbed the PV device is larger than the band 

gap energy of the devices semiconductor, electrons in the valence band 

can break free and excite into the conduction (valence) band (Figure 2.2). 

An electron-hole pair is generated. For silicon the average time between 

electron-hole-generation and recombination is typically 1 µs. An 

externally applied voltage supports carrier separation. Current can be 

extracted from the device, if the carriers are ‘collected’ by the fingers 

before recombination. [13] 

 

 

Figure 2.2: Electron-hole pair generation from light absorption; red 
circles: electrons; white circles: holes 

2.1.2 THE SINGLE-DIODE-MODEL 

In this thesis, cells are electrically modelled using the single-diode model 

(Figure 2.3).  

  

 
Figure 2.3: Equivalent circuit diagram of a solar cell according to the 
‘single-diode model’ 
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This model depends on five parameters, namely photo-generated current 

(𝐼𝐼𝐿𝐿), reverse saturation current (𝐼𝐼0), series resistance (𝑅𝑅𝑠𝑠), shunt resistance 

(𝑅𝑅𝑆𝑆ℎ) and modified ideality factor (𝑎𝑎). The current-voltage relationship is 

defined as:  

 

I(V) = I𝐿𝐿 − 𝐼𝐼𝐷𝐷 − 𝐼𝐼𝑆𝑆ℎ;      

 
(2.1) 

𝐼𝐼𝐷𝐷 = 𝐼𝐼0 �𝑒𝑒
𝑉𝑉+𝐼𝐼𝑅𝑅𝑆𝑆
𝑎𝑎 − 1� ;     𝐼𝐼𝑆𝑆ℎ =

𝑉𝑉 + 𝐼𝐼𝑅𝑅𝑆𝑆
𝑅𝑅𝑆𝑆ℎ

;     𝑎𝑎 =
𝑁𝑁𝑆𝑆𝑛𝑛𝐼𝐼𝑘𝑘𝑏𝑏𝑥𝑥𝑐𝑐

𝑞𝑞
 (2.2) 

 

 

Where:    

𝑁𝑁𝑆𝑆   Number of cells in series 

𝐼𝐼𝐷𝐷  Current lost due to recombination 

𝐼𝐼𝑆𝑆ℎ  Current lost due to shunt resistances 

𝑛𝑛𝐼𝐼   Ideality factor 

𝑥𝑥𝑐𝑐   Cell temperature  

𝑘𝑘𝑏𝑏   Boltzmann constant  

𝑞𝑞   Electrical charge on an electron 

 

The five model parameters in Equation 2.2 are found numerically 

following the fitting routine described in [14]. 

 Dark I-V Measurement (DIV) 

In principle, a solar cell in the dark behaves as a large flat diode. Its diode 

properties can be measured by injecting carriers in forward bias. For this, 

a power supply is connected to the device. It causes current flow from 

positive to negative contact. For DIV measurements, voltage is increased 

gradually from zero to an upper limit (such as the DUT’s open-circuit 

voltage when illuminated) [15]. Both current and voltage are measured 

simultaneously either with two- or with four-wire measurement to 

eliminate lead resistance [16]. 
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 Light I-V Measurement (LIV) 

Under illumination, current is generated in a solar cell. This shifts the 

DUT’s I-V curve into the fourth quadrant of the I-V coordinate system 

(Figure 2.4a). Power can be extracted from the device under these 

conditions. Commonly the light I-V (LIV) curve is displayed in its inverted 

form (Figure 2.4b). LIV measurements enable not just extraction of the 

DUT’s diode properties but also measurement of PV performance 

characteristics (Table 2.1).  

 

a) b)  
Figure 2.4: a) Shift of dark I-V curve due to photo-generated current;        
b) representation of light I-V curve and position of common 
performance parameters 
 

The position of open-circuit voltage (𝑉𝑉𝑐𝑐𝑐𝑐), short-circuit current (𝐼𝐼𝑠𝑠𝑐𝑐) and 

voltage and current at maximum power point (𝑚𝑚𝑈𝑈𝑈𝑈) is shown in Figure 

2.4b. A common method for measuring the LIV curve includes a pulsed 

light source (flasher), which aims to reproduce the suns spectrum at 

AM1.5 with a homogenous illumination across the measurement area. The 

effective irradiance is usually 1000 
𝑊𝑊
𝑚𝑚²

 and the pulse length in the range 

of 2-10 ms [17]. During illumination, the DUT’s I-V characteristic is 

measured, similar to DIV measurement. 
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Table 2.1: PV performance parameters used in this work 

Parameter Name Description 

𝑉𝑉𝑐𝑐𝑐𝑐 [V] Open-circuit voltage Voltage at zero current 

𝐼𝐼𝑠𝑠𝑐𝑐 [A] Short-circuit current Current at zero voltage 

MPP Maximum power point 
Peak of power ( = 𝑉𝑉 ∙ 𝐼𝐼 ) vs 

voltage plot 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 [W] Power at MPP  

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 [V] Voltage at MPP  

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 [A] Current at MPP  

FF [%] Fill factor =
𝑉𝑉𝑚𝑚𝑈𝑈𝑈𝑈 ∙ 𝐼𝐼𝑚𝑚𝑈𝑈𝑈𝑈
𝑉𝑉𝑈𝑈𝑜𝑜 ∙ 𝐼𝐼𝑈𝑈𝑜𝑜

 

 Electroluminescence Imaging  

2.4.1 PRINCIPLES OF RADIATIVE RECOMBINATION 

PV devices enable conversion of incoming light to electrical energy. Under 

electrical excitation, the PV device acts as light emitting diode (LED) with 

an emission invisible to the human eye. The LED quantum efficiency of 

the device is reciprocal to its electrical efficiency [18].  The radiative 

electron-hole recombination inside the device emits near infrared light: 

luminescence. Photoluminescence (PL) and electroluminescence (EL) can 

be separated depending on the excitation method. For EL, current is 

injected into the device through electrical contacts. Thus, EL can only be 

applied to PV devices with metallisation. If a minimum energy (defined by 

the semiconductor’s band gap) is absorbed, electrons in the valence band, 

can be excited into a higher energy state (conduction band, Figure 2.5). 

After diffusion from the n-type side, electrons recombine with holes from 

the diodes p-type side at the p-n junction. The thereby released energy is 

mainly passed on to lattice vibration but also causes photon emission 

(EL).  
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Figure 2.5: Schematic and band diagram of radiative electron-hole 
recombination under external bias; red circles: electrons; white circles: 
holes 

The emitted photon energy is equivalent to the minority carrier’s local 

band gap energy. In crystalline Si solar cells, the photon energy is around 

1.1 eV or equivalent wavelength 1150 nm with a distribution from 950 to 

1250 nm due to the nature of an indirect band gap. The indirect band gap 

if Si causes a large mismatch of momentum between available electron 

and hole states, which reduces the probability of EL emission. [19] 

The emitted light can be detected using an external sensor such as a 

Silicon CCD or InGaAs. These devices are sensitive in the corresponding 

wavelengths from 900 nm upwards [2]. Areas with reduced carrier density 

such as shunts, interrupted interconnections, dangling bonds and 

contamination reduce the possibility of radiative recombination and are 

therefore distinguishable in EL images [20–23]. 

The local luminescence emission (𝜙𝜙) at a point (𝑥𝑥) is a function of the local 

junction voltage (𝑉𝑉(𝑥𝑥)) [18]: 
 

𝜙𝜙(𝐸𝐸, 𝑥𝑥) = 𝐶𝐶(𝐸𝐸, 𝑥𝑥) ⋅ �𝑒𝑒𝑥𝑥𝑈𝑈(
𝑉𝑉(𝑥𝑥)
𝑉𝑉𝑇𝑇

) − 1� (2.3) 

 𝑉𝑉𝑇𝑇 =
𝑘𝑘𝑏𝑏𝑥𝑥
𝑞𝑞

 (2.4) 

 

With the local calibration factor 𝐶𝐶(𝐸𝐸, 𝑥𝑥): 

 

𝐶𝐶(𝐸𝐸, 𝑥𝑥) = [1 − 𝑅𝑅(𝐸𝐸, 𝑥𝑥)] ⋅ 𝑄𝑄𝑖𝑖(𝐸𝐸, 𝑥𝑥) ⋅ 𝜙𝜙𝑏𝑏𝑏𝑏(𝐸𝐸) 
(2.5) 
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Including the black body radiation 𝜙𝜙𝑏𝑏𝑏𝑏(𝐸𝐸):  

 

𝜙𝜙𝑏𝑏𝑏𝑏(𝐸𝐸) =
2 ⋅ 𝜋𝜋 ⋅ 𝐸𝐸2/(ℎ3 ⋅ 𝑜𝑜2)
𝑒𝑒𝑥𝑥𝑈𝑈(𝐸𝐸/𝑘𝑘𝑏𝑏𝑥𝑥) − 1

≈
2 ⋅ 𝜋𝜋 ⋅ 𝐸𝐸2

ℎ3 ⋅ 𝑜𝑜2
⋅ 𝑒𝑒𝑥𝑥𝑈𝑈(

−𝐸𝐸
𝑘𝑘𝑏𝑏𝑥𝑥

) 
(2.6) 

 

Where:    

𝐶𝐶(𝐸𝐸, 𝑥𝑥)   Local calibration factor based on the 

measurement setup  

𝐸𝐸    Photon energy 

𝑥𝑥   Surface coordinate 

𝑉𝑉𝑇𝑇   Thermal voltage  

𝑘𝑘𝑏𝑏   Boltzmann constant  

𝑥𝑥   Temperature  

𝑞𝑞   Electrical charge of an electron  

𝑅𝑅(𝐸𝐸, 𝑥𝑥)   Reflectance of the cell surface 

𝑄𝑄𝑖𝑖(𝐸𝐸, 𝑥𝑥)    Internal quantum efficiency 

ℎ    Planck’s constant 

𝑜𝑜   Vacuum speed of light 

 

The local calibration factor 𝐶𝐶(𝐸𝐸, 𝑥𝑥)  is a combination of quantum 

efficiency, reflectance and black body radiation. In case of series 

resistance imaging, 𝐶𝐶(𝐸𝐸, 𝑥𝑥)  is obtained from a low current EL image 

(Subsection 2.4.4.1) 

2.4.2 PRINCIPAL SETUP 

A typical setup for EL imaging (Figure 2.6) consists of an infrared sensitive 

camera, a power supply connected to the DUT and a dark chamber. Under 

normal test conditions the DUT is forward biased in the dark to admit a 

current similar to the illuminated short-circuit current (𝐼𝐼𝑠𝑠𝑐𝑐) [21]. The light 

emitted from the DUT as a result of radiative recombination is captured 

by the camera.   
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Figure 2.6: Typical setup for electroluminescence imaging, based on 
CRESTs EL measurement system ‘HuLC’ (Appendix 2) 

The DUT temperature can be monitored to ensure thermally stable 

measurements. Placing the DUT in a dark room decreases the influence 

of environmental radiation [22]. Filters in front of the camera lens can 

additionally reduce the disturbance of environmental (stray) light.  

For c-Si devices, IR long pass filters with a cut-off wavelength of 850 nm 

can be used. EL images can be taken under different conditions to extract 

the physical properties of the DUT:  

• EL images can be resolved by spectrum [8, 21] or polarization [24] 

using a variety of filters. This allows for example determination of 

operation voltage and selection of high recombination areas. 

• EL images taken at different DUT temperatures (such as room 

temperature to 100 °C) allow the extraction of intrinsic defects such 

as crystallographic defects and grain boundaries [21].  

• EL images taken at different injected currents can be used for series 

resistance mapping (Subsection 2.4.4.1). 

The image acquisition time is dependent on a range of factors, such as 

the optics, aperture, field of view, signal-to-noise ratio and the camera 

quantum efficiency. It can vary from less than a second up to multiple 

minutes. 

The EL image acquired by the camera differs from the actual EL signal 

emitted by the DUT. These distortions need to be corrected for to allow 
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quantitative analysis. Scattered light generated by the PV device can lead 

to signal overestimation at points of lower emission. It is reported that 

the apparent EL signal from the middle of the DUT may decrease by about 

2% just due to the use of low-reflective test chamber walls that absorb 

96% of the incident light [25]. Inactive areas within a DUT can still indicate 

EL signal due to blur and pixel-smearing caused by camera lens and 

sensor [26]. 

2.4.3 CAMERA TYPES 

Three different types of camera sensors are commonly used for EL 

imaging: silicon charge-coupled devices (CCD), indium gallium arsenide 

(InGaAs) and the less common mercury cadmium telluride (MCT). They 

differ in spectral response and cost. CCD detectors are often cheaper than 

InGaAs or MCT, however for c-Si DUTs they detect only a small part of the 

wave band of the DUT’s EL, whilst InGaAs sensors cover the entire EL 

spectrum (Figure 2.7).  

 

 
Figure 2.7: Quantum efficiency of common camera sensors (CCD, 
InGaAs, MCT) in comparison to a typical emission spectrum of a c-Si 
DUT (red) [20, 21] 

In comparison, this allows largely reduced exposure times but also causes 

differences in the captured EL images (Subsection 7.2.3.3). However, CCD 

cameras are often seen as the preferable choice of EL imaging due to lower 

price and higher resolution [20]. If it can be assumed, that the CCD well 

accumulates charge linearly, the image intensity at pixel [𝑥𝑥,𝑦𝑦] is a product 
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of the cameras quantum efficiency (𝑄𝑄𝐸𝐸𝑐𝑐𝑎𝑎𝑚𝑚), exposure time (𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚) and local 

EL flux (𝜙𝜙(𝑖𝑖, 𝑗𝑗,𝐸𝐸)):   

 

𝐼𝐼[𝑥𝑥,𝑦𝑦] = 𝑄𝑄𝐸𝐸𝑐𝑐𝑎𝑎𝑚𝑚[𝑥𝑥,𝑦𝑦](𝐸𝐸) ∙ 𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚 ∙  𝜙𝜙(𝑥𝑥, 𝑦𝑦,𝐸𝐸) (2.7) 

2.4.4 PHYSICAL PARAMETERS 

The measured EL image contains superimposed information of the DUT 

material, optical and electrical properties. This makes a separation of the 

different influence factors in the captured image difficult [27]. However, 

EL imaging under different operation conditions and with different 

optical filters can be used to extract multiple parameters [8, 25], such as 

minority carrier diffusion length [6]. 

2.4.4.1 SERIES RESISTANCE IMAGING 

The spatial distribution of PV performance parameters can vary strongly 

due to shunts, contact/sheet resistance, grain boundaries, dislocations, 

cracks and other non-uniform defects. Their measurement is either 

destructive (such as contact resistance using CORESCAN [28]) and/or time 

consuming like LBIC used for current- [29] or CELLO for series resistance 

(𝑅𝑅𝑆𝑆) mapping [30]. Therefore, there is strong motivation to replace these 

measurements using contactless, fast and cheap imaging methods, such 

as EL, PL or DLIT (Subsection 2.4.5). To date, several approaches exist to 

measure the local effective series resistance of cells and modules (𝑅𝑅𝑠𝑠,𝑖𝑖). On 

cell level, a method using two PL images together with different light 

intensities and terminal voltages has been demonstrated [31]. Methods 

using EL images taken at two different biases are manifold [32–34]. The 

similarity with other measurement methods is reported from good [35] 

to ‘hardly visible’ [36]. Reasons can be partly found in the application of 

the Fuyuki approximation [2]. This approximation links the local current 

density to local luminescence and requires cell thickness to be larger than 

the diffusion length.  
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In this thesis, series resistance mapping is conducted for module-scale PV 

(Subsection 7.2.3.4). It is based on Breitenstein’s method [32] to obtain 𝑅𝑅𝑠𝑠,𝑖𝑖 

together with the Potthoff assumption [8], wherein the brightest image 

pixel of a cell is linked to the cells junction voltage. This allows 

measurements on modules as a network of in series connected cells [8]. 

The following description aims to provide a short overview of equations 

needed to calculate 𝑅𝑅𝑠𝑠.  

A detailed physical interpretation is out of the scope of this work. 

Two EL images (𝜙𝜙𝑖𝑖1, 𝜙𝜙𝑖𝑖2) are captured at 10%  𝐼𝐼𝑠𝑠𝑐𝑐 (#1) and 100% 𝐼𝐼𝑠𝑠𝑐𝑐 (#2). 

Background is subtracted from both images following the procedure 

described in Section 4.2. Further measurement parameters are listed in 

Table 2.2. Parameters are scalar, 2d arrays at EL image resolution (#𝑖𝑖) or 

2d arrays with resolution defined by number of rows and columns (for 

example {6,10}) of the PV module (#𝑎𝑎). The calculation of 𝑅𝑅𝑠𝑠,𝑖𝑖 requires the 

following assumptions: 

• The cells ideality factor equals 1. 

• Lateral currents in the low current image are sufficiently small so 

that the local voltage (𝑈𝑈𝑖𝑖,1) equals the external applied voltage (𝑈𝑈1) 

and series resistance can be neglected. 

Table 2.2: Input for series resistance imaging 

Param.  Unit Description 

𝑈𝑈1, 𝑈𝑈2 [V] Operation voltage, averaged during measurement time 

𝐼𝐼2 [A] Applied current, averaged during measurement time 

𝑥𝑥1, 𝑥𝑥2 [K] Module temperature, averaged during measurement t. 

𝑡𝑡1, 𝑡𝑡2 [s] Exposure time for capturing 𝜙𝜙𝑖𝑖1, 𝜙𝜙𝑖𝑖2 

𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 [-] Number of cells in the PV module (for example 60) 

If both EL images are captured at different exposure times, 𝜙𝜙𝑖𝑖1 is scaled 

as follows:  

 

𝜙𝜙𝑖𝑖1∗ = 𝜙𝜙𝑖𝑖1
𝑡𝑡1
𝑡𝑡2

 (2.8) 
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From the module temperatures (𝑥𝑥1, 𝑥𝑥2) the thermal voltage (𝑉𝑉𝑇𝑇1,𝑉𝑉𝑇𝑇2) is 

calculated using Equation 2.4. Following the Potthoff assumption, the 

brightest pixels within every cell area in 𝜙𝜙𝑖𝑖2 (𝜙𝜙𝑎𝑎2,𝑚𝑚𝑎𝑎𝑒𝑒) should be taken to 

estimate the cell voltage. This method however includes the risk of 

selecting defective or otherwise not representative values. Therefore the 

maximum criterion is modified in this work and 𝜙𝜙𝑎𝑎2,𝑚𝑚𝑎𝑎𝑒𝑒 is obtained from 

the median of the brightest 10% in every cell instead. To exclude the effect 

of intrinsic defects and to scale the EL signal, a calibration image (𝐶𝐶𝑖𝑖1) is 

calculated. Following the proportionality 𝜙𝜙𝑖𝑖1~𝑒𝑒𝑥𝑥𝑈𝑈(𝑈𝑈1
𝑉𝑉𝑇𝑇

) (Equation 2.3) and 

assuming no voltage gradients at 10% 𝐼𝐼𝑠𝑠𝑐𝑐, 𝐶𝐶𝑖𝑖1 can be calculated as follows 

[34, 37]: 

 

𝐶𝐶𝑖𝑖1 =
𝜙𝜙𝑖𝑖1
𝑜𝑜

 (2.9) 

  

𝑜𝑜 = exp (
𝑈𝑈1

𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 ∙ 𝑈𝑈𝑇𝑇1
) (2.10) 

 

The same proportionality then leads to the local voltage map at 100% 𝐼𝐼𝑠𝑠𝑐𝑐 

[37]: 

 

𝑈𝑈𝑖𝑖2 = 𝑈𝑈𝑇𝑇2 ∙ ln �𝜙𝜙𝑖𝑖2 − ln (𝐶𝐶𝑖𝑖1)� (2.11) 

 

The global module series resistance (𝑅𝑅𝑠𝑠,𝑔𝑔𝑐𝑐) is measured from the voltage 

drop (𝑈𝑈2 − 𝑈𝑈∑𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐,2) across the module and the module current: 

 

𝑅𝑅𝑠𝑠,𝑔𝑔𝑐𝑐 =
𝑈𝑈2 − 𝑈𝑈∑𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐,2

𝐼𝐼2
        (2.12) 

  

Following the Potthoff assumption [8] the sum of all cell voltages can be 

calculated using: [37] 
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𝑈𝑈∑𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐,2 = � (𝑈𝑈𝑇𝑇2 ∙ ln (
𝜙𝜙𝑎𝑎2,𝑚𝑚𝑎𝑎𝑒𝑒

𝐶𝐶
))

𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑠𝑠

 

𝐶𝐶 = �
∏�𝜙𝜙𝑎𝑎2,𝑚𝑚𝑎𝑎𝑒𝑒�

𝑜𝑜
�

1
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 (2.13) 

 

Following Fuyuki et al. [2], the diffusion length and therefore the local 

dark current saturation current (𝐼𝐼0,𝑖𝑖 ) is indirect proportional to the EL 

signal [37]: 

 

𝐼𝐼0,𝑖𝑖 =
𝑓𝑓
𝐶𝐶𝑖𝑖1

 (2.14) 

 

The scaling factor (𝑓𝑓) thereby ensures that the arithmetic mean of 𝑅𝑅𝑠𝑠,𝑖𝑖 

equals 𝑅𝑅𝑠𝑠,𝑔𝑔𝑐𝑐  [34, 37]: 

 

𝑓𝑓 =
mean(𝑈𝑈𝑖𝑖∗ ∙ 𝐶𝐶𝑖𝑖1)

𝑅𝑅𝑠𝑠,𝑔𝑔𝑐𝑐
 (2.15) 

  

𝑈𝑈𝑖𝑖∗ =

𝑈𝑈2
𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐

− 𝑈𝑈𝑖𝑖2

exp (𝑈𝑈𝑖𝑖2𝑈𝑈𝑇𝑇2
)

 (2.16) 

 

Finally the local series resistance (𝑅𝑅𝑠𝑠,𝑖𝑖) is calculated as follows [37]: 

 

𝑅𝑅𝑠𝑠,𝑖𝑖 =
𝑈𝑈𝑖𝑖∗

𝐼𝐼0,𝑖𝑖
 (2.17) 

2.4.5 COMPARISON TO OTHER CAMERA-BASED METHODS 

Although this thesis focusses on quantification of the 

electroluminescence method, it is assumed that the methods introduced 

to describe image quality, to calibrate the camera and to correct images 
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can be adapted to other camera-based measurement methods. Two of 

them are detailed as follows. 

2.4.5.1 PHOTOLUMINESCENCE (PL) 

Both EL and PL measurements capture near infrared (IR) radiation. In 

contrast to EL, PL imaging is contactless and does not require current 

injection to the device from an external supply. This enables 

measurement on Si wafers without metallisation. A light source (such as 

a scanning or expanded laser beam) illuminates the DUT at a wave band 

below the DUT’s emission (for instance 815 nm for c-Si). The irradiating 

light (and not an external power supply) provides the energy required for 

excitation of electrons into the conduction band [38]. In contrast to EL 

images, carrier generation is homogenous [39]. Therefore, electrically 

disconnected areas and apparent intensity deviations due to series 

resistance effects are not visible in PL [10]. Shunts are visible in both 

methods, because luminescence is still related to the local junction 

voltage [40]. 

2.4.5.2 LOCK-IN THERMOGRAPHY (LIT) 

Thermography captures far IR emission with a suitable thermo camera. 

Emission in this band is caused by radiative recombination, 

thermalisation and Peltier effects. Depending on the energy source, two 

lock-in technologies are popular: In dark lock-in thermography (DLIT) a 

pulsed forward bias is applied to the DUT. In illuminated lock-in 

thermography (ILIT) a pulsed light source is used. Thermal diffusion in 

the DUT is limited and spatial resolution is increased by high frequency 

modulation (multiple Hz) of the energy source [41]. It is found that 

lifetime, bulk defect and series resistance imaging are preferably done 

with EL or PL but LIT is superior when mapping current, weak Ohmic 

shunts and trapping centres [39]. 
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3 CAMERA CALIBRATION 

This chapter describes the methods executed prior to the actual EL 

imaging procedure. These methods are used to calibrate the camera 

according to the imaging setup. Camera calibration optimizes image 

quality versus measurement time and allows correction of camera 

dependent distortions. 

Camera calibration includes correcting for or minimising the impact of 

the following seven problems (Figure 3.1):  

 

 
Figure 3.1: Overview of Chapter 3 

1: Thermal noise, environmental stray- and reflected EL light can offset 

the measured signal. This problem is commonly solved by subtracting an 

additional (background or dark current) image from every EL image taken 

of the unbiased device. Section 3.1 discusses options to improve this 

method by defining a one-off calibration. This makes sequential 

background image capturing redundant. 

2: The calculation of an averaged and spatially resolved signal-to-noise 

ratio (SNR) is described in Section 3.2. An SNR average enables minimizing 

exposure time in accordance to given image quality requirements. A 
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spatially resolved SNR can be used to determine part of the overall 

measurement uncertainty (Section 6.1).  

3: No cameras dedicated to EL imaging of PV devices were found which 

were able to automatically focusing the imaged scene. Instead, the best 

focal point is often defined intuitively by the operator after inspecting 

multiple images taken at different focal settings. Section 3.3 introduces a 

parameter that helps to quantify this procedure.  

4: Methods to measure absolute image sharpness are presented and 

compared in Section 3.4. Knowing the image sharpness helps to indicate 

whether an imaging setup is capable of resolving certain features and to 

calculate part of the position based uncertainty (Section 6.2). When 

quantitatively comparing images from different setups, measured image 

sharpness also helps to adjust the sharpness before calculating difference 

images.  

5: Every system using a camera lens suffers lens distortion. The 

commonly known barrel distortion (and others) causes spatial 

displacement of the EL signal. Their calibration is detailed in Section 3.5. 

6-7: The final two Sections 3.6 and 3.7 investigate methods to measure 

the flat field at different exposure times, apertures, wavebands and 

perspective orientations. The flat field describes the spatial intensity 

distribution of a homogenous EL signal as captured by the camera sensor.  

 Dark Current Measurement 

The removal of environmental stay light and thermal noise intrinsic to 

the CCD (dark current) is often done by subtracting from the EL image 

another image of the unbiased device at the same exposure time 

(background image) [8, 25, 33, 42, 43].  

A lock-in technology together with a highly sensitive camera (such as 

InGaAs) introduced background removal even during daylight [11]. 

Background subtraction removes the offset between usable EL signal and 

zero as well as defective (‘hot’ or ‘dead’) pixels, if their intensity is the 
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same on both images. Dark current subtraction requires an additional 

image to be taken and adds an additional noise layer to the EL image [44].  

This section firstly shows how noise can be reduced by averaging multiple 

background images. Then a method is presented to make background 

image capturing redundant. Finally, algorithms to estimate average 

background levels in the absence of a background image will be discussed 

and compared. The first two methods are limited to controlled and fixed 

imaging conditions as provided by a (dark) measurement chamber. 

When performing a calibration for background subtraction, it should be 

noted that single-time-effects (STE, Section 4.1) should be filtered first. 

Otherwise, bright spots created by STE in the background image will 

result in dark spots in the corrected EL image. In certain circumstances, 

these spots could be easily confused with shunts or other cell defects.  

3.1.1 DARK CURRENT FROM BACKGROUND IMAGE 
AVERAGE 

Averaging multiple background images, taken at the same exposure time, 

can reduce thermal noise and therefore improve the image quality [45]. 

Figure 3.2 shows the relative signal-to-noise ratio (SNR) improvement of 

one EL image after subtracting background averages, obtained from 1-10 

individual images. Two different camera systems and different exposure 

times within the usual range of EL imaging (Subsection 7.2.1.2) were 

analysed for this method. The SNR was calculated with options ‘NLF, xBG’, 

as detailed in Subsection 3.2.5.1.  

Looking at Figure 3.2, the shape resembles a √𝑛𝑛  increase, as can be 

expected when averaging Gaussian distributions. The improvement is 

highest for small exposure times because of the similarly higher influence 

of noise. For the shortest exposure time of 3 s the SNR could be increased 

by over 20% by using an average of 10 background images instead of one. 
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Figure 3.2: Relative SNR improvement [%] for two cameras 
(A: Apogee Alta F, B: CoolSamba 830HR) and different exposure times 

3.1.2 DARK CURRENT AS FUNCTION OF EXPOSURE TIME 

If environmental light can be neglected (light-tight or dark chamber) or 

assumed to be constant, it is possible to calculate a background image for 

a specific exposure time from two calibration images: dark current 

intercept and slope (Figure 3.4 b,c). If the CCD well is assumed to 

accumulate charge linearly, pixel intensities will either increase linearly 

or (at saturation) stagnate over time. Both behaviours will also be 

superimposed by thermal noise. To obtain both calibration maps, the 

following algorithm is proposed: 

1. Capture background images at multiple (recommended nine) 

equidistantly distributed exposure times. For each exposure time at 

minimum two images should be taken for single-time-effect removal 

(Section 4.1) and noise averaging. The calibration quality depends 

on the numbers of images used and is camera dependent. 

2. Apply a linear regression using the exposure times and the per 

exposure time averaged background images (Figure 3.3). Saturated 

pixels should be excluded from the regression to retain linearity. 

This returns the dark currents slope (𝑎𝑎) and intercept (𝑏𝑏). 

3. Assume a minimum slope of defective (‘hot’) pixels and filter values 

below that threshold from the acquired slope map. Multiply the 

filtered values by the mean exposure time and add the result to the 

offset map. This decreases noise close to the minimum and 
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maximum exposure times and ensures positive intensity values on 

the resulting background image. 

4. Calculate background image (𝐵𝐵𝐵𝐵) for an exposure time (𝜏𝜏𝑚𝑚𝑒𝑒𝑚𝑚) using:

𝐵𝐵𝐵𝐵(𝜏𝜏𝑚𝑚𝑒𝑒𝑚𝑚) = 𝑎𝑎 ∙ 𝜏𝜏𝑚𝑚𝑒𝑒𝑚𝑚 + 𝑏𝑏 (3.1) 

Figure 3.3: Schematic of linear regression applied on one image pixel; 
dots: measured image intensities of three measurements at four 
exposure times; green: valid values; red: saturated pixels that are 
excluded from linear regression 

Figure 3.4: a) Example dark current image with hot pixels and single-
time-effects; b) fitted intercept including static camera noise; c) fitted 
slope including hot pixels and environmental light (if existent) 

A comparison of averaged and calculated (Equation 3.1) background 

images is shown in Figure 3.5. For each exposure time, 10 (a) resp. 50 (b) 

background images were used. 
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a) Camera: Apogee Alta F b) Camera: CoolSamba 830HR

Figure 3.5: Comparison of averaged (‘avg’) to calculated (‘calc’) 
background image (line plot at positions including hot pixels) for 
different exposure times (1 – 1000 s) 

The offset level of the camera in Figure 3.5b fluctuates between two 

different intensity levels. The offset in Figure 3.5a appears random 

however. Offset as well as intensity of the two (a) or one (b) hot pixels can 

be almost exactly reproduced using only one intercept and slope map. 

This allows the conclusion that, in the case of unchanging background 

and camera conditions, no extra background image (Equation 3.1) for 

each exposure time is necessary. The background image can be calculated 

using two calibration maps. Because multiple background images were 

used for calibration, the resulting calculated image has a lower noise level. 

The uncertainty of this method will depend on the linearity of the camera 

and its defects as well as the number of averaged images used to fit the 

linear equation as well as the time between creating the two calibration 

maps and their usage for background removal. New hot pixels, generated 

between camera calibration and EL imaging, will remain uncorrected.  

3.1.3 DARK CURRENT LEVEL ESTIMATION WITHOUT 
BACKGROUND IMAGE 

This subsection covers the estimation of a background level if no 

background image is available. All methods will treat the background 

level as spatially invariant. Setting the background level to the average of 

a representative background area can lead to contradictory results.  
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Although it might not be clearly visible within the overall image, areas 

around PV devices are often influenced by scattered or reflected EL signal 

(Figure 3.6). Some camera sensors have an overscan area not influenced 

by incoming radiation (area b in Figure 3.6, top right). 

Choosing a representative background area requires a manual inspection 

regarding the existence of these features. This cannot be easily 

automated. Therefore, this method will not be discussed here. The 

following methods of background level estimation are compared.  

 

 
Figure 3.6: EL image of an EFG mini-module with two different 
background areas, which are not suitable for background level- or 
noise estimation 

Image minima: Setting the background level to the image minimum is not 

sufficient. Non-sensitive or ‘dead’ pixels as well as environmental and 

reflected EL light create the need for more extensive methods. The 

influence of defective pixels at specific areas (such as image border), can 

be reduced if the respective area is excluded from the minimum. A 

median filter can also average noise and remove defective pixels. 

Minimum-based parameters, used for the evaluation below are listed in 

Table 3.1. 

Table 3.1: Minimum-based parameters 

Parameter Description 

‘min’ The minimum value of the entire image 

‘Med3, min’ 
The minimum of a median filtered image (kernel 
size=3 px) 

‘NB, Med3, min’ 
Same as above, but initially excluding an image 
border of 10 px 
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First peak in image intensity histogram: The background level can also be 

identified by investigating the intensity histogram of the EL image. The 

histogram of EL images enables the separation of signal and background 

due to the two distinct intensity levels. For this purpose, the image has to 

include an area that is not influenced by the EL signal.  Figure 3.7 shows 

a histogram of an EL image under open (a) and short circuit conditions 

(b). By comparing both images, it appears that the lower of the two peaks 

represents the background and so the background level can therefore be 

extracted from the lower peak within the EL image. However, in this 

example, scattered and reflected EL light influenced the majority of 

background areas. Therefore the mean of the Gaussian 𝜇𝜇𝐵𝐵𝐵𝐵 is with 150 

about 90 counts higher in (b) than in the background image (a).  

 

 
a) Histogram of background 
image of Figure 3.6 

 
b) Histogram of same device under 
forward bias 

Figure 3.7: Example image intensity histogram 

Cumulative distribution function of image intensity histogram: Instead of 

fitting a function to the intensity histogram, the integral of the histogram 

can be evaluated. Divided by its sum, the resulting cumulative 

distribution function (CDF) describes the probability of a pixel being 

brighter than or equal to a given intensity. By choosing an intensity with 

a probability of for instance 1%, darker (defective) pixels, which occur less 

often, will be filtered. In order to define the correct probability, different 

parameters are examined (Table 3.2). 
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Table 3.2: CDF-based parameters 

Parameter Description 

‘1%CDF’, ‘0.5%CDF’, 
‘0.1%CDF’ 

Intensity value occurring with a probability of 
more than 1%, 0.5% or 0.1%. 

‘NB, 0.1%CDF’ 
Same as above, but 10 px of the image border 
were excluded from the CDF 

‘NB, Med3, 0.1%CDF’ 
Same as above but the image was median 
filtered before calculation of the CDF 

 

Local minimum of standard deviation: The minimum of the spatial 

standard deviation can point to the most homogenous area in an image. 

The background level can be obtained as the median value at that point.  

Comparison of different background level parameters: 12 different EL 

images and their corresponding background images were used for the 

comparison (Figure 3.8). The EL images were selected as representing a 

broad spectrum of different PV module sizes, exposure times and 

cameras.  

 

 
Figure 3.8: Relative deviation between estimated and real background 
level for 12 different EL images; average (red) and RMSE (yellow) 

The RMSE (yellow) of all parameters was compared against the average of 

the corresponding background image. The average of the background 

image was representative for the background level due to the absence of 

environmental light.  
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A RMSE between 10 and 20 % was reached by only five parameters: 

Orange: The relatively simple parameters ‘min’ and ‘Med3, min’ have the 

highest RMSE of almost 60%. This is due to the existence of dead pixels, 

which caused detected background levels of 0 (or relative -100%). This 

issue could be resolved after excluding a 10-pixel wide image border with 

‘NB Med3, min’. The influence of noise and defective pixels could be 

further limited by choosing a bigger kernel size of 7x7 and 15x15 px for 

the median filter. Although the RMSE is slightly smaller for the latter 

kernel size, the processing time for median filtering rises with the kernel 

size and requires bigger areas, which only contain the background. 

Therefore, the ‘NB Med7, min’ is recommended to extract the background 

level from an EL image. 

Green: Taking the mean of a Gaussian distribution, fitted to the first peak 

in an image intensity histogram, often estimated the background level as 

too high (Figure 3.7). Here, scattered EL light influenced most background 

areas. The few remaining areas, which were not influenced by EL, were 

too small to create a detectable peak in the smoothed image intensity 

histogram. 

Purple: A kernel size of 11x11 px was chosen to calculate the spatial 

standard deviation. The background level was defined as its minimum. In 

all the evaluated images, this parameter indeed pointed to the image 

background. However, for five images this background level was 

increased due to scattered EL light. In these cases, this parameter 

overestimated the actual background level. 

Blue: The motivation for taking the background level from a certain 

percentage of the relative cumulative distribution function is to remove 

non-representative pixel values. However, the percentage taken is 

arbitrary. If the percentage is too small (‘0.1%CDF’), dead pixel might still 

be included. For the parameter ‘0.5%CDF’ and the examined images, the 

RMSE was found to be minimal. A further improvement can be achieved 

if defective areas at the image border are excluded (‘NB’) and the influence 

of defective pixels is limited by first using a median filter. However, an 
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RMSE of over 10%, removed areas and arbitrary values for filter sizes and 

CDF percentages make a background level estimation from only the EL 

image less reliable.  

The comparison of all parameters leads to the conclusion that the 

reliability of background level estimation is questionable and this method 

should only be considered if no background image exists (for example in 

receiving EL images from outside your own laboratory) 

 Signal-To-Noise Ratio (SNR) 

The scope of this section is to obtain the signal-to-noise ratio (SNR) from 

only one or two EL images together with a background image or estimated 

background level (Section 3.1). Different approaches to measure signal 

and noise are presented. A method is proposed to measure a spatially 

averaged SNR (Equation 3.16) and a method to calculate an SNR map 

(Equation 3.17). A comparison of the proposed parameters to the existing 

𝑆𝑆𝑁𝑁𝑅𝑅𝐻𝐻𝑖𝑖𝑐𝑐𝐻𝐻𝑚𝑚𝑐𝑐 (Equation 3.4) is shown in Subsection 3.2.5. 

The SNR can be used to map the estimated intensity based uncertainty 

originating from the image itself and to match given image quality 

criteria. Determining the SNR can aid quantitative comparison and 

analysis of EL images and is useful to define the minimum requirements 

of an imaging setup. The draft IEC standard TS 60904-13 [46] requires an 

SNR greater than or equal to 45 for indoor measurements. This 

requirement and definition (Equation 3.16) are informed by this doctoral 

prospect.   

3.2.1 INTRODUCTION 

The SNR is an indicator of the quality of the captured signal (here EL) over 

a noise signal. Although this definition appears straight forward, recent 

literature on EL struggles to apply it: Often SNR is mentioned but not 

further explained [47–49]. SNR values are given as subjective descriptions 
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[50, 51] or numbers are assigned without equation or reference [52]. If 

equations are given, they are restricted to homogenous areas within an 

image [33, 51] or only applicable if further information about the imaging 

system is known [53]. The problem arises mainly from the largely varying 

approaches that are available to calculate the SNR of images. 

This section focusses on the averaged SNR as an image quality parameter, 

but also spatially resolved SNR maps used for uncertainty analysis 

(Section 6.1). It starts with a definition of the SNR. Noise and signal are 

discussed separately. The influence of approximations, such as a 

simplified noise model, arithmetic averaging and the extraction of the 

SNR from only one or two images is analysed.  

In this work, the SNR is defined as a combination of the measured signal 

S, its offset (or background) Bg and noise N as follows (Figure 3.9):  

 

𝑆𝑆𝑁𝑁𝑅𝑅 =
𝑆𝑆 − 𝐵𝐵𝐵𝐵
𝑁𝑁

 (3.2) 

 

 
Figure 3.9: Schematic of signal, noise and background  

Spatial approach 

In its simplest form the signal is approximated as the spatial average 

image intensity 𝜇𝜇𝐼𝐼 and noise as its standard deviation [51, 54]:  

 

𝑆𝑆𝑁𝑁𝑅𝑅0 =
𝜇𝜇𝐼𝐼
𝜎𝜎𝐼𝐼

 (3.3) 

 

This ratio strongly depends on the imaged scene because mean and 

standard deviation depend on the intensity distribution of the image. 
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Since EL images are not homogenous, a robust and generalised SNR 

requires a more appropriate definition.  

Temporal approach 

Hinken et.al. [53] determine the SNR as a temporal average from multiple, 

background corrected, images (𝐼𝐼0 … 𝐼𝐼𝑐𝑐),, taken in series, as:  

 

𝑆𝑆𝑁𝑁𝑅𝑅𝐻𝐻𝑖𝑖𝑐𝑐𝐻𝐻𝑚𝑚𝑐𝑐 =
𝜇𝜇(𝐼𝐼0 … 𝐼𝐼𝑐𝑐)
𝜎𝜎(𝐼𝐼0 … 𝐼𝐼𝑐𝑐)

 (3.4) 

 

However, this method requires multiple EL images to be taken and does 

not define how to average the resulting SNR map.  

3.2.2 WHAT IS ‘NOISE’? 

Noise can be defined as a combination of shot (or photon)-, thermal (or 

dark)- and readout noise [45]. If Gaussian distributed, it can be calculated 

as the standard deviation of an unfiltered signal.  

However, the pixel intensity across EL images is expected to vary, thus 

estimation of the signal noise from its standard deviation will cause a 

noise overestimation. This subsection presents and compares different 

noise parameters used to calculate the SNR using Equation 3.2.  

3.2.2.1 NOISE FROM REPRESENTATIVE BACKGROUND AREA 

If the background level can be assumed constant, part of the overall noise 

can be calculated from the standard deviation of a representative 

background area (𝑁𝑁𝐵𝐵𝐵𝐵). This defined background area should be free of 

erroneous pixels such as hot pixels, single-time-effects, environmental 

and EL light in order to not artificially increase the standard deviation. 

The representative background area can be used for both, background 

level and noise estimation.  
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To include cameras without an overscan area, the noise level is taken from 

the standard deviation of a specified area [𝑥𝑥1: 𝑥𝑥2, 𝑦𝑦1:𝑦𝑦2]  within a 

background image: 

 

𝑁𝑁𝐵𝐵𝐵𝐵 = 𝑈𝑈𝑡𝑡𝑠𝑠(𝐼𝐼𝐵𝐵𝑔𝑔[𝑥𝑥1: 𝑥𝑥2,𝑦𝑦1:𝑦𝑦2]) (3.5) 

3.2.2.2 SHOT NOISE 

𝑁𝑁𝐵𝐵𝐵𝐵  neglects the influence of shot noise. Shot noise describes the 

statistical variations of detected photons due to their quantum nature. 

The different noise levels can be visualised if the magnitude difference 

(Figure 3.10) is taken between two EL images. Both images are taken with 

the same setup and with the same exposure time.  

 

 
Figure 3.10: Magnitude difference of the two EL images of the EFG mini-
module, shown in Figure 3.6 

The DUT can be clearly differentiated from the background due to 

different noise levels. Using the square root dependence of shot noise to 

its signal (𝑆𝑆) [55], 𝑁𝑁𝐵𝐵𝐵𝐵 can be extended as follows: 

 

𝑁𝑁𝐵𝐵𝑔𝑔𝑆𝑆 = 𝑁𝑁𝐵𝐵𝐵𝐵 + 𝑎𝑎√𝑆𝑆 (3.6) 

 

For simplification the scaling factor (𝑎𝑎 ) will be defined as 1 for the 

moment.  



Chapter 3: Camera Calibration 
Section: 3.2: Signal-To-Noise Ratio (SNR) 

 

 © Karl Bedrich - April 2017 47 

 

3.2.2.3 NOISE FROM A TWO IMAGE DIFFERENCE 

As discussed in [56], noise can also be effectively determined as the 

difference between two images (𝐼𝐼1, 𝐼𝐼2) taken from the same setup and with 

the same exposure time. Noise can be calculated as follows using 

Equation 3.8: 

 

𝑁𝑁𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑2 = √0.5 ∙ mean(|𝐼𝐼1 − 𝐼𝐼2|) ∙ 𝑓𝑓𝑅𝑅𝑅𝑅 (3.7) 

 

With mean() being the spatial average of all values. 

Because the noise level is taken from two images, the factor √0.5 scales 

this sum of variances. The root mean square error (RMSE) is a popular 

method to average deviations due to its statistical similarity to the 

standard deviation. However, the existence of outliers (such as hot pixels) 

can lead to an overestimation of the RMSE. A higher stability towards 

outliers is given with the average absolute deviation 

(AAD=mean(�𝐼𝐼1 −  𝐼𝐼2�)). If (𝐼𝐼1 −  𝐼𝐼2) is Gaussian distributed, its AAD can be 

scaled to an RMSE average according to [57] using the factor:  

 

𝑓𝑓𝑅𝑅𝑅𝑅 =
𝑅𝑅𝑥𝑥𝑆𝑆𝐸𝐸
𝐴𝐴𝐴𝐴𝐴𝐴

= �
2
𝜋𝜋
�
−0.5

 (3.8) 

 

An example of the negative influence of outliers to RMSE averaging is 

shown in Figure 3.11. 

3.2.2.4 NOISE FROM A ONE IMAGE DIFFERENCE 

If no second image (𝐼𝐼2) is available, noise can also be extracted from the 

difference between the unfiltered and noise filtered image. Here, the 

noise-filtered image (𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚) is generated using a median filter with a kernel 

size of 3x3 px: 
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𝑁𝑁𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑1 = mean(|𝐼𝐼1 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚|) ∙  𝑓𝑓𝑅𝑅𝑅𝑅 (3.9) 

3.2.2.5 NOISE-LEVEL-FUNCTION 

The noise level as function of image intensity (𝑘𝑘) can be described with a 

noise-level-function (NLF, Figure 3.11). According to [58] the NLF can be 

calculated from the original or noisy image (𝐼𝐼1) and a noise-free image 

average (𝐼𝐼𝑅𝑅𝑐𝑐) with 𝑖𝑖 being a specified intensity (-range) using: 

 

𝑁𝑁𝑁𝑁𝑥𝑥(𝜑𝜑) = �mean[(𝐼𝐼1(𝑘𝑘) − 𝐼𝐼𝑅𝑅𝑐𝑐(𝑘𝑘))2] (3.10) 

 

For this purpose, the difference image (𝐼𝐼𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑 = 𝐼𝐼1 − 𝐼𝐼𝑅𝑅𝑐𝑐) has to be averaged 

for different intensity levels derived from the image histogram of 𝐼𝐼𝑅𝑅𝑐𝑐 . 

Instead of the RMSE, the AAD is chosen for averaging due to the better 

outlier stability. To determine the minimum number of images needed in 

order to calculate a sufficient NLF, three methods of calculating  𝐼𝐼𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑 and 

two averaging methods are discussed and compared below. 

𝐼𝐼𝑅𝑅𝑐𝑐 can be calculated from the average of multiple images (𝐼𝐼𝑐𝑐) of the same 

imaging setup (Multi): 

 

 𝐼𝐼𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑,𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑖𝑖 ≈ 𝐼𝐼1 − mean(𝐼𝐼1, … , 𝐼𝐼𝑐𝑐) (3.11) 

 

If only two equivalent images are available, the noise level can be also 

extracted from two noisy sources (Duo): 

 

 𝐼𝐼𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑,𝑚𝑚𝑚𝑚𝑐𝑐 ≈ (𝐼𝐼1 − 𝐼𝐼2) ∙ √0.5 (3.12) 

 

If only one EL image is available 𝐼𝐼𝑅𝑅𝑐𝑐 can be estimated from the median 

filtered (kernel size=3) image (𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚) (Single):  

 

 𝐼𝐼𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑,𝑠𝑠𝑖𝑖𝑐𝑐𝑔𝑔𝑐𝑐𝑚𝑚 ≈ (𝐼𝐼1 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚) ∙ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 (3.13) 
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Due to the small size of the median kernel of 3 ∙ 3 = 9 px the median still 

includes a certain noise fraction. During this work, it was found that 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 1 + 1
9

 is a suitable factor to correct for noise which remains after 

median filtering.  It is applied in both ‘Single’ plots in Figure 3.11. 

This figure compares the two different averaging methods (RMSE, AAD) 

and the three approaches to obtain  𝐼𝐼𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑 used to calculate 𝑁𝑁𝑁𝑁𝑥𝑥(𝜑𝜑). For 

both ‘Multi’ plots, a series of 10 EL images was averaged.  

Figure 3.11: Comparison of different approaches to estimate the noise-
level-function 𝑵𝑵𝑵𝑵𝑵𝑵(𝜑𝜑)  of the EL image shown in Figure 3.6 

With the exception of ‘Single RMSE’, it is apparent that all plots are almost 

identical. This indicates that 𝑁𝑁𝑁𝑁𝑥𝑥(𝜑𝜑) can be obtained from even one single 

image. In contrast, the ‘Single RMSE’ plot appears highly distorted. Here, 

 𝐼𝐼𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑 contained many outliers created by subtracting a median filtered 

image.  

As Figure 3.12 shows, the NLF can be fitted with the following equation: 

𝑁𝑁𝑁𝑁𝑥𝑥(𝜑𝜑) = � 𝑎𝑎  ∙ √𝜑 − 𝑏𝑏  
 𝑜𝑜  𝑖𝑖𝑓𝑓    𝑁𝑁𝑁𝑁𝑥𝑥(𝜑𝜑) < 𝑜𝑜  

 (3.14) 
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a) Camera: Apogee Alfa F 
    Setup: Figure 3.6 

b) Camera: Cool Samba 830HR 
    Setup: Figure 4.3 

Figure 3.12: NLF (Duo AAD) calculated for two different camera 
systems; fit using Equation 3.14 

3.2.2.6 COMPARISON OF DIFFERENT NOISE PARAMETERS 

This subsection compares the proposed parameters for quantifying the 

noise level of an image. The AAD is used henceforth to calculate 𝑁𝑁𝑁𝑁𝑥𝑥(𝜑𝜑). 

Figure 3.13 visualizes the trend of the following eight different 

parameters: 

Blue: 

• Bg1 – Noise from standard deviation of a 50x50 px area within an 

extra background image (Equation 3.5) 

• Bg2 – Noise from the entire background image (Equation 3.5) 

• BgS – Same as above but adding shot noise (Equation 3.6) 

Orange: 

• diff2 – Noise from the difference of two equivalent images           

(Equation 3.7) 

• diff1 – Noise from the difference of a noisy and a noise-filtered image 

(Equation 3.9). 

Green: 

• NLF10 – noise-level-function from a fit generated with 10 equivalent 

images (Equation 3.11) 

• NLF2 – The same, but using two equivalent images (Equation 3.12) 

• NLF1 – The same, but using one image (Equation 3.13) 
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To highlight the influence of different EL-to-background ratios, images 

from three different imaging setups were used. The region of interest 

(ROI) was further decreased in 20 steps from the entire image to an 

excerpt within the device.  

 

     
    

  

  

 
Figure 3.13: Comparison of different noise parameters, calculated for 
different ROIs; A) EFG mini module; B) Monocrystalline Si module;  
C) CIGS module; Camera: Cool Samba 830HR 

Evaluating the three different subfigures in Figure 3.13, it is evident that 

the different noise parameters result in part in very different noise levels. 

The results vary up to factor six. In detail: 

BG - Blue: The dotted Bg1 varies strongly for the setups (A) and (B). This 

is due to high intensity (‘hot’) pixels within the ROI, which artificially 

increase the standard deviation. The effect was not apparent in Bg2 when 

 

0
100
200
300
400

0 5 10 15 20

Im
ag

e 
no

ise
 [-

]

ROI number [-]

0

100

200

300

0 5 10 15 20

Im
ag

e 
no

ise
 [-

]

ROI number [-]

NLF10 NLF2 NLF1 BgS Bg2 Bg1 diff2 diff1



Chapter 3: Camera Calibration 
Section: 3.2: Signal-To-Noise Ratio (SNR) 

 

 © Karl Bedrich - April 2017 52 

 

the complete background image was averaged. Due to inhomogeneities 

within the background images used, Bg2 is on average larger than Bg1. 

BgS is larger than Bg2 by a constant value. Recognizing the high 

deviations within and relative to the other parameters, the examined 

background-based parameters should not be considered for nose level 

estimation. 

NLF - Green: All green graphs are comparably close together and follow 

the same trend of an increase of noise for smaller ROIs. This is as 

expected since Figure 3.10 clearly shows that the noise level is higher over 

the device. For setup (A) and (B) the noise-level-function using 10 

calibration images gives smaller results that those using two or only one 

image. It is assumed that by averaging multiple images the influence of 

outlier pixels was decreased which also decreased the NLF. 

diff - Orange: Both orange graphs are close to the green ones of the NLF. 

This shows that if only one averaged value is required to describe noise, 

a difference image from two or one image is suitable. For (C) the trend of 

diff1 is much smaller than that of diff2. This can be explained with the 

comparable high background content in this setup. For these areas, a 

median filter with a kernel size of only 3x3 px is not suitable for filtering 

all noise. As soon as the ROI excludes the background area, diff2 and diff1 

align. 

The comparison of the different parameters generates the following 

conclusions: If only an averaged noise parameter is needed, the standard 

deviation from a difference image obtained from two or one images can 

be sufficient. If two equivalent images are available, diff2 should be used 

rather than diff1. However, a noise map can only be created if the NLF is 

measured. NLF parameters using multiple (more than 2) calibration 

images should be preferred in order to decrease the impact of outliers 

distorting the NLF. 
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3.2.3 WHAT IS ‘SIGNAL’? 

To extract the signal level from an EL image, noise is not the only 

distortion to be removed. Erroneous (‘hot’) pixels from physical defects 

in a camera sensor as well as single-time-effects (STE) can lead to wrong 

conclusions especially for quantitative analysis. Detection and removal of 

STE and imaging artefacts is detailed in Section 4.1 and 4.4.  

The outcome of denoising algorithms is extensively discussed in [59–61]. 

Therefore, the following discussion is kept brief.  

3.2.3.1 COMPARISON OF DIFFERENT DENOISING FILTERS 

Figure 3.14 shows a comparison of different image filters on a 

108x108 px ROI of the EL image in Figure 3.13(A).  

 

 
Raw images 

 
Gaussian filtered 
(standard dev.=1) 

 
Median filtered 

(kernel size 3x3) 

 
Non-Local Means Denoising 

(NLMD) 

Figure 3.14: ROI displaying two fingers of the EFG module shown in 
Figure 3.6 

The first row shows the two equivalent EL images taken. Single-time-

effects are visible in (A) and hot pixels occur both in (A) and (B). Two 

simple and popular image filters are Gaussian and median filter. As 

visible in (C), the applied Gaussian filter was unable to remove hot pixels. 

D E C 
Gaussian filtered 
(standard dev.=1) 
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A higher standard deviation of the blur kernel would decrease their 

influence but conversely would blur out image details. A median filter 

however can successfully remove hot pixels without removing image 

details. More sophisticated algorithms, like the Non-Local Means 

Denoising (NLMD) can further decrease the influence of noise [62]. None 

of the three filters, applied on the RAW image (A) was able to remove the 

STE visible in the top left of the image.  

Figure 3.15 shows image Figure 3.14(A) after STE removal (A), applied 

threshold median (B) and NLMD filter (C). 

 
  

 
STE removal 

 
+ Thresholded median 

 
+ NLMD 

Figure 3.15: Proposed filter algorithm applied on Figure 3.14A 

It can be summarised that the discussed filters are suitable to improve 

the optical representation of an EL image. If noise is defined as constant 

or function of signal, the precise determination of the signal is essential 

for the quality of an SNR map. The proposed filter, shown in Figure 3.15, 

includes STE removal (Section 4.1) and threshold median filter 

(Section 4.4).  

For image quality analysis only an averaged SNR parameter is needed. In 

this case, none of the mentioned filters have to be applied because spatial 

averaging already removes the remaining distortions.  

Figure 3.16 shows that for an average of an area of 10x10 px or greater 

the relative deviation between both raw images or between the filtered 

results is practically zero. 

 

A                                  B                                 C 
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Figure 3.16: Average deviation between both raw images (‘Raw B’) and 
filtered results over increasing ROI size within the images shown in 
Figure 3.14 from 1x1 px in the centre to 35x35 px  

3.2.4 SNR AVERAGING 

In order to minimize the acceptable exposure time, one representative 

SNR parameter is often preferred to an SNR map. A simple average of an 

SNR map will include background areas around and within the PV device 

(busbars and inactive areas). This causes the averaged SNR to also depend 

on device type and size.  

3.2.4.1 BACKGROUND EXCLUSION 

To remove these inactive (background) areas, the following algorithm is 

proposed: 

Calculate an intensity histogram of the EL image (Figure 3.7) 

1. Fit both dominant peaks with a Gaussian distribution (𝐵𝐵𝐸𝐸𝐿𝐿,𝐵𝐵𝐵𝐵𝐵𝐵) 

defined by mean (𝜇𝜇𝐸𝐸𝐿𝐿, 𝜇𝜇𝐵𝐵𝐵𝐵) and standard deviation (𝜎𝜎𝐸𝐸𝐿𝐿,𝜎𝜎𝐵𝐵𝐵𝐵) of the 

respective peaks. 

2. Calculate the signal minimum (𝐸𝐸𝑁𝑁𝑚𝑚𝑖𝑖𝑐𝑐) using:  

 

𝐸𝐸𝑁𝑁𝑚𝑚𝑖𝑖𝑐𝑐 = �
𝜇𝜇𝐵𝐵𝐵𝐵 + 3 ∙ 𝜎𝜎𝐵𝐵𝐵𝐵                                                            

        𝐼𝐼𝑛𝑛𝑡𝑡𝑒𝑒𝐼𝐼𝑈𝑈𝑒𝑒𝑜𝑜𝑡𝑡𝑖𝑖𝑈𝑈𝑛𝑛(𝐵𝐵𝐸𝐸𝐿𝐿,𝐵𝐵𝐵𝐵𝐵𝐵)    𝑖𝑖𝑓𝑓   𝐸𝐸𝑁𝑁𝑚𝑚𝑖𝑖𝑐𝑐 > 𝜇𝜇𝐸𝐸𝐿𝐿 − 3 ∙ 𝜎𝜎𝐸𝐸𝐿𝐿   (3.15) 

 

3. Exclude all values smaller 𝐸𝐸𝑁𝑁𝑚𝑚𝑖𝑖𝑐𝑐  from the following averaging 

process. 



Chapter 3: Camera Calibration 
Section: 3.2: Signal-To-Noise Ratio (SNR) 

 

 © Karl Bedrich - April 2017 56 

 

Figure 3.17 displays two differently averaged SNR parameters with and 

without the above described background exclusion algorithm (xBG). Both 

parameters represent noise with the noise-level-function (NLF). For 

𝑆𝑆𝑁𝑁𝑅𝑅𝑁𝑁𝐿𝐿𝑁𝑁,50 all remaining values were arithmetically averaged. 𝑆𝑆𝑁𝑁𝑅𝑅𝑁𝑁𝐿𝐿𝑁𝑁,75 on 

the other hand, describes the value that is exceeded by 75% of the EL 

signal. It can be obtained from the cumulative distribution function at 

25%.  To visualize the influence of different PV device-to-background 

ratios, the same 20 ROIs as shown in Figure 3.13 were chosen.  

Background exclusion was applied on both solid lines. Consequently, 

their value is mostly constant for different ROIs. As soon as the ROI does 

not include any background areas around the device, the dashed lines (no 

background exclusion) reach the same level as the solid lines. For Figure 

3.17B the parameters with background exclusion are even then slightly 

higher. This is due to the background exclusion method, which also 

removes inactive areas within the PV device. 

The results indicate that the proposed background exclusion algorithm is 

suitable to calculate an averaged SNR parameter independent of the 

background area size. 
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Figure 3.17: SNR map (left) and comparison of four differently 
averaged SNR for 20 different ROIs, illustrated as green boxes (left) 

3.2.5 SNR COMPARISON 

So far, different methods to estimate signal, noise and background 

(Section 3.1) as well as different averaging approaches were reviewed. 

This section discusses the expected error due to the use of simplifications 

and limited data sets. 
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3.2.5.1 EVALUATION OF NOISE-LEVEL-FUNCTION AND BACKGROUND 
EXCLUSION 

Noise-level-function (NLF) and background exclusion for SNR averaging 

cannot be calculated by simple functions but requires extensively coded 

solutions. Hence, it may be desirable to replace the NLF with a constant 

noise level and to simply average the entire SNR map. To compare the 

individual deviation, the SNR of 10 different EL image sets was calculated 

using: 

‘NLF, xBG’ (Blue): Noise as noise-level-function (Equation 3.12), 

background exclusion by Equation 3.15 

‘cN, xBG’ (Orange): Like above, but using a constant noise level           

(Equation 3.7) 

‘NLF, avg’ (Grey): Noise as noise-level-function (Equation 3.12), but 

averaging the entire SNR map by arithmetic mean 

‘cN, avg’ (Green): Like above, but using a constant noise level as defined 

in Equation 3.7. By defining the noise level as an average absolute 

deviation of two equivalent EL images ( 𝐼𝐼1, 𝐼𝐼2 ) and averaging the full 

resulting image. This method of determining the SNR can be found in the 

current IEC standard draft [46] and can be described with the following 

equation: 

 

𝑆𝑆𝑁𝑁𝑅𝑅𝑐𝑐𝑁𝑁,𝑎𝑎𝑐𝑐𝑔𝑔 =
∑��0.5 ∙ (𝐼𝐼1 + 𝐼𝐼2)� − 𝐼𝐼𝐵𝐵𝐵𝐵�

∑�√0.5 ∙ |𝐼𝐼1 − 𝐼𝐼2| ∙ �2
𝜋𝜋�

−0.5
�
 (3.16) 

 

Each EL image set consisted of two EL images taken in series with the 

same exposure time and one background image. The image sets were 

taken with two different cameras. The PV devices were chosen to be a 

representative selection. Figure 3.18 displays the deviation of the 

averaged SNR of the last three parameters relative to ‘NLF, xBG’. 
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Figure 3.18: SNR deviation due to the use of different methods relative 
to ‘NLF, xBG’ using the full image set (𝐈𝐈𝟏𝟏, 𝐈𝐈𝟐𝟐, 𝐈𝐈𝐁𝐁𝐁𝐁); average (red) and RMSE 
(yellow) 

From Figure 3.18 it is apparent that the individual deviations for every 

parameter follow a similar trend:  

‘cN, xBG’ (Orange): This method overestimates the SNR compared to ‘NLF, 

xBG’. This is due to the noise level being calculated from the entire image. 

This also included background areas with lower noise level. However, 

these background areas were excluded from averaging, resulting in higher 

SNR values.  

‘NLF, avg’ (Grey): If noise is calculated from a noise-level-function, but 

background areas are included in the averaging, the averaged SNR is 

underestimated because of low SNR values (around  1 ) in background 

areas. 

‘cN, avg’ (Green): This method likewise underestimates the noise and the 

signal level. It is a fast and simple alternative that slightly underestimates 

the SNR (around 11%) compared to ‘NLF, xBG’. 

3.2.5.2 DATA QUALITY  

Two equivalent EL images (I1, I2) and a background image (IBG) are not 

always available for SNR measurement. The associated error relative to a 

full image set is shown in Figure 3.19 for the same 10 EL image sets as 

used for Figure 3.18. The bar colours correspond to the ones used in 

Figure 3.18 with blue representing ‘NLF, xBG’. 
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For ‘I1 I2’ only the background image was missing. For ‘I1 IBG’ the second 

EL image was missing and for ‘I1’ only one EL image was used for SNR 

calculation. 

 

Figure 3.19: SNR deviation due to the use of different image sets 
relative to the full image set (𝐈𝐈𝟏𝟏, 𝐈𝐈𝟐𝟐, 𝐈𝐈𝐁𝐁𝐁𝐁); average (red) and RMSE (yellow) 

Figure 3.19 shows that the individual deviation between the different 

discussed noise and averaging methods within the same image set is very 

similar. The SNR deviation is therefore more dependent on the available 

image set than on the method of calculation. The SNR deviation is mostly 

negative. This is beneficial since it means that an SNR determined with 

less than the proposed three images is known to (on average) 

underestimate the actual result. The deviation is smallest for the image 

set ‘I1 I2’. This means that the error from noise estimation using only one 

image has a bigger influence than the error from background level 

estimation (method ‘NB Med7, min’, Subsection 3.1.3). 

3.2.5.3 PERFORMANCE IN COMPARISON TO HINKENS SNR  

Two SNR parameters from the previous Subsection 3.2.5.1 (‘cN, avg’ and 

‘NLF, xBG’) were chosen for a comparison (Figure 3.20) to the SNR defined 

by Hinken et at. (Equation 3.4). Similar to Figure 3.17 the SNR was 

calculated for ROIs with decreasing background ratio. Two background 
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corrected EL images were used for all SNR parameters, excluding ‘Hinken 

10 imgs’ in which were used 10 EL images, taken in series.   

 

 
a) EL image 1/10 with 
ROI 1,25,50 b)  

Figure 3.20: Comparison of two SNR parameters proposed in this 
section with the SNR defined by Hinken et al. (Equation 3.4) 

SNR ‘NLF, xBG’ is the only parameter, which remains stable for different 

ROI sizes. All other parameters increase for decreasing ROI sizes, 

indicating a background sensitivity. For ROIs smaller than or equal to the 

size of the PV module (ROI 46-50) most SNR remain constant and are 

practically identical. Only Hinkens SNR executed on two EL images 

overestimates the SNR for all ROI. These results allow the following 

conclusion: 

• SNR ‘cN, avg’ (Equation 3.16) returns the same values as Hinkens SNR 

(if executed on 10 images) but using only two EL images. A 

representative SNR should be calculated from an ROI without 

background areas. 

• SNR ‘NLF, xBG’ leads to similar results but is not influenced by 

background area. 

3.2.6 SECTION SUMMARY 

This section discussed different methods to calculate signal and noise 

ratio (SNR) using one to three EL images. Methods to filter the signal from 

erroneous values were presented.  

It was proposed to calculate the SNR from two EL images taken in series 

and one background image with the same exposure time. If only one EL 
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image and/or no background image are available, the SNR will be 

underestimated up to -7%. The proposed SNR algorithm includes 

background exclusion (xBG) and the determination of a noise-level-

function (NLF). The NLF describes noise as standard deviation over image 

intensity.  

However, the implementation of NLF and xBG is not trivial. A simplified 

SNR using a constant noise level and a spatial average (Equation 3.16) was 

found to underestimate the SNR by -11%. For this parameter, it is 

suggested to exclude background areas from the calculation. The current 

IEC 60904-13 draft suggests this method to measure image quality [46]. 

The SNR map represents a major part of the intensity uncertainty of raw 

EL images (Section 6.1). For the case of two available EL images (𝐼𝐼1, 𝐼𝐼2) and 

one background image (𝐼𝐼𝐵𝐵𝐵𝐵), it is proposed to calculate an SNR map as 

follows: 

 

𝑆𝑆𝑁𝑁𝑅𝑅𝑁𝑁𝐿𝐿𝑁𝑁 =
𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐

𝑁𝑁𝑁𝑁𝑥𝑥(𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐) (3.17) 

𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑥𝑥𝐼𝐼𝑁𝑁𝑥𝑥𝐸𝐸𝑅𝑅(0.5 ∙ (𝐼𝐼1 + 𝐼𝐼2) − 𝐼𝐼𝐵𝐵𝐵𝐵) (3.18) 

 

Herein the NLF should be fitted using Equation 3.14 and noise should be 

extracted from a difference image using Equation 3.12. FILTER describes 

a spatial noise filter. A simple, yet effective method using a median filter 

(kernel size = 3x3 px) and a more powerful combined filter (Figure 3.15) 

are proposed. Spatial resolved SNR (Equation 3.17) are further applied in 

Subsection 7.2.3.2 to map uncertainty. Its spatial average (using xBG) is 

used in Subsection 7.2.1.2 for image quality comparison.  

 Best Focus Determination 

Many EL camera systems use a manually focused lens in which the best 

sharpness is estimated by subjective comparison of images at different 

focus levels. In order to find the optimum focus, a parameter quantifying 
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the focus level can be helpful. Pertuz et al. compare various focus 

parameters obtained from a single image to their robustness to noise, 

image contrast, saturation and window size [63]. He concludes that 

Laplacian-based operators have the best overall performance but also that 

the operator performance depends strongly on the imaging setup. A 

selection of four promising parameters was chosen from this source for 

application to EL images. Two different CCD cameras (A, B) and four 

different PV technologies were compared. The focus level was manually 

changed to obtain 9 to 13 focal points before and behind the image plane. 

A sharp image was expected to be at position 5-7. Lower or higher 

positions should increasingly blur the image. The comparison (Figure 

3.21) shows that the gradient-magnitude-based ‘Tenengrad’ is the only 

parameter with the expected single maximum, indicating best focus. The 

Tenengrad of an image (𝐼𝐼) is defined as follows: 

 

Tenengrad(𝐼𝐼) = mean(𝐵𝐵𝑒𝑒2 + 𝐵𝐵𝑦𝑦2) (3.19) 

 

𝐵𝐵𝑒𝑒 = �
−1 0 +1
−2 0 +2
−1 0 +1

� ⊗ 𝐼𝐼      and     𝐵𝐵𝑦𝑦 = �
−1 −2 −1
0 0 0

+1 +2 +1
� ⊗ 𝐼𝐼 

(3.20) 

 

𝐵𝐵𝑒𝑒 and 𝐵𝐵𝑦𝑦 are the approximated horizontal and vertical image gradients 

obtained from convolution (⊗) of an image with a 3x3 kernel (Sobel 

operator [64]).  

The trend of the absolute Tenengrad for all different focus levels (Figure 

3.21a) is shown in Figure 3.22. The value range differs between the 

examined images. Therefore, Tenengrad cannot be used to calculate the 

absolute image sharpness. For this, different methods are detailed in 

Section 3.4. 
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a) Camera A, poly-Si module 

 
b) Camera B, EFG mini module 

 
c) Camera A, CIGS module 

 
d) Camera B, c-Si test cell 

 
Figure 3.21: Comparison of four focus parameters on two cameras and 
four PV technologies on 9 to 13 focus positions; all values normalised 
to their maximum 
  

 

  
                   a) EFG cell 

 
                   b) polycrystalline Si module 

  
                    c) CIGS module 

Figure 3.22: EL image images at different focal positions; green box: 
area of image detail; green plot: absolute Tenengrad of the image detail 
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 Image Sharpness 

Every camera based measurement system, including electroluminescence 

imaging, is prone to blur. The precise determination of sharpness can be 

used to define the resolvable object size, to measure position uncertainty, 

to sharpen images and to compare images. This section provides 

procedures for quantifying and measuring image sharpness without the 

need for specialised measurement equipment. Five different approaches 

to measure the modulation transfer function (MTF) and point spread 

function (PSF) on synthetic patterns and EL images are discussed. If the 

PSF is defined by its standard deviation, the measurement results differ 

less than ±5 % in the majority of cases. A parameter defining the smallest 

resolvable object size (𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂) is introduced. It enables direct scaling of the 

effective resolution of different imaging systems and thus opens the 

possibility to compare images with much higher precision. With this, 

detailed fault analysis of PV devices from different EL imaging systems 

becomes possible. 

3.4.1 INTRODUCTION 

Even taken in focus, luminescence images remain somewhat blurred due 

to the remaining focal mismatch, diffraction, chromatic aberration, 

photon scattering, light trapping and electrical smearing [65–67]. The 

Tenengrad parameter can be used as a scene dependent sharpness 

measure to determine the best camera focus (Section 3.3). In contrast to 

this, this section focusses on the measurement of scene independent 

sharpness parameters.  

The absolute image sharpness is essential to: 

•    Classify the quality of a measurement system. 

•    Sharpen images using deconvolution. 

•    Calculate the position uncertainty of the EL signal.  

•    Quantitatively compare images acquired by different labs  

   (Section 3.4.6). 
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•    Determine whether features (cracks, disconnected fingers) can 

actually be resolved (Subsection 3.4.6.2). 

The latter problem can be explained with the following example: If EL 

images of the same device but taken with different imaging systems are 

analysed, the image resolution or sharpness can differ. These differences 

can lead to artefacts in the difference image (Figure 3.23), making a 

comparison difficult or impractical.  

 

 
Figure 3.23: Explanatory line plots along the same edge in a sharp and 
a blurry image (A,B); Difference image (A-B) 

Figure 3.24 shows two EL images (A,B), taken at different times during an 

accelerated ageing test. Both images show the same cell, but have a 

different resolution (𝐼𝐼) and sharpness, defined by the standard deviation 

of a Gaussian blur kernel (𝜎𝜎𝐵𝐵).  

 

 
Figure 3.24: EL images A,B (a,d) and their differences without (b,e) and 
with sharpness correction (c,f); colour scale is identical for (b,c) and 
(e,f) 
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A difference of both images (e) or image (A) with different r and 𝜎𝜎𝐵𝐵 values 

(b) shows that high gradient variations such as cell edges, busbars or 

disconnected fingers distort the difference image. After both images are 

brought to the same (lower) sharpness level (Subsection 3.4.6.3), only 

signal changes remain (c,f). 

This section gives an overview of relevant sharpness functions and 

parameters used to classify EL images. Thereafter, two sharpness novel 

measurement methods are introduced and compared with three (partly 

modified) methods from literature. Finally, an algorithm is introduced to 

equalize absolute sharpness of images even at different image resolutions 

and blur. 

3.4.2 SHARPNESS FUNCTIONS 

The sharpness measurement methods in Subsection 3.4.4 are based on 

different functional expressions of image sharpness. Description and 

conversion of these functions is content of this subsection.   

3.4.2.1 POINT SPREAD FUNCTION 

The point spread function (PSF) describes the response of an imaging 

system to a point source (convolution, Figure 3.25). Its inverse, image 

deconvolution, can be used to increase the image contrast and quality. 

 

 
Figure 3.25: Image as convolution of an object or sharp image with a 
PSF 
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3.4.2.2 LINE SPREAD FUNCTION  

The line spread function (LSF) is the 1D integral of the 2D PSF along a 

specified angle or edge orientation (𝛼𝛼) with R being its rotation matrix: 

 

𝑁𝑁𝑆𝑆𝑥𝑥𝛼𝛼 = �𝑅𝑅 × 𝑃𝑃𝑆𝑆𝑥𝑥(𝑥𝑥,𝑦𝑦) 𝑠𝑠𝑥𝑥          𝑅𝑅 = �
cos (𝛼𝛼) −sin (𝛼𝛼)
sin (𝛼𝛼) cos (𝛼𝛼) � (3.21) 

 

For a representative LSF, the result has to be averaged for multiple angles: 

 

𝑁𝑁𝑆𝑆𝑥𝑥 = mean𝛼𝛼=0𝛼𝛼=2𝜋𝜋(𝑁𝑁𝑆𝑆𝑥𝑥𝛼𝛼) (3.22) 

 

The inverse operation 𝑃𝑃𝑆𝑆𝑥𝑥 = 𝑓𝑓𝑛𝑛(𝑁𝑁𝑆𝑆𝑥𝑥) is detailed in [68]. 

3.4.2.3 MODULATION TRANSFER FUNCTION 

The performance of an imaging system is often evaluated using the 

modulation transfer function (MTF) [69]. It describes the change of 

contrast of a number of black and white lines (resp. cycles) per length or 

cycle frequency (cy). That frequency is often expressed relative to pixel 

size [
𝑐𝑐𝑦𝑦
𝑚𝑚𝑚𝑚

] or picture height [
𝑐𝑐𝑦𝑦
𝑃𝑃𝐻𝐻

]. In this section, the MTF is defined as the 

number of cycles per pixel [
𝑐𝑐𝑦𝑦
𝑚𝑚𝑒𝑒

] since the physical length [mm] is separated 

in Equation 3.31. The theoretical maximum frequency, according to the 

Nyquist sampling theorem is 0.5 
𝑐𝑐𝑦𝑦
𝑚𝑚𝑒𝑒

 (one line every two pixels) [70]. 

The popular spoke pattern for sharpness measurement is shown in Figure 

3.26. MTF measurements follow the principle of measuring maximum 

(𝐼𝐼𝑚𝑚𝑚𝑚𝑎𝑎𝑒𝑒) and minimum (𝐼𝐼𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐) intensities on circles of different radii around 

the pattern centre and calculating the relative contrast as follows:  

 

𝑦𝑦𝑀𝑀𝑇𝑇𝑁𝑁 =  
𝐼𝐼𝑚𝑚𝑚𝑚𝑎𝑎𝑒𝑒 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐
𝐼𝐼𝑚𝑚𝑎𝑎𝑒𝑒 + 𝐼𝐼𝑚𝑚𝑖𝑖𝑐𝑐

 (3.23) 

 

The MTF measurement procedure is further described in [71]. 
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Figure 3.26: Spoke target (left), its image (middle) and example line 
plots (top right) used to calculate the MTF (bottom right) 

The MTF can also be obtained from the absolute of the complex Discrete 

Fourier Transform (DFT) of the LSF [72]: 

 

𝑥𝑥𝑥𝑥𝑥𝑥 = |DFT(𝑁𝑁𝑆𝑆𝑥𝑥)| (3.24) 

 

In this conversion, information regarding the phase shift (phase transfer 

function, PhTF) from the LSF is lost. Together, phase shift and modulation 

build up the optical transfer function (OTF). Therefore, to obtain the LSF 

back from a MTF, the PhTF will be assumed to be coequally increasing for 

increasing spatial frequencies: 

 

𝑃𝑃ℎ𝑥𝑥𝑥𝑥 =
𝜋𝜋
𝑛𝑛

[0, i,−(i + 1), (i + 2) ,−(i + 3), … ]𝑖𝑖=0𝑖𝑖=𝑐𝑐 (3.25) 

𝑂𝑂𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑥𝑥𝑥 ∙ 𝑒𝑒√−1∙𝑃𝑃ℎ𝑇𝑇𝑁𝑁 (3.26) 

𝑁𝑁𝑆𝑆𝑥𝑥 = DFT−1(𝑂𝑂𝑥𝑥𝑥𝑥) (3.27) 

Where:    

𝑛𝑛  Number of MTF data points 
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3.4.3 SHARPNESS PARAMETERS 

3.4.3.1 STANDARD DEVIATION OF A GAUSSIAN PSF (𝜎𝜎𝐵𝐵) 

Often the PSF of cameras used for EL is assumed to be a radially-

symmetric Gaussian distribution [67, 73]. In this case the PSF is fully 

defined by its standard deviation (𝜎𝜎𝐵𝐵). 

3.4.3.2 LINE-WIDTH AT HALF CONTRAST (𝑤𝑤50) 

w50 is the width of a line within a line pattern that is still resolved with 

half its contrast (Figure 3.27). It can be obtained from the spatial 

frequency at which MTF is at 50% (𝑥𝑥𝑥𝑥𝑥𝑥50): 

  

𝑤𝑤50 =
1

2 ∙ 𝑥𝑥𝑥𝑥𝑥𝑥50
 (3.28) 

 

 
Figure 3.27: Different line widths (w) of an imaged scene will be 
resolved with different contrast levels. 

If the PSF is assumed to be Gaussian distributed, w50 can be obtained 

numerically from σG . For σG > 1.15 px  the relationship is directly 

proportional (Equation 3.29):  
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Figure 3.28: Numerically calculated relationship between 𝛔𝛔𝐁𝐁 and 𝐰𝐰𝟓𝟓𝟓𝟓. 
Both fit equations described in Equation 3.29 

𝑤𝑤50(𝜎𝜎𝐵𝐵) =

⎩
⎪
⎨

⎪
⎧ 2, 𝜎𝜎𝐵𝐵 < 0.5

�𝑜𝑜𝑂𝑂 ∙ 𝜎𝜎𝐵𝐵𝑂𝑂 , 0.5 ≤ 𝜎𝜎𝐵𝐵 < 1.15
𝜎𝜎𝐵𝐵

0.3746
, 𝜎𝜎𝐵𝐵 ≥ 1.15

 (3.29) 

 Where: 

𝒋𝒋 4 𝟑𝟑 𝟐𝟐 1 0 

𝑜𝑜𝑖𝑖 -2.234 5.534 -2.206 -0.832 2.415 

3.4.3.3 SMALLEST RESOLVABLE OBJECT SIZE (𝑈𝑈𝑐𝑐𝑏𝑏𝑂𝑂) 

When referring to the number of resolvable features in an imaging 

system, the size of a pixel (𝑈𝑈𝑚𝑚𝑒𝑒) is a common metric. It can be obtained 

from the width of the imaged scene (𝑤𝑤𝐼𝐼) and the resolution in x-axis (𝐼𝐼𝑒𝑒). 

 

𝑈𝑈𝑚𝑚𝑒𝑒 =
𝑤𝑤𝐼𝐼 [mm]
𝐼𝐼𝑒𝑒 [px]

 (3.30) 

 

However, even when in focus, image digitalization and lens diffraction 

limit the sharpness of an imaging system. A more suitable parameter 

introduced in this work is the smallest resolvable object size (𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂). It is 

defined as pixel size of a perfectly sharp image that resolves the same 

information as the blurry image taken. It can be obtained from scaling 𝑈𝑈𝑚𝑚𝑒𝑒 

with the resolution factor (𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠): 
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𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 = 𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠 ∙ 𝑈𝑈𝑚𝑚𝑒𝑒 (3.31) 

 

Images of the same 𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 resolve their image scene to the same quality 

(Figure 3.29). This is important when evaluating images of different 

resolution and sharpness.  

 

 
Figure 3.29: Schematic of the concept of smallest resolvable object size 

3.4.4 SHARPNESS MEASUREMENT 

3.4.4.1 MASKING EL DEVICES 

A major difference between conventional optical imaging and EL is the 

light source. In conventional images, the captured light is reflected from 

a light source (sun or artificial light); whereas EL measures the light source 

itself. Therefore, transmittance rather than reflection patterns must be 

measured for EL image quality assessment.  

These patterns can be made by masking the measured device with a flat, 

opaque object or by putting a printed (paper) mask on top of the device. 

 

Printed paper 
 

 

 
Opaque object 

Figure 3.30: Schematic of the formation of a relative image from 
multiple (un-)masked EL images; the green areas are not suitable for 
sharpness measurement 

A relative image, scaled from 0-1, can then be calculated as follows: 
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𝐼𝐼𝑐𝑐𝑚𝑚𝑐𝑐1 =
𝐼𝐼𝑚𝑚1 − 𝐼𝐼𝑚𝑚2
𝐼𝐼𝑚𝑚0 − 𝐼𝐼𝑚𝑚2

 (3.32) 

 

𝐼𝐼𝑐𝑐𝑚𝑚𝑐𝑐2 = 1 −
𝐼𝐼𝐸𝐸𝐿𝐿 − 𝐼𝐼𝑚𝑚
𝐼𝐼𝐸𝐸𝐿𝐿 − 𝐼𝐼𝑏𝑏𝑔𝑔

 (3.33) 

3.4.4.2 METHOD A: LSF MEASUREMENT USING EDGE SPREAD 

Three papers, written by Walter, Teal, Breitenstein et al. determine the PSF 

as a transformation of a measured LSF, taken from a wafer edge or a 

masked area on top of a wafer [66, 68, 74]. This measurement neglects 

radial variation of the PSF but calculates the point spread even for larger 

distances (up to 500 px) from the edge. Since EL intensity deviations 

influence the measurement and a uniform emitter might not be available 

(for instance sharpness measurement on thin film devices), this method 

is applied to the relative image (𝐼𝐼𝑐𝑐𝑚𝑚𝑐𝑐2) rather than the image itself. 

3.4.4.3 METHOD B: MTF MEASUREMENT USING V-CUT 

A opaque material (such as two metal plates or metal tape) is placed on a 

PV device and forms two sharp, crossing edges (Figure 3.31a). The pixel 

intensity along the red line (𝑁𝑁2) does not change abruptly from bright to 

dark towards the intersection of both edges (𝑁𝑁1, 𝑁𝑁3). Instead, the blurriness 

of the image mitigates this transition (Figure 3.31e).  
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Figure 3.31: MTF measurement schematic for V-cut method;                      
a) EL image; b) Relative image (𝑰𝑰𝒓𝒓𝒓𝒓𝒓𝒓); c) Edge gradient image (𝑮𝑮𝑬𝑬𝑬𝑬𝑬𝑬𝒓𝒓) to 
detect edge lines (𝑵𝑵𝟏𝟏, 𝑵𝑵𝟑𝟑); d) 𝑰𝑰𝒓𝒓𝒓𝒓𝒓𝒓 detail; e) Image intensity along middle 
line (𝑵𝑵𝟐𝟐) 

The edge lines (𝑁𝑁1, 𝑁𝑁3) run through the local maxima of an edge gradient 

image (Figure 3.31c), calculated from the first derivate (Sobel filter, 

Section 3.3) in horizontal (𝐵𝐵𝑒𝑒) and vertical direction (𝐵𝐵𝑦𝑦): 

 

𝐵𝐵𝐸𝐸𝑚𝑚𝑔𝑔𝑚𝑚 = �𝐵𝐵𝑒𝑒2 + 𝐵𝐵𝑦𝑦2 (3.34) 

 

The MTF can be expressed as the image intensity from the intersection 

point (𝑃𝑃0) towards (𝑃𝑃2) over the inverse cut radian, defined by the distance 

from intersection (𝐼𝐼) and its angle (𝛼𝛼): 

 

𝑥𝑥𝑀𝑀𝑇𝑇𝑁𝑁 =
1

2 ∙ 𝐼𝐼 ∙ 𝛼𝛼
 (3.35) 

 

𝑦𝑦𝑀𝑀𝑇𝑇𝑁𝑁 = 𝐼𝐼𝑐𝑐𝑚𝑚𝑐𝑐2[𝑃𝑃0𝑃𝑃2]������� (3.36) 

 

Multiple measurements at different positions and rotation angles should 

be averaged in order to average out individual deviations. It was found 

that a bi-directional moving average is suitable to smooth the slope of 

𝑦𝑦𝑀𝑀𝑇𝑇𝑁𝑁 (Figure 3.32).  

 



Chapter 3: Camera Calibration 
Section: 3.4: Image Sharpness 

 

 © Karl Bedrich - April 2017 75 

 

 
Figure 3.32: Example result of MTF obtained with 3 V-cut 
measurements; red: Averaged and smoothed result 

In order to obtain a reliable measurement result, at least five 

measurements should be averaged. The opening angle (𝛼𝛼 ) should be 

between three and five degrees. The optical conditions of this 

measurement deviate to a spoke-target-based measurement (method C). 

Therefore 𝑥𝑥𝑀𝑀𝑇𝑇𝑁𝑁  has to be scaled accordingly. More information on 

measurement number, opening angle and 𝑥𝑥𝑀𝑀𝑇𝑇𝑁𝑁 scaling can be found in 

Appendix 4.3. 

3.4.4.4 METHOD C: MTF MEASUREMENT USING SPOKE TARGET 

In this method, the EL device is masked with a printed spoke target 

pattern (Figure 3.26). An additional glass plate, put on top of the paper, 

reduces the space between paper and PV device.  

Since EL travels through the paper and glass, a contrast image using an 

unmasked and masked EL image results in an inhomogeneous and 

blurred relative image. Its MTF cannot be used. If however the relative 

image is created according to Equation 3.32, using a blank paper (𝐼𝐼𝑚𝑚0), the 

printed spoke pattern (𝐼𝐼𝑚𝑚1) and a fully black paper (𝐼𝐼𝑚𝑚2), its relative image 

(𝐼𝐼𝑐𝑐𝑚𝑚𝑐𝑐1) is properly scaled between 0-1 and EL intensity deviations can be 

neglected (Figure 3.33). 

 

 
Figure 3.33: Different paper masks on top of a PV device and resulting 
relative image (right) 
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The spatial frequency (𝑥𝑥𝑀𝑀𝑇𝑇𝑁𝑁) is calculated by the ratio of cycles (number 

of bright and dark line pairs) around the circumference of a circle of a 

given radius (𝐼𝐼):  

 

𝑥𝑥𝑀𝑀𝑇𝑇𝑁𝑁 =  
𝑛𝑛𝑐𝑐𝑦𝑦𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠
2 ∙ 𝜋𝜋 ∙ 𝐼𝐼

 �
𝑜𝑜𝑦𝑦
𝑈𝑈𝑥𝑥
� (3.37) 

 

Since 𝐼𝐼𝑐𝑐𝑚𝑚𝑐𝑐1 is already scaled, Equation 3.23 simplifies to:  

 

𝑦𝑦𝑀𝑀𝑇𝑇𝑁𝑁1 =  𝐼𝐼𝑚𝑚𝑚𝑚𝑎𝑎𝑒𝑒 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐 (3.38) 

 

However, the exclusive focus on maximum and minimum values causes 

an overestimation of the contrast if the peak value is not yet influenced 

by blur (Figure 3.34). In this case, contrast (𝑦𝑦𝑀𝑀𝑇𝑇𝑁𝑁) is better-defined using 

the mean of peak average (green/red areas), which improves extreme 

value behaviour of the MTF trend (see Section 3.4.4.2): 

 

𝑦𝑦𝑀𝑀𝑇𝑇𝑁𝑁2 =  
𝐼𝐼𝑚𝑚𝑚𝑚𝑎𝑎𝑒𝑒 + mean(𝐼𝐼ℎ𝑖𝑖𝑔𝑔ℎ)

2
−
𝐼𝐼𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐 + mean(𝐼𝐼𝑐𝑐𝑐𝑐𝑙𝑙)

2
 (3.39) 

 

 
Figure 3.34: Schematic of image contrast calculation using spoke target, 
referring to Equation 3.38 and 3.39 

Since 𝑦𝑦𝑀𝑀𝑇𝑇𝑁𝑁2 is calculated from an average of every single pair of bright and 

dark lines, the resulting MTF has a higher accuracy and noise stability in 

comparison to the MTF obtained from the V-cut method B. 
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3.4.4.5 METHOD D: PSF USING MULTIPLE PINHOLES 

The PSF can be measured directly by imaging a point light source. This 

can be for instance a halogen lamp behind an aperture in a dark room 

[75]. However, its measurement should be within the luminescence 

wavelength range due to the wavelength dependency of the PSF. 

A method for direct PSF measurement for module scale luminescence 

images was first suggested in [66]. It uses a single 100 µm pinhole to 

measure the PSF and a Lorenz fit to remove remaining noise. In this 

section, noise will be decreased by averaging up to 300 individual 

pinholes, each smaller than the pixel size. The pinholes were created with 

a needle piercing black flocked self-adhesive paper which was then taped 

onto a glass plate (Figure 3.35a). Figure 3.35b shows an EL image detail of 

the measurement at 200 s exposure time. The number of single-time-

effects (STE) requires an image correction beyond simple background 

removal (Section 4.1). Hot pixels were removed as described in Section 

4.4. 

 

 
a) Light image of pinhole 
mask 

 
b) EL image detail of PV device shining 
through pinholes, forming each a point 
spread function (green); red: single-
time-effect (imaging artefact) 

Figure 3.35:  Example images Method D 

After image correction, the local peaks were detected as values all higher 

than 20% of the image maximum above the background noise. A point-

distance filter ensured that every pinhole-PSF was only detected once. To 

map all PSF on top of each other, the centre of gravity of each PSF was 

chosen as origin. Sub-pixel interpolation was performed using third order 
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spline interpolation. As Figure 3.36 shows, the averaging procedure is 

suitable to reduce residual noise, even at low SNR. 

 

 𝜎𝜎𝐵𝐵 
[px]      1       2    4    8   16 Orig. 

 1 

 

 
 

2.25 

 3.75 

Figure 3.36: Intermediate PSF from averaging 1 to 16 pinhole PSF at 
SNR=2; Last column: Gaussian input PSF 

 

The measurement error was determined for a synthetic pinhole pattern 

(Table 3.4D) which was blurred with a Gaussian PSF. The RMSE between 

input and measured PSF might not decrease for increasing numbers of 

averaged pinhole PSF (Figure 3.37) for low SNR and sharp images (𝜎𝜎𝐵𝐵 ≤

1 𝑈𝑈𝑥𝑥). For higher 𝜎𝜎𝐵𝐵 and/or higher SNR the error decreases by around one 

magnitude after 50 pinhole averages. After 300 averages, the error 

decreases by 1.5 magnitudes. This is in accordance to a √𝑛𝑛 decrease, as 

expected for averaging Gaussian distributions. 

 

 
Figure 3.37: Simulation of the measurement error (RMSE) for direct PSF 
measurement from averaging multiple pinhole PSF using a synthetic 
measurement pattern (Table 3.4, D) 
 

As the RMSE is always above zero it is clear that noise remains to a certain 

extent, despite averaging. It can be removed with different filter and 
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averaging algorithms, which are applied in the method comparison 

(Subsection 3.4.5). Their description however is beyond the scope of this 

section. 

3.4.4.6 METHOD E: PSF USING DISK MASK 

As mentioned above, PSF recovery from a LSF assumes the PSF to be 

radially symmetric. This can lead to erroneous results (especially for 

image deconvolution). Instead of only measuring the LSF at a specified 

angle, Joshi at al. evaluate the LSF at all possible angles using a tiled 

calibration pattern (Figure 3.38a) [67]. For sharpness measurement on EL 

devices, the presented method E requires a flat, round, opaque object 

(such as a CD or disk shaped plate, Figure 3.38b).  

 

 

a) As used by [67, 70] 

 

b) Compact Disk, as used in this 
section 

Figure 3.38: Mask/pattern used to measure the LSF at different angles  

The following algorithm is used to recover the PSF from the edge spread 

around such an object:  

Capture one EL image of a PV device without (𝐼𝐼𝐸𝐸𝐿𝐿) and one or multiple 

images with added mask (𝐼𝐼𝑚𝑚) at different positions (Figure 3.39). 

The mask should be flat, opaque and ideally unreflective. The mask can 

be either a round disk (Figure 3.39) or a round hole within a metal plate. 

Only the round disk method is discussed here. To calculate the PSF:  

1. Calculate the relative image (𝐼𝐼𝑐𝑐𝑚𝑚𝑐𝑐2) (Equation 3.33).  

2. Remove lens distortion (Section 4.6). 
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3. Detect and cut out the area around circles. 

4. Convert 𝐼𝐼𝑐𝑐𝑚𝑚𝑐𝑐2  to the polar coordinate system to obtain the edge 

spread function for variable angles (𝛼𝛼) (Figure 3.40a). Set the origin 

to the circle centre. 

5. Calculate the image gradient in the y-axis (Sobel filter) to obtain the 

line spread function (LSF) (Figure 3.40b). 

6. Normalize the LSF, so that max(𝑁𝑁𝑆𝑆𝑥𝑥,𝛼𝛼) = 1 

7. Create an initial 𝑃𝑃𝑆𝑆𝑥𝑥𝑖𝑖𝑐𝑐𝑖𝑖𝑚𝑚  using an LSF average over 𝛼𝛼  using the 

method described in [68]. 

8. Obtain the desired 𝑃𝑃𝑆𝑆𝑥𝑥𝑚𝑚𝑖𝑖𝑠𝑠𝐻𝐻 by minimizing the following function: 

 

arg min
𝑃𝑃𝑆𝑆𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

{sum(𝑃𝑃𝑆𝑆𝑥𝑥𝑚𝑚𝑖𝑖𝑠𝑠𝐻𝐻,𝛼𝛼) − 𝑁𝑁𝑆𝑆𝑥𝑥(𝛼𝛼)} (3.40) 

 

 
a) EL image 

 
b) EL image with disk 
shaped mask 

 
c) averaged relative 
contrast image (𝑰𝑰𝒓𝒓𝒓𝒓𝒓𝒓𝟐𝟐) 

Figure 3.39: Masking a PV cell using a disk 
 

a)  

b)  

Figure 3.40: Example edge spread function (a) and its derivate, a line 
spread function (b) for variable angles (along x-axis) for PSF(B) shown 
in Figure 3.42 

To further clarify Equation 3.40, the calculation of the residual (to be 

minimised in order to find 𝑃𝑃𝑆𝑆𝑥𝑥𝑚𝑚𝑖𝑖𝑠𝑠𝐻𝐻) is shown in Figure 3.41. Step 1 below 

shows the sum along an angle (𝛼𝛼) of the PSF of the current iteration step 
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(i) to calculate the LSF. The difference between the calculated and 

measured LSF is then plotted along every angle used. The sum of all angle-

residuals then gives the actual residual (step 3) 

 

 
Figure 3.41: Schematic calculation of the residual for one angle (𝜶𝜶) and 
an intermediate 𝑷𝑷𝑷𝑷𝑵𝑵𝒊𝒊 

The optimization problem is nonlinear. It is solved using the Jacobian-

free Newton-Krylov method [76] and LGMRES as linear solver [77]. For all 

test cases, the solver converged after less than 5 iterations. 

The proposed method is verified using different generated PSFs as 

follows: 

1. Generate multiple 𝑃𝑃𝑆𝑆𝑥𝑥𝑐𝑐𝑐𝑐𝑖𝑖𝑔𝑔 (kernel size = 31 px)  

For every PSF: 

2. Draw a black circle into a white 500x500 px array. 

3. Convolute that array using the generated 𝑃𝑃𝑆𝑆𝑥𝑥𝑐𝑐𝑐𝑐𝑖𝑖𝑔𝑔 (Figure 3.25). 

4. Add Gaussian noise to the array, regarding SNR of 30. 

5. Calculate 𝑃𝑃𝑆𝑆𝑥𝑥𝑐𝑐𝑚𝑚𝑚𝑚 using the proposed method. 

6. Compare the RMSE for 𝑃𝑃𝑆𝑆𝑥𝑥𝑚𝑚𝑖𝑖𝑠𝑠𝐻𝐻 and 𝑃𝑃𝑆𝑆𝑥𝑥𝑖𝑖𝑐𝑐𝑖𝑖𝑚𝑚 to 𝑃𝑃𝑆𝑆𝑥𝑥𝑐𝑐𝑐𝑐𝑖𝑖𝑔𝑔 as: 

 

𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 = 100% ∙
𝑅𝑅𝑥𝑥𝑆𝑆𝐸𝐸𝑚𝑚𝑖𝑖𝑠𝑠𝐻𝐻 − 𝑅𝑅𝑥𝑥𝑆𝑆𝐸𝐸𝑖𝑖𝑐𝑐𝑖𝑖𝑚𝑚
𝑅𝑅𝑥𝑥𝑆𝑆𝐸𝐸𝑚𝑚𝑖𝑖𝑠𝑠𝐻𝐻 + 𝑅𝑅𝑥𝑥𝑆𝑆𝐸𝐸𝑖𝑖𝑐𝑐𝑖𝑖𝑚𝑚

 (3.41) 
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Figure 3.42: Comparison of different original and recovered PSF 
 

As shown in Figure 3.42, the shapes of all PSF can be recovered using the 

proposed method. The more a PSF deviates from a radially symmetric 

shape the higher is the improvement from this method in comparison to 

that in [68] (Table 3.3). 

Table 3.3: RMSE of recovered to original PSF and improvement from 
the proposed method, relative to the radially symmetric 𝑷𝑷𝑷𝑷𝑵𝑵𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 in 
[68]  

A        B    C D E    F 

𝑅𝑅𝑥𝑥𝑆𝑆𝑚𝑚𝑖𝑖𝑠𝑠𝐻𝐻 [%] 
0.07 

 
0.16 

 
0.11 

 
0.22 

 
3.40 

 
0.06 

 
𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 (mask=disk) [%] 

 
57.6 

 
21.2 

 
16.1 

 
29.3 

 
0.2 

 
15.2 

 
𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 (mask=hole) [%] 

 30.0 22.8 18.2 26.7 0.1 10.9 
 

 

Both mask types (disk or round hole) improved the result relative to the 

radially symmetric approach in [68]. On average 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 is higher if a disk 

shaped mask is used. It is assumed that a disk is advantageous to a hole 

due to the larger signal fraction leading to a higher SNR across the blurred 

edge. 
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Excluding PSF(E), the RMSE of all recovered PSF is far below one percent. 

This indicates the successful recovery of the original PSF. However, the 

intensity distribution from PSF(E) centre to border does not decrease as 

should in both 𝑃𝑃𝑆𝑆𝑥𝑥𝑚𝑚𝑖𝑖𝑠𝑠𝐻𝐻 and 𝑃𝑃𝑆𝑆𝑥𝑥𝑖𝑖𝑐𝑐𝑖𝑖𝑚𝑚. This shows certain PSF shapes (in this 

case an airy disk) will not be fully recoverable. Further investigation 

regarding shape limitation would be necessary, but is outside of the scope 

of this work. 

3.4.5 COMPARING SHARPNESS MEASUREMENT METHODS 

3.4.5.1 VALIDATION ON SYNTHETIC PATTERNS  

In order to validate the ability to measure sharpness using the methods 

discussed in the previous section, the methods were executed on 

synthetic patterns of a defined noise level and blurriness (Table 3.4). All 

guide lines or distances given to the computer algorithm were 

approximate since the precise position of pattern features is calculated 

by the algorithm itself.    

Table 3.4: Example synthetic patterns and given guide lines (red) used 
for validation (SNR=30, pattern size=501x501 px) 

Method           A            B              C  D E 

Pattern 

 

 

Output            LSF          MTF          MTF  PSF PSF 
 

The synthetic patterns were blurred with a radially symmetric PSF of a 

standard deviation (𝜎𝜎𝐵𝐵) between 0.5 and 4.5 px. The measured sharpness 

parameters were then transformed back to 𝜎𝜎𝐵𝐵 and plotted against each 

other for two different image noise levels (Figure 3.43).  
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Figure 3.43: Output vs input 𝝈𝝈𝑮𝑮  values for sharpness measurement 
method A-E applied to synthetic patterns shown in Table 3.4 

It was observed that all methods were able to recover the defined image 

sharpness to a certain extent. Methods A and C give the most accurate 

results. Method B slightly overestimates 𝜎𝜎𝐵𝐵 for values above 3.5 px. For 

𝜎𝜎𝐵𝐵 < 1 𝑈𝑈𝑥𝑥 method D can return values which are too high, especially for 

low SNR. This is due to noise affecting the detection of the pinhole centre 

of gravity in each individual PSF. This spatial variation results in 

erroneously larger averaged PSF. 

A direct comparison of the performance of the individual sharpness 

methods for three different 𝜎𝜎𝐵𝐵 is given in Figure 3.44. Therein, the MTF 

measured with method A-E was plotted with the one directly obtained 

from the Fourier transform of an LSF defined by the input 𝜎𝜎𝐵𝐵 (Equation 

3.24). For all three 𝜎𝜎𝐵𝐵, method B underestimates the contrast below 50%. 

This is because in this method only one bright line blurs into the 

background instead of the successively decreasing line widths of white 

and black lines (method C). Again, the resulting MTF of method A and C 

are closest to the original and both direct PSF measurement methods D 

0.5
1.5
2.5
3.5
4.5

0.5 1.5 2.5 3.5 4.5

A

0.5
1.5
2.5
3.5
4.5

0.5 1.5 2.5 3.5 4.5

B

0.5
1.5
2.5
3.5
4.5

0.5 1.5 2.5 3.5 4.5

C

0.5
1.5
2.5
3.5
4.5

0.5 1.5 2.5 3.5 4.5

D

0.5
1.5
2.5
3.5
4.5

0.5 1.5 2.5 3.5 4.5

E



Chapter 3: Camera Calibration 
Section: 3.4: Image Sharpness 

 

 © Karl Bedrich - April 2017 85 

 

and E underestimate the MTF and therefore underestimate the image 

sharpness. The relative deviation of method E is below 5% for 𝜎𝜎𝐵𝐵 at 2.25 

px and above.  
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Figure 3.44: Calculated modulation transfer functions (MTF, left) and 
their relative deviation (right) from the reference MTF (red) 

3.4.5.2 VALIDATION ON EL IMAGES  

Method A-E were also evaluated on an EL imaging system for PV modules. 

The camera focus was set to three different focal points F1-F3 (Figure 

3.45). 
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Figure 3.45: Camera focus used for comparison of sharpness 
measurement methods A-E 

In addition to dark current and un-masked EL image, one to four images 

were taken with masks added on top of the poly-Si module. The PV 

module was masked with flat metal plates (method A, B), a blank and two 

printed papers (method C), black-flocked paper, punctured with a needle 

to create ca. 300 pinholes and adhered to a glass plate (method D) as well 

as with a CD which is opaque in the IR (method E).    

Table 3.5: Image setup to evaluate measurement method A-E 

Method A B C D E 

Masked EL image 
(excerpt: Method D) 

     
Number of images  1 4 1 2 1 

Exposure time [s] 20 20 20 
200/ 

          400 
20 

Patterns/image 10 2 1 1 1 
 

The MTFs obtained from the imaging setups shown in Table 3.5 are 

detailed in Figure 3.46. In order to test under real life conditions, the 

exposure time of 20 s (excluding method D) was set short on purpose to 

get a comparatively low SNR of 30 for the EL images. The method to 

calculate the SNR used one EL and one background image. This method 

is described as ‘NLF, xBG’ in Section 3.1. 

In contrast to the theoretical evaluation discussed before, in this 

measurement the actual image sharpness is not known. Therefore, the 

deviation (Figure 3.46, right) is relative to the average of all the methods. 

For F1 and F2, all methods return similar MTFs with deviations mostly 
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below 10%. Only method B produces an obviously incorrect result for the 

heavily blurred F3.  
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Figure 3.46: Calculated modulation transfer functions (left) and their 
relative deviation (right) from the reference MTF (red) 

Method A and B have the highest deviations relative to the average, whilst 

deviations for method C and E are lowest. Image sharpness is 

underestimated for the sharpest focus F1 with method E. This might be 

caused by reflections between DUT and disk. Figure 3.43 however shows 

that this overestimation can be found in synthetic data as well. 

A qualitative comparison of the resulting PSF is shown in Figure 3.47.  
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 A B C D E 
 

F1 

 

F2 

F3 

Figure 3.47: Qualitative representation of directly measured or 
calculated PSF for focus F1-F3 

Since only method D and E measure the PSF, the PSF from the other 

methods was obtained from the transformations discussed in Subsection 

3.4.2. All PSF were normalised relative to their maximum value. The 

general trend for increasing PSF for F1 to F3 can be seen for all methods. 

For method C, the spoke target was not big enough to capture the entire 

MTF at F3. Its slope had to be extrapolated because no contrast values 

existed above 85%. This resulted in the MTF increase being too steep. 

Therefore, the transformed PSF was much too small and excluded from 

comparison. A comparison of the three derived image sharpness 

parameters 𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠, 𝜎𝜎𝐵𝐵 and 𝑤𝑤50 is given in Table 3.6. 

The application of PSF for image deconvolution is described in Section 

4.5.  
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Table 3.6: Comparison of image sharpness parameters for the imaging 
setup shown in Figure 3.45 

𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠 A B C D E 
F1 3.1 2.9 2.9 2.8 3.2 
F2 5.4 4.2 4.7 4.8 5.1 
F3 12.2 (170) 9.9 8.6 9.8 
𝜎𝜎𝐵𝐵      

F1 1.6 1.5 1.5 1.5 1.7 
F2 2.9 2.2 2.4 2.5 2.6 
F3 6.3 (87) 5.1 4.5 5.1 
𝑤𝑤50      
F1 4.3 4.1 4.1 3.9 4.5 
F2 7.6 5.8 6.4 6.6 7.0 
F3 16.8 (233) 13.6 11.9 13.5 
Relative to average 
F1 4.7% -2.9% -2.4% -6.1% 6.9% 
F2 13.9% -12.9% -4.0% 1.2% 4.1% 
F3 20.5% - -2.5% -14.8% -3.2% 

 

 

Within their individual limitations, all methods A-E can be used to 

measure image sharpness. In detail: 

Method A: Introduced in [74], this method yielded results within the 

expected range. If the PSF is assumed radially variable, the measurement 

has to be repeated for different edge angles. Nevertheless, method A will 

only produce radially invariant PSF (Figure 3.42).   

Method B: The simplicity of this method enables the measurement of the 

MTF without the need for specialised image processing software 

(Appendix 3). Only the image gradient and a plot of image intensities 

along a specified line are needed. However, this method requires multiple 

repetitions to reduce the error. An additional correction (Appendix 4.3.3) 

must to be applied to acquire similar results to method C. In addition, the 

image contrast below 50% is mostly underestimated. 

Method C: As the results indicate, this de facto standard for image 

sharpness measurement can be applied to EL imaging as well, using a 

relative image (Figure 3.30). With measuring peak minima, maxima and 

averages, this method cannot be executed easily by hand. The printed 

resolution of the pattern will additionally limit the application, especially 
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for high resolution EL (for instance on PV cells). Nevertheless, its noise 

stability and the small deviations relative to the other methods make this 

the preferred method for MTF measurement.  

Method D: The results obtained with the only direct PSF measurement are 

within the expected range. However, 10-20 times longer exposure times 

were required to reach a sufficient SNR. Additionally, the need for the 

measured pinholes to be smaller than pixel size can cause problems when 

measuring small scale or high-resolution systems.  

Method E: By evaluating the edge spread along the disk mask, this method 

can restore radially variable PSF without the need for long exposure times. 

The simple measurement setup and readily available round and flat 

objects (such as compact discs) make this method the preferred option 

for PSF measurement. 

3.4.6 COMPARING IMAGES AT DIFFERENT SHARPNESS 
LEVELS 

3.4.6.1 RELATION BETWEEN RESOLUTION FACTOR AND IMAGE 
SHARPNESS  

If it is assumed that a measured unsharp image can be described as a 

convolution of a sharp image with a Gaussian blur kernel (with 𝜎𝜎𝐵𝐵 as its 

standard deviation), the resolution factor 𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠 can be obtained as follows: 

1. Generate a high resolution image (𝐼𝐼ℎ𝑖𝑖𝑔𝑔ℎ , Figure 3.48) of resolution 

(𝐼𝐼ℎ𝑖𝑖𝑔𝑔ℎ). 

2. Create 𝐼𝐼𝑐𝑐𝑐𝑐𝑙𝑙  by down-sampling 𝐼𝐼ℎ𝑖𝑖𝑔𝑔ℎ , where 𝐼𝐼𝑐𝑐𝑐𝑐𝑙𝑙 = 𝑐𝑐ℎ𝑑𝑑𝑖𝑖ℎ
𝑑𝑑𝑟𝑟𝑐𝑐𝑑𝑑

. Interpolate the 

pixel values of 𝐼𝐼𝑐𝑐𝑐𝑐𝑙𝑙 using the pixel-area relation method [78]. 

3. Scale 𝐼𝐼𝑐𝑐𝑐𝑐𝑙𝑙  back to 𝐼𝐼ℎ𝑖𝑖𝑔𝑔ℎ  by up-sampling using bilinear interpolation. 

This creates a low quality image of the same size as 𝐼𝐼ℎ𝑖𝑖𝑔𝑔ℎ. 

4. Find 𝜎𝜎𝐵𝐵 as the standard deviation of the Gaussian blur kernel, where 

the average absolute deviation (AAD) of a Gaussian filtered 𝐼𝐼ℎ𝑖𝑖𝑔𝑔ℎ to 𝐼𝐼𝑐𝑐𝑐𝑐𝑙𝑙 

is minimal. The AAD is used instead of the more common RMSE due 

to its higher stability towards outliers [57]: 



Chapter 3: Camera Calibration 
Section: 3.4: Image Sharpness 

 

 © Karl Bedrich - April 2017 91 

 

 

arg min
𝜎𝜎𝐺𝐺

�AAD�Gaussian�𝐼𝐼ℎ𝑖𝑖𝑔𝑔ℎ,𝜎𝜎𝐵𝐵� − 𝐼𝐼𝑐𝑐𝑐𝑐𝑙𝑙�� (3.42) 

 

 
a) Circle pattern 

 
b) spoke target 

 
c) EL module 

Figure 3.48: Patterns used for calculating 𝝈𝝈𝑮𝑮 for given 𝒇𝒇𝒓𝒓𝒓𝒓𝒔𝒔 

This linear optimization problem (Equation 3.42) was solved using the 

Brent method [79]. The results obtained from the three chosen patterns 

(synthetic and real images) follow the same trend (Figure 3.49). This 

validates the dashed fit where 𝜎𝜎𝐵𝐵 is directly proportional to 𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠 (for 𝜎𝜎𝐵𝐵 >

1 ). For smaller 𝜎𝜎𝐵𝐵 , 𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠  approaches 1 (i.e. no resolution change) in a 

combined logarithmic-linear relation (Equation 3.43).  

 

 
Figure 3.49: 𝝈𝝈𝑮𝑮 trend for different 𝒇𝒇𝒓𝒓𝒓𝒓𝒔𝒔 using the patterns in Figure 3.48; 
yellow fit: Equation 3.43. 

This allows the conclusion that for a known standard deviation of a 

Gaussian PSF (𝜎𝜎𝐵𝐵) the equivalent resolution factor (𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠) can be determined 

using: 
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𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠(𝜎𝜎𝐵𝐵) = �𝑎𝑎 ∙ log𝑚𝑚(𝑏𝑏 ∙ 𝜎𝜎𝐵𝐵)  + 𝑜𝑜 ∙ 𝜎𝜎𝐵𝐵 −  𝑠𝑠, 𝜎𝜎𝐵𝐵 ≤ 1
𝑒𝑒 ∙ 𝜎𝜎𝐵𝐵 , 𝜎𝜎𝐵𝐵 > 1� ≈ 2𝜎𝜎𝐵𝐵 (3.43) 

 Where: a b c d e 

 0.591 10.482 1.494 1.005 1.937 
 

3.4.6.2 COMPARING BLURRED AND COEQUALLY SCALED IMAGES 

To highlight the concept of object resolution, a PV cell (Figure 3.50) was 

either blurred with 𝜎𝜎𝐵𝐵  or coequally down-scaled using Equation 3.43 

regarding equal 𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 (Equation 3.31). It was observed that the quality of 

the displayed features is practically identical.  

 

Original Blurred with 𝝈𝝈𝑮𝑮 Down-scaled with 𝒇𝒇𝒓𝒓𝒓𝒓𝒔𝒔 
𝑈𝑈𝑚𝑚𝑒𝑒 = 0.34 𝑚𝑚𝑚𝑚 

 

 
0.8 

 
1.5 

  a)  𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 = 0.5 𝑚𝑚𝑚𝑚 

 2.3 4.4 

b) 𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 = 1.5 mm 

  
 7.5 14.7 

c) 𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 = 5 mm 

  
Figure 3.50:  Comparison of the resolved features of a PV device image 
which is either blurred (middle) or coequally down-scaled (right) 
 

Fingers are distinguishable for a calculated object size 𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 = 0.5 𝑚𝑚𝑚𝑚. A 

coarser resolution of 𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 = 1.5 𝑚𝑚𝑚𝑚  only displays disconnected fingers 
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and partially cracks. At 𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 = 5 𝑚𝑚𝑚𝑚 only busbars and electrically isolated 

areas can be distinguished. 

3.4.6.3 EQUALIZING IMAGE SHARPNESS 

When comparing two EL images, it is beneficial to have both at the same 

image sharpness level. Otherwise difference images contain artefacts 

(Figure 3.23). The sharpness adjustment (Figure 3.24c,f) is made as 

follows:  

1. Calculate size ratio (𝑓𝑓) from resolution (𝐼𝐼) of the larger (A) and smaller 

(B) image: 

 

𝑓𝑓 =
𝐼𝐼𝑅𝑅
𝐼𝐼𝐵𝐵

 (3.44) 

 
2. Calculate blur due to the different resolutions using the inverse of 

Equation 3.43: 

 
𝜎𝜎𝑑𝑑 = 𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠

−1(𝑓𝑓) (3.45) 

 
3. Calculate the effective sharpness of image (B), if brought the same 

resolution as (A). If the PSF is assumed Gaussian distributed, its 

variances can be summed. The effective sharpness (𝜎𝜎𝑚𝑚𝑑𝑑𝑑𝑑,𝐵𝐵), using the 

sharpness of the smaller image (𝜎𝜎𝐵𝐵)  becomes:  

 

𝜎𝜎𝑚𝑚𝑑𝑑𝑑𝑑,𝐵𝐵 = �𝜎𝜎𝑑𝑑2 + 𝜎𝜎𝐵𝐵2 (3.46) 

 
4. If 𝜎𝜎𝑚𝑚𝑑𝑑𝑑𝑑,𝐵𝐵 < 𝜎𝜎𝑅𝑅 ,blur image (B) using the difference sharpness (𝜎𝜎𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑,𝐵𝐵): 

 

𝜎𝜎𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑,𝐵𝐵 = �𝜎𝜎𝑚𝑚𝑑𝑑𝑑𝑑,𝐵𝐵
2 − 𝜎𝜎𝑅𝑅2 (3.47) 

 
5. If 𝜎𝜎𝑚𝑚𝑑𝑑𝑑𝑑,𝐵𝐵 > 𝜎𝜎𝑅𝑅, blur image (A) using the difference sharpness (𝜎𝜎𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑,𝑅𝑅): 

 

𝜎𝜎𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑,𝑅𝑅 = �𝜎𝜎𝑅𝑅2 − 𝜎𝜎𝑚𝑚𝑑𝑑𝑑𝑑,𝐵𝐵
2 (3.48) 
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3.4.7 SHARPNESS ESTIMATION FROM IMAGE COMPARISON 

Subsection 3.4.4 focused on measuring image sharpness using different 

calibration images. If a calibration image is not available but instead a set 

of images displaying the same scene, image sharpness can still be 

calculated. For this, the following conditions should be fulfilled: 

1. The PSF is assumed to be Gaussian distributed and sharpness is 

defined by its standard deviation (𝜎𝜎). 

2. All images display the same scene at the same brightness and 

contrast. 

3. The PSF’s standard deviation of the sharpest image (𝜎𝜎𝑐𝑐𝑚𝑚𝑑𝑑,𝑎𝑎𝑏𝑏𝑠𝑠 ) is 

known. 

In this case, for every image (𝐼𝐼𝑖𝑖 ), difference sharpness (𝜎𝜎𝑖𝑖,𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑 ) can be 

calculated from the minimum of the following condition: 

 

𝜎𝜎𝑖𝑖,𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑 = argmin (𝐼𝐼𝑖𝑖 − Gaussian(𝐼𝐼0,𝜎𝜎𝑖𝑖,𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑) (3.49) 

 

This optimization problem can be solved using the Brent method [79]. 

From 𝜎𝜎𝑖𝑖,𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑  and the known sharpness of the sharpest reference image 

(𝜎𝜎𝑐𝑐𝑚𝑚𝑑𝑑,𝑎𝑎𝑏𝑏𝑠𝑠) the sharpness of every image can be calculated using: 

 

𝜎𝜎𝑐𝑐,𝑎𝑎𝑏𝑏𝑠𝑠 = �𝜎𝜎𝑖𝑖,𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑2 + 𝜎𝜎𝑐𝑐𝑚𝑚𝑑𝑑,𝑎𝑎𝑏𝑏𝑠𝑠
2 (3.50) 

 

Figure 3.51 shows given and calculated sharpness levels for a set of 

randomly blurred synthetic circle patterns. As Subfigure (b) shows, the 

values used to blur the patterns agree with those obtained from the 

presented method. However, if small and noisy patterns are used and the 

difference between 𝜎𝜎𝑐𝑐𝑚𝑚𝑑𝑑,𝑎𝑎𝑏𝑏𝑠𝑠  and 𝜎𝜎𝑖𝑖,𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑  is relatively small, the estimated 

sharpness levels can be erroneous. In Subfigure (c) 𝜎𝜎𝑐𝑐𝑚𝑚𝑑𝑑,𝑎𝑎𝑏𝑏𝑠𝑠 was set to 1.5 

px (from 1 px in (b)). This caused 𝜎𝜎𝑖𝑖,𝑎𝑎𝑏𝑏𝑠𝑠 closest to 𝜎𝜎𝑐𝑐𝑚𝑚𝑑𝑑,𝑎𝑎𝑏𝑏𝑠𝑠 (position 7) to be 

underestimated. 
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a)       

b)  

c)  

Figure 3.51 Result of sharpness estimation from image comparison;      
a) synthetic circle patterns (SNR=15, resolution=100x100 px), blurred 
with different randomly chosen 𝝈𝝈; b) comparison of given to obtained 
𝝈𝝈 ; c) same as (b), but 𝝈𝝈𝟓𝟓,𝒂𝒂𝒂𝒂𝒔𝒔=1.5 px instead of 1 px (position i=3);  
Note that values are discrete and lines are only to guide the eye 

3.4.8 SECTION SUMMARY 

This section gave an overview of different functions and parameters used 

to describe image sharpness as well as their transformation into each 

other.  

Five different sharpness measurement methods were presented and 

compared width synthetic patterns and EL images. The best method for 

measuring image sharpness depends on the parameter to be measured. 

To measure the modulation transfer function (i.e. image contrast over a 

spatial frequency) the best results were obtained using a printed spoke 

target on top of the PV device. To measure a radially variable point spread 
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function, masking a PV device with a flat disk (such as a CD) provides a 

simple measurement setup which returns precise results. 

Furthermore, the smallest resolvable object size (𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂) was introduced. It 

enables comparison of the effective resolution of different imaging 

systems. The section described how to equalize the sharpness of images 

taken with different cameras. These techniques reduce image artefacts in 

difference images, improving the precision of the image comparison. An 

additional method of extracting sharpness from a set of equivalent 

images was presented in the case that no calibration images to measure 

sharpness exist.  

 Lens distortion 

The shape of the camera lens used and positioning errors during the 

assembly of the camera can result in radial and tangential distortion 

respectively (Figure 3.52). 

 

  
a) Radial distortion (green: positive, 
red: negative, black: no distortion) 

  
b) tangential distortion (red: 
with, black: without distortion) 

Figure 3.52: Types on lens distortion 

The spatial correction of the radial distortion can be described using [80]: 

 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥 ⋅ (1 + 𝑘𝑘1𝐼𝐼2 + 𝑘𝑘2𝐼𝐼4 + 𝑘𝑘3𝐼𝐼6) (3.51) 

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑦𝑦 ⋅ (1 + 𝑘𝑘1𝐼𝐼2 + 𝑘𝑘2𝐼𝐼4 + 𝑘𝑘3𝐼𝐼6) (3.52) 

 

... and tangential distortion using:  
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𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥 + [2𝑈𝑈1𝑦𝑦 + 𝑈𝑈2(𝐼𝐼2 + 2𝑥𝑥2)] (3.53) 

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑦𝑦 + [2𝑈𝑈2𝑥𝑥 + 𝑈𝑈1(𝐼𝐼2 + 2𝑦𝑦2)] (3.54) 

Where:    

𝑥𝑥,𝑦𝑦   Original position in the image  

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚   Position after correction  

𝑘𝑘1,𝑘𝑘2,𝑘𝑘3,𝑈𝑈1,𝑈𝑈2   Distortion coefficients  

 

These five distortion coefficients along with image centre and focal length 

can be identified by several camera calibration techniques. One technique 

uses multiple images of a chessboard (for example 7x8) or alternatively a 

ring calibration pattern [81] in various angles and positions. It is 

recommended to keep the pattern size within 25-75% relative to the size 

of the image plane. To reduce the influence of corner detection errors and 

pattern inhomogeneity at least 15 images should be captured. 

In this work, images of an in-plane chessboard pattern (Figure 3.53) were 

captured. The Python interface of the C++ library OpenCV [64] was then 

used to detect inner chessboard corner points 

(cv2.findChessboardCorners and cv2.cornerSubPix). The camera 

matrix and distortion coefficients were obtained using 

cv2.calibrateCamera. [64] 

 

 
Figure 3.53: Four example images of an in-plane chessboard pattern at 
different positions and rotations used to calculate lens distortion  
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 In-Plane Flat Field Measurement 

3.6.1 INTRODUCTION 

The image intensity of EL images is largely influenced by off-axis 

illumination and camera sensor imperfections.  For quantitative EL 

imaging their correction is essential. If neglected, pixel intensities can 

vary significantly (>50%) across the image.  

Intensity modulating distortions can be categorised into optical 

aberrations and other imperfections such as vignetting and flare. Optical 

aberrations cause light to reach the sensor at slightly shifted locations, 

resulting in a less sharp and more distorted image. Vignetting causes the 

light to only partially reach the sensor, resulting in erroneous quantitative 

results. Since the use of EL imaging is evolving to emphasise quantitative 

analysis, such imperfections must be corrected for. This section evaluates 

methods for measuring and correcting illuminance inhomogeneities in 

the specialised field of luminescence imaging of PV devices.  

The inhomogeneities can be removed by dividing every (dark current 

corrected) EL image by a flat field image ( 𝐼𝐼𝑁𝑁𝑁𝑁 ). The 𝐼𝐼𝑁𝑁𝑁𝑁  describes the 

spatial non-uniformity of light detection. It is mainly caused by: 

1. Vignetting (natural, optical, mechanical): Inhomogeneous illumination 

of the sensor due to projection via the camera lens [72, 82], best 

described by the vignetting image (𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔) and 

2. Sensitivity: Pixel specific quantum efficiency of the camera sensor (and 

optical inhomogeneities, such as soiling), best described by the 

sensitivity image (𝐼𝐼𝑆𝑆, Figure 3.54): 

 

𝐼𝐼𝑁𝑁𝑁𝑁 = 𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔 ∙ 𝐼𝐼𝑆𝑆 (3.55) 

 

 
Figure 3.54: Creation of a flat field image 
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Figure 3.55 compares EL difference images of the same PV device taken 

under the same conditions, but at different positions within the image 

plane (row a). The images were background corrected [25, 33, 43], the lens 

distortion [64] was removed and the position of all images was 

unified [83]. An image with the most central position of the DUT was 

chosen as reference image. The absolute deviation between reference and 

other EL images is shown in row b. It reveals significant variations.  

The same deviation with additional flat field correction (before lens 

distortion removal) is shown in row c). Here, deviations are close to 

negligible. Row b and c have the same colour scale, which shows that flat 

field correction is essential for quantitative evaluation of EL images. 

 

 
Figure 3.55: Intensity of the same PV module imaged at (a) different 
positions and corresponding absolute intensity deviations (b) without 
and (c) with vignetting correction relative to the reference image  

The existing methods to obtain 𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔 and respective 𝐼𝐼𝑁𝑁𝑁𝑁 vary:  

For astronomy based applications, Howell uses the inside of a telescope 

dome or the dawn or dusk sky as homogenous sources for obtaining 𝐼𝐼𝑁𝑁𝑁𝑁 

[84]. Kang et al. extract 𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔 through imaging a sheet of white paper in the 

focal plane. There, 𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔 is calculated as function of off-axis illumination 
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(i.e. natural vignetting) and other vignetting [85]. This function is referred 

to as KW in Subsection 3.6.3. 

Unlike many other imaging techniques, EL imaging captures the light 

source itself and not its reflection. Therefore, many common flat field 

calibration methods cannot be directly adopted.  

A few papers have described flat field calibration for EL imaging so far:  

Flat field measurement with a ‘homogenous’ light source at short distance 

and out of focus of the camera was used in [8, 33]. It was reported that 

even a high resolution LCD flat panel, emitting red light at 612 nm, can 

be used as an approximation for measuring CdTe solar cells with a 

recombination peak at around 850 nm [86]. In this work, this method is 

referred to as X.  

A similar measurement with a ‘homogenous’ light source (such as rear 

contact solar cell) and with a defocussed lens is proposed by Köntges et 

al. [25]. Herein optical paths differ due to changed focus and no 

specification regarding distance between lens and light source is given. 

The same publication also proposes an ‘angle-of-view’ fit function. This 

function calculates the intensity decrease from a Lambertian surface for 

variable aperture angles. This method is used further on to fit measured 

image intensities. It is referred to as AoV in Subsection 3.6.3. 

In this section, it is assumed that the influence of pixel sensitivity (𝐼𝐼𝑆𝑆) is 

minor. Therefore, the focus is on five vignetting measurement methods 

(A-E) in comparison to the aforementioned method X. To improve results, 

different post processing methods are discussed and applied to the 

measurement result. The quality of vignetting removal of these 

measurement-post-processing combinations is evaluated in Subsection 

3.6.4. Finally, the acquisition of sensitivity images is described in 

Subsection 3.6.5. 

3.6.2 VIGNETTING MEASUREMENT 

Vignetting is measured on two module-scale EL imaging systems using 

different light sources. However, homogeneous sources of such size, 
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which emit similar spectra to PV DUTs, are rarely available. The following 

methods bypass this issue, through either correcting or averaging source 

inhomogeneity. All images taken were first corrected for dark current, by 

subtracting a background image (𝐼𝐼𝐵𝐵𝐵𝐵) taken at the same exposure time, 

before processing (Subsection 3.1 and 4.2).  

Camera aperture, exposure time, emitted waveband of the source as well 

as distance and orientation between source and camera influence the 

measured result. Their influence is analysed in Section 3.7. Here, it is 

assumed that the quality of vignetting characterisation depends on 

whether the optical properties of the imaged source are representative of 

a typical DUT’s luminescence. Therefore, it is advisable to perform 

vignetting measurements in the usual measurement plane, with the same 

camera parameters and the same wavelength range as the DUT.  

The imperfections causing vignetting and sensitivity inhomogeneities are 

temporally stable. Therefore, it is not required to repeatedly calibrate the 

system. However, temporal stability of the system components and 

reference conditions must be ensured during calibration. The camera is 

considered stable after it has reached a constant operating temperature. 

Time stable emission of the source must also be ensured for vignetting 

measurements. If a PV device is chosen as source, it should be kept in 

forward biased excitation until its temperature stabilizes. Especially in 

the case of metastable PV devices, the stability of emission must be 

checked after measurements. 

3.6.2.1 METHOD A: DIRECT MEASUREMENT AT SHORT DISTANCE 
WITH SPATIAL INHOMOGENEITY CORRECTION 

Similar to the aforementioned method X, this method images the source 

directly in front of the camera lens in order to blur out spatial 

inhomogeneities. However, even heavily defocussed, strong 

inhomogeneities in a PV module (such as wave-pattern from cell layout, 

see Figure 3.56a) remain. Therefore, a more uniform source (such as an 

LCD screen, see Figure 3.56b) is desirable. To the naked eye, these sources 
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may look uniform, however an intensity difference of up to 10%  was 

found for the same LCD source, when imaged at slightly different 

positions in front of the lens. An unintentionally introduced gap between 

source and lens also alters the result due to off-axis illumination (Figure 

3.56c).  

 

 
a) CIS PV module 

 
b) Red LCD screen 

 
c) Tilted LCD screen 

Figure 3.56: Method A, example images 

Therefore, method A images the source directly in front of the lens, but 

differs from method X in that a minimum of 10 (i=0 to 9) images of the 

source are taken, at different positions and rotation angles relative to the 

optical axis. It is assumed that spatial non-uniformity averages out. 

However, the angular dependency of the source will still affect the result, 

since the source is imaged out of the image plane. The vignetting 

calibration image (𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔) is then obtained from the mean along these images 

as follows: 

 

𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝑅𝑅,𝑠𝑠𝑚𝑚𝑚𝑚 = � 𝐼𝐼𝑖𝑖
𝑐𝑐

𝑖𝑖=1
 

𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝑅𝑅 =
𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝑅𝑅,𝑠𝑠𝑚𝑚𝑚𝑚

max�𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝑅𝑅,𝑠𝑠𝑚𝑚𝑚𝑚�
 

 

(3.56) 

The sum operator operates over all given images by the same pixel index 

and therefore returns an image. Finally, the image is normalised to 

obtain 𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝑅𝑅. 
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3.6.2.2 METHOD B: DISCRETE SPOT AVERAGE 

Method A measures vignetting directly in front of the camera. Hence, the 

direction of light rays differs to that in a standard measurement setup 

and can cause erroneous results. To measure vignetting in plane with the 

DUT, the calibration source is placed directly on a DUT mounted in the 

imaging plane. This aligns the optical axis between the camera and source 

as it will be for actual EL measurements. The source size should not 

exceed 10% of the image plane, to allow multiple images of it to be taken 

at different positions (Figure 3.57a). Using the following algorithm, a set 

of points (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 ,  𝑧𝑧𝑖𝑖 ) used to fit a vignetting function (Section 3.6.3) is 

obtained: 

For every image (𝐼𝐼𝑖𝑖) taken: 

1. Select foreground mask (𝑥𝑥𝑖𝑖) as all values higher than a threshold (𝑥𝑥𝑂𝑂𝑚𝑚𝑠𝑠𝑚𝑚) 

determined using Otsu’s method [87]:  

 

𝑥𝑥𝑖𝑖 = 𝐼𝐼𝑖𝑖 > 𝑥𝑥𝑂𝑂𝑚𝑚𝑠𝑠𝑚𝑚 (3.57) 

 

2. Filter small areas and select the largest masked/selected coherent 

pixel group (𝑥𝑥𝑖𝑖,𝑚𝑚𝑎𝑎𝑒𝑒) of size (𝑛𝑛). 

3. Extract the centre of gravity (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) and average intensity (𝑧𝑧𝑖𝑖 ) in the 

selected area: 

 

𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 =
1
𝑛𝑛
�𝑥𝑥𝑖𝑖,𝑚𝑚𝑎𝑎𝑒𝑒𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦 

 
(3.58) 

𝑧𝑧𝑖𝑖 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛(𝐼𝐼𝑖𝑖�𝑥𝑥𝑖𝑖,𝑚𝑚𝑎𝑎𝑒𝑒�) (3.59) 

 

The averaged intensities (𝑧𝑧𝑖𝑖) of all pixel groups are used to fit a vignetting 

equation [88]: 

 

𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝐵𝐵 = 𝑥𝑥𝐼𝐼𝑥𝑥(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖) (3.60) 

 

An example fit is shown in Figure 3.57b. 
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a) Image overlay from 31 
individual images (𝑰𝑰𝒊𝒊) 

 
b) Fitted vignetting image, using 
Kang-Weiss (see Subsection 3.6.3) 

Figure 3.57: Method B example result using a red mobile phone screen 
as light source 

This introduced method combines the simplicity of method A with in-

plane imaging. In doing so, it trades uncertainty due to out-of-plane 

imaging for uncertainty of the light sources temporal stability. Similarly, 

errors due to wavelength and angular differences remain. Additionally, 

using only a small number of images/locations to fit the whole image 

adds to the measurement uncertainty. 

3.6.2.3 METHOD C: LOCAL MAXIMUM OF MULTIPLE DUTS 

Often, EL images are provided without any (flat field) calibration images. 

In this case, vignetting correction for the measurement system can be 

extracted using EL images of different devices. If it is assumed that the 

local intensity deviation averages out with a large number of devices, the 

following algorithm may be used to obtain 𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝐶𝐶. For every image (𝐼𝐼𝑖𝑖): 

1. Apply Gaussian blur (set kernel size to 10% of image height) 

2. Scale 𝐼𝐼𝑖𝑖  to values 0…1 in order to average images of different 

devices, taken at different exposure times and/or with different 

applied currents: 

 

𝐼𝐼𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚 =
𝐼𝐼𝑖𝑖

max(𝐼𝐼𝑖𝑖)
 (3.61) 

 

3. Calculate 𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝐶𝐶  from moving maximum over all images (𝐼𝐼𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚): 
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 𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝐶𝐶[𝑥𝑥𝑖𝑖] = 𝐼𝐼𝑖𝑖.𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚[𝑥𝑥𝑖𝑖] ;    𝑥𝑥𝑖𝑖 = 𝐼𝐼𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚 > 𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝐶𝐶 (3.62) 

 

An example result of this method using post processing (POLY, 

Subsection 3.6.3) is shown in Figure 3.58.  

 

 
Figure 3.58: Method C example results; a) EL image set of different 
DUTs; b) 𝑰𝑰𝑽𝑽𝒊𝒊𝑬𝑬,𝑪𝑪 for 1st EL image; c) 𝑰𝑰𝑽𝑽𝒊𝒊𝑬𝑬,𝑪𝑪 for 20 images; d) 𝑰𝑰𝑽𝑽𝒊𝒊𝑬𝑬,𝑪𝑪 after post 
processing  

3.6.2.4 METHOD D: VIGNETTING-OBJECT SEPARATION FROM 
DISCRETE STEPS 

In contrast to Method C this method corrects for the DUT’s 

inhomogeneity not through averaging different devices, but through 

measuring average intensities of the same device at different predefined 

positions. 

This can be, for example, single cells of a c-Si based module. Multiple EL 

images of the DUT at different discrete locations within the image plane 

are taken (Figure 3.59a).  

 

a b c d 



Chapter 3: Camera Calibration 
Section: 3.6: In-Plane Flat Field Measurement 

 

 © Karl Bedrich - April 2017 106 

 

 
Figure 3.59: Method D schematic to obtain vignetting image 

In the example shown, the image plane is divided into a 13x13 grid of 

120x120 mm squares. The DUT is a 12x6 cell c-Si module. For each imaged 

position, the image intensity within each grid square is averaged. The 

result is assigned to a layer of the image stack (𝑆𝑆𝐵𝐵𝑐𝑐𝑖𝑖𝑚𝑚) incorporating the 

DUT and the image plane (Figure 3.59c). Areas imaging the background 

are excluded using a threshold condition (Subsection 3.2.4.1). In the 

example, 10 images (n=10) were used (only three shown for clarity). From 

the average over all grid images, an initial vignetting image (𝐼𝐼𝑐𝑐𝑖𝑖𝑔𝑔0) is built 

(Figure 3.59f). From the same stack, a new stack containing only DUT cells 

(𝑆𝑆𝐷𝐷𝑈𝑈𝑇𝑇) is created and cell positions (𝑃𝑃), needed to index the same areas in 

𝑆𝑆𝐵𝐵𝑐𝑐𝑖𝑖𝑚𝑚 and 𝑆𝑆𝐷𝐷𝑈𝑈𝑇𝑇, are extracted (Figure 3.59c,d).  

𝐼𝐼𝑐𝑐𝑖𝑖𝑔𝑔,𝐷𝐷 is then calculated iteratively with the iteration step (i) and the image 

index (c) as follows:  
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1. Extract the average DUT cell values: 

 

𝐼𝐼𝑎𝑎𝑐𝑐𝐷𝐷𝑈𝑈𝑇𝑇,𝑖𝑖 =
∑ � 𝑆𝑆𝐷𝐷𝑈𝑈𝑇𝑇[𝑜𝑜]

𝐼𝐼𝑐𝑐𝑖𝑖𝑔𝑔,𝑖𝑖[𝑃𝑃[𝑜𝑜]]�
𝑐𝑐=𝑐𝑐−1
𝑐𝑐=0

𝑛𝑛
 

(3.63) 

 

2. Create next vignetting map from average ratio between the DUT 

stack and the average cell values: 

 

𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝑖𝑖+1[𝑃𝑃[𝑜𝑜]] =
∑ �𝑆𝑆𝐷𝐷𝑈𝑈𝑇𝑇[𝑜𝑜]

𝐼𝐼𝑎𝑎𝑐𝑐𝐷𝐷𝑈𝑈𝑇𝑇,𝑖𝑖
�𝑐𝑐=𝑐𝑐−1

𝑐𝑐=0

𝑛𝑛
 

 

(3.64) 

3. Check iteration criterion using given threshold value (t): 

If ∑�𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝑖𝑖+1 − 𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝑖𝑖� > 𝑡𝑡  then go to step 1, else:  

 

𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝐷𝐷 =
𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝑖𝑖+1

max (𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝑖𝑖+1)
 (3.65) 

 

This method measures vignetting in plane and allows use of the same 

DUT for calibration and measurement. However, its result is a low-

resolution grid, which needs to be up-scaled to camera resolution. For 

this, bi-linear interpolation is used. Missing or incorrect areas within 𝐼𝐼𝑐𝑐𝑖𝑖𝑔𝑔,𝐷𝐷 

are corrected through post processing (Subsection 3.6.3). This method 

can be adjusted easily for different grid cell (and physical PV cell) sizes, 

but needs precise placement of the DUT in order to not affect the 

measured averages.  

3.6.2.5 METHOD E: VIGNETTING-OBJECT SEPARATION USING 
PATTERN RECOGNITION 

This method builds on method D. Instead of averaging DUT intensities 

within a predetermined grid, the translation and rotation of the DUT is 

detected within each EL image (𝐼𝐼𝑖𝑖) relative to a reference image (𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑) using 

pattern recognition (Subsection 4.7.2). This has two advantages:  
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• The DUT position within the image can be chosen randomly, provided 

that a good overall coverage of the measurement plane is achieved. 

• The resulting vignetting image has the same resolution as the input 

images. (for instance 3000x4000 vs 13×13 via method D) 

𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝐸𝐸 is obtained as follows (Figure 3.60): 

1. The DUT is imaged at different positions and (if needed – not required) 

angles within the image plane.  

𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑 showing most of the DUT (preferably without rotation) is selected 

for later pattern recognition. 

2. Similar to method C, an initial vignetting array is calculated from the 

moving maximum of each 𝐼𝐼𝑖𝑖 . Reasonable improvements to image 

quality are achieved for image areas that are covered by at least three 

DUT images. The resulting array is smoothed to reduce 

inhomogeneities. 

3. a) Each 𝐼𝐼𝑖𝑖  is transformed to the same perspective as 𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑  

(Subsection 4.7.2.1). 

b) Overall vignetting is extracted from the individual vignetting image 

from each rectified DUT image via inverse perspective transformation. 

4. Each rectified DUT image (a) is divided by each rectified vignetting 

array (b), respectively. The result is averaged to obtain the first 

vignetting corrected DUT image (c). 

5. Each rectified DUT image (a) is divided by (c) to recover each individual 

vignetting array. All arrays are perspective transformed into the 

original position using the same process as in step 3. 

Steps 4 and 5 are repeated until the difference between the last two 

vignetting arrays falls below a given iteration threshold.  

6. Empty areas are filled and inhomogeneities smoothed out in post 

processing (Subsection 3.6.3) to obtain 𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝐸𝐸. 
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Figure 3.60: Method E schematic to obtain vignetting image  

Figure 3.61 gives examples for images (a) and (c) from step 4, initial 

vignetting map from step 2 and final vignetting map from step 5 in Figure 

3.60. The DUTs shown in row I have each different sizes, relative to the 

image plane: Whilst the large CIS module extends above the image height, 

the small CIGS module occupies only a fraction of it. To improve pattern 

recognition on the (comparatively uniform) left-hand side CIS module, 

three distinctive marks were taped on the device. 
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Large CIS module Small CIGS module 
I. Rectified light sources (a, c) 

  
II. Initial vignetting map (step 2) 

  
III. Final vignetting map (step 5) 

  
Figure 3.61: Example results of method E 

3.6.3 POST PROCESSING 

All vignetting measurement methods result in either a vignetting image 

or discrete points. The vignetting images (methods A, C, E) may include 

noise and artefacts and may not cover the whole imaging area. 

Conversely, the discrete points (methods B and D) provide only a sample 

of the overall imaging area. Thus, depending on the vignetting 

measurement method, a degree of post processing is often required to 

obtain a usable vignetting correction image. Since the effect of vignetting 

is continuous, smoothing algorithms (or filters) or functional 

approximation can be used to obtain a smooth vignetting correction 

image. The following methods are compared:  

• RAW: resulting vignetting correction images from methods A-E 

without further processing 
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… with three functional approximations: 

• KW: Simplified Kang-Weiss vignetting Equation 3.66 from [88] 

• AoV: Angle-of-view equation from [25] and  

• POLY: 2nd order 2D polynomial fit 

… which are applied in two fashions: 

• = (replace): Every image pixel is replaced with a fitted value. 

• + (repair): Only empty areas are infilled with fitted values. For 

‘POLY repair’ this also includes high gradient areas. 

Finally, common filter algorithms are applied to ‘KW Repair’: 

• Gauss: Convolution with Gaussian kernel and 

• Median: Image pixels within same kernel are replaced with their 

local median 

Both filters use kernel size of 5% image width. The simplified Kang-Weiss 

vignetting equation from [88] is: 

 

𝐼𝐼𝑐𝑐𝑖𝑖𝑔𝑔 = 𝐴𝐴 ∙ (1 − 𝛼𝛼 ∙ 𝑠𝑠) (3.66) 

𝐴𝐴 =
1

�1 + �𝑠𝑠𝑓𝑓�
2
�
2 (3.67) 

𝑠𝑠 = �(𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2 (3.68) 

 

Where:    

𝑓𝑓   Focal length [px] 

𝑥𝑥0, 𝑦𝑦0   Image centre [px] 

𝛼𝛼   Geometric vignetting factor [-]  

 

Figure 3.62 illustrates example results of the post processing methods 

applied to two similar samples obtained using method E in different 

imaging setups (Centre for Renewable Energy Systems Technology UK, 

[CREST], Laboratory of Photovoltaics and Optoelectronics, SL [LPVO]). The 

upper part of the RAW vignetting image (a) was not characterised and 

remains black due to spatial constraints of the LPVO setup. Similarly, a 
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vertical line remains black in the RAW vignetting image (b) of the CREST 

setup. All post processing methods filled the black areas. Additionally, 

both RAW images still show some remaining patterns seen as vertical and 

horizontal lines. These are caused by misalignment errors after 

perspective transformation in method E. When post processing is applied 

in ‘+’ (repair) fashion, these artefacts remain, but when the ‘=’ replace 

fashion is used they disappear. ‘+POLY’ also smoothens out these high 

gradient variations. ‘Gauss’ and ‘median’ filtering of ‘+KW’ additionally 

blurs or even removes these artefacts. 

  

 
Figure 3.62: Comparison of different post processing methods applied 
to two similar samples on two different EL setups; Raw image obtained 
from method E; values scaled 50-100%; proposed post processing 
methods highlighted green 

Depending on the measurement method and quality of the RAW image, 

different post processing methods are found to be superior (see 

Subsection 3.6.4). In general, ‘+KW’ together with a Gaussian filter is 

proposed for filling empty areas and smoothing out measurement 

artefacts.  
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3.6.4 VIGNETTING COMPARISON 

The following algorithm to compare vignetting measurement methods 

and applicable post processing algorithms is similar to the presented 

method E. In the same way, multiple images of the DUT are taken at 

different (random) positions within the image plane (Figure 3.63a).  

 

 
Figure 3.63: Schematic of calculating error from residual vignetting 

Images are rectified using the same feature matching algorithm (b). From 

all rectified images (𝐼𝐼𝑖𝑖 ), an image average (𝐼𝐼𝑎𝑎𝑐𝑐𝑔𝑔 ) is built (c). A relative 

difference image (𝐴𝐴𝑖𝑖) is then calculated for each 𝐼𝐼𝑖𝑖 as follows: 

 

𝐴𝐴𝑖𝑖 =
𝐼𝐼𝑖𝑖 − 𝐼𝐼𝑎𝑎𝑐𝑐𝑔𝑔
𝐼𝐼𝑎𝑎𝑐𝑐𝑔𝑔

 (3.69) 

 

Misalignment errors after perspective transformation can cause high 

magnitudes along high gradient variation, such as at cell edges and 

busbars. To remove this influence, a cell average is performed. It results 

in a lower resolution image (e) which should only contain vignetting 

effects. A root-mean-square error (RMSE) of all cell-averaged difference 
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images finally returns the relative error caused by residual vignetting (𝑅𝑅). 

In the following comparison, this algorithm is performed first on 

uncorrected EL images to obtain the inherent setup vignetting error (𝑅𝑅𝑐𝑐𝑎𝑎𝑙𝑙), 

and then on all vignetting corrected images to obtain the residual 

vignetting error ( 𝑅𝑅𝑖𝑖,𝑂𝑂 ). Vignetting correction was performed for all 

measurement methods (𝑖𝑖) and all post processing methods (𝑗𝑗). From all 

RMSE pairs (𝑅𝑅𝑐𝑐𝑎𝑎𝑙𝑙 , 𝑅𝑅𝑖𝑖,𝑂𝑂 ) the vignetting correction quality (𝑄𝑄𝑖𝑖,𝑂𝑂 ) is the 

determined as follows: 

 

𝑄𝑄𝑖𝑖,𝑂𝑂 =
𝑅𝑅𝑐𝑐𝑎𝑎𝑙𝑙 − 𝑅𝑅𝑖𝑖,𝑂𝑂

𝑅𝑅𝑐𝑐𝑎𝑎𝑙𝑙
 (3.70) 

 
A comparison of different vignetting and post processing method 

combinations is shown in Figure 3.64 for the two different setup-module 

combinations (a – CREST setup: Si module, b – LPVO setup: Si HIT module). 

Image setup parameters for both cases are shown in Table 3.7. 

Table 3.7: Image setup parameters of compared cases 

 CREST LPVO 

Camera name Sensocam HR-830 FLI ML16803 
Focal length 25 mm 50 mm 
Aperture f/2.8 f/2.8 

 

The evaluated methods are shown as coloured plots. Along the x-axis 

different post processing methods are compared. The plots listed in the 

legend are: 

• X (LCD/PV): average of three randomly chosen close distance 

images, as described in [8, 33].  

Sources are either a red LCD screen or an equivalent PV device 

• A (LCD/PV): method A using 10 images  

• B (LCD/small PV): method B using average position and intensity 

of 10 images of a red LCD screen or 1 cell mini module imaged in 

imaging plane 
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• C (diff PV): method C using 30 randomly chosen EL images of c-Si 

modules 

• D (large PV): method D using EL images of a c-Si PV module at 

discrete positions 

• E (large PV): method E, using EL images of c-Si modules at random 

positions 

 

 
a) CREST: c-Si 

 
b) LPVO: c-Si HIT 

 
Vignetting measurement (Light Source) 

Figure 3.64: Correction quality (𝑸𝑸𝒊𝒊,𝒋𝒋, Equation 3.70) for two different EL 

setup–module combinations: a) CREST (Si module); b) LPVO (Si HIT 
module); Note that the values are discrete and the lines are only to 
guide the eye 

Vignetting correction quality ranges from below -120% to 90%. This means 

that some methods even decreased the image quality. In order to find the 

best suitable vignetting correction method, boxplots based on data shown 

in Figure 3.64 were generated (Figure 3.65). Method E corrected vignetting 

to the best extent. It is followed by methods D, A(PV), and B(PV) which 
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still provide good correction. On the other side, method C, X(LCD), A(LCD) 

and B(LCD) often even decreased image quality due to vignetting 

overcorrection. 

 

 
Figure 3.65: Vignetting method comparison from values shown in 
Figure 3.64 

Methods of highest correction quality still had an absolute intensity 

deviation (𝑅𝑅𝑖𝑖,𝑂𝑂) of 1 to 2%. Below, results are evaluated by method.  

Methods X(LCD, PV) (light/dark yellow) and A (light/dark purple): 

Consistently lowest improvements and even degradations are gained by 

using an LCD display as a light source. Its angular dependence, and 

wavelength range differs too much from the actual imaging 

circumstances resulting in erroneous vignetting maps. In contrast, using 

a PV device (similar to expected DUTs) rather than a red LCD screen 

provided better vignetting correction. Using a weighted average of 

multiples of these images (method A) improved the correction and 

brought the method in-par with the others. The use of post processing 

techniques is not essential. The results show that the effect of post 

processing is small, not always beneficial and very specific to each case. 

Method B (dark/light blue): This rather simple method allows in-plane 

vignetting measurement. If measured with a light source equal or similar 

to the DUT, it also measures at the correct wavelength range and angular 

distribution. The result has to be fitted with a polynomial or a vignetting 
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function. For this, in all cases around 25 spots, evenly distributed within 

the image plane, were measured. It is important that the spot images do 

not introduce additional inhomogeneities. Therefore, they should be 

small relative to the image plane and they should be averaged. In case [b] 

the correction quality is around minus 50% (Figure 3.64b). Figure 3.66 

shows why:  

Subfigure (a) shows residual vignetting after correction by the vignetting 

map, measured with a PV panel. It reveals significant overestimation of 

the vignetting by imaging the LCD screen. If however the result is divided 

by a vignetting map measured with the same device, no visible vignetting 

remains. Instead, a horizontal gradient in the image (Figure 3.66b) 

becomes visible. The erroneous vignetting estimation stems from high 

angular dependence of the LCD screen, which was only observed after a 

careful examination of the measurement procedure. This example shows 

how important the selection of a suitable source is, and how much can it 

affect the otherwise good method B. 

 

a)    b)  

Figure 3.66: Sum of all images used to measure method B of case [b] 
after vignetting correction using a) method A(PV) and b) A(LCD). Both 
images scaled identically 

Method C (red): Only in a few cases, this method increased the image 

quality. Using a random selection of EL images in the hope that their 

weighted average might return something close enough to an actual 

vignetting measurement is only advisable if vignetting correction is 

needed but no calibration is available. For the applied post processing 

methods, POLY gives the worst results but a functional fit such as AoV or 
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KW can deliver something positive. The reason why the simple AoV gives 

better results than KW is shown in Figure 3.67. The RAW measurement 

result shows that the vignetting centre appears to be on the left of the 

image centre. This is however wrong because the source in the EL image 

set is more on the left side. Here for AoV vignetting measurement the 

centre of the fit was equal to the image centre, therefore the AoV fit 

corrects for the erroneous central position, whereas the KW fit also finds 

the wrong central position. POLY gives the result closest to the RAW 

image, which obviously resembles the module position and shape. For 

method C, AoV with its fixed central position provides the best post 

processing option. 

 

 
Figure 3.67: Comparison of resulting vignetting maps for method C in 
case [a] 

Method D (dark brown): This method demands the positions of the 

imaged DUT to be within a precise grid. Although the resolution of the 

returned RAW image is limited by the number of columns and rows in the 

grid, the image quality improvement is amongst the highest. The first 

reason is that the light source is the actual DUT with no spectral, angular 

or distance mismatch and the second is that vignetting is a continuous 

effect and thus the undefined areas are well fitted between the grid 

points, which cover the whole imaging plane. Because the majority of the 

image plane is measured, the selection of the post processing option does 

not strongly influence the result.  However, it can be observed that AoV 

(especially with ‘=’ (replace) post processing) yields the worst results, 

POLY the best and KW is between the two. The reason is that when the 

grid is dense enough, the irregular vignetting (different central point, 

effect of optical and mechanical vignetting) is better defined by the 

measurements than by the functions that define only natural vignetting. 
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Method E (green): Although the code to extract 𝐼𝐼𝑉𝑉𝑖𝑖𝑔𝑔,𝐸𝐸 is rather complex, 

creating the input images is straightforward because the DUT does not 

have to be imaged at fixed positions. When the device in the input image 

covers most of the image plane and different image intensities can be 

averaged out over all images, the RAW result leads already to very good 

results (Figure 3.64).  

Post processing methods (x-axis): The results do not show a clearly or 

consistently superior method. Even more they often show the negative 

influence of post processing. In general, only the ‘REPAIR’ based methods 

maintained quality, while other post processing methods caused a quality 

decrease. As the two blue line plots in Figure 3.68 show, both AoV and 

KW replacements caused a vignetting overcorrection in the image centre.  

A median filter has a better outlier stability and gives results closer to the 

RAW image. However, it often caused steps in the vignetting image. 

Although a Gaussian filter can blur information, it produced smooth and 

in comparison quantitatively good results.  

 

 
Figure 3.68: Horizontal line plots through image centre of LPVO results 
from method E (Figure 3.62a) 

Comparing the influence of all post processing methods on the correction 

quality it can be seen that ‘+KW’ and ‘Gauss’ produced best results (Figure 

3.69). Although the decision of the most suitable post processing method 

strongly depends on the quality of the RAW image and the shape of 

measured vignetting, a combination of ‘+KW’ and ‘Gauss’ is proposed. 
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Figure 3.69: Relative influence (𝑸𝑸𝒊𝒊,𝒋𝒋 − 𝑸𝑸𝒊𝒊)/𝑸𝑸𝒊𝒊  of different post 
processing methods on the correction quality from values shown in 
Figure 3.64 

3.6.5 SENSITIVITY MEASUREMENT 

Every image pixel is affected by a different sensitivity in the camera 

sensor array, due to either inhomogeneity or damage for example from 

high-energy radiation. Because these effects manifest as high gradient 

variations, the sensor array sensitivity can be easily obtained from 

homogenously illuminated images (such as method A, Subsection 3.6.2.1). 

The extraction of a sensitivity image (𝐼𝐼𝑆𝑆) is detailed in Figure 3.70. Herein 

a set of raw images (𝐼𝐼𝑅𝑅𝑅𝑅𝑊𝑊,𝑖𝑖) is (after removal of the background image (𝐼𝐼𝐵𝐵𝐵𝐵)) 

divided by a respective smoothed image (𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚ℎ𝑚𝑚𝑚𝑚,𝑖𝑖). It was found that a 

combination of median (kernel size = 3 px) and Gaussian filter (kernel 

size = 10% of image width) is sufficient to remove deviations from noise 

and sensitivity. The averaged result image (mean�𝐼𝐼𝑆𝑆,𝑖𝑖�) yields the sensitivity 

image (𝐼𝐼𝑆𝑆). In order to reduce noise in 𝐼𝐼𝐵𝐵𝐵𝐵  either multiple dark current 

images can be averaged or a linear regression of multiple dark current 

images at different exposure times can be applied (Section 3.1).  
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Figure 3.70: Extraction of pixel sensitivity from raw EL images 

An example of a sensitivity map and the impact of sensitivity correction 

is shown in Figure 3.71 for an InGaAs camera. Sensitivity inhomogeneity 

in InGaAs sensor arrays is much more pronounced compared to silicon 

CCDs, due to differences in the device architecture. Although the 

deviation appears random, vertical lines and a darker area in the bottom-

left part (Figure 3.71a) can be distinguished.  

 

a) 𝑰𝑰𝑷𝑷  

b) 𝑰𝑰𝒓𝒓𝒂𝒂𝒓𝒓   c) IRAW / IS   

Figure 3.71: a) Excerpt of resulting sensitivity map for an InGaAs 
camera; EL image taken with an InGaAs camera before (b) and after (c) 
sensitivity correction 
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Despite the sensitivity inhomogeneity being more pronounced in InGaAs 

sensor arrays and silicon CMOS sensor arrays, it is also present in silicon 

CCDs. There, the difficulty in obtaining 𝐼𝐼𝑆𝑆 is that dividing 𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚ℎ𝑚𝑚𝑚𝑚,𝑖𝑖 from 

𝐼𝐼𝑅𝑅𝑅𝑅𝑊𝑊,𝑖𝑖 likewise extracts pixel sensitivity, but also image noise. If too few 

images are averaged and the noise level in 𝐼𝐼𝐵𝐵𝐵𝐵  is too high, sensitivity 

correction can increase image noise. For both CCD cameras tested in this 

work (CREST, LPVO) over 10 𝐼𝐼𝑅𝑅𝑅𝑅𝑊𝑊,𝑖𝑖 with a signal-to-noise ratio SNR>110 

were needed to increase the SNR by about 0.05, respectively 0.1%.  

Considering the small increase it may be more advisable to omit 

sensitivity correction in CCDs and rather filter erroneous pixels with, for 

example, a threshold median, as detailed in Section 4.4.  

3.6.6 SECTION SUMMARY 

The flat field significantly influences pixel intensity of photovoltaic 

luminescence images. The main contributors to the flat field are 

vignetting and pixel sensitivity. The latter was shown to have a minor 

influence on the flat field corrected image. Therefore, this section focused 

on several measurement and post processing methods suitable for 

vignetting removal in EL images.  

The most prevalently used vignetting measurement method images a 

“homogeneous” light source in close proximity to the camera lens. The 

simplest presented method herein, the method A (direct measurement at 

short distance with spatial inhomogeneity correction) upgrades this 

method by acquiring further images of the same source in different 

orientations to cancel out its inhomogeneity. The produced vignetting 

correction quality is close to the best methods when a light source, similar 

to the DUT is used. Due to simplicity and applicability, method A(PV) is 

proposed for general vignetting characterization.  

Method E (vignetting-object separation using pattern recognition) is 

technically the most advanced method. It images the actual DUT in image 

plane at random positions, which ensures unchanging imaging 
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conditions. Amongst all tested methods, it produced the best results. 

Therefore, method E is proposed for precise luminescence 

characterisation. It is proposed to fill empty areas within the measured 

vignetting image with a Kang-Weiss functional fit. To smooth out 

erroneous pixels, a Gaussian filter can be used. 

Other methods, B (discrete spot average), C (local maximum of multiple 

DUTs), and D (vignetting-object separation from discrete steps) use 

different approaches and while they may be suitable for specific cases, 

their performance is usually inferior.  

 Setup Dependency of the Effective Flat Field 

The flat field image (𝐼𝐼𝑁𝑁𝑁𝑁) describes the effective spatial non-uniformity of 

the EL image relative to the emitted EL signal. Its measurement on a planar 

setup is described in Section 3.6. 𝐼𝐼𝑁𝑁𝑁𝑁 may vary depending on the spectrum 

of the calibration source, lens aperture and exposure time of the camera 

as well as perspective (rotation and tilt) of the DUT. This section 

highlights the importance of measuring 𝐼𝐼𝑁𝑁𝑁𝑁 of a DUT with a source of a 

similar waveband. It is shown that 𝐼𝐼𝑁𝑁𝑁𝑁 deviates up to 20% if a red screen 

is used for calibration instead of a PV device (Subsection 3.7.1).  

𝐼𝐼𝑁𝑁𝑁𝑁  is usually measured for a specific exposure time and aperture.  

Subsection 3.7.2 visualizes the influence of different exposure times and 

presents a correction of the influence from a manual camera shutter.  

Due to the inverse-square law, EL emission is clearly distance dependent. 

Subsection 3.7.3.1 will however show that this law does not apply to the 

pixel-specific- but only the per-area integrated EL signal. Perspective 

distortion (tilt and rotation) cannot be avoided with on-field imaging (for 

example obtained by drones). The final Subsection 3.7.3.2 calculates the 

emission dependence on the emission angle, demonstrates an intensity 

correction and defines valid image positions as function of DUT tilt and 

rotation. 
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3.7.1 EMISSION WAVEBAND  

Figure 3.72 shows the results of a flat field measurement (method A, 

Subsection 3.6.2.1) for three different light sources: (a) LCD screen 

displaying red image, (b) thin film module and (c) silicon module taken at 

two laboratories (CREST, LPVO). The wavelength ranges of these sources 

are approximately evenly distributed (600-800-1000 nm). As the 

difference images (Figure 3.72 right) show, vignetting differs more 

strongly for shorter wavelengths (𝑏𝑏 − 𝑎𝑎 >  𝑜𝑜 − 𝑏𝑏 ). Whether this is caused 

by the non-linear chromatic aberration of the camera lens or different 

angular distribution functions between the examined sources is an open 

question.  

 

 
Figure 3.72: Left: results of vignetting method A for three different LS 
(a-c); right: their differences 

Figure 3.73 shows radially averaged results, where the differences 

increase from image centre to corner. Between the red screen and the thin 

film module, vignetting factor differences can make up to 25% (CREST) or 

60% (LPVO) for pixel values (Figure 3.72 right) or 25% for radial averages. 

Imaging the right waveband is therefore the most important factor for 

vignetting measurement. 
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Figure 3.73: Radial averages for image (a) to (c), shown in Figure 3.72 

3.7.2 CAMERA SETUP 

3.7.2.1 EXPOSURE TIME 

If the imaging camera uses a mechanical shutter, its finite opening and 

closing time can cause an additional vignetting effect. Its significance is 

demonstrated in the following example: For an assumed shutter 

opening/closing time of 30 µs and a dwell time (fully open) of 20 µs, the 

central point is exposed for 80 µs. This is four times longer than the 

corner areas. For an exposure time of 1 s the maximum difference, 

caused by the shutter would be still 6%. This time-dependent shutter 

vignetting (𝑉𝑉𝑆𝑆(𝑡𝑡)) can be separated from EL images (𝐼𝐼𝐸𝐸𝐿𝐿) as the ratio with a 

reference EL image (𝐼𝐼𝐸𝐸𝐿𝐿,𝑐𝑐𝑚𝑚𝑑𝑑) taken at significantly higher exposure time 

(𝑡𝑡𝑐𝑐𝑚𝑚𝑑𝑑): 

 

𝑉𝑉𝑆𝑆(𝑡𝑡) =
𝐼𝐼𝐸𝐸𝐿𝐿

𝐼𝐼𝐸𝐸𝐿𝐿,𝑐𝑐𝑚𝑚𝑑𝑑

𝑡𝑡𝑐𝑐𝑚𝑚𝑑𝑑
𝑡𝑡

 (3.71) 

 

The result is prone to noise especially for low 
𝑚𝑚𝑟𝑟𝑐𝑐𝑟𝑟
𝑚𝑚

, above background- or 

over low luminescence areas. A median filter can be used for noise 

reduction. The effective vignetting can then be calculated by multiplying 

shutter dependent- (𝑉𝑉𝑆𝑆(𝑡𝑡)) and base vignetting (𝑉𝑉0) (preferably measured 

at 𝑡𝑡𝑐𝑐𝑚𝑚𝑑𝑑): 
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𝑉𝑉(𝑡𝑡) = 𝑉𝑉𝑆𝑆(𝑡𝑡) ∙ 𝑉𝑉0(𝑡𝑡𝑐𝑐𝑚𝑚𝑑𝑑) (3.72) 

 

The time dependence of shutter vignetting is visualised in Figure 3.74, 

where the two shortest exposure times even caused a partial shutter 

opening. 𝑉𝑉𝑆𝑆(𝑡𝑡) was taken from the displayed raw EL images, relative to one 

taken at 𝑡𝑡𝑐𝑐𝑚𝑚𝑑𝑑 =750 ms. The homogenous light intensity of the corrected 

EL images (3rd row) indicates the applicability of this method. 

However, Equation 3.72 requires shutter vignetting maps to be available 

for multiple exposure times and only enables calculation of the effective 

vignetting within the range of available measurements. Vignetting maps 

for exposure times in-between available measurements are obtained 

using linear interpolation.  
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10 ms 20 ms 30 ms 40 ms 

 

 

 

 
Figure 3.74: EL images at different exposure times: uncorrected (raw) 
images (1st row); extracted vignetting map (2nd row); vignetting 
corrected Images (3-4th row); Camera: FLI ML16803, f/4 

𝑉𝑉0(𝑡𝑡𝑐𝑐𝑚𝑚𝑑𝑑) contains a certain amount of shutter vignetting (𝑉𝑉𝑆𝑆). Therefore, 

extrapolating towards higher exposure times underestimates 𝑉𝑉𝑆𝑆. 

Figure 3.75b shows that the trend of 𝑉𝑉𝑆𝑆(𝑡𝑡) is inversly proportional to the 

exposure time. Only the shortest exposure times (10, 20 ms) do not 

follow that trend. Figure 3.74 shows that at these times the shutter only 

opened partially. 

 

corrected EL 
using  Eq(3.72) 

corrected EL 
using Eq(3.75) 

Raw EL 

V(t) 
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Figure 3.75: Resulting base and shutter vignetting maps 𝑽𝑽𝟓𝟓,𝑽𝑽𝑷𝑷 (left) and 
shutter ratio (𝑽𝑽𝑷𝑷(𝒊𝒊)) for different exposure times for three different 
regions A-C, shown left; Red dotted: example shutter ratio equivalent 
to region C; Camera FLI ML16803, f-number: f/4 

Noting the relationship 𝑉𝑉𝑆𝑆(𝑡𝑡), 𝑉𝑉𝑆𝑆 can be calculated as 𝑓𝑓(𝑡𝑡−1) as the ascent 

of a linear equation through the origin (calculated using the temporal 

average mean()) as follows:  

 

𝑉𝑉𝑆𝑆 = mean�
𝑉𝑉𝑆𝑆(𝑡𝑡) − 1
𝑡𝑡−1

� (3.73) 

 

To obtain a shutter independent (base) vignetting map (𝑉𝑉0), the shutter 

ratio, relative to the shutter reference time (𝑡𝑡𝑐𝑐𝑚𝑚𝑑𝑑) and vignetting time (𝑡𝑡0) 

has to be removed as follows: 

 

𝑉𝑉0 =
𝑉𝑉0(𝑡𝑡0)

1 − �𝑉𝑉𝑆𝑆𝑡𝑡0
− 𝑉𝑉𝑆𝑆
𝑡𝑡𝑐𝑐𝑚𝑚𝑑𝑑

�
 (3.74) 

 

Both resulting, time independent maps 𝑉𝑉0 and 𝑉𝑉𝑠𝑠 are shown in Figure 3.75 

for the setup, displayed in Figure 3.74. The effective vignetting (𝑉𝑉(𝑡𝑡)) can 

now be calculated as: 

 

𝑉𝑉(𝑡𝑡) = �1 +
𝑉𝑉𝑆𝑆
𝑡𝑡
� ∙ 𝑉𝑉0 (3.75) 
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As shown in the last row of Figure 3.74, this model only works for 

exposure times, where 𝑉𝑉𝑆𝑆(𝑡𝑡) ∝ 1
𝑚𝑚
. Therefore, EL images acquired in less 

than 30 µs are not corrected sufficiently. Correcting for shutter vignetting 

is omitted in the vignetting method comparison (Subsection 3.6.4) 

because the in-plane flat field methods B-E (Subsection 3.6.2) have 

exposure times similar to the actual EL measurements. 

3.7.2.2 LENS APERTURE 

The camera aperture not only influences incoming light intensity but also 

its spatial distribution. As Figure 3.76 shows, both shutter and base 

vignetting change for different apertures. Increasing f-numbers 

emphasize the aperture visibility in 𝑉𝑉𝑆𝑆.  

 

 
Figure 3.76: Normalised shutter (𝑽𝑽𝑷𝑷) and base (𝑽𝑽𝟓𝟓) vignetting maps for 
different f-numbers; Camera FLI ML16803. 

a)  b)  
Figure 3.77: Radially averaged (a) shutter and (b) base vignetting over 
pixel radius for vignetting maps, shown in Figure 3.76 

To quantitatively compare the results in Figure 3.76, the shutter and base 

vignetting maps were both scaled according to  max�𝑉𝑉(𝑡𝑡 = 0.05𝑈𝑈)� = 1 . 
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Figure 3.77 shows that base vignetting increases towards the image 

corner especially for f-numbers 1.4 – 8. It also shows that the influence 

of shutter vignetting decreases for increasing f-numbers. This is as 

expected since light only passes through the central part of the shutter 

when the aperture is small (and therefore the f-number is high). 

Therefore, the period during which the shutter influences vignetting is 

reduced. When the aperture is large (small f-number) light passes through 

the majority of the shutter area. This increases the influence of the 

shutter (Figure 3.78). 

 

 
Figure 3.78: Influence of different apertures on shutter vignetting; 
Whilst light through an open aperture (green) is influenced by all 
shutter positions, light through a closed aperture only ‘sees’ part of the 
shutter 

For cameras with a limited number of aperture positions, it is 

recommended to measure the flat field for all aperture positions used, 

rather than to correct the aperture influence in a similar fashion as 

described by Equation 3.75.  

3.7.3 PERSPECTIVE 

3.7.3.1 DEVICE DISTANCE 

Measuring the flat field in close distance (method A, Subsection 3.6.2.1) 

is based on the assumption that the EL intensity change with device 

distance is negligible. However, the inverse square law states that 

intensity ∝ 1
distance²

 . To analyse this dependency, four EL images (𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑, 𝐼𝐼1−3) 
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of the same c-Si module at different distances to the camera were taken 

(Figure 3.79a). To extract the relative intensity differences (𝑅𝑅𝑖𝑖,𝑂𝑂 ), the 

following steps were applied: 

For both examined flat field images (𝐼𝐼𝑁𝑁𝑁𝑁,1, 𝐼𝐼𝑁𝑁𝑁𝑁,2) with index (𝑖𝑖): 

 For all EL images (𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑 , 𝐼𝐼1−3): 

1. Subtract the background image. 

2. Divide the result by the flat field image (𝐼𝐼𝑁𝑁𝑁𝑁,𝑖𝑖). 

3. Remove the lens distortion. 

For image 𝐼𝐼1−3 with index (𝑗𝑗): 

4. Obtain perspective transformation (homography) matrix 

(𝐻𝐻𝑐𝑐𝑚𝑚𝑑𝑑→𝑂𝑂) from a comparison of detected patterns in 𝐼𝐼𝑂𝑂 and 𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑 

and fit the perspective of 𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑  to the one of 𝐼𝐼𝑂𝑂 : 

𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑→𝑂𝑂 = 𝑓𝑓(𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑,𝐻𝐻𝑐𝑐𝑚𝑚𝑑𝑑→𝑂𝑂) (Subsection 4.7.2.1). 

5. Calculate ratio 𝑅𝑅𝑖𝑖,𝑂𝑂 = 𝐼𝐼𝑗𝑗
𝐼𝐼𝑟𝑟𝑐𝑐𝑟𝑟→𝑗𝑗

. 

6. Remove the edges, created by fitting errors of both images 

(𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑→𝑂𝑂 , 𝐼𝐼𝑂𝑂 ) by setting all areas where the edge gradient is 

higher than a given threshold (𝑥𝑥) to NaN (not a number). 

 

𝑅𝑅𝑖𝑖,𝑂𝑂 ��
𝑠𝑠𝑅𝑅𝑖𝑖,𝑂𝑂
𝑠𝑠𝑥𝑥

�
2

+ �
𝑠𝑠𝑅𝑅𝑖𝑖,𝑂𝑂
𝑠𝑠𝑦𝑦

�
2

> 𝑥𝑥� = 𝑁𝑁𝑎𝑎𝑁𝑁 (3.76) 

 

7. Apply a median filter (kernel size = 200 px) on 𝑅𝑅𝑖𝑖,𝑂𝑂, ignoring 

all NaN. 

As Figure 3.79c,d shows, the resulting ratios range between ±10% and 

appear to be mostly influenced by the chosen flat field image 

(Subfigure b). 
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Figure 3.79: a-b) EL images of a Si module at different distances (LPVO); 
c) Examined flat field images; d) Intensity ratio (𝑹𝑹𝒊𝒊,𝒋𝒋 ) from 𝑬𝑬𝟏𝟏−𝟑𝟑  to 
reference 𝑬𝑬𝟓𝟓 using 𝑰𝑰𝑵𝑵𝑵𝑵−𝟏𝟏; e) same, using 𝑰𝑰𝑵𝑵𝑵𝑵−𝟐𝟐 

The measured intensity values within the green ROI (Figure 3.79a) are 

shown in Figure 3.80. If the sum of all four ROIs is plotted relative to the 

biggest ROI at 𝑠𝑠3 the trend follows the inverse square law. However, if the 

ROI averages are compared then the result remains constant. Therefore, 

it is concluded that the distance between camera and DUT has no 

influence on the specific pixel intensity.  

 

 
Figure 3.80: Normalised average and sum values of ROIs, shown in 
Figure 3.79a,b for different LS distances. 
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3.7.3.2 DEVICE TILT AND ROTATION 

Maintaining an orthogonal angle between camera axis and DUT is often 

hard to achieve - especially in outdoor or on-field imaging.  

The radiation exchange between two surfaces (camera and DUT), whereby 

surface1 << surface2, can be weighted using a view factor (𝜑𝜑12) [89]. 𝜑𝜑12 

is a derivate of the inverse square law: 

 

𝜑𝜑12 =
1
𝜋𝜋
�

cos (𝛽𝛽1) ∙ cos (𝛽𝛽2)
𝑠𝑠²

𝑠𝑠𝐴𝐴2 (3.77) 

 

�𝜑𝜑12 = 1
 

𝑖𝑖,𝑂𝑂

 

 

(3.78) 

The parameters introduced in this section are shown diagrammatically in 

Figure 3.81.  

 
Figure 3.81: a) Perspective schematic of the view factor model;                
b) Calculation of the differential plane area (𝑨𝑨𝟐𝟐𝒊𝒊) from distance and view 
angle 

For EL imaging the Equation 3.77 can be simplified using the following 

assumptions: 

• All light rays enter the camera lens at a normal angle, therefore 𝛽𝛽1 =

0 . This is valid, if vignetting (i.e. decreased light intensity for 

increasing  𝛽𝛽1) has already been corrected.  

• The physical area (𝑠𝑠𝐴𝐴2) is discretised for every image pixel (𝑖𝑖) and 

becomes 𝐴𝐴2𝑖𝑖. Using the theorem of intersecting lines (Figure 3.81b) 



Chapter 3: Camera Calibration 
Section: 3.7: Setup Dependency of the Effective Flat Field 

 

 © Karl Bedrich - April 2017 134 

 

and noting that the effective area increases with increasing view 

angle, 𝐴𝐴2,𝑖𝑖 can be described using: 

 

𝐴𝐴2𝑖𝑖 =
�𝑈𝑈𝑑𝑑 ∙

𝑠𝑠𝑖𝑖
𝑠𝑠𝑑𝑑
�

cos( 𝛽𝛽2𝑖𝑖)

2

 
(3.79) 

 

Where 𝑠𝑠𝑑𝑑 is the focal length respective distance to plane centre [mm] and 

𝑈𝑈𝑑𝑑 is the size of one pixel in focal plane in x,y [mm]. Within the range of 

one pixel, 𝛽𝛽2  and 𝑈𝑈  are considered constant. This enables discretizing 

Equation 3.77 for every pixel (𝑖𝑖): 

 

𝜑𝜑12 =
cos(𝛽𝛽2𝑖𝑖) ∙ 𝐴𝐴2,𝑖𝑖

𝑠𝑠𝑖𝑖2
 (3.80) 

 

If 𝐴𝐴2,𝑖𝑖  is substituted by Equation 3.79 then the only two variable 

parameters 𝑠𝑠𝑖𝑖 and cos(𝛽𝛽2𝑖𝑖) cancel each other out. Noting Equation 3.78, 

the constants also cancel out. With this model and assuming a perfect 

Lambertian surface, 𝜑𝜑12  does not change at all for different angles! 

However, at angles >60° light intensity of a PV module decreases 

noticeably (Figure 3.84a, b). In this experiment, the angular dependence 

of EL light intensity, relative to 0° was calculated (Figure 3.82).  

 

 
Figure 3.82: Comparison of angular dependency of emissivity, relative 
to 𝜷𝜷𝟐𝟐 =0°; Values for glass taken from [90]  
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As expected, the calculated result is almost identical to the emissivity 

values (𝜀𝜀)  for glass, which are commonly used for thermography 

measurements. 𝜀𝜀 is obtained from the average EL signal of the angled 

module relative to the one of the module at 0° after correcting both 

images for vignetting, dark current and perspective. The red plot shows 𝜀𝜀 

over DUT tilt angle (𝛼𝛼). In this setup, the distance between camera and 

device midpoint (𝑠𝑠𝑑𝑑) is 1500 mm.  

This, in comparison to the device dimension, relatively short distance 

causes the effective view angle (𝛽𝛽2 ) to vary (Figure 3.83). Since this 

variation is not symmetrical, the red plot in Figure 3.82 does not 

represent the actual situation. To correct for these variable 𝛽𝛽2, the median 

of all relative images was calculated for  𝛽𝛽2 bins of 5°. The distance of the 

resulting green plot even decreased relative to the emissivity of the glass.  

 

 
Figure 3.83: Comparison of calculated effective view angles (𝜷𝜷𝟐𝟐) [°] for 
different DUT tilt angles (𝜶𝜶) in Figure 3.84a 

To correct for intensity deviation from perspective distortion, all images 

(Figure 3.84a) were divided by their angular dependent relative emissivity 

values (Figure 3.84e). The result is shown in Figure 3.84d.  

In comparison to Figure 3.84b it is apparent that the intensity decrease 

for angles >60° is corrected. Subfigure (c) shows images (b) after division 

by their respective average (normalisation). For 75° and 80° light intensity 

slightly increases from image bottom to top. This trend is also corrected 

in (d). Only the last image (85°) shows inhomogeneous intensities. 
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Figure 3.84: a) EL images of a Si module imaged at variable tilt angles;          
b-d) different corrections from (a); e) relative emissivity 

As the original image in (a) shows, this is because the module edge points 

required for pose estimation could not be tracked precisely in this highly 

distorted and defocussed image.  

To show their individual trends, the emission factor maps in (e) were 

scaled to a value, displayed on the image top. Without that scaling, a 

gradient within these maps would by hardly visible. 

Taking this into account, as well as the fact that emissivity below 60° is 

almost constant, one could say intensity correction for tilted PV devices 

is not an issue for EL images. Depending on the imaging setup, this 

statement can be acceptable.  

However, especially in outdoor imaging of larger areas (such as PV arrays) 

and under certain conditions, these deviations can become critical. In 

Figure 3.85, a 100x100 m PV array, as seen by a drone was simulated. The 

emissivity factor, shown in Figure 3.85c,d decreases in this example down 

to 75% at the corners of the drone’s field of view – excluding vignetting.  
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a) Distance [m] 

 
b) View angle [°] 

 
c) Relative emissivity [-] 

 
d) Relative emissivity [-], as seen by 
the drone 

Figure 3.85: Simulated optical parameters of a PV array from a drone’s 
perspective; Drone position xyz: -10m,50m,5m (blue dot in (c)); Camera 
field-of-view: 60° 

An indication whether an intensity correction should be considered is 

given in Figure 3.86. If a maximum intensity decrease of 5% is accepted, 

view angles up to 50° are acceptable (Figure 3.82). As Figure 3.83 shows, 

the effective view angles not only depend on the objects orientation, but 

also its position within the image. Figure 3.86 therefore indicates areas to 

avoid, depending on the DUT’s rotation and tilt. For a camera field-of-view 

(FOV) of 30° and a DUT rotation and tilt of 40° (red line), only image areas 

in the top left of the image would be acceptable. For a rotation of 15° and 

no tilt most areas in the image will have view angles <50° and only a small 

area in the image (x:0-2,y:8-10) would be problematic for FOV ≥ 45°. 
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Figure 3.86: Image positions, where view angle 𝜷𝜷𝟐𝟐 ≤ 𝟓𝟓𝟓𝟓°  for a 
combination of different tilt and rotation angles of the measured PV 
device; a PV device imaged behind convex curves will have an 
intensity decrease of >5% and therefore should be avoided or corrected 
for; blue box: image area, if camera aspect ratio is ¾  

3.7.4 SECTION SUMMARY 

Flat field correction is essential for quantitative EL measurements to 

remove intensity distributions within EL images but also to allow inter-

comparison across different imaging systems. Measured flat field images 

depend on the camera setup as well as orientation of the imaged DUT. 

These influences are analysed in this section. 

It is shown that the flat field (𝐼𝐼𝑁𝑁𝑁𝑁) depends on the emitted waveband of 

the imaged DUT. In the examined case, 𝐼𝐼𝑁𝑁𝑁𝑁 differed up to 20% towards the 

image corners between an imaged red LCD screen and a PV module. A 

comparison of different aperture adjustments shows an up to 5% higher 

flat field at the image corner between f1.4 and f16. Therefore, it is 

proposed to measure 𝐼𝐼𝑁𝑁𝑁𝑁 for each applied aperture and waveband rather 

than to correct for its influence. Other influences, namely exposure time 

and perspective, can be corrected for.  

In the examined case for exposure times shorter than 100 ms the intensity 

varied 200-300% due to a mechanical shutter. However, this additional 
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shutter vignetting decrease is inversely proportional to exposure time. 

Therefore, it is proposed to only calculate the effective vignetting from 

base- and shutter vignetting maps for exposure times close to the 

opening/closing time of the shutter. 

The imaged PV devices are not perfect Lambertian (diffuse) light sources. 

For view angles higher than 50° their relative emissivity decreases. 

Therefore, especially highly titled devices will appear darker. Depending 

on the imaging setup, this decrease can be corrected for by dividing the 

image by an emissivity factor map obtained from the DUT orientation.  

 Chapter Summary 

When establishing an EL imaging setup, multiple calibration images 

should be taken in advance to reduce later measurement time and to 

enable image correction (Chapter 4): 

If the light conditions within the imaging setup are immutable, dark 

current can be calculated as a function of exposure time. For this, multiple 

images under open circuit should be taken at a range of different 

exposure times. The subsequent fitting process was detailed in 

Subsection 3.1.2.  

The current IEC draft 60904-13 in electroluminescence measurement 

suggests a minimum signal-to-noise ratio (SNR) of 15 for industrial and 

process control and a SNR of 45 for lab measurements. In order to 

minimise exposure time, it is suggested to calculate the SNR from two EL 

images and one background image (Equation 3.16). It was further shown 

that the noise level of an image is not constant, but rather a noise-level-

function (NLF) of the EL signal intensity. A spatially resolved SNR map can 

be used to calculate part of the intensity-based uncertainty (Section 6.1).  

This chapter presented the simple, yet effective Tenengrad parameter to 

measure relative image sharpness (Equation 3.3). This can be used to find 

best focus level. The expression of absolute image sharpness as standard 

deviation of a Gaussian blur kernel or as factor on the image resolution 
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was presented in Subsection 3.4.3. The latter parameter can be directly 

used to determine the minimum resolvable object size. This knowledge 

enables determination of the ability to resolve features (such as cracks 

and fingers) in EL images.  

A novel way to measure the point spread function (blur) using a 

commercially available compact disc (CD) is presented in Subsection 

3.4.4.6. A programmatically simpler method to obtain a radially invariant 

PSF using a V-shaped mask or a printed spoke pattern was shown in 

Subsection 3.4.4.3 and 3.4.4.4.  

Several methods are discussed in literature to measure the image flat field 

(𝐼𝐼𝑁𝑁𝑁𝑁). The methods often rely on the assumption that the calibration device 

is spatially homogenous. As was shown, this can cause erroneous results. 

Section 3.6 therefore proposed different methods to measure and 

functionally fit 𝐼𝐼𝑁𝑁𝑁𝑁. Even without any calibration 𝐼𝐼𝑁𝑁𝑁𝑁 can be estimated to a 

certain extent. A method imaging a PV device in the image plane at 

multiple random positions (Subsection 3.6.2.5) was found to give best 

results in a quantitative comparison.  

The last Section 3.7 further described 𝐼𝐼𝑁𝑁𝑁𝑁 as function of exposure time, 

aperture, wave band and perspective orientation. Correction for exposure 

time and perspective were discussed in Subsection 3.7.2 and 3.7.3. It was 

shown that a PV device can be described as a diffuse Lambertian surface 

up to an angle of 50°. This reduces effort when rectifying perspective in 

EL images.     

The source code, used to calculate the signal-to-noise ratio, to measure 

and validate sharpness, flat field, lens- and perspective distortion is made 

publicly available and is embedded in the image processing software 

dataArtist (Appendix 3). 
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4 IMAGE CORRECTION 

To correct EL images, related distortions must be removed. This chapter 

covers the implemented image correction routine (Figure 4.1) using two 

EL images as well as a dedicated camera calibration file. The routine 

sequence is chosen for distortions to not impair subsequent steps. 

 

 
Figure 4.1: Overview of Chapter 4  
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First, temporal imaging artefacts (single-time-effects) are removed 

through evaluating changes in two EL images (Section 4.1). Using results 

from camera calibration (Chapter 3), the dark current which offsets the 

EL signal is removed (Section 4.2). Spatial image distribution is corrected 

for in the following Section 4.3. The removal of remaining artefacts is 

described in Section 4.4. Methods to sharpen images and to remove lens 

distortion are detailed in Section 4.5 and 4.6. Position and orientation of 

PV devices in EL images is detected and corrected for in Section 4.7. 

Precise alignment of two EL images is described in Section 4.8. Finally, 

intensity normalization (Section 4.9) ensures equal image contrast and 

brightness. 

 Single-time-effects 

This section discusses the statistics and removal of specific EL image 

artefacts, called single-time-effects (STE). STE are caused by cosmic 

particles such as heavy ions, along with neutrons and protons with 

energies above 10 MeV [91]. When these mainly space-born particles cross 

the sensitive region of the CCD matrix, they cause effects of ionisation 

and lead to spots, which are only visible once after signal readout. 

STE increase the intensity of affected pixels. Depending on whether STE 

occur in the EL image or in the background image, they are visible in the 

background-corrected EL image as bright or dark spots. In the latter case, 

the small spots or straight to curvy lines caused by STE can be conceivably 

confused with cell defects. In this section the intensity offset due to STE 

as well as their occurrence over time is evaluated. For the examined setup, 

it is shown that the disruptive influence of STE is visible for cell voltages 

under 0.65 V. For this case, a robust STE removal method is proposed 

using an additional EL image taken in series.  

STE can be distinguished from hot pixels [92] by comparing two images 

taken in series with the same exposure time (Figure 4.2). Whilst hot pixels 

will remain constant in place and intensity, the probability of STE to occur 
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twice at the same time is negligible. STE saturate CCDs bit by bit. For 

space-borne CCDs Hill et al. reported that an exposure time of 1000 s 

would affect already 2.5% of the image [93].  

 

 

 
Figure 4.2: Selection of STE with different size and intensity;  
hot pixels are visible as single bright pixels 

4.1.1 STE MEASUREMENT AND STATISTICS 

The following analysis describes the visibility of STE as detected in one 

cell of a 9x4 c-Si PV module (Figure 4.3).  

 

 
Figure 4.3: EL setup, used for statistical analysis on STE in this section 

The results depends on the camera, the PV device and the EL imaging 

setup. For the examined setup, 116 background images were used. The 

images were taken with a SensoCam HR-830 camera between 14/04/2015 
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and 08/05/2015. An image mask (𝑥𝑥𝑆𝑆𝑇𝑇𝐸𝐸), marking the position of STE, was 

created as follows: 

1. Select an image pair of two images (𝐼𝐼1, 𝐼𝐼2) taken in series at the same 

exposure time. 

2. Determine the noise-level-function (NLF, standard deviation over 

pixel intensity) as described in Subsection 3.2.2.5. 

3. Calculate the difference image (𝐼𝐼𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑 = 𝐼𝐼1−𝐼𝐼2). 

4. Create a STE free template image from the local minimum: 

 

𝐼𝐼𝑚𝑚𝑖𝑖𝑐𝑐 = min(𝐼𝐼1, I2) (4.1) 

 

5. Mask STE (𝑥𝑥𝑆𝑆𝑇𝑇𝐸𝐸) as all pixel indices where the difference of both 

images exceeds the local 𝑁𝑁𝑁𝑁𝑥𝑥 as: 

 

𝑥𝑥𝑆𝑆𝑇𝑇𝐸𝐸 = 𝐼𝐼𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑 > 4 ∙ 𝑁𝑁𝑁𝑁𝑥𝑥(𝐼𝐼𝑚𝑚𝑖𝑖𝑐𝑐) (4.2) 

 

6. In order to remove the image noise from 𝑥𝑥𝑆𝑆𝑇𝑇𝐸𝐸, remove all positive 

elements that have no positive neighbours. This method can also 

remove STE consisting of only one pixel. However, the number of 

these pixels is be small relative to otherwise remaining noise.     

The number of STE was calculated as the number of spatially connected 

clusters within 𝑥𝑥𝑆𝑆𝑇𝑇𝐸𝐸 and can be seen in Figure 4.4a for different exposure 

times. As expected, the number of STE increases linearly with time. The 

average STE size was determined as the number of positive elements in 

𝑥𝑥𝑆𝑆𝑇𝑇𝐸𝐸  divided by the number of STE identified. The result is shown in 

Figure 4.4b. The distribution of different STE sizes reduces with 

increasing exposure time because of the similarly increasing number of 

STE averaging the result. 
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a)  b)  

Figure 4.4: STE development over exposure time 

A probability density function (PDF) of the STE pixel intensity was 

extracted from the difference image (𝐼𝐼𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑) at all STE positions (𝑥𝑥𝑆𝑆𝑇𝑇𝐸𝐸) and 

averaged for all image pairs. The result (Figure 4.5) shows that the PDF 

can be approximated by an unbounded Johnson SU distribution (JSU) [94]. 

The JSU is a transformation of the normal distribution. JSU was chosen 

as best fit amongst 82 continuous distributions within Pythons 

scipy.stats package [95]. 

 

 
Figure 4.5: Blue: Probability density function (PDF) of STE over pixel 
intensity; Red dots: PDF fit using a Johnson SU distribution 

Using the ascent and average STE size (Figure 4.4) as well as the ratio of 

PV cell size to image size, the probability of one STE being found in a 

specific cell of the DUT can be quantified (Figure 4.6). The plotted blue 

line indicates that on average every cell will have one STE at exposure 

times longer than 200 s. Given that many EL images are taken with longer 
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exposure times, this would mean that many defects identified from single 

images might actually be STE. 

The visibility of features, such as STE, depends on the relative intensity 

difference. According to Webers law [96], the visibility threshold was 

found to be independent from image intensity under well-lit (photopic) 

conditions: 

 

∆𝐼𝐼
𝐼𝐼

= constant ≈  10% (4.3) 

 

The visibility of STE in Figure 4.6 (red lines) is quantified for three 

different probabilities which can be explained as follows: The ‘50x50%’ 

case marks the probability of an STE with average intensity higher than 

the average EL signal. In contrast to this, the ‘1x1%’ case compares the 

effect on an STE within the highest one percent of the PDF (Figure 4.5) to 

the darkest 1% of a Gaussian distributed EL signal. This case is considered 

as the worst-case scenario. The resulting ratios are indirectly proportional 

because STE intensity remains constant whilst EL signal increases linearly 

with time.  

 

 
Figure 4.6: Red: Intensity ratio (STE/EL) for three different cases;  
blue: Probability of one STE to be found in one cell in the module  

Figure 4.6 can be interpreted as follows: After 200 s, every cell will have 

on average one STE (blue line at 100%). At this time for the ‘10x10%’ case, 

the intensity ratio between STE and EL signal will be 10% or higher. This 

can be enough to misinterpret the STE as a shunt or micro-crack. 
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However, STE will often be too small to lead to these conclusions due to 

their small average size of about six pixels (Figure 4.4b). 

Although the probability of STE occurrence increases linearly with 

exposure time, their intensity distribution remains constant. In 

consequence, Figure 4.7 shows the minimum EL intensity increase, at 

which 50%, 90%, 99% of STEs will not be noticed as artefacts.  

 

 
Figure 4.7: Minimum intensity increase per second of a pixel in an EL 
image causing STE to be invisible, according to Equation 4.3  

For the available EL setup, the median intensity increase was measured 

for multiple modules at 10% and/or 100%  𝐼𝐼𝑠𝑠𝑐𝑐 . The injected power at 

100% 𝐼𝐼𝑠𝑠𝑐𝑐 was in the range 4 to 450 W. In order to display these different 

devices in one figure, a simplified cell voltage (𝑉𝑉𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐) was calculated as the 

ratio of operation voltage (𝑉𝑉𝑚𝑚𝑐𝑐𝑚𝑚) and number of cells (𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑠𝑠): 

 

𝑉𝑉𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 =
𝑉𝑉𝑚𝑚𝑐𝑐𝑚𝑚
𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑠𝑠

 (4.4) 

 

The resulting intensity increase vs cell voltage (Figure 4.8) follows an 

exponential relationship. This is as expected since the luminescence 

emission is proportional to exp(𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐) (Equation 2.2). Figure 4.7 suggests 

that an intensity increase above 100 counts/s would be suitable to make 

STE unnoticeable for exposure times over 20 s. For the devices examined, 

this intensity increase is on average exceeded for assumed cell voltages 

above 0.65 V (Figure 4.8).  
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Figure 4.8: Measured median intensity increase for 11 different 
modules at either 10% 𝑰𝑰𝒔𝒔𝒔𝒔 and/or 100% 𝑰𝑰𝒔𝒔𝒔𝒔 

It is suggested to carry out an STE removal routine for the following cases:  

• Devices below the mentioned voltage of 0.65 V, 

• Images with long exposure times and low SNR, 

• Images to be used for calibration (such as flat field or background 

images). 

4.1.2 STE REMOVAL 

Two EL images (𝐼𝐼1, 𝐼𝐼2) taken in series and at the same exposure time are 

needed. An STE mask is calculated using Equation 4.2. An average image 

(𝐼𝐼𝑎𝑎𝑐𝑐𝑔𝑔) is built. All places identified with STE will be set to the STE free 

template image (𝐼𝐼𝑚𝑚𝑖𝑖𝑐𝑐, Equation 4.1): 

 

𝐼𝐼𝑎𝑎𝑐𝑐𝑔𝑔 = 0.5 ∙(𝐼𝐼1+𝐼𝐼2) (4.5) 

𝐼𝐼𝑎𝑎𝑐𝑐𝑔𝑔[𝑥𝑥𝑆𝑆𝑇𝑇𝐸𝐸] = 𝐼𝐼𝑚𝑚𝑖𝑖𝑐𝑐[𝑥𝑥𝑆𝑆𝑇𝑇𝐸𝐸] (4.6) 

 

The averaging procedure (Equation 4.5) will also increase the signal-to-

noise ratio (SNR) for every pixel, not affected by STE. The SNR will be 

increased by the following factor when averaging two images with 

Gaussian distributed noise: 

 

𝑓𝑓𝑎𝑎𝑐𝑐𝑔𝑔 =
1

√0.5
≈ 1.41 (4.7) 
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As seen in Figure 4.9, the proposed STE removal routine not only removes 

the influence of STE but also increases the SNR. 

 

a)   

b)   

c)   
Figure 4.9: Excerpt of three different EL images, affected by STE before 
(left) and after (right) STE removal 

4.1.3 SECTION SUMMARY 

This section described statistics and removal of single-time-effects (STE) 

caused by cosmic high-energy radiation interacting with the camera 

sensor. STE are imaging artefacts, which can be confused with cell defects. 

For the examined EL imaging setup, an average STE size of six pixels and 

intensity of 300 counts was observed. With on average one new STE every 

three seconds, every cell of the PV module, as for the case in Figure 4.3, 

would be affected with these image artefacts after an exposure time of 

200 s.  

However, STE remain invisible if the relative intensity difference is 

sufficiently small. If the DUT’s EL signal increases over 100 counts/s, STE 
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will not be noticed for exposure times higher than 20 s. For the observed 

devices, a minimum cell voltage (neglecting series resistance) of 0.65 V 

was found to be enough to deliver the required photon flux. For devices 

with lower voltage, STE removal using an additional EL image is proposed. 

To remain at the same signal-to-noise ratio this method increases the 

absolute exposure time (ignoring time required for image capture and 

processing) by approximately 41%.  

 Background Removal 

Removal of environmental stray light and dark current (thermal noise and 

defective pixels) is generally done by subtracting an EL image from an 

image of the same setup and exposure time under open circuit [8, 25, 33, 

42, 43].  

 

𝐼𝐼𝐸𝐸𝐿𝐿,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 = 𝐼𝐼𝐸𝐸𝐿𝐿 − 𝐼𝐼𝐵𝐵𝐵𝐵 (4.8) 

 

These background images are prone to noise and STE. These artefacts 

decrease the quality of EL images after subtraction. Therefore, Section 3.1 

proposed to either use an average of multiple background images or to 

calculate background from two calibration maps using the exposure time 

(𝜏𝜏𝑚𝑚𝑒𝑒𝑚𝑚) as 𝐼𝐼𝐵𝐵𝐵𝐵(𝜏𝜏𝑚𝑚𝑒𝑒𝑚𝑚) = 𝑎𝑎 ∙ 𝜏𝜏𝑚𝑚𝑒𝑒𝑚𝑚 + 𝑏𝑏. 

 Flat field Removal 

Impact and measurement of the flat field image (𝐼𝐼𝑁𝑁𝑁𝑁) is detailed in Section 

3.6. The background corrected EL image if divided by 𝐼𝐼𝑁𝑁𝑁𝑁 to correct for 

flat field.  

 

𝐼𝐼𝐸𝐸𝐿𝐿,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 =
𝐼𝐼𝐸𝐸𝐿𝐿,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝐼𝐼𝑁𝑁𝑁𝑁
 (4.9) 
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A carelessly created 𝐼𝐼𝑁𝑁𝑁𝑁  can cause residual flat field distortion after 

removal. These effects can become visible, when difference images are 

created (Subsection 7.2.2.2). In order to ensure a sufficient correction, 𝐼𝐼𝑁𝑁𝑁𝑁 

should be tested beforehand as described in Subsection 3.6.4. 

 Image Artefacts 

Dark current and flat field removal corrects most defective pixels. Since 

the camera sensor degrades over time, pixel defects occurring after 

camera calibration may remain. Their removal using a spatial standard 

deviation is described in [25, 42]. Depending on the kernel size, artefacts 

influence this Gaussian-based method to a certain extent. A higher 

stability towards these outliers can be achieved using a threshold median 

[43]. For this purpose, a median filtered image (𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎𝑐𝑐) is created. All 

pixels with a relative deviation to the given image ( 𝐼𝐼 ) higher than a 

threshold (𝑥𝑥) are set to the median filtered value: 

 

𝐼𝐼 �𝑥𝑥 <
𝐼𝐼 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎𝑐𝑐

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎𝑐𝑐
� = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎𝑐𝑐 (4.10) 

 

A pure median filter is sensitive to image features. However, for high 𝑥𝑥 

the threshold median only filters high gradient deviations without 

reducing the image quality. An example result is shown in Figure 4.10. 

 

a)  b)  

Figure 4.10: EL image detail of a c-Si module before (a) and after artefact 
removal (b); Median kernel-size = 3 px; T = 0.2 
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 Image Restoration 

Image restoration can be separated into denoising and deconvolution (i.e. 

sharpening or deblurring) methods. Denoising is already discussed in 

Subsection 3.2.3.1. This section focusses on non-blind deconvolution 

routines. For non-blind deconvolution the point spread function (𝑃𝑃𝑆𝑆𝑥𝑥) of 

an image (𝐼𝐼𝑏𝑏𝑐𝑐) is needed. Its measurement is described in Section 3.4.4.  

Image deconvolution is the inverse of image convolution (𝐼𝐼𝑏𝑏𝑐𝑐 = 𝐼𝐼𝑐𝑐𝑐𝑐𝑖𝑖𝑔𝑔⨂𝑃𝑃𝑆𝑆𝑥𝑥). 

In general, deconvoluted images (𝐼𝐼𝑚𝑚𝑚𝑚𝑐𝑐) do not fully recover the original 

(sharp) image (𝐼𝐼𝑐𝑐𝑐𝑐𝑖𝑖𝑔𝑔). Rather they build a compromise between contrast 

increase and introduced noise/artefacts. This section presents and 

compares four different image deconvolution routines. The first one 

(unsharp masking) is chosen due to its simplicity, the following two are 

both commonly applied in luminescence imaging and the last method is 

the only one, which can be applied without an extra parameter (𝑛𝑛). This 

parameter either defines number of iterations or weights deconvolution 

intensity. 

4.5.1 UNSHARP MASKING 

This filter amplifies high gradient areas in images, causing a higher local 

contrast using [61]:  

 

𝐼𝐼𝑚𝑚𝑚𝑚𝑐𝑐 = 𝐼𝐼𝑏𝑏𝑐𝑐 + 𝑛𝑛(𝐼𝐼𝑏𝑏𝑐𝑐 − (𝐼𝐼𝑏𝑏𝑐𝑐 ⊗ 𝑃𝑃𝑆𝑆𝑥𝑥)) (4.11) 

4.5.2 RICHARDSON-LUCY DEVONVOLUTION 

This expectation-maximization algorithm is a common tool used in 

astronomy and luminescence based literature [66, 74, 97]. Although it 

copes with Poisson distributed shot noise in images (Subsection 3.2.2.2), 

the noise level can be artificially amplified in the result.  Starting at 𝐼𝐼𝑚𝑚𝑚𝑚𝑐𝑐,0 =

�
0.5 ⋯ 0.5
⋮ ⋱ 0.5

0.5 ⋯ 0.5
� the deconvoluted image 𝐼𝐼𝑚𝑚𝑚𝑚𝑐𝑐,𝑐𝑐+1 is obtained iteratively [98]: 
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𝑅𝑅𝑛𝑛 =
𝐼𝐼𝑏𝑏𝑐𝑐

𝐼𝐼𝑚𝑚𝑚𝑚𝑐𝑐,𝑐𝑐 ⊗ 𝑃𝑃𝑆𝑆𝑥𝑥
 (4.12) 

𝐼𝐼𝑚𝑚𝑚𝑚𝑐𝑐,𝑐𝑐+1 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑐𝑐,𝑐𝑐 ∙ (𝑅𝑅𝑐𝑐 ⊗ 𝑃𝑃𝑆𝑆𝑥𝑥) (4.13) 

4.5.3 WIENER DECONVOLUTION 

In contrast to Richardson-Lucy, this filter works in the frequency domain. 

It penalizes frequencies using local noise minimization. It is applied in 

luminescence imaging in [68, 74]. 

4.5.4 UNSUPERVISED WIENER DECONVOLUTION 

This filter extends the Wiener method with an automated regularization 

estimation using a Gibbs sampler. Therefore, it requires only a blurred 

image and a PSF. [99] 

4.5.5 COMPARISON 

The deconvolution methods were evaluated on a synthetic (1) and an EL 

image (2). The images were blurred with a radial symmetric (a) and an 

elliptic (b) 2D Gaussian PSF (Figure 4.11).  

 

 
Figure 4.11: a,b) PSF used to blur 𝑰𝑰𝒐𝒐𝒓𝒓𝒊𝒊𝑬𝑬  of a synthetic pattern (1)                                
and an EL image (2) 

A comparison of the resulting (sharpened) images is shown in Figure 4.12 

(synthetic pattern) and Figure 4.13 (EL image). An improvement ratio (𝑄𝑄) 

is shown below every image. This ratio is calculated from a relative RMSE 

as follows: 
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𝑄𝑄 =
𝑅𝑅𝑥𝑥𝑆𝑆𝐸𝐸�𝐼𝐼𝑐𝑐𝑐𝑐𝑖𝑖𝑔𝑔 − 𝐼𝐼𝑏𝑏𝑐𝑐� − 𝑅𝑅𝑥𝑥𝑆𝑆𝐸𝐸�𝐼𝐼𝑐𝑐𝑐𝑐𝑖𝑖𝑔𝑔 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑐𝑐�

𝑅𝑅𝑥𝑥𝑆𝑆𝐸𝐸�𝐼𝐼𝑐𝑐𝑐𝑐𝑖𝑖𝑔𝑔 − 𝐼𝐼𝑏𝑏𝑐𝑐�
⋅ 100% (4.14) 

 

The smaller numbers in brackets (Figure 4.12, 4.13) show the 

deconvolution control parameter (𝑛𝑛). This parameter was determined by 

maximizing Equation 4.14 using the Brent method [79]. To evaluate noise 

stability, a mix of 70% Gaussian and 30% shot noise was added to 𝐼𝐼𝑏𝑏𝑐𝑐 in 

the bottom two rows causing a signal-to-noise ratio SNR of 10. The 

deconvoluted output from Richardson-Lucy was especially prone to few, 

but high magnitude artefacts. Therefore, 𝐼𝐼𝑚𝑚𝑚𝑚𝑐𝑐  was clipped to −100% to 

200% relative to the input intensity range. 

 

 
Figure 4.12: Result of image deconvolution of the synthetic pattern 
(Figure 4.11(1)); first column: Input image ( 𝑰𝑰𝒂𝒂𝒓𝒓 ) used for image 
deconvolution; 2nd-5th column: deconvolution output; large numbers: 
improvement ratio (𝑸𝑸 , Equation 4.14); small number in brackets: 
control parameter (𝒊𝒊); green box: result with highest improvement 
ratio 
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Figure 4.13: Same as Figure 4.12 for EL image (Figure 4.11(2)) 

Both Figure 4.12 and 4.13 show the common problems of image 

deconvolution: introduced noise, exaggerated gradients and artefacts. 

Noise: Both Unsharp masking and Richardson-Lucy amplified existing 

image noise (Figure 4.13c,d).  Therefore, noise removal with methods such 

as total variation regularization can be additionally applied [97].  

Exaggerated gradients: On top and below both busbars (Figure 4.13a) 

image intensity increased to a higher value than in the original image.  

Although this can improve qualitative feature visibility, it can cause 

problematic distortions when evaluating difference images.  

Artefacts: Results from Unsupervised Wiener generated a wave-shaped 

pattern along the image borders. Here the input image size is 100x100 

pixels. It can be assumed that the extent of this artefacts decreases with 

larger images or smaller PSF. These wave-shaped patterns caused negative 

improvement ratios (𝑄𝑄). Therefore, in the following comparison a border 

area of 20 pixels was excluded from the RMSE calculation in Equation 
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4.14. Figure 4.14 compares 𝑄𝑄  for the synthetic pattern (1) and the EL 

image (2) together with the PSF (a), shown in Figure 4.11 for three common 

problems (a-c). For Unsharp masking, Richardson-Lucy and Wiener the 

control parameter (𝑛𝑛) was determined once on the base of the average 

value of the varied problem parameter. 
  

     Synthetic pattern                                       EL image 

a)   

b)   

c)   
Figure 4.14: Improvement ratio (𝑸𝑸)  for three varied problem 
parameters (a,b,c); left: results of synthetic pattern (1); right: results for 
EL image (2); both images were blurred with PSF (a) (Figure 4.11) 

Problem a: The standard deviation of the PSF (𝜎𝜎𝐵𝐵 ) is not measured 

precisely. Whilst the actual 𝜎𝜎𝐵𝐵, used to blur the synthetic pattern and EL 

image, is 1.5 px, the PSF used to sharpen the blurred images varied 

between 1 and 2 px. Whilst Richardson-Lucy gives the best improvements 
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for the synthetic pattern, it also shows highest sensitivity towards 

deviating 𝜎𝜎𝐵𝐵 . In general, smaller 𝜎𝜎𝐵𝐵  will cause a smaller improvement 

decrease than 𝜎𝜎𝐵𝐵 which are measured too large.  

Problem b: Noisy input image. The SNR of the blurry input image varied 

from 10 to 100. Whilst noise is practically invisible at SNR=100, images 

with SNR=10 can be considered noisy (Figure 4.13c,d). For the synthetic 

pattern, the improvement generated with Richardson-Lucy varies 

strongly. This is due to introduced noise and artefacts. It can be assumed 

that an added noise filter would reduce these variations. Only for the EL 

image both Wiener and unsupervised Wiener showed slightly higher 

improvements for lower SNR values. 

Problem c: Noisy PSF. The PSF can include a certain noise level, depending 

on the measurement method. If this noise is not removed with for 

instance a functional fit, PSF noise can be tolerated to a large extent as 

Figure 4.14c shows. For SNR greater than 20, improvement remains 

unchanged. 

4.5.6 SECTION SUMMARY 

This section evaluated non-blind image deconvolution with a known point 

spread function (PSF). All the discussed deconvolution methods were able 

to partly restore image detail. Image deconvolution (sharpening) can 

introduce noise and artefacts and can overemphasize image gradients. 

Therefore, image deconvolution cannot substitute best focus 

determination (Section 3.3). For successful image deconvolution, the PSF 

must be determined precisely and the blurred image should have a high 

signal-to-noise ratio (SNR). For the evaluated EL images, both Wiener and 

unsupervised Wiener generated highest improvement ratios. 
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 Lens Distortion Removal 

Section 3.5 describes the measurement of lens distortion coefficients, 

focal length and image centre. These parameters are used to remove lens 

distortion using the Python interface of the C++ OpenCV framework as 

follows [64]:  

1. Calculate size of the new image and adapt image centre and focal 

length to the image size (cv2.getOptimalCameraMatrix). 

2. Generate a pixel indices array (𝑥𝑥𝑒𝑒,𝑦𝑦) mapping the uncorrected to the 

corrected positions (cv2.initUndistortRectifyMap). 

3. Remap the image using 𝑥𝑥𝑒𝑒,𝑦𝑦 (cv2.remap). 

Figure 4.15 shows as example of lens distortion removal. 

 

  
a) Before correction b) After correction 

Figure 4.15: EL image of a PV module before (a) and after removal of 
lens distortion (b); Distortions have been exaggerated for clarification 

 Perspective Correction 

The alignment of a PV device within an image is essential for image 

comparison within and across different measurement setups. The 

required perspective transformation or homography matrix (𝐻𝐻) can be 

obtained either from a reference image using pattern recognition, or 

without reference from detected features within the image. The routine 

implemented in this work is shown in Figure 4.16.  
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Figure 4.16: Schematic for correcting perspective of an EL image with 
and without reference image 

The correction routine varies depending whether a reference image is 

available. A reference image is an EL image of the same device after 

perspective correction. If no reference image is available, a grid consisting 

of cell edges and busbars is detected in the image (step 1). The grid is 

then used to rectify the image by transforming every cell sequentially 

(step 2). Both steps are described in detail in Subsection 4.7.1. The 
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resulting image can be used as a reference to correct further images. In 

this case, distinctive features in both images are matched (step 3) in order 

to calculate the homography (step 4). The applicability of this method 

depends on the homography quality. In case of a low quality homography 

matrix, image rectification is done using the four detected DUT corners 

(step 6). The right DUT orientation is then determined from the minimum 

of the magnitude difference between rectified and reference image (step 

7). Perspective correction with reference image is further described in 

Subsection 4.7.2. Finally, remaining spatial deviation between the 

rectified image and its reference is minimised by using sub-pixel 

alignment (Section 4.8). 

4.7.1 RECTIFICATION WITHOUT REFERENCE IMAGE 

This section describes algorithms to detect DUT corners, cell edges, 

busbars and distances between cells. This information can be used to 

equalize image cell sizes and to create an image mask to exclude 

background areas. The DUT used as example is shown in Figure 4.17.   

 

 
Figure 4.17: EL image of a c-Si module used as example in this section 

4.7.1.1 DEVICE CORNERS 

For automated DUT corner detection the following approach was found 

to be reliable (Figure 4.18): 
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1. Create a binary image 𝐼𝐼𝑏𝑏𝑐𝑐 = 𝐼𝐼𝐸𝐸𝐿𝐿 > 𝐸𝐸𝑁𝑁𝑚𝑚𝑖𝑖𝑐𝑐 using the statistical EL signal 

minimum 𝐸𝐸𝑁𝑁𝑚𝑚𝑖𝑖𝑐𝑐  (intersection of EL and background signal, 

Equation 3.15). 

2. Filter small features by applying a 2D minimum and maximum 

filter successively (kernel size = 5 px). 

3. Move from each image edge towards the image centre and mark the 

edge position from the first detected non-zero pixel (coloured dots 

in Figure 4.18). 

4. Fit a line through edge positions to obtain device edges. This can 

be done with a linear regression or the more robust maximum-line 

sum approach (Equation 4.15), explained below.  

5. Obtain DUT corners (𝐶𝐶0 …𝐶𝐶3) from intersection points of the fitted 

lines. 

 

 
Figure 4.18: Schematic of device corner detection 

4.7.1.2 GRID CONSTRUCTION AND REFINEMENT 

An initial grid (defined by its intersection points (𝑃𝑃), Figure 4.19a) can be 

created from detected DUT corners (𝐶𝐶0 …𝐶𝐶3) and number of cells (𝑛𝑛𝑒𝑒,𝑛𝑛𝑦𝑦) 

as follows: 

Create an initial, regular mesh grid (𝑃𝑃0) and use obtained homography 

matrix (𝐻𝐻) to transform 𝑃𝑃:  
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𝑃𝑃0 = �
0 … 𝑛𝑛𝑒𝑒 + 1
⋮ … 𝑛𝑛𝑒𝑒 + 1
0 … 𝑛𝑛𝑒𝑒 + 1

� , �
0 … 0
⋮ ⋮ ⋮

𝑛𝑛𝑦𝑦 + 1 𝑛𝑛𝑦𝑦 + 1 𝑛𝑛𝑦𝑦 + 1
� 

 

For this, two functions, from the Python interface of the C++ framework 

OpenCV are used: 

 

H = cv2.getPerspectiveTransform( 

 [ [0,0], [𝑛𝑛𝑒𝑒,0], [𝑛𝑛𝑒𝑒, 𝑛𝑛𝑦𝑦], [0, 𝑛𝑛𝑦𝑦] ], [𝐶𝐶0,𝐶𝐶1,𝐶𝐶2,𝐶𝐶3] ) 

P = cv2.perspectiveTransform(𝑃𝑃0, H) 

 

In order to align 𝑃𝑃 with the cell edges, a vertical and horizontal gradient 

image (𝐵𝐵𝑦𝑦,𝐵𝐵𝑒𝑒) is created using the Sobel operator [64] (Figure 4.19b,c). The 

background is removed by setting 𝐵𝐵𝑒𝑒,𝑦𝑦[𝐼𝐼𝐸𝐸𝐿𝐿 < 𝐸𝐸𝑁𝑁𝑚𝑚𝑖𝑖𝑐𝑐] to zero. 

 

 
Figure 4.19: a) Initial grid (𝑷𝑷) adapted to DUT; Sobel filter in vertical (b) 
and horizontal (c) direction of top-left area in (a); filter kernel size=5 px 

To refine the grid positions, lines (𝑙𝑙𝐻𝐻) are built from every point (𝑃𝑃𝑖𝑖,𝑂𝑂) to 

the respective horizontal and vertical neighbour (green and red lines in 

Figure 4.19). An aligned sub-image around every line is created (Figure 

4.20a).  

On the assumption that a cell edge causes comparably high/low values in 

𝐵𝐵𝑦𝑦,𝐵𝐵𝑒𝑒, its position can be determined from the maximum/minimum of the 

summed values along all possible lines from the left (𝑢𝑢) to the right (𝑣𝑣) 

image border. In an (𝑢𝑢 × 𝑣𝑣) array, the border position of the edge line 

(relative to the sub-image) can therefore be determined by listing all line 

sums as shown: 
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𝑃𝑃𝑚𝑚,𝑐𝑐 = arg max (sum�𝐵𝐵𝑒𝑒,𝑦𝑦[𝑙𝑙𝑖𝑖𝑛𝑛𝑒𝑒]� (4.15) 

  
The areas between the cells are enclosed by local minima and maxima in 

the respective gradient image. The cell edge line is defined as the average 

of both positions, obtained with Equation 4.15. An example is shown in 

Figure 4.20. 

 

 
Figure 4.20: a) Vertical image gradient around an inter cell gap; three 
example lines ( 𝑵𝑵𝟏𝟏−𝟑𝟑 ) from the left to the right image border; 
b) Line sum array ( 𝒖𝒖 × 𝒗𝒗 ) for all possible line combinations;  
c) Same, multiplied by (-1); Positions shown in (b,c) indicate position of 
array maximum used to define both edge lines (d) 

The image grid after local refinement is shown in Figure 4.21. In certain 

circumstances the edges might not be fitted well with Equation 4.15. To 

correct these misfits, all positions that deviate more than 5% from a 

position obtained by a 2D polynomial fit will be set to that polynomial fit.  

 

 
Figure 4.21: a) Image grid after refinement; b) Same after replacing all 
erroneous points with a 2nd order 2D-polynomal fit 

The EL image can now be rectified by perspective transformation of every 

individual cell in the DUT (Figure 4.22a,b). The functions 
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cv2.getPerspectiveTransform and cv2.warpPerspective are used 

for this [64]. 

 

 
Figure 4.22: EL image with refined grid before (a) and after (b) 
rectification; c) Image mask to exclude inter cell areas and busbars 

4.7.1.3 MASKING THE RECTIFIED DUT IMAGE 

To exclude inter cell areas and busbars from the device, the gap width 

between cells or across busbars must be determined. Line plots along 

multiple areas in the corrected EL image (Figure 4.23) are created. In every 

line plot, the gap width is defined as the number of pixels from local 

minima towards a given intensity threshold. It was found that 𝑦𝑦𝑚𝑚ℎ𝑐𝑐𝑚𝑚𝑠𝑠ℎ =

𝑦𝑦𝑚𝑚𝑐𝑐 + 0.35(𝑦𝑦𝑚𝑚𝑒𝑒 − 𝑦𝑦𝑚𝑚𝑐𝑐) gives sufficient results. Within the created mask, the 

width of busbars, horizontal, vertical and diagonal cell gaps is set to the 

respective median value from all individual 𝑦𝑦𝑚𝑚ℎ𝑐𝑐𝑚𝑚𝑠𝑠ℎ. 

 

 
Figure 4.23: a) Example positions of line plots, used to determine gap 
widths; b) Schematic to measure gap width 
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4.7.2 RECTIFICATION WITH REFERENCE IMAGE 

4.7.2.1 FEATURE MATCHING 

If a reference image (𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑) is available, key points are detected and matched 

between both images (𝐼𝐼, 𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑) using the ‘ORB’ descriptor [100] and a brute 

force matcher (Figure 4.24). From the set of matched key points detected 

in both images (𝑈𝑈1,𝑈𝑈2) the homography matrix (H) is calculated using the 

Python bindings of the OpenCV framework: 

 
H = cv2.findHomography(p1, p2)[0] 

Icorr = cv2.warpPerspective(I, H, Iref.shape) 

 

 
Figure 4.24: Matched key points (𝒑𝒑𝟏𝟏,𝒑𝒑𝟐𝟐) in rectified reference (𝑰𝑰𝒓𝒓𝒓𝒓𝒇𝒇) and 
EL image (𝑰𝑰) 

4.7.2.2 QUAD DETECTION AND DIRECT COMPARISON 

The homography matrix (𝐻𝐻 ) includes information for horizontal and 

vertical translation, scale, rotation and shear. The latter parameter will be 

used to evaluate the homography quality. If the shear exceeds 0.05 then 

feature matching failed and the following fallback method is executed for 

perspective correction: 

1. Detect DUT corner points (Subsection 4.7.1.1). 

2. Execute perspective transformation into size of reference image 

(𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑). 

3. Flip the transformed image (𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) four times (0°, 90°, 180°, 270°) 

and stop at rotation where mean�𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐼𝐼𝑐𝑐𝑚𝑚𝑑𝑑� is minimal. 
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4.7.3 CORRECTION EXAMPLE 

The proposed image correction routine is evaluated using a c-Si PV 

module imaged at four different positions: 

a) No tilt, position 1 

b) No tilt, position 2 

c) 15 ° tilt angle, position 1 

d) 35 ° tilt angle, position1, rotated 

All images were captured in the large-scale EL chamber ‘HuLC’ (Appendix 

2) using a SensoCam HR-830 camera with an image resolution of 

3324x2504 px. For the sake of repeatability, all correction methods were 

executed automatically. If it is assumed that the EL signal does not change 

during imaging, a successful image correction should lead to practically 

identical results. 

Figure 4.25 shows EL images with an identical colour map and scale of all 

four positions before (left) and after image correction (right). Looking at 

particularly cells {1,5} or {2,3} (row, column) it is clear that the intensity 

differs. This is due to the different influence of vignetting. However, after 

image correction differences in position and intensity are not visible. For 

position (c) and (d) corners of the image are missing because they were 

not imaged in the first place.  
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Uncorrected       Corrected 

a)   

b)   

c)   

d)   

Figure 4.25: Comparison of EL images before (left) and after image 
correction (right); scale and colour map are identical for all images 

Figure 4.26 shows the individual differences from corrected positions (b-

d) to (a) as a colour layer on top of a grey-scaled image (a). The red box 

within the overview marks the position of the image detail. The majority 

of the image remains grey-scaled. This indicates low and homogenous 

difference images. A red arrow points to a reddish region below a crack 

in the detailed image. The reddish region indicates that even transient EL 

instabilities can be recovered even though the imaged position was 

different. The blue colouring around some cells indicates a positional 

error of about two pixel for position (d). This error can be due to a slight 

bend of the module, imperfect lens calibration or homography matrix. 
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Removal of this residual position error is detailed in the following Section 

4.8.  

 

a)  b)  

Figure 4.26: EL comparison: overview (a) and detail (b); Differences to 
(Figure 4.25a) visualised as colour layer: b(red) c(green) d(blue); 
transparency scaled between 0-50% relative difference 

The yellow line in Figure 4.26b indicates the position of a line plot shown 

in Figure 4.27 (yellow line). The cell intensity and location of all corrected 

positions (a-d) is practically identical with a coefficient of variation of 

about 1%. 

 

 
Figure 4.27: EL line plot of yellow line in Figure 4.25 

 Sub-pixel Alignment 

Even after successful perspective correction, a positional error of one to 

five pixels can remain. This deviation causes difference images to 

overemphasize high gradient variations, like cell borders or busbars 

 



Chapter 4: Image Correction 
Section: 4.8: Sub-pixel Alignment 

 

 © Karl Bedrich - April 2017 169 

 

(Figure 4.28c). This subsection presents a fast and comparably simple 

method to reduce spatial deviation to less than one pixel (Figure 4.28d).  

 

 
Figure 4.28: a-b) EL images of the same DUT measured at different days, 
background, lens and perspective corrected; c) difference image a-b; d) 
same, after sub-pixel alignment; green box: same cell magnified 

Sub-pixel alignment calculates the spatial deviation (x, y) from the phase 

shift of two superimposed patterns (P1, P2). This method requires both 

EL images (𝐼𝐼1, 𝐼𝐼2) to display the same EL device under similar conditions 

and after perspective fit. Hereinafter, an (𝑚𝑚 × 𝑛𝑛 ) array (O), containing the 

spatial deviation (x, y) will be created. In the presented example, the array 

has 11 × 5 cells. For every cell in O, patterns from both EL images will be 

compared. The pattern, responsible for the deviation in x direction (𝑃𝑃𝑒𝑒) in 

one cell (𝑖𝑖) is a line plot ranging 𝑚𝑚𝑖𝑖…𝑚𝑚𝑖𝑖+1 and averaging all values in y 

direction ranging 𝑛𝑛𝑖𝑖 …𝑛𝑛𝑖𝑖+1 . For this, both images of shape (𝑈𝑈 × 𝑡𝑡)  are 

rescaled to shape (𝑚𝑚 × 𝑡𝑡) and (𝑈𝑈 × 𝑛𝑛) (Figure 4.29a,b). Pixel averaging is 

done by pixel-area relation [78].  

 

  
Figure 4.29: a-b) EL image (Figure 4.28a) after rescaling to 𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟏𝟏𝟑𝟑 px 
(a) and 𝟑𝟑𝟐𝟐𝟑𝟑𝟓𝟓 × 𝟓𝟓 px (b); c) Line plot of both patterns in x direction in 
part of one top right cell (short green line in (b))  
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For every cell ( 𝑖𝑖 ) in O, spatial deviation is found by minimizing the 

following condition using the Brent method [79]:  

 

𝑂𝑂(𝑖𝑖, 𝑥𝑥) = min �𝑃𝑃1𝑒𝑒,𝑖𝑖 − 𝑓𝑓𝑛𝑛�𝑃𝑃2𝑒𝑒,𝑖𝑖,𝑈𝑈ℎ𝑎𝑎𝑈𝑈𝑒𝑒�� 

𝑂𝑂(𝑖𝑖,𝑦𝑦) = min �𝑃𝑃1𝑦𝑦,𝑖𝑖 − 𝑓𝑓𝑛𝑛�𝑃𝑃2𝑦𝑦,𝑖𝑖,𝑈𝑈ℎ𝑎𝑎𝑈𝑈𝑒𝑒�� 
(4.16) 

 

𝑓𝑓𝑛𝑛(… , 𝑈𝑈ℎ𝑎𝑎𝑈𝑈𝑒𝑒), shown in Equation 4.16, shifts given values using piece-wise 

linear interpolation. The resulting phase shift map in x and y direction is 

shown in Figure 4.30a,c. To filter single erroneous results, pixel 

deviations higher than a given threshold (±30 pixels) and 100% higher 

than their median filtered value (kernel size=3) were substituted with a 

2D polynomial fit (degree=5, Figure 4.30b,d). 

 

 
Figure 4.30: a,c) Phase shift map (𝑶𝑶) between EL images (Figure 4.28a,b) 
in x (a) and y (c) direction; b,d) Same, after polynomial fit 

Finally, O is rescaled to the resolution of both EL images (𝑈𝑈 × 𝑡𝑡) (Figure 

4.31a,b) and increased by the pixel index maps in x and y (Figure 4.31c,d). 

The resulting maps are then used to remap all pixels of EL image (𝐼𝐼1). 
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Figure 4.31: a-b) Phase shift map (Figure 4.30b,d) after rescaling to EL 
image resolution; c,d) Pixel indices of all pixels in EL image ranging 
0…3280 in x and 0…1463 in y direction 

The impact of sub-pixel alignment can be seen in Figure 4.32 which shows 

cell {5,5} of the c-Si module ‘M2’ from the NREL case study (Subsection 

7.1). From top left to bottom right, the module was stressed both 

mechanically and thermally. Subfigure (a) shows the same cell imaged by 

eight separate EL measurements. The images were corrected for intensity 

and perspective, as described in this Chapter. The applied stress first 

created a micro-crack (green box), which later developed into a full Y-

shaped crack. Subfigure (b) shows EL difference images (𝐼𝐼𝑖𝑖 − 𝐼𝐼𝑖𝑖+1) without 

sub-pixel alignment. The micro-crack can be identified multiple times due 

to a small positional mismatch of the individual images. However, after 

sub-pixel alignment (c) this crack occurs only once in the difference 

images.  

 

 
Figure 4.32: Cell {5,5} of module ‘M2’ from NREL case study (Section 
7.1); a) EL image of treatment step 1-8; b) EL difference image after 
perspective correction; c) same after sub-pixel alignment 
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In the same way, the centre of the Y-crack (yellow box) is visible in all the 

difference images in Subfigure (b). Subfigure (c) however, only shows the 

intensity deviations along the crack and not the crack itself. 

The improvement due to sub-pixel alignment is quantified in Table 4.1. 

Improvement was calculated as an absolute average deviation between 

every two consecutive EL images, relative to the mean pixel intensity of 

the respective first image. The detailed sub-pixel alignment procedure 

was repeated six times to improve the result. For every EL difference 

image, the relative deviation decreased after single and 6 step sub-pixel 

alignment. 

Table 4.1: Rel. average intensity deviation of EL difference images [%] 

Image 1 2 3 4 5 6 7 8 

no sub-pixel 
alignment 

4.16 6.98 12.15 5.94 6.33 6.89 7.16 35.10 

single step 
alignment 

2.89 5.61 10.55 3.13 3.41 3.73 3.71 33.68 

6-step 
alignment 

2.29 5.15 10.21 2.32 2.33 2.48 2.25 32.40 

 Intensity Normalisation 

Different camera sensitivities, dark current levels and exposure times 

cause different brightness and contrast levels in EL images. These images 

need to be scaled accordingly in order to quantitatively compare EL 

differences. In both case studies in Chapter 7, image intensities are 

normalised as follows: 

1. Calculate the cumulative distribution function (CDF) of all image 

intensities in the corrected EL image (𝐼𝐼). 

2. Select minimum and maximum intensity (𝑥𝑥𝑚𝑚𝑖𝑖𝑐𝑐, 𝑥𝑥𝑚𝑚𝑎𝑎𝑒𝑒) from the CDF 

as those positions where CDF=2% and CDF=98% 

3. Scale every image using: 
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𝑰𝑰𝟓𝟓…𝟏𝟏 =
𝐼𝐼 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑐𝑐

𝑥𝑥𝑚𝑚𝑎𝑎𝑒𝑒 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑐𝑐
 (4.17) 

 

If every image contains the same DUT in the same perspective, after 

intensity scaling intensity deviations are only due to EL signal changes 

(Figure 4.33, 4.34). 

 

a)    

b)    

Figure 4.33: Effect of intensity scaling; a) EL images of the same DUT 
from different laboratories scaled to their individual minimum and 
maximum intensity; b) same images after perspective correction and 
intensity normalisation  

 

a) b)    

Figure 4.34: a) Intensity distribution histogram; b) CDF of the images 
shown in (Figure 4.33b)   
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 Chapter Summary 

To date EL image analysis is often restricted to manual comparison of 

visible features. The EL signal, captured by the imaging system, is 

superimposed by distortions and artefacts. In consequence, EL images 

become setup dependent and EL difference images taken at different 

measurements or laboratories are difficult to analyse. 

This chapter provided an integral and automatable image correction 

routine. For the first time EL imaging artefacts, intensity differences and 

spatial distortions caused by the imaging system and the DUT perspective 

were removed together. 

EL images taken from the same DUT and corrected with this routine differ 

mostly due to EL signal differences. EL images, analysed in both case 

studies in Chapter 7, were corrected according to this routine. The routine 

is embedded in the developed image processing software (Appendix 3). 
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5 EXTRACTING FEATURES 

FROM DIFFERENCE IMAGES 

This chapter covers algorithms for detecting inactive areas (Section 5.2) 

and cracks (Section 5.3) in EL images that were corrected as described in 

Chapter 4. Parameters, derived from detected cracks, are introduced in 

Subsection 5.3.2. The impact of cracks in module performance is 

estimated in Subsection 5.3.3. 

 Introduction 

In contrast to examples in literature [101, 102], in this work extrinsic 

defects (such as cracks and inactive areas) are extracted from the relative 

difference to two EL images (𝐼𝐼1, 𝐼𝐼2). EL images are corrected as discussed 

in Chapter 4. Two examples of corrected EL images (before and after a 

mechanical load test) are shown in Figure 5.1a,b. Intrinsic features 

superimpose extrinsic defects, especially for polycrystalline Si devices. 

This often impedes the differentiation between for example cracks and 

grain boundaries. In this work, relative difference images (𝑠𝑠𝐼𝐼𝑐𝑐𝑚𝑚𝑐𝑐) are used 

to correct luminescence inhomogeneities: 

 

𝑠𝑠𝐼𝐼𝑐𝑐𝑚𝑚𝑐𝑐 =
𝐼𝐼1 − 𝐼𝐼2
𝐼𝐼1

 (5.1) 

  

As Figure 5.2 shows, in the relative difference image device intrinsics 

(such as grain boundaries) cancel out extrinsic features (such as cracks) 

dominate. The following subsections describe the extraction of cracks 

and inactive areas, shown as red lines and green areas in Figure 5.1d,f. 
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Inactive areas are separated into partly and fully inactive areas (light and 

dark green). If cracks are identified adjacent to darker (inactive) areas, 

they will set to be ‘disconnecting’ cracks (dark red). Otherwise, they will 

be labelled as ‘non-disconnecting’ cracks (light red).  

 

 
Figure 5.1: Monocrystalline Si module ‘M1’ from NREL case study in 
Section 7.1 before (a) and after mechanical load experiment (b); c) EL 
intensity difference; d) extracted feature map; e,f) EL intensity 
difference and feature map of cell {5,3}; red: cracks; green: inactive area 

 
Figure 5.2: Comparison of an absolute difference image (c) to a relative 
one (d) for a monocrystalline (1) and a polycrystalline device (2) 

 Partly and Fully Inactive Areas 

Partly inactive areas are defined as cell areas that are still electrically 

connected, but appear darker due to a higher series resistance [103] or 

shunts. In this work areas with a signal reduction higher than 30% are 

marked as partly inactive (light green). Areas with a signal reduction of 

more than 60% are set to be fully inactive. However, as discussed in 
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Subsection 7.1.2.3 it is controversial to what extent these areas are 

electrically isolated.  

In order to filter signal noise, the relative difference image is median 

filtered (kernel size = 3 px). In a set of multiple difference images of the 

same device after different treatments, areas that were detected as 

inactive before will not be detected as inactive again, if the EL intensity 

did not continue to change after the first decrease. Therefore, if an area 

is detected twice as (partly) inactive, it is assumed fully inactive.  

Since every crack also decreases signal intensity, inactive areas can also 

be detected along cracks (Figure 5.3a). This can be corrected using a 

combination of two-dimensional maximum filter (kernel size = 30x30 px) 

and ‘logical and’ (∧). The filter sequence is shown in following Python-

based pseudo-code and the filter result is shown in Figure 5.3c. 

 

# STEP a: make copy of inactive area 

disc2 = disc.copy() 

# STEP b: remove areas around crack, 

disc2[logical_and(maximum_filter(cracks, 30),disc))]=False 

# STEP c: restore areas that still exist: 

disc = logical_and(maximum_filter(disc2,30),disc)) 

 

 
Figure 5.3: Removal of falsely detected inactive areas along cracks; 
dashed area gives result for 2D maximum filter 

 Cracks Detection 

The detection of cracks is a more challenging task since they often cannot 

be successfully detected with a simple threshold condition as described 

in [101]. Anwar et al. detect cracks by applying a shape analysis on binary 
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EL images. The algorithm is trained with known crack shapes from a large 

EL image dataset [104, 105]. 

In this work, a crack is defined as a combination of high gradient variation 

together with a mono-directional propagation. This means that cracks are 

considered as lines, which are dark and more or less straight. The first 

criterion is fulfilled, if the edge magnitude of the difference image is 

higher than a given threshold. To calculate the edge magnitude (Figure 

5.4b), the Laplace operator (𝑁𝑁(𝐼𝐼)) [106] was used: 

 

𝑁𝑁(𝐼𝐼) =
1
6
�

0 −1 0
−1 4 −1
0 −1 0

� ⊗ 𝐼𝐼 
(5.2) 

 

For the second condition the Histogram of Oriented Gradients (HOG) 

[107] is calculated. For this, depending on the number of measured 

propagation directions (in this case eight directions, Figure 5.4f) the 

difference image is convoluted with a line-shaped convolution kernel 

(also named ‘2-D matched filter’ in [102]). Hereinafter, a ‘line-likeliness’ is 

measured from the maximum value of all directions within the HOG 

(Figure 5.4a). 

This method works as follows: For each pixel and each propagation 

direction in the image, the pixel sum along this direction is calculated. 

The direction resulting in the highest sum marks the crack direction. In 

contrast to the otherwise similar anisotropic diffusion filter technique 

[104] this method calculates a result after a single convolution routine for 

each orientation. 

A crack is detected if both described criteria exceed given thresholds 

(Figure 5.4c). In this work, the threshold for edge magnitude is 0.02 and 

for line-likeliness is 0.045. To convert the identified areas into single-pixel 

lines, a skeleton (Figure 5.4d) of the binary result is created [108]. The 

propagation direction can be obtained as a by-product from crack 

detection using HOG (Figure 5.4e).  
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Figure 5.4: Interim results for the highlighted cell {5, 3} in the relative 
EL difference image of Figure 5.1b; a) Line-likeliness from HOG 
maximum; b) Edge magnitude; c) Result of  (𝒂𝒂) >  𝟓𝟓.𝟓𝟓𝟏𝟏𝟓𝟓 ⋀  (𝒂𝒂) > 𝟓𝟓.𝟓𝟓𝟐𝟐 ;      
d) (c) after skeletonisation; e) crack orientation map; f) convolution 
kernels, used to calculate HOG for eight different orientations using 
kernel size (𝒌𝒌𝒔𝒔𝒓𝒓) = 𝟏𝟏𝟏𝟏𝟒𝟒𝟏𝟏𝟏𝟏 pixels 

5.3.1 LIMITATIONS 

The described crack detection algorithm is prone to false positive or false 

negative detection. As Figure 5.5a shows, vertical image gradients caused 

by inactive fingers may be misinterpreted as cracks. Sub-pixel alignment 

is essential when difference images are analysed. However, if the EL signal 

differences between images are too great, the alignment error between 

both images can be up to a few pixels. This can cause cell edges or busbars 

to be detected as defective areas (Figure 5.5b). Spatial deviations can be 

falsely detected as cracks, especially for polycrystalline DUT (Figure 5.5c).  

Conversely, cracks at dark or along inactive areas can remain undetected 

if their image gradient is too small. In order to improve the success rate 

and quality of this feature detection algorithm, further evaluation is 

needed. The success rate of the algorithm can be evaluated by viewing at 

the corrected EL images and their extracted features in Appendix 4.1.   
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Figure 5.5: EL image, EL difference image and thereof extracted 
features of three PV cells; False positive (blue) or false negative (red) 
detected cracks 

5.3.2 DERIVING QUANTITATIVE PARAMETERS 

Qualitative crack classification has so far distinguishes either by crack 

number [103], appearance [109] or severity [103]. The resulting crack 

types include ‘dendritic’, ‘parallel to busbars’ and ‘45° angled’ as well as 

cracks rated as type A-C (non-disconnecting, disconnecting, isolating). In 

contrast to these approaches, this thesis focusses on a cell-by-cell 

parameterization of crack orientation maps (Figure 5.4e). 

The crack length (𝑙𝑙𝑐𝑐𝑐𝑐) is calculated from the sum of detected crack pixels 

(𝑛𝑛𝑐𝑐𝑐𝑐 ) relative to cell width (𝑈𝑈𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 [px]). The main crack direction (𝑠𝑠𝑐𝑐𝑐𝑐 ) is 

extracted from the crack orientation map (𝑠𝑠𝑖𝑖):  

 

𝑙𝑙𝑐𝑐𝑐𝑐 = 100% ∙
𝑛𝑛𝑐𝑐𝑐𝑐
𝑈𝑈𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐

 (5.3) 

𝑠𝑠𝑐𝑐𝑐𝑐 = median(𝑠𝑠𝑖𝑖) (5.4) 
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Crack fragmentation (𝑓𝑓𝑐𝑐𝑐𝑐)  represents the spread of different crack 

orientations. Values of 𝑓𝑓𝑐𝑐𝑐𝑐  below 30% indicate clearly orientated and 

straight cracks, whereas values above 60% suggest a broad distribution of 

different crack orientations and/or arched cracks.   

To calculate (𝑓𝑓𝑐𝑐𝑐𝑐) the numbers of pixels of each orientation (𝑛𝑛𝑚𝑚𝑒𝑒(𝑠𝑠𝑖𝑖)) is 

counted and sorted by decreasing pixel number. An example based on the 

cell and convolutions kernels shown in Figure 5.4e,f is shown in Figure 

5.6. 

 

a) b)  

Figure 5.6: Number of pixels at the same orientation, arranged by 
orientation (a) and by decreasing pixel number (b) 

From the orientation index (𝑖𝑖) and the number of directions (𝑛𝑛𝑚𝑚), the crack 

fragmentation can now be calculated as:  

 

𝑓𝑓𝑐𝑐𝑐𝑐 = 100% ∙
∑�𝑛𝑛𝑚𝑚𝑒𝑒(𝑠𝑠𝑖𝑖) ∙ 𝑖𝑖�

�∑�𝑛𝑛𝑚𝑚𝑒𝑒� − 1� ∙ 1
2 ∙ 𝑛𝑛𝑚𝑚

 (5.5) 

 

𝑓𝑓𝑐𝑐𝑐𝑐 depends on the number of evaluated discrete orientations (𝑛𝑛𝑚𝑚) as well 

as the size of the convolution kernel (𝑘𝑘𝑐𝑐𝑐𝑐 ) (Table 5.1). The deviation 

between actual and assigned crack orientation decreases with 

increasing  𝑛𝑛𝑚𝑚 . An increasing 𝑘𝑘𝑐𝑐𝑐𝑐  decreases the number of crack 

orientations identified, favouring longer cracks. In this work, 𝑛𝑛𝑚𝑚 is set to 

12 and 𝑘𝑘𝑐𝑐𝑐𝑐 to 41x41 (respective 10% cell width) as compromise between 

precision and computation speed (Table 5.1 middle).  
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Table 5.1: Comparison of crack fragmentation ( 𝒇𝒇𝒔𝒔𝒓𝒓 ) at different 
convolution kernel sizes and number (𝒊𝒊𝑬𝑬) of evaluated orientations 

𝒌𝒌𝒔𝒔𝒓𝒓 𝒊𝒊𝑬𝑬 = 𝟏𝟏 𝒊𝒊𝑬𝑬 =12 𝒊𝒊𝑬𝑬 =20   

11 
X 
11 

𝑓𝑓𝑐𝑐𝑐𝑐 =64.3% 𝑓𝑓𝑐𝑐𝑐𝑐 =61.1% 𝑓𝑓𝑐𝑐𝑐𝑐 =57.2% 

 

O
rie

nt
at

io
n 

[°
] 

41 
X 
41 

𝑓𝑓𝑐𝑐𝑐𝑐 =61.8% 𝑓𝑓𝑐𝑐𝑐𝑐 =56.7% 𝑓𝑓𝑐𝑐𝑐𝑐 =48.7% 

71 
X 
71 

𝑓𝑓𝑐𝑐𝑐𝑐 =61.3% 𝑓𝑓𝑐𝑐𝑐𝑐 =55.3% 𝑓𝑓𝑐𝑐𝑐𝑐 =42.7% 
 

 

Whether crack orientations are more evenly distributed or more 

segregated into two peaks (X-shaped cracks) can be evaluated with the 

bimodality (𝑏𝑏𝑐𝑐𝑐𝑐) of the crack orientation. It can be calculated from the 

skewness ( 𝐵𝐵𝑚𝑚𝑑𝑑 ) and excess kurtosis ( 𝑘𝑘𝑚𝑚𝑑𝑑 ) of the crack orientation 

distribution (𝑠𝑠𝑖𝑖) as follows [110]: 

 

𝑏𝑏𝑐𝑐𝑐𝑐 = 100% ∙
𝐵𝐵𝑚𝑚𝑑𝑑

2 + 1

𝑘𝑘 + 3(𝑙𝑙𝑐𝑐𝑐𝑐 − 1)²
(𝑙𝑙𝑐𝑐𝑐𝑐 − 2)(𝑙𝑙𝑐𝑐𝑐𝑐 − 3)

 (5.6) 

 
However, 𝑏𝑏𝑐𝑐𝑐𝑐 does not distinguish, whether the main crack orientations 

are 90° apart and does not distinguish, whether the two major crack 

directions consist of many short cracks or a few long ones.  

Table 5.2 compares the four described parameters on eight crack 

orientation maps. 
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Table 5.2: Crack parameters calculated from example crack orientation 
maps 

ID Crack orientation 𝒇𝒇𝒔𝒔𝒓𝒓 𝒓𝒓𝒔𝒔𝒓𝒓 𝑬𝑬𝒔𝒔𝒓𝒓 𝒂𝒂𝒔𝒔𝒓𝒓 

1 

 

9.3% 97.5% 135° 9.3% 

2 

 

26.5% 75.5% 135° 88.2 

3 

 

27.7% 181% 30° 70.3% 

4 

 

30.6% 277% 45° 29.3% 

5 

 

38.4% 205% 165° 81.3% 

6 

 

56.7% 398% 45° 47.2% 

7 

 

67.5% 338% 120° 55.7% 

8 

 

70.9% 873% 60° 61.9% 
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5.3.3 DERIVING ELECTRICAL CHARACTERISTICS FROM 
DETECTED CRACKS  

Demant et al. conducted wafer breakage experiments and measured the 

wafer fracture strength as a function of crack length and orientation 

[105]. Since this thesis focusses on PV modules and the only measurement 

methods available are EL, LIV and DIV, a direct relationship between 

individual cracks and mechanical or electrical PV performance cannot be 

established. The case study in Section 7.1 analyses the influence of 

parameters, such as crack length and changed EL intensity on the device 

performance.   

This subsection describes a fast and simple method to additionally 

estimate the increase in series resistance due to cracks using an example 

monocrystalline PV cell with three busbars (Figure 5.7a).  

 

 
Figure 5.7: Schematic for calculating series resistance increase maps; 
a,b) input busbar (target) and wall maps; c,d) resulting distance maps; 
e) Conditional region growth method; f) resulting series resistance 
factor map  

The minimum distance [px] to the closest connecting busbar (magenta 

lines) is calculated for every image pixel (black area). This is done with 

the following conditional region-growth algorithm (Figure 5.7e) using an 

array in which every pixel is labelled either ‘empty’, ‘wall’ (crack) or 

‘target’ (busbar): 

1. From the current position: Propagate towards direct neighbour 

pixels. Set every pixel which is not labelled ‘empty’ or ‘wall’ to the 

current iteration number.  
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2. Repeat with (1) for every new position. 

3. Stop when new position is marked as ‘target’. 

The resulting distance maps are calculated for both, the intact (𝐴𝐴0) and 

cracked cell (𝐴𝐴𝑐𝑐𝑐𝑐) (Figure 5.7c,d). Finally, the series resistance ratio (𝐼𝐼𝑅𝑅𝑠𝑠) 

from the ratio of both maps (Figure 5.7f) is calculated using: 

 

𝐼𝐼𝑅𝑅𝑠𝑠 =
𝐴𝐴0
𝐴𝐴𝑐𝑐𝑐𝑐

 

 

(5.7) 

This method enables identification of isolated or high series resistance 

areas using only the detected crack positions. The 𝐼𝐼𝑅𝑅𝑠𝑠 map average (𝑓𝑓𝑅𝑅𝑠𝑠) 

can be related to the actual power decrease. Four example results are 

compared to their origin EL images in Table 5.3. 

Table 5.3: Comparison of calculated series resistance increase maps 
and their respective EL image 

ID EL image 𝒓𝒓𝑹𝑹𝒔𝒔 𝒇𝒇𝑹𝑹𝒔𝒔 

 

1 

  

82.1% 

2 

  

81.3% 

3 

  

91.9% 

4 

  

86.7% 
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In direct comparison between EL images and 𝐼𝐼𝑅𝑅𝑠𝑠 maps, the deficiencies of 

this model become clear:  

1. The model assumes that every crack is electrically isolating. 

However, for the majority of cracks in Table 5.3, fingers remain 

intact. Therefore, in cell 1 the two quadrilateral areas in the middle 

still emit light although they are surrounded by cracks. 

2. When a crack is isolating (such as bottom right in cell 4) its 

influence extends not just to the closest, but also the opposite 

busbar. This crack only causes decreased  

𝐼𝐼𝑅𝑅𝑠𝑠  values to the central region between two busbars. Using the 

region-growth method described, the bottom half is unaffected – in 

contrast to the behaviour in the EL image. 

3. The validity of 𝐼𝐼𝑅𝑅𝑠𝑠 strongly depends on the accuracy of the crack 

detection. As the 𝐼𝐼𝑅𝑅𝑠𝑠 map of cell 4 (bottom left) shows, even a small 

undetected cracked area can be decisive, as to whether an area is 

isolated or not. 

4. Broken busbars are not considered. 

Despite these deficiencies, this method can be useful for rating the ability 

of individual cracks to cause disconnections or inactive areas, similar to 

the crack criteria defined in [111].   

 Chapter Summary 

Usually, features (like cracks) are extracted from single EL images and not 

from before/after differences. In particular for polycrystalline DUT, 

extrinsic features are superimposed with DUT intrinsics, like grain 

boundaries. The differentiation between both requires rather complicated 

algorithms. In contrast to this, this chapter presented algorithms to 

extract inactive areas and cracks from relative EL difference images. 

Therein, extrinsic features dominate.  

After detailing feature extraction, four parameters to quantify detected 

cracks were introduced. These parameters allow a more sophisticated 
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statistical EL analysis than the rather loose crack counting method [103]. 

One of these parameters (crack length) will be correlated to module power 

decrease in Subsection 7.1.2.  

Instead of manually subdividing cracks into their putative severity, their 

negative influence on DUT performance is calculated with a ‘series 

resistance factor’ map.  
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6 UNCERTAINTY ANALYSIS 

How much can the intensity of a pixel or pixel group in an EL image be 

trusted to be representative for the actual EL signal? This section 

investigates different sources to the overall EL image uncertainty. It is 

separated into sources affecting uncertainty of signal intensity and 

uncertainty of signal position. Three different sub-uncertainty maps 

(noise, position, signal and correction) will be generated in order to 

calculate the overall uncertainty map due to the different rules of 

averaging uncertainty. This map assigns an uncertainty value to every 

pixel in an EL image (Figure 6.1).  

 

 
Figure 6.1: Example uncertainty map for a corrected EL image of a c-Si 
module at 10% 𝑰𝑰𝒔𝒔𝒔𝒔 

 Intensity Uncertainty 

6.1.1 SIGNAL QUANTISATION 

The quantization error of an analogous signal digitised between two 

discrete states namely 0 and 1 is its mean: ±0.5 [112]. If the signal range 

is much bigger than the discretization states, a uniform distribution of all 

values within the range can be assumed. In this case the standard 

deviation within the step becomes 
1
√12

≅ 0.298 [113]. An increasing value 

range decreases the relative distance between discrete states. For the dark 
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current corrected measured pixel intensity (𝛷𝛷𝐸𝐸𝐿𝐿)  the standard 

quantization or round-off uncertainty (𝑈𝑈𝛥𝛥𝛷𝛷𝐸𝐸𝐸𝐸) can then be expressed using: 

 

𝑈𝑈𝛥𝛥𝛷𝛷𝐸𝐸𝐸𝐸 =
1

√12 ∙ 𝛥𝛥𝛷𝛷𝐸𝐸𝐿𝐿
 (6.1) 

 

In order to evaluate the importance of the quantization uncertainty, 𝑈𝑈𝛥𝛥𝛷𝛷𝐸𝐸𝐸𝐸 

is calculated for three common camera sensor depths (D = 8, 14, 16 bit) 

and relative image intensities (𝐼𝐼). A homogenous dark current level of 5% 

is assumed. 𝛥𝛥𝛷𝛷𝐸𝐸𝐿𝐿 is calculated as follows: 

 

𝛥𝛥𝛷𝛷𝐸𝐸𝐿𝐿 = 𝑛𝑛 ∙ 𝐼𝐼 − 5% ∙ 𝑛𝑛;      𝑛𝑛 = 2𝐷𝐷 − 1;      𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑎𝑎𝑐𝑐(𝛷𝛷𝐸𝐸𝐸𝐸)
𝑐𝑐

 (6.2) 

 

The resulting values for 𝑈𝑈𝛥𝛥𝛷𝛷𝐸𝐸𝐸𝐸 are shown in Table 6.1. 

Table 6.1: Quantization uncertainty for different camera sensor depths 
and relative signal ranges 

𝒓𝒓 8 bit 
(0…255) 

14 bit 
(0…16383) 

16 bit 
(0…65535) 

10% 2.26% 0.04% 0.009% 
30% 0.45% 0.007% 0.002% 
50% 0.25% 0.004% 0.001% 

 

An error above 2% occurred only with an 8 bit camera and a low signal 

intensity of 10% (𝛷𝛷𝐸𝐸𝐿𝐿 = 26). In the EL Round Robin evaluation (Subsection 

7.2.1) the majority of laboratories used a 16 bit camera and image 

intensities were distributed around 20% relative to the maximum possible 

value. This causes quantization uncertainty to be far below one percent. 

Therefore 𝑈𝑈𝛥𝛥𝛷𝛷𝐸𝐸𝐸𝐸 is not considered any further.  



Chapter 6: Uncertainty Analysis 
Section: 6.1: Intensity Uncertainty 

 

 © Karl Bedrich - April 2017 190 

 

6.1.2 IMAGE NOISE 

The calculation of the signal-to-noise ratio (SNR) is described in detail in 

Section 3.1. Since signal quantization was found to be neglectable, the 

uncertainty due to image noise (𝑈𝑈𝑁𝑁𝑐𝑐𝑖𝑖𝑠𝑠𝑚𝑚) can be directly calculated from the 

inverse of the SNR: 

 

𝑈𝑈𝑁𝑁𝑐𝑐𝑖𝑖𝑠𝑠𝑚𝑚 ≡
1

𝑆𝑆𝑁𝑁𝑅𝑅
 (6.3) 

6.1.3 IMAGE CORRECTION 

Background-, perspective- and flat field correction modify image 

intensity. Their correction residuals are discussed as follows. 

6.1.3.1 BACKGROUND 

In Section 3.1 it was shown that a background calibration is suitable to 

remove dark current, hot pixels and stray light, if light conditions are 

immutable. For variable light conditions however, an additional image 

taken at open-circuit voltage and otherwise identical settings should be 

taken instead.  

Light conditions during outdoor EL measurements are generally variable. 

To decrease the influence of stray light, measurements are done with a 

mobile dark chamber, at night or with a lock-in technology. It is assumed 

that the influence of changing light conditions in a mobile chamber, 

during the night or during one lock-in cycle can be neglected. However as 

discussed, background correction can also increase image noise. This 

noise adds to the general image noise level. It will be recognised by the 

signal-to-noise ratio and does not need extra consideration. 
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6.1.3.2 PERSPECTIVE 

The EL emission of PV devices changes less than 5% within a ±50° tilt 

angle (Figure 3.82). For higher angles, the intensity decrease can be 

corrected. The success of this method relies on the precision of DUT 

corner detection. An intensity deviation from faulty perspective 

correction becomes visible above a tilt angle of 80° (Figure 3.84). EL 

images taken with such high perspective distortions are expected to be 

exceptional. Therefore, this source of uncertainty will not be considered. 

6.1.3.3 FLAT FIELD 

The evaluation of averaged cell intensities of corrected EL images of the 

same devices within the conducted EL Round Robin (Subsection 7.2.3.1) 

showed intensity deviations from 5 to 15%. It was found that these 

deviations were mostly caused by residual flat field distortion. As Section 

3.6.4 concludes, the method applied within the Round Robin was found 

to be unsuitable for flat field measurement. If flat field is measured with 

other, more promising methods (like Method E, Subsection 3.6.2.5) the 

standard deviation of cell averages decreased in some cases to 1-2 %. This 

standard deviation is a valid estimation of uncertainty due to imperfect 

flat field correction. If it can be assumed that flat field calibration is done 

with a similarly precise method, uncertainty from image correction (𝑈𝑈𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐) 

is approximately 2%. 

6.1.4 EL SIGNAL STABILITY  

The emitted EL signal is not steady over time. Random variations (𝑈𝑈𝐸𝐸𝐿𝐿−𝑐𝑐), 

warm-up behaviour (𝑈𝑈𝐸𝐸𝐿𝐿−𝑙𝑙) as well as the dependency of calibration- to 

measurement exposure time (𝑈𝑈𝐸𝐸𝐿𝐿 �
𝑚𝑚
𝑚𝑚0
� ) are analysed in the following 

subsections. 
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6.1.4.1 DUT WARM-UP 

Transient EL changes during operation are mainly caused by different 

temperatures during the warm-up of the device. To evaluate the influence 

of these changes, a silicon and a thin-film DUT were imaged in steps of 

30(60) s for 60(90) min. Initial, last and difference image are shown in 

Figure 6.2. For this evaluation, all images were corrected for dark current, 

flat field, lens, perspective and intensity as described in Chapter 4.  Both 

DUT were operated at 100 % 𝐼𝐼𝑠𝑠𝑐𝑐 . It is assumed that transient EL signal 

variations are smaller for smaller  𝐼𝐼𝑠𝑠𝑐𝑐 due to reduced injected power and 

therefore reduced operating temperatures.  

 

a)   b)  

Figure 6.2: Initial, final and (final-initial) difference EL images for a            
(a) c-Si and (b) CIS DUT 

In particular Figure 6.2a shows a decreased EL signal after 60 min of 

operation. The module was mounted on an L-shaped metallic structure. 

This structure becomes visible in the difference image ‘diff’. Along the 

busbars, image intensity decreased least during operation.  

A less homogenous EL intensity change is shown in Figure 6.2b. Therein, 

intensity remains constant or even increases along the long edges whilst 

the centre area shows decreased values. 

The change of the by-cell-averaged intensities (6x12 for the c-Si-module 

and 80x1 for the CIS-module) over measurement time, operation voltage 

and DUT temperature shows Figure 6.3 and 6.4. In this experiment, 

operation voltage was taken from a two-wire measurement. The DUT 
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temperature was measured with one temperature sensor, attached at the 

back of the DUT. 

It is stated that the values obtained with a single or two sensors are not 

sufficient to capture the extent of DUT temperature differences. Deriving 

a physical model from these measurements would require a spatially 

resolved temperature map. This map would have to be measured with a 

thermography camera, which was not available and is therefore omitted.   

  

   

   
Figure 6.3: Measurement results of a c-Si-module, shown in Figure 6.2a; 
a-c) Average cell values relative to first measurement;  
a) Value ratio over measurement time;  
b) Value ratio over average DUT temperature;  
c) Value ratio over operation voltage; Black: Module average. Red: Fit 
using Equation 6.4; d) Average DUT temperature over time;  
e) standard deviation of all cells relative to DUT mean over 
measurement time [green] and DUT temperature [red];  
f) Operation voltage over DUT temperature; red: linear fit  

The trend in Figure 6.3a-c leads to the following conclusions: The module 

average (black) and also the cell averages decrease over time. After 60 min 

of operation, the intensity ranges from 88% to 96% of the initial intensity. 

The intensity decrease follows a linear trend, if compared to DUT 

temperature or operation voltage. As Subfigure (f) shows, the operation 

voltage decreased with temperature at roughly 

-120 mV/C°. Although the module temperature did not stabilize during 
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measurement time (d) it can be assumed that the maximum temperature 

is below 45°C. The relative standard deviation from all cell intensities (e) 

decreases over measurement time. This means that that the cell 

intensities equalize slightly during operation. The same trend, plotted 

over DUT temperature (red line in (e)) again is linear within a wide range. 

Figure 6.4 shows the same plots for the CIS-module shown Figure 6.2b. 

 

   

   
Figure 6.4: Measurement results of CIS-module, shown in Figure 6.2b;     
for description of subfigures, see Figure 6.3 

The values in Figure 6.4 do not appear to settle homogenously. EL 

intensities rather increase over the first 20 min and then stabilise (Figure 

6.4a). Also cell intensities do not change linearly with DUT temperature 

of operation voltage (b,c). Although the DUT temperature does not 

stabilize within the 90 min of measurement (d) it is assumed that the 

maximum temperature is lower than 32 °C. With -241 mV/°C the thermal 

effect of operation voltage appears to be twice as high as for the c-Si-

module (f). Metastabilities causing an EL increase of a similar CIGS device 

were also observed in [114] and therein ascribed to bulk series resistance 

reduction during bias soaking. 

For both evaluated DUTs the average cell intensity over time follows the 

general decay function: 
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𝜑𝜑(𝑡𝑡) = (𝜑𝜑0 − 𝜑𝜑∞) ∙ 𝑒𝑒−𝑎𝑎∙𝑚𝑚 + 𝜑𝜑∞ (6.4) 

Where:    

𝜑𝜑(𝑡𝑡)   EL signal at time t  

𝜑𝜑0   EL signal at t = 0 min  

𝜑𝜑∞   EL signal at t = infinite  

a   Diffusivity constant [
1

𝑚𝑚𝑖𝑖𝑐𝑐
] 

 

 

The intensity change over time for different diffusivities (𝑎𝑎 ) and an 

example EL intensity change from one to zero is shown in Figure 6.5. 

 

 
Figure 6.5: Impact of different diffusivities (a) on the EL intensity 
change over time 

The exponential function (Equation 6.4) was used to fit the 120(90) images 

taken of both DUT. For the CIS-module, EL images at measurement times 

smaller 20 min were excluded since the EL signal did not follow Equation 

6.4 (Figure 6.4a). The resulting maps for the EL signal at t=0, t=infinite and 

their difference are shown in Figure 6.6. 
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a)   b)  

Figure 6.6: Resulting maps from fitting every image pixel along 
measurement time using Equation 6.4 for (a) c-Si and (b) CIS DUT; 
intensities scaled in same range as Figure 6.2 

With 𝜑𝜑∞ an extrapolated EL image at t=infinite was calculated and with it, 

the steady-state EL signal. The strong similarities in comparison to Figure 

6.2 are as expected. Differences can be seen in Subfigure (a) along the 

busbars in the left row and top column where in particular the difference 

image shows higher values. The difference image in Subfigure (b) also 

shows a stronger separation between intensities along the long edges and 

the DUT centre. To allow an undisturbed view in both ‘diff’ images, pixels 

that could not be fitted with Equation 6.4 were substituted with 

interpolated values obtained from a k-nearest neighbour approach.  

If the EL signal is defined to be stabilised if the relative difference to its 

𝜑𝜑∞ value is below 5% (𝑚𝑚 = 0.05), then the time required to stabilize the 

signal (𝑡𝑡𝑠𝑠𝑚𝑚) can be calculated as follows:  

 

𝑡𝑡𝑠𝑠𝑚𝑚 =
ln �m ∙ 𝜑𝜑0 + (1 −𝑚𝑚)𝜑𝜑∞ − 𝜑𝜑∞

𝜑𝜑0 − 𝜑𝜑∞
�

−𝑎𝑎
 

(6.5) 

 

The resulting maps together with diffusivity (𝑎𝑎) are shown in Figure 6.7. 
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a)  b)  

Figure 6.7: Diffusivity (𝒂𝒂), stabilisation time (𝒊𝒊𝒔𝒔𝒊𝒊) and RMSE of the fitted 
DUT maps in Figure 6.6 

The resulting maps are independent of the initial and final EL signal. 

Diffusivity and stabilisation time are inversely proportional. The 

diffusivity map in Figure 6.7a shows the impact of the junction box at the 

bottom of the DUT. Directly over the junction box the EL signal stabilises 

comparatively quickly. On both sides of the junction box however, it takes 

more than 90 min to stabilise. The small circular prints on every cell of 

the c-Si module are caused from cell handling during manufacturing. It 

can be seen that their stabilisation time is comparatively long.  

The results shown in Subfigure (b) are less revealing. However, it is shown 

that low diffusivity values at the bottom left and right cause erroneously 

long or wrong stabilisation times. It can be assumed that more EL images 

at measurement times higher than 90 min would have improved the fit 

quality. A histogram of the 𝑡𝑡𝑠𝑠𝑚𝑚  maps shows the area ratio [%] which 

stabilises at which measurement time (Figure 6.8).  

 

  
Figure 6.8: Stabilising DUT area (green) from histogram of 𝒊𝒊𝒔𝒔𝒊𝒊 maps, 
shown in Figure 6.7; red: cumulative sum of green plot 
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The stabilisation area of the c-Si module follows a Gaussian distribution 

with a mean time of 43 min. For the CIS module the majority of areas 

stabilised after 100 min and after the last measured time (90 min).   

The EL signal deviation (𝑠𝑠(𝑡𝑡)) relative to the final measurement is shown 

in Figure 6.9.  

 

  
Figure 6.9: EL signal deviation, relative to 𝝋𝝋∞  or relative to last 
measurement; red: deviation from measured EL images; black: 
deviation from fit using Equation 6.4 

Therein, black lines show the deviation calculated from the fitted maps: 

 

𝑠𝑠𝑑𝑑𝑖𝑖𝑚𝑚(𝑡𝑡) =
|𝜑𝜑∞ − 𝜑𝜑(𝑡𝑡)|

𝜑𝜑∞
 (6.6) 

 

Full lines show the mean of the resulting deviation map and dashed lines 

show its standard deviation. In comparison to this, red lines show mean 

and deviation obtained from all measured EL images, relative to the last 

image (𝜑𝜑𝑐𝑐𝑎𝑎𝑠𝑠𝑚𝑚): 

 

𝑠𝑠𝑚𝑚𝑚𝑚𝑎𝑎𝑠𝑠(𝑡𝑡) =
|𝜑𝜑𝑐𝑐𝑎𝑎𝑠𝑠𝑚𝑚 − 𝜑𝜑𝑚𝑚|

𝜑𝜑𝑐𝑐𝑎𝑎𝑠𝑠𝑚𝑚
 (6.7) 

 

As the red dotted lines show, deviation stabilizes at a certain level above 

zero. This is due to remaining image noise. The influence of image noise 

is already evaluated in Subsection 6.1.2. Therefore, in this discussion 

noise is removed by subtracting every 𝑠𝑠𝑚𝑚𝑚𝑚𝑎𝑎𝑠𝑠(𝑡𝑡) using: 
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𝑠𝑠𝑚𝑚𝑚𝑚𝑎𝑎𝑠𝑠,2(𝑡𝑡) = 𝑠𝑠𝑚𝑚𝑚𝑚𝑎𝑎𝑠𝑠(𝑡𝑡) −
𝑠𝑠𝑚𝑚𝑚𝑚𝑎𝑎𝑠𝑠(𝑡𝑡𝑐𝑐𝑎𝑎𝑠𝑠𝑚𝑚)2

𝑠𝑠𝑚𝑚𝑚𝑚𝑎𝑎𝑠𝑠(𝑡𝑡)
 (6.8) 

 

This assumption only holds true, if the EL change between the last two 

measurements is negligible and the last difference is mostly caused by 

image noise. Figure 6.9a shows a good agreement between the deviation 

from fitted and measured data. The average deviation falls to 5% after the 

first 10 minutes of measurement. This discovery lead to the creation of 

the requirement for a 10 minute warm-up time before measuring EL in 

the conducted EL Round Robin (Section 7.2).  

In comparison to (a), Subfigure (b) is again less conclusive. The EL signal 

deviation, calculated from fitted maps (black) indicates a remaining 

deviation of 10% at the last measurement time of 90 min. Looking at the 

measured results (red), the deviations fall to 5% after 40 min. Since the 

measured results use the last EL image as a reference, the last deviation 

is zero at 90 min. Therefore an offset of 10% between measured and fitted 

data is almost constant for the duration of measurements. The deviation 

increases only within the first five minutes. As Figure 6.4 shows this is 

due to the globally increasing EL signal at that time.  

6.1.4.1.1 QUANTIFYING WARM-UP UNCERTAINTY 

EL signal deviation in the warm-up phase is mainly caused by temperature 

changes. For DUTs with known warm-up behaviour (𝜑𝜑(𝑡𝑡,𝜑𝜑0,𝜑𝜑∞,𝑎𝑎)), the 

related uncertainty (𝑈𝑈𝐸𝐸𝐿𝐿−𝑙𝑙) can be described by the root-mean-square fit 

error. For the two analysed cases, this error is below one percent and can 

be neglected. For the analysed CIS module, the decay Equation 6.4 is only 

applicable for measurements after 20 min warm-up. 

The calculated fit depends on the measurement environment which 

includes ambient temperature, applied current (in this case 100% 𝐼𝐼𝑠𝑠𝑐𝑐) as 

well as conduction of the DUT mounting frame and air convection in the 

measurement chamber. Forced convection by ventilation can reduce 

temperature differences and cause a faster stabilisation. In addition, a 
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thermally conductive (particularly metal) mounting frame can visibly 

influence the EL signal. 

However, these conditions are normally unknown or not measured.  

Therefore, the following two models (Table 6.2) are introduced to quantify 

EL warm-up uncertainty (𝑈𝑈𝐸𝐸𝐿𝐿−w). 

Table 6.2: Models used to quantify 𝑼𝑼𝑬𝑬𝑵𝑵−𝐰𝐰 derived from Figure 6.9 

Model A Model B 

Ambient temperature 20 ±5°C No information 
Closed measurement chamber No information 
Forced warm-up phase of 
10±2 min at the same current as 
measured 

Measurement taken at some point 
between 0…15 min within warm-
up phase 

Exposure time within 2 min  

Crystalline Thin-film Crystalline Thin-film 
𝑼𝑼𝑬𝑬𝑵𝑵−𝒓𝒓 = 𝟓𝟓.𝟏𝟏% =0.8% 𝑼𝑼𝑬𝑬𝑵𝑵−𝒓𝒓 = 𝟐𝟐.𝟑𝟑% =2.8% 

 

Whilst model A is limited to indoor measurements, model B can be 

applied in every case. Model B includes the probability that measurements 

in prior (including those to set up exposure time) could have heated up 

the DUT to a certain extent. To calculate 𝑈𝑈𝐸𝐸𝐿𝐿−𝑙𝑙, the standard deviation of 

the average EL deviation (Figure 6.9, red line) is calculated for values from 

8 to 12 min (model A  0.6%, 0.8%) and from 0 to 15 min (model B  

2.6%).  

In model B it is additionally assumed that the conductivity of the DUT 

mounting frame influences the EL signal. To estimate its influence Figure 

6.10 shows a line plot in x-axis of the first two cell columns. 

A maximum deviation of ±4 % within the two cells can be seen. If it is 

assumed that this deviation is zero at t=0 and its increase follows the 

same exponential function as the deviation in Figure 6.9a, its standard 

deviation becomes 1.1%. The effective uncertainty for model B therefore 

becomes 𝑈𝑈𝐸𝐸𝐿𝐿−𝑙𝑙 = �(2.6 %)2 + (1.1 %)2) = 2.8%. 
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a)  b)  

Figure 6.10: a) EL difference image of c-Si module between 1 min and 
15 min; b) Line plot in x-axis from green box in (a); busbar positions 
indicated with red circles 

6.1.4.2 RANDOM VARIATIONS 

Between 20/04/2015 and 03/06/2015, 15 individual EL measurements 

were conducted on a c-Si and a CIGS module. The setup (module mounting 

frame, cable connection, power supply control and camera) was kept 

identical for every individual measurement.  

In every image set, two EL and two dark current images were taken at 

same current and exposure time. Every set resulted in one EL image, 

corrected for dark current, single-time-effects, lens, vignetting, and 

perspective (Chapter 4). Fifteen corrected EL images from the two DUT 

are shown in Figure 6.11-6.13. Therein, Subfigure (b, c) shows the 

individual difference to a measurement average for the entire device (b) 

and a region of interest (c).  

 

 
Figure 6.11: a) corrected EL images of a c-Si module at 100% 𝑰𝑰𝒔𝒔𝒔𝒔 ; 
b) difference image relative to average of all EL images; c) same for 
ROI (green box) shown in (a) 
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Figure 6.12: Same as Figure 6.11 for a CIGS module at 100% 𝑰𝑰𝒔𝒔𝒔𝒔 

 
Figure 6.13: Same as Figure 6.12 at 10% 𝑰𝑰𝒔𝒔𝒔𝒔 

Although the imaging setup was kept identical, the EL signal can be 

influenced by module handling, variations in connection resistance, 

electrical disturbances, ambient temperatures as well as signal 

fluctuations (Subsection 6.1.4.3). For the tested c-Si module, Figure 6.11b 

shows homogenous variations across the entire module. Subfigure (c) 

shows a fluctuating signal due to electrical reconnection next to a crack. 

In contrast to this, Figure 6.12b shows more localised variations mostly 

around high series resistance areas. In the 10% 𝐼𝐼𝑠𝑠𝑐𝑐 EL image (Figure 6.13) 
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the influence of series resistance is comparably lower. Due to the lower 

voltage, cell connection issues dominate EL deviations (Subfigure c). 

From the EL images shown, the temporal RMSE was calculated and 

evaluated at module, cell and pixel scale. For cell and module averages, 

the respective area was spatially averaged before the RMSE was 

calculated. Results on two different area sizes are shown in Figure 6.14 

and 6.15. 

 

 
Figure 6.14: RMSE maps calculated from EL images of c-Si module 
(Figure 6.11) at 100% 𝑰𝑰𝒔𝒔𝒔𝒔  (a,b) and 10% 𝑰𝑰𝒔𝒔𝒔𝒔  (c,d); a,c) cell average;               
b,d) 7x7 pixel average 

 
Figure 6.15: Same as Figure 6.14 for CIGS module (Figure 6.12) 

The RMSE is relatively small and evenly distributed across the evaluated 

c-Si module (Figure 6.14). At 100 % 𝐼𝐼𝑠𝑠𝑐𝑐, only one cell shows a larger area 

of higher deviation due to busbar connection issues. In addition, two 

smaller areas deviate due to cracks (green boxes).  
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Looking at the CIGS module (Figure 6.15) deviations are more spacious at 

100% 𝐼𝐼𝑠𝑠𝑐𝑐 and more localised at 10% 𝐼𝐼𝑠𝑠𝑐𝑐. Bright spots in Figure 6.15d can be 

caused by shunts. They are also visible but less pronounced in Figure 

6.15b.  

Since EL signal deviations are mostly smaller than 10% relative to their 

mean signal, image noise influences the result, especially if the averaged 

area is small. The following equation thereby calculates relative pixel 

noise (𝑁𝑁𝑚𝑚𝑒𝑒) for a difference image (√2, due to sum of variances) and an 

averaged area of width (𝑤𝑤) and height (ℎ): 

 

𝑁𝑁𝑚𝑚𝑒𝑒 =
1

𝑆𝑆𝑁𝑁𝑅𝑅 √
2

1
√𝑤𝑤 ∙ ℎ

 (6.9) 

 

For both modules and both currents, the signal-to-noise ratio (SNR) was 

calculated using two EL images (taken in series) and one background 

image (taken at the same exposure time). Background areas were excluded 

from the SNR average. SNR calculation is further described in Subsection 

3.1. Table 6.3 lists the calculated SNR and well as the pixel noise (𝑁𝑁𝑚𝑚𝑒𝑒) for 

different area sizes. 

Table 6.3: Top: calculated SNR for both devices at 10% and 𝟏𝟏𝟓𝟓𝟓𝟓% 𝑰𝑰𝒔𝒔𝒔𝒔; 
bottom: area and area specific pixel noise (𝑵𝑵𝒑𝒑𝒑𝒑) 

  c-Si  CIGS 

  10% 𝐼𝐼𝑠𝑠𝑐𝑐 100% 𝐼𝐼𝑠𝑠𝑐𝑐  10% 𝐼𝐼𝑠𝑠𝑐𝑐 100% 𝐼𝐼𝑠𝑠𝑐𝑐 
SNR [-]  19.19 19.73  6.11 10.95 

       

 Area [px] 𝑵𝑵𝒑𝒑𝒑𝒑 [%] Area [px] 𝑵𝑵𝒑𝒑𝒑𝒑 [%] 

Module 3242x1453 2.55e-3 2.48e-3 1650x1000 0.018 0.01 
Cell 355x355 0.02 0.02 22x1000 0.15 0.09 
7 px 7x7 1.05 1.02 7x7 3.31 1.84 
1 px 7x7 7.37 7.17 1x1 23.15 12.92 

 

The influence of 𝑁𝑁𝑚𝑚𝑒𝑒 is negligibly small for module and cell averages. If 

only few pixels are averaged however, noise can impact the calculated 
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RMSE. Table 6.4 lists the average and standard deviation for the calculated 

RMSE maps at module, cell and pixel level. 

The table shows that the EL intensity variation increases temporally and 

spatially (by standard deviation of the RMSE map) with decreasing 

averaged area.  

Table 6.4: Average and standard deviation of calculated temporal RMSE 
maps shown in Figure 6.14 and 6.15 

[%] 
c-Si CIGS 

𝟏𝟏𝟓𝟓% 𝑰𝑰𝒔𝒔𝒔𝒔 𝟏𝟏𝟓𝟓𝟓𝟓% 𝑰𝑰𝒔𝒔𝒔𝒔 𝟏𝟏𝟓𝟓% 𝑰𝑰𝒔𝒔𝒔𝒔 𝟏𝟏𝟓𝟓𝟓𝟓% 𝑰𝑰𝒔𝒔𝒔𝒔 
Area Mean St.dev.  Mean St.dev.  Mean St.dev.  Mean St.dev. 

Module 0.78 - 1.21 - 3.14 - 1.91 - 
Cell 0.8 0.16 1.33 0.23 3.51 1.06 2.64 1.23 
7 px 1.26 0.8 1.8 0.86 5.83 3.72 7.53 4.46 
1 px 3.23 1.56 3.18 1.00 11.27 9.81 9.6 5.87 

 

 

If pixel noise and EL signal are taken as independent coefficients, 

influencing the measured deviation, the influence of the EL signal can be 

extracted as follows: 

 

𝑈𝑈𝐸𝐸𝐿𝐿−r = �RMSE(𝐼𝐼𝑖𝑖)2 − 𝑁𝑁𝑚𝑚𝑒𝑒2 (6.10) 

 

Table 6.5 lists the random EL variation (𝑈𝑈𝐸𝐸𝐿𝐿−r ) for the same areas, 

calculated from ‘Mean’ values, shown in Table 6.4 and 𝑁𝑁𝑚𝑚𝑒𝑒, shown in Table 

6.3. 

Table 6.5: Resulting uncertainty due to random signal variations for 
two devices and two currents 

𝑈𝑈𝐸𝐸𝐿𝐿−r [%] 
c-Si CIGS 

𝟏𝟏𝟓𝟓% 𝑰𝑰𝒔𝒔𝒔𝒔 𝟏𝟏𝟓𝟓𝟓𝟓% 𝑰𝑰𝒔𝒔𝒔𝒔 𝟏𝟏𝟓𝟓% 𝑰𝑰𝒔𝒔𝒔𝒔 𝟏𝟏𝟓𝟓𝟓𝟓% 𝑰𝑰𝒔𝒔𝒔𝒔 
Module 0.78 1.21 3.14 1.91 

Cell 0.79 1.33 3.51 2.64 
7 px 0.69 1.48 4.8 7.30 
1 px - - - - 
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With 𝑈𝑈𝐸𝐸𝐿𝐿−r  values around 0.7 to 0.8% (10% 𝐼𝐼𝑠𝑠𝑐𝑐 ) respective 1.2 to 1.4% 

(10% 𝐼𝐼𝑠𝑠𝑐𝑐), no clear dependency on the averaged area can be identified for 

the c-Si module. 𝑈𝑈𝐸𝐸𝐿𝐿−r  decreases with increasing averaged area for the 

CIGS module. The last row in Table 6.5 remains empty because in this 

case the assumed pixel noise is higher than the calculated intensity 

deviation, resulting in a negative value within the square root (Equation 

6.10). 

6.1.4.3 EXPOSURE TIME DEPENDENCY 

Uncertainty from signal variations is specific to the exposure time (𝑡𝑡0) of 

the EL image set, used to measure it. For EL images taken at exposure 

times ( 𝑡𝑡 ) longer than 𝑡𝑡0 , the resulting uncertainty will be less, since 

variations average out during exposure. On the other hand, 𝑈𝑈𝐸𝐸𝐿𝐿 increases 

for exposure times shorter than 𝑡𝑡0. 𝑈𝑈𝐸𝐸𝐿𝐿 can be adapted to exposure times 

(t), different from 𝑡𝑡0 as follows: 

 

𝑈𝑈𝐸𝐸𝐿𝐿 �
𝑡𝑡
𝑡𝑡0
� =

𝑈𝑈EL

� 𝑡𝑡
𝑡𝑡0

 (6.11) 

 

This equation originates from the assumption that EL variations are 

Gaussian distributed. When summed, its variances (𝜎𝜎2) also sum [115]: 

 

𝜎𝜎𝑠𝑠𝑚𝑚𝑚𝑚 = ��𝜎𝜎𝑖𝑖2 (6.12) 

 

However, the EL signal can vary over time due to positional drifts of cells 

or performance parameters changed with temperature, especially near 

extrinsic defects [116]. Figure 6.16 shows a polycrystalline Si module with 

several broken and inactive areas in the middle of the first two columns. 

In a set of 20 successively taken EL images at 𝑡𝑡0 = 12 𝑈𝑈, multiple areas 

change their intensity. For every image taken, the average intensity within 
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the green ROIs in Subfigure (a) was plotted in (b). Areas disconnected over 

time, or reconnected once or twice. Due to the short absolute 

measurement time (4 min) and the high noise level in every image, a linear 

regression was used (instead of an exponential decay, Equation 6.4), to 

obtain a better fit the EL signal over time. The RMSE was then calculated 

from the differences between fitted and actual images (c).  

 

  
Figure 6.16: Polycrystalline Si module; a) EL image average (1-20);              
b) Average pixel intensity over measurement time for three ROIs, 
shown in (a); c) RMSE, calculated from the 20 taken EL images 

The influence of signal fluctuations (named ‘events’) on uncertainty for 

exposure times different to 𝑡𝑡0 was evaluated numerically. For this, the 

signal was defined by its average (in this case zero) and standard 

deviation as well as event frequency (𝑓𝑓) and duration (𝑠𝑠). Three example 

synthetic signals with the same standard deviation of one are shown in 

Figure 6.17. Event position and amplitude follow a uniform, respective 

normal distribution. 

 

 
Figure 6.17: Three example synthetic signals with 𝝁𝝁 = 𝟓𝟓, 𝝈𝝈 = 𝟏𝟏 
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Every signal was integrated (i.e. captured) at different exposure times. The 

standard deviation of multiple integrations (in this case 300) was then 

calculated. The result becomes dependent only on exposure time and 

event frequency. Event duration does not influence the result, since it 

determines the signal standard deviation, which cancels out due to the 

normalisation. The results are made dimensionless by substituting 

exposure time (𝑡𝑡[𝑈𝑈]) with an exposure time ratio (
𝑚𝑚
𝑚𝑚0

) and event duration 

(𝑠𝑠[𝑈𝑈]) with a duration ratio (
𝑚𝑚
𝑚𝑚0

). The resulting standard deviation scaling 

factor (𝑓𝑓𝜎𝜎) can be seen in Figure 6.18. Therein, multiple duration ratios 

(coloured lines) are plotted for exposure time ratios from 1/16 to 16. 

Additionally the signal uncertainty (Equation 6.11) was added to both 

Subfigures (black line). In delimitation, this plot is named ‘var’, since its 

standard deviation is made up of random oscillations. 

 

  
Figure 6.18: Standard deviation scaling factor (𝒇𝒇𝝈𝝈 ) where the series 

represent different event durations (
𝑬𝑬
𝒊𝒊𝟓𝟓

) 

The black plot ‘var’ increases earlier for 
𝑚𝑚
𝑚𝑚0

< 1 and decreases earlier for 

𝑚𝑚
𝑚𝑚0

> 1 than the coloured plots. Whilst plots with duration ratios 
𝑚𝑚
𝑚𝑚0

< 1  

spread towards 
𝑚𝑚
𝑚𝑚0

< 1, plots with an event duration longer than exposure 

time (
𝑚𝑚
𝑚𝑚0

> 1) spread towards 
𝑚𝑚
𝑚𝑚0

> 1 . These trends can be explained as 

follows:  
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The effective standard deviation of a signal which changes slowly over 

multiple EL images (
𝑚𝑚
𝑚𝑚0

> 1) decreases with decreesing exposure time since 

the events responsible for that standard deviation will vary less. High 

frequent events (such as light blue in Figure 6.18) however, will still vary 

enough at shorter exposure times. In contrast, low frequent events 

become higher frequent for increasing exposure times, weakening the 

standard deviation decrease.  

The dotted plots adjacent every line in Figure 6.18 show a fit using an 

extended decay function, similar to Equation 6.5: 

 

𝑓𝑓𝑚𝑚 �
𝑡𝑡
𝑡𝑡0
� = (𝑓𝑓0 − 𝑓𝑓∞) ∙ 𝑒𝑒−𝑎𝑎∙(𝑚𝑚/𝑚𝑚0)𝑏𝑏 + 𝑓𝑓∞ (6.13) 

 

The four parameters (𝑎𝑎 , 𝑓𝑓0 , 𝑏𝑏 , 𝑓𝑓∞ ), required to build this equation are 

plotted for different relative event durations (
𝑚𝑚
𝑚𝑚0

) in Figure 6.19. 

 

 
Figure 6.19: Fit parameter for Equation 6.13 

The relative event duration (
𝑚𝑚
𝑚𝑚0

) for the c-Si module (Figure 6.16a) is shown 

in Figure 6.20a.  
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a) Event duration  
for EL images  
(Figure 6.16a) 

b-c) Signal uncertainty at exposure time shorter 
(b) and longer (c) than reference time (𝒊𝒊𝟓𝟓) 

Figure 6.20: Example result of exposure time dependent uncertainty 

𝑚𝑚
𝑚𝑚0

 is calculated as follows for every EL image: 

1. Calculate the difference between all images and image fit (𝑠𝑠𝐸𝐸𝑁𝑁) from 

linear regression and the standard error of the fit (𝑈𝑈0). 

2. Select events (𝐸𝐸) using: 

 

𝐸𝐸 = 𝑠𝑠𝐸𝐸𝑁𝑁 >
𝑈𝑈0
2

 (6.14) 

 

3. Calculate 
𝑚𝑚
𝑚𝑚0

 as the average length of positive elements along the 

time dimension in 𝐸𝐸. 

For all positive elements in Figure 6.20a, the exposure-time-dependent 

uncertainty was calculated using: 

 

𝑈𝑈EL �
𝑡𝑡
𝑡𝑡0
� = 𝑓𝑓𝑚𝑚 �

𝑡𝑡
𝑡𝑡0
� ∙ 𝑈𝑈EL (6.15) 

 

For all remaining elements 𝑈𝑈EL �
𝑚𝑚
𝑚𝑚0
� was calculated using Equation 6.11. 

Figure 6.20b-c show the resulting signal uncertainty for two example 

exposure times 
1
2
𝑡𝑡0 and 4𝑡𝑡0. 

In comparison with Figure 6.20a it is shown that the uncertainty of areas 

with fluctuating events (middle left) does not increase as much for shorter 

exposure times but also does not decrease as clearly for increasing 

exposure times. Event durations shorter than exposure time (𝑡𝑡0) cannot 
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be measured with the above-described method. Therefore event durations 

shorter of close to 𝑡𝑡0 should be calculated using Equation 6.11. 

6.1.5 INTENSITY UNCERTAINTY AVERAGING 

If a pixel area (|𝑥𝑥𝑙𝑙,𝑦𝑦ℎ|) with width (w) and height (h) rather than a single 

pixel is evaluated, different averaging methods are suitable depending on 

the uncertainty type: 

Noise based uncertainty (𝑈𝑈𝑁𝑁𝑐𝑐𝑖𝑖𝑠𝑠𝑚𝑚) : Gaussian distributed image noise 

decreases when averaged. In the same way 𝑈𝑈𝑁𝑁𝑐𝑐𝑖𝑖𝑠𝑠𝑚𝑚  decreases with the 

square root of the number of values: 

 

𝑈𝑈𝑁𝑁𝑐𝑐𝑖𝑖𝑠𝑠𝑚𝑚 =
mean(𝑈𝑈𝑁𝑁𝑐𝑐𝑖𝑖𝑠𝑠𝑚𝑚|𝑥𝑥𝑙𝑙,𝑦𝑦ℎ|)

√𝑤𝑤 ∙ ℎ
 (6.16) 

 

EL signal and image correction uncertainty (𝑈𝑈𝐸𝐸𝐿𝐿,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ): The uncertainty 

associated with EL signal variations of image correction is not affected by 

averaging, therefore: 

 

𝑈𝑈𝐸𝐸𝐿𝐿,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = mean(𝑈𝑈𝐸𝐸𝐿𝐿,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑥𝑥𝑙𝑙,𝑦𝑦ℎ|) (6.17) 

6.1.6 SECTION SUMMARY 

EL emission of a DUT decreases exponentially with increasing time under 

forward bias. This warm-up behaviour (𝑈𝑈𝐸𝐸𝐿𝐿−w) can be in part corrected for 

if the DUT diffusivity can be estimated and measurement conditions are 

controlled.  Additional EL signal variations have many reasons. Amongst 

others are device handling, changed contact resistances to the 

connectors, electrical disturbances and temperature variations. 

In this section, warm-up behaviour was measured on one crystalline and 

one thin-film device in one measurement set. Exposure time dependency 

was measured on two similar devices with multiple individual 
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measurements. Deriving a general signal uncertainty from these few 

measurements would not be reliable. However, acknowledging the need 

for comprehensive values and recognizing that an uncertainty analysis of 

this extent would not be feasible for non-academic applications, signal 

uncertainty (𝑈𝑈𝐸𝐸𝐿𝐿 ) can be set to �(𝑈𝑈𝐸𝐸𝐿𝐿)2.8%2 + (𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)2%2 ≈ 3.4%  if the 

following conditions are fulfilled: 

• Exposure times are similar to exposure time (𝑡𝑡0) used to measure 

𝑈𝑈𝐸𝐸𝐿𝐿−w and 𝑈𝑈𝐸𝐸𝐿𝐿−r. In this case, no exposure time correction is needed. 

• No information about DUT warm-up is given (Table 6.2, model B) 

• DUT type differences are not considered. Uncertainty values are 

taken from the measured thin-film device. 

• Only cell averages of measured random signal variations are 

evaluated. 

 Position Uncertainty 

This section focuses on position uncertainty due to perspective and lens 

distortion (Figure 6.21). Firstly, position uncertainty will be defined as 2D 

vector array (𝜎𝜎𝑚𝑚𝑐𝑐𝑠𝑠��������⃗ = �
𝜎𝜎𝑒𝑒
𝜎𝜎𝑦𝑦�) mapping the spatial standard deviation of every 

pixel in an image. This array will then be transformed onto the actual 

pixel-intensity dependent scalar uncertainty map (𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠). 

 

 
Figure 6.21: Example for lens and perspective correction; 
distortion exaggerated for clarity 
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6.2.1 IMAGE SHARPNESS 

This parameter (𝜎𝜎𝐵𝐵 ) equals the standard deviation of a point-

spread-function (blur) which is assumed to be Gaussian 

distributed (Subsection 3.4.3.1). 

6.2.2 RE-PROJECTION ERROR 

The re-projection error (𝜎𝜎𝑐𝑐𝑚𝑚𝑚𝑚) estimates the uncertainty of a pixel position 

after correction of lens distortion. It originates from the RMSE of the 

difference between detected features within the camera calibration 

pattern and re-projected points [64]. In this work, it is assumed that the 

individual RMSE at each feature point does not follow a functional 

relationship and therefore the re-projection error is assumed spatially 

uniform. In contrast to other contributors to position uncertainty, 𝜎𝜎𝑐𝑐𝑚𝑚𝑚𝑚 

only measures the uncertainty of alignment. Misalignments caused by the 

re-projection error can be partly corrected with and without reference 

image (Section 4.7). 

6.2.3 DEPTH-OF-FIELD BLUR 

If the angle between optical axis and image plane is not perpendicular, 

certain areas of the PV device will be out of focus.  

The depth-of-field (DOF) sensitivity is mostly dependent on the camera 

lens’ f-number (𝐴𝐴) and focal length (𝑓𝑓). Pertuz et al. [63] describes the 

derived defocus (𝜎𝜎𝐷𝐷𝑂𝑂𝑁𝑁) as a function of the distance (𝑠𝑠) between lens and 

image plane as: 

 

𝜎𝜎𝐷𝐷𝑂𝑂𝑁𝑁(𝑠𝑠) =
𝑘𝑘
𝐴𝐴
∙
𝑓𝑓2 ∙ �𝑠𝑠 − 𝑠𝑠𝑑𝑑�
𝑠𝑠 ∙ (𝑠𝑠𝑑𝑑 − 𝑓𝑓)

 
(6.18) 

 

Where 𝑠𝑠𝑑𝑑  is the in-focus distance. 𝑘𝑘  is a camera dependent parameter 

relating the blur circle to an actual point spread function (PSF). In this 
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work, the PSF is assumed to be Gaussian distributed and therefore 𝑘𝑘 is 

set to 2.335. This number describes the ratio of the full width at half 

maximum (FWHM) over standard distribution.  

A depth map of the image plane (𝑠𝑠(𝑥𝑥,𝑦𝑦)) could be measured with a depth 

sensitive camera but can also be estimated from the four corner points of 

the PV device. The Python interface of the C++ library OpenCV provides 

the function cv2.solvePnP which returns a translation vector (𝑡𝑡) and 

rotation vector (𝐼𝐼). Together with cv2.Rodrigues (which transforms 𝐼𝐼 to 

a rotation matrix (𝑅𝑅)) and the camera matrix (𝐶𝐶), 𝑠𝑠(𝑥𝑥, 𝑦𝑦) can be calculated 

as follows [64]: 

 

𝑠𝑠(𝑥𝑥,𝑦𝑦) = 𝑅𝑅−1 ∙ �𝑈𝑈 ∙ (𝐶𝐶−1 ∙ �
𝑥𝑥
𝑦𝑦
1
�� − 𝑡𝑡);    𝑈𝑈 = (𝑅𝑅−1∙𝑚𝑚)[2]

�𝑅𝑅−1∙𝐶𝐶−1∙�
𝑒𝑒
𝑦𝑦
1
��[2]

 
(6.19) 

 

In order to evaluate the influence of DOF, the following test case (Figure 

6.22) is simulated: A 1.2 m PV module is imaged at different distances 

(0.6-1.5 m) and different angles (0°-90°, respective orthogonal to parallel 

to camera axis). The DUT centre is focussed.  

 

 
Figure 6.22: Schematic of simulated test case 

Two different camera lenses with two common focal lengths of 

25(50) mm at three different apertures (defined by f-number) are used 

for imaging. 𝜎𝜎𝐷𝐷𝑂𝑂𝑁𝑁 is then calculated using Equation 6.18. The results are 

shown in Figure 6.23. 
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Figure 6.23: Resulting 𝝈𝝈𝑫𝑫𝑶𝑶𝑵𝑵 for different f-numbers (columns) and focal 
lengths (rows) 

𝜎𝜎𝐷𝐷𝑂𝑂𝑁𝑁  is highest at high DUT angles and small distances. If it can be 

assumed that angles in outdoor measurements are below 60°, a minimum 

distance of 1 m is already sufficient for a focal length of 25 mm to obtain 

𝜎𝜎𝐷𝐷𝑂𝑂𝑁𝑁 below one mm. To fit the entire DUT into the image plane at such a 

small distance a wide-angle camera lens with a field-of-view of 60° or 

higher would be necessary (
0.5∙1.2 m

tan (0.5∙60°)
= 1.04 m). Therefore, DOF can be 

neglected for comparably short focal lengths around 24 mm. If however 

a longer focal length (50 mm) and a wide aperture (f/1.4) is chosen, this 

minimum distance increases to over 2 m. Additionally, if the distance 

between camera and DUT is below 1 m, DOF blur can become visible, even 

if the DUT is not tilted (Figure 6.23, 2nd column top-left). Therefore, when 

measuring image sharpness, point spread functions of variable sizes need 

to be taken into account. 
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6.2.4 PIXEL DEFLECTION 

The correction of both lens and perspective distortion can cause image 

areas to shrink and expand. Intermediate pixels interpolate between 

relocated pixels and increase the deflection uncertainty. Figure 6.24 gives 

a simplified example for the x-axis.  Therein, the green area indicates an 

area to be expanded due to deflection. Its size doubles during the remap 

(a-b). Likewise, the pixel indices map (𝑚𝑚𝑒𝑒,𝑦𝑦) changes. 

 

 
Figure 6.24: Schematic of deflection uncertainty of the x-axis due to 
image remapping 

The increase in pixel size (𝑓𝑓𝑚𝑚𝑒𝑒,#��������⃗ ) can be obtained from the magnitude map-

index gradient (𝑠𝑠#/𝑠𝑠𝑚𝑚#) using: 

 

𝑓𝑓𝑚𝑚𝑒𝑒,#��������⃗ =

⎝

⎜
⎛
�
𝑠𝑠𝑥𝑥
𝑠𝑠𝑚𝑚𝑒𝑒

�

�
𝑠𝑠𝑦𝑦
𝑠𝑠𝑚𝑚𝑦𝑦

�
⎠

⎟
⎞

 (6.20) 

 

𝑓𝑓𝑚𝑚𝑒𝑒,#��������⃗  measures the expansion of the original pixel size. Its average is equal 

to the area ratio of a DUT after vs before remapping. # acts as placeholder 

for pixel deflection caused by lens distortion (𝑓𝑓𝑚𝑚𝑒𝑒,𝑐𝑐�������⃗ ) and perspective 

correction (𝑓𝑓𝑚𝑚𝑒𝑒,𝑚𝑚��������⃗ ). For calculating 𝜎𝜎𝑚𝑚𝑐𝑐𝑠𝑠��������⃗  both factors need to be applied 
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individually, since lens based uncertainties are based on the raw EL image 

but 𝜎𝜎𝑚𝑚𝑐𝑐𝑠𝑠��������⃗  is based on the corrected image: 

 

𝜎𝜎𝑐𝑐𝑚𝑚𝑐𝑐𝑠𝑠���������⃗ = 𝑓𝑓𝑚𝑚𝑒𝑒,𝑐𝑐�������⃗ �𝜎𝜎𝐵𝐵2 + 𝜎𝜎𝑐𝑐𝑚𝑚𝑚𝑚2 (6.21) 

 

To be based on the corrected EL image, both lens and DOF based 

uncertainty arrays (𝜎𝜎𝑐𝑐𝑚𝑚𝑐𝑐𝑠𝑠 , 𝜎𝜎𝐷𝐷𝑂𝑂𝑁𝑁 ) need to be perspective transformed (𝑥𝑥 , 

Section 4.7) before they can be scaled with 𝑓𝑓𝑚𝑚𝑒𝑒,𝑚𝑚��������⃗ : 

 

𝜎𝜎𝑚𝑚𝑐𝑐𝑠𝑠��������⃗ = 𝑓𝑓𝑚𝑚𝑒𝑒,𝑚𝑚��������⃗ �𝑥𝑥(𝜎𝜎𝑐𝑐𝑚𝑚𝑐𝑐𝑠𝑠���������⃗ 2) + 𝑥𝑥(𝜎𝜎𝐷𝐷𝑂𝑂𝑁𝑁2) (6.22) 

6.2.5 NEGLECTED POSITION UNCERTAINTY FACTORS 

Positional error from object corner detection 

The position uncertainty of corrected EL images depends on the method 

used to detect the DUT corners (Subsection 4.7.1.1). In the following 

comparison, it is assumed that device corners were detected precisely. 

Interpolation error 

Non-integer values within the pixel index map (𝑚𝑚𝑒𝑒,𝑦𝑦) result in interpolated 

pixel intensities using the neighbouring pixels. Interpolation methods can 

be distinguished by the number and weights of included neighbours. 

Every method (nearest neighbour, bi-linear, cubic et cetera) is a trade-off 

between introduced blur and precision. In this thesis, it is assumed that 

uncertainty due to interpolation is fully covered by pixel deflection 𝑓𝑓𝑚𝑚𝑒𝑒�����⃗  

and is independent from the interpolation method used.  

6.2.6 CALCULATING UNCERTAINTY 𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠 FROM 𝜎𝜎𝑚𝑚𝑐𝑐𝑠𝑠��������⃗  

So far the uncertainty is given as the standard deviation (𝜎𝜎𝑚𝑚𝑐𝑐𝑠𝑠��������⃗ = (
𝜎𝜎𝑒𝑒
𝜎𝜎𝑦𝑦)) of all 

the pixels in x and y-axis. To transform these values into the pixel 
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intensity uncertainty, the following steps are conducted on every image 

pixel (𝐼𝐼[𝑥𝑥,𝑦𝑦]): 

1. Calculate a local point spread function ( 𝑃𝑃𝑆𝑆𝑥𝑥 ) as a Gaussian 

distribution with standard deviation (𝜎𝜎𝑒𝑒,𝜎𝜎𝑦𝑦). 

2. Calculate the local PSF-weighted standard deviation (indices 𝑖𝑖,𝑗𝑗) by 

multiplying the difference to all neighbouring pixels within the PSF 

(size=2s+1) with the respective PSF value. 

3. The sum of all the differences gives the local intensity uncertainty: 

 

𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠[𝑥𝑥,𝑦𝑦] = �� � (𝐼𝐼[𝑥𝑥, 𝑦𝑦]− 𝐼𝐼[𝑥𝑥 + 𝑖𝑖,𝑦𝑦 + 𝑗𝑗])2 ∙ PSF(𝜎𝜎𝑒𝑒,𝜎𝜎𝑦𝑦)[𝑖𝑖, 𝑗𝑗]
𝑠𝑠+1

𝑂𝑂=−𝑠𝑠

𝑠𝑠+1

𝑖𝑖=−𝑠𝑠

 (6.23) 

 

The resulting map (𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠) is sensitive to high gradient variations of pixel 

intensity. This is obvious, because blur affects high gradient changes like 

at cell borders or busbars more than low gradient changes, like at the 

image background. 

6.2.7 EXAMPLE POSITION UNCERTAINTY OF A 
PERSPECTIVE AND LENS-CORRECTED EL IMAGE 

Several contributors and the resulting position uncertainty map of a 

perspective and lens corrected PV module are shown in Figure 6.25. In 

this example, an image sharpness (𝜎𝜎𝐵𝐵) of 0.5 px was assumed. As results 

from re-projection error and pixel deflection from lens distortion 

removal, a rather homogenous 𝜎𝜎𝐿𝐿𝑚𝑚𝑐𝑐𝑠𝑠 ranging between 0.77 – 0.79 px can 

be seen (Subfigure b). The corrected EL image and its position uncertainty 

(𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠 ) is shown in (c,e). In this example, 𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠  varies up to 15% at cell 

borders and busbars. 𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠 also increases slightly from left to right. This 

is due to image pixels doubling their size due to deflection (𝑓𝑓𝑚𝑚𝑒𝑒,𝑚𝑚 = 2 , 

Subfigure f). Due to its small values, the influence of depth-of-field blur 

(𝜎𝜎𝐷𝐷𝑂𝑂𝑁𝑁, Subfigure d) can be neglected. 
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Figure 6.25: RAW EL, corrected EL and related position uncertainty 𝑼𝑼𝒑𝒑𝒐𝒐𝒔𝒔  

(left); contributors to 𝑼𝑼𝒑𝒑𝒐𝒐𝒔𝒔 (right);  𝝈𝝈𝑵𝑵𝒓𝒓𝒊𝒊𝒔𝒔����������⃗ , 𝝈𝝈𝒑𝒑𝒐𝒐𝒔𝒔��������⃗ , 𝒇𝒇𝒑𝒑𝒑𝒑,𝒑𝒑���������⃗  shown as magnitude 

The influence of perspective distortion is shown in Figure 6.26. Therein 

the top-right cell is shown after image correction. It can be seen that 

image sharpness decreases (Subfigure b) and equally position uncertainty 

(Subfigure c) increases. 

 

 
Figure 6.26: a) Artificially distorted EL image of a c-Si module, rotated 
in x and y-axis respectively 0 to 65°; b) subsection of one cell (green 
box in (a)); c) position uncertainty of same area 
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6.2.8 POSITION UNCERTAINTY AVERAGING AND 
VALIDATION  

The quantification of uncertainty due to the imaging system blur or 

perspective distortion is part of the dilemma of estimating a signal error 

without knowing the actual signal. To validate Equation 6.23, three 

synthetic patterns (𝑃𝑃0) were generated (Figure 6.27-6.29, first column). 

Every pattern was Gaussian blurred (𝑃𝑃𝑏𝑏𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 ) with a known standard 

deviation. In this case, the actual intensity deviation due to blur is known 

(Subfigures a, last column). This can be used to evaluate the quality to 

calculated uncertainty maps (Subfigures a, 3rd column). Comparing both 

error and uncertainty maps it is clear that all uncertainty maps extend 

above the actual error and in general give lower values. This is as 

expected. Following the theory of normal distributions, roughly 68%, 95%, 

99.7% of values are within the boundaries of ±1, ±2, ±3  standard 

deviations. Therefore to evaluate the quality of uncertainty, the 

distribution of pixels must be analysed and not just single pixels. 

Subfigures (b) show a comparison of a cumulative distribution function 

(CDF) of the used Gaussian distribution (red) in comparison to a CDF of 

the following ratio between error and uncertainty, called quality of 

prediction (𝑄𝑄): 

 

𝑄𝑄 =
|𝑃𝑃0 − 𝑃𝑃𝑏𝑏𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚|

𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠
 (6.24) 

 

Evaluating these two plots (green and blue, last column) it is evident that 

the quality of prediction can be slightly higher or lower in comparison to 

the Gaussian CDF (red), depending on the used pattern.  
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a) b)  

Figure 6.27: a) A: 500x500 px square pattern; B: (A) blurred with 
𝝈𝝈𝒑𝒑𝒐𝒐𝒔𝒔=20 px; C: Estimated position uncertainty; D: rescaled position 
uncertainty; E: magnitude difference (A-B); b) Comparison quality of 
prediction to Gaussian CDF (red); rows: different spatial averages  

a) b)  

Figure 6.28: Same as Figure 6.27 for spoke pattern (𝝈𝝈𝒑𝒑𝒐𝒐𝒔𝒔=10 px, number 
of spokes=9) 
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a) b)  

Figure 6.29: Same as Figure 6.28 (number of spokes=20) 

When the pixel group average such as one cell in a PV module is evaluated, 

the uncertainty also has to be averaged as well.  If a noisy signal is 

averaged, its intensity uncertainty decreases with the square root of the 

number of averaged values (Equation 6.16). To evaluate the position 

uncertainty behaviour when averaged, the three patterns in Figure 6.27-

6.29 (𝑃𝑃0, first column) were additionally averaged with pixel groups of 

15x15 and 30x30 pixels. The individual pixels size scales relative to the 

standard deviation of the PSF. Therefore, to calculate 𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠, (𝜎𝜎𝑒𝑒,𝜎𝜎𝑦𝑦) must to 

be divided by this resolution factor (𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠). The result of a 1x1, 15x15 and 

30x30 px average is shown in the three rows of the following figures.  

Remarkably, 𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠 only shows a small decrease within the two averaging 

steps. Column D displays 𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠2. This uncertainty was obtained from a 

15x15, respective 30x30 px average of 𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠 (1st row). In general for each 

resolution, the generated 𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠  and the averaged 𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠2  are in good 

agreement. Only for larger averages (last row), 𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠2 overestimates the 

actual uncertainty.  

The three chosen patterns vary in their complexity. Whilst the relatively 

simple square pattern causes an overestimation of uncertainty (the red 

plots below other plots in Subfigures (b)), uncertainty can also be 

underestimated, as shown for the centre of both spoke patterns (Figure 



Chapter 6: Uncertainty Analysis 
Section: 6.2: Position Uncertainty 

 

 © Karl Bedrich - April 2017 223 

 

6.28,6.29, first row). Therein, features within 𝑃𝑃𝑏𝑏𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 were smoothed out 

to such an extent that no uncertainty could be derived.  

It can be concluded that (outgoing from 𝜎𝜎𝑚𝑚𝑐𝑐𝑠𝑠��������⃗ ) a pixel intensity based 

position uncertainty (𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠) can be calculated. For the evaluated cases, the 

deviations between error and uncertainty were within the expected range 

of a normal distribution.  

When image intensities are averaged, the position uncertainty also 

averages. If features smooth out due to blur, the position uncertainty will 

underestimate the actual deviation.  

6.2.9 SATISFYING OBJECT RESOLUTION REQUIREMENTS 

Subsection 3.4.3.3 introduced the smallest resolvable object size (𝑈𝑈𝑐𝑐𝑏𝑏𝑂𝑂) as 

an image quality parameter and Table 7.17 proposes a minimum 𝑈𝑈𝑐𝑐𝑏𝑏𝑂𝑂 of 

1.5 mm to resolve non-disconnecting cracks on PV modules. To ensure 

this size rule is fulfilled (especially for outdoor imaging), the position 

uncertainty algorithm (Section 6.2) appears impracticable. Therefore, the 

following equation can be used as a rule of thumb to ensure minimum 

object resolution requirements are fulfilled. Equation 3.43 defines the 

resolution factor (𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠) approximately as twice the image sharpness (𝜎𝜎𝐵𝐵). If 

𝜎𝜎𝐵𝐵 is not known, following the comparison of different camera systems in 

Figure 7.43, a value of 1.5 px can be assumed. Within an image the 

distance of the smallest DUT edge [px] can be obtained from the 

magnitude of both DUT corner points (𝑃𝑃1𝑃𝑃2������). Together with the physical 

module width (𝑤𝑤) this minimum distance can be obtained using: 

 

𝑃𝑃1𝑃𝑃2������ ≥
2 ∙ 𝑤𝑤 ∙ 𝜎𝜎𝐵𝐵
𝑈𝑈𝑐𝑐𝑏𝑏𝑂𝑂

 (6.25) 

 

For example with a module height of 1000 mm, a given minimum 

resolvable object size of 1.5 mm and an assumed sharpness of 1.5 px the 

minimum distance (𝑃𝑃1𝑃𝑃2������) should be larger than 
1000 mm ∙ 2 ∙ 1.5 px

1.5 mm
 or 2000 px. 
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6.2.10 SECTION SUMMARY 

Perspective and lens distortion in an EL image can be largely corrected. 

The resulting corrected image will not have the same quality as a similar 

EL image without these distortions however. Areas that were expanded 

during rectification also have a higher position uncertainty because more 

pixels are used to display the same information. A PV device, imaged with 

perspective distortion, will have areas closer or farther from the focal 

range. Depending on the optics used, depth-of-field blur can occur. Every 

camera lens has a certain camera lens distortion, which can be calibrated 

and corrected. The quality of correction is described with the re-

projection error.  

A method to calculate pixel intensity based uncertainty from the 

uncertainty of position is presented and validated. It was shown that 

position uncertainty is sensible to high gradient variations. Therefore, the 

position uncertainty of EL images will be particularly highest along 

busbars and cell edges. 

 Uncertainty Estimation 

Based on the findings in this chapter, the following procedure gives 

practical instructions on how to measure the uncertainty of a corrected 

EL image. It is proposed to store the EL image uncertainty (𝑈𝑈𝐼𝐼) in three 

separated two dimensional vector arrays: 

 

𝑈𝑈𝐼𝐼����⃗ = �
𝑈𝑈𝑁𝑁𝑐𝑐𝑖𝑖𝑠𝑠𝑚𝑚
𝑈𝑈𝐸𝐸𝐿𝐿,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜎𝜎𝑚𝑚𝑐𝑐𝑠𝑠��������⃗
� ;  𝑈𝑈𝑁𝑁𝑐𝑐𝑖𝑖𝑠𝑠𝑚𝑚 =

1
𝑆𝑆𝑁𝑁𝑅𝑅

;  𝑈𝑈𝐸𝐸𝐿𝐿,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �𝑈𝑈𝐸𝐸𝐿𝐿−𝑙𝑙2 + 𝑈𝑈𝐸𝐸𝐿𝐿−𝑐𝑐2 + 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 (6.26) 

 

The following algorithm can be used to calculate EL image uncertainty: 

1. Calculate the signal-to-noise ratio (SNR) map from raw EL image(s) 

(Subsection 3.2.6). 



Chapter 6: Uncertainty Analysis 
Section: 6.3: Uncertainty Estimation 

 

 © Karl Bedrich - April 2017 225 

 

2. Estimate the EL signal uncertainty from DUT warm-up ( 𝑈𝑈𝐸𝐸𝐿𝐿−𝑙𝑙 ) 

depending on DUT type and warm-up time between 0.8 - 2.8% 

(Subsection 6.1.4.1.1). 

3. If an uncertainty map of random signal variations (𝑈𝑈𝐸𝐸𝐿𝐿−𝑐𝑐) exists, scale 

𝑈𝑈𝐸𝐸𝐿𝐿−𝑐𝑐  depending on exposure time of current EL image. Otherwise, 

assume a homogenous distribution of 1.5% for silicon or 3.5% for a 

thin-film DUT (Table 6.5). 

4. Depending on the quality of the flat field calibration, assume an image 

correction uncertainty ( 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) of approximately 2%  (Subsection 

6.1.3.3). 

5. Measure or estimate the image sharpness as the standard deviation of 

a Gaussian blur kernel (𝜎𝜎𝐵𝐵 , Subsection 3.4.4). Calculate 𝜎𝜎𝑐𝑐𝑚𝑚𝑐𝑐𝑠𝑠  using 

Equation 6.21. 

6. Depending on the aperture, focal length and DUT distance, neglect or 

calculate 𝜎𝜎𝐷𝐷𝑂𝑂𝑁𝑁 (Figure 6.23). 

7. Perspective transform the EL image, SNR, 𝜎𝜎𝑐𝑐𝑚𝑚𝑐𝑐𝑠𝑠 and 𝜎𝜎𝐷𝐷𝑂𝑂𝑁𝑁 and calculate 

𝜎𝜎𝑚𝑚𝑐𝑐𝑠𝑠��������⃗  using Equation 6.22. 

8. Create an uncertainty vector array (𝑈𝑈𝐼𝐼����⃗ ) using Equation 6.26. 

9. If a pixel group average is evaluated, average 𝑈𝑈𝑁𝑁𝑐𝑐𝑖𝑖𝑠𝑠𝑚𝑚, 𝑈𝑈𝐸𝐸𝐿𝐿,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝜎𝜎𝑚𝑚𝑐𝑐𝑠𝑠��������⃗  

according to Equation 6.16 and 6.17. 

10. Calculate the position uncertainty 𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠 from 𝜎𝜎𝑚𝑚𝑐𝑐𝑠𝑠��������⃗  and the corrected EL 

image using Equation 6.19. 

11. Calculate EL image uncertainty as: 

 

�𝑈𝑈𝐼𝐼����⃗ � = �𝑈𝑈𝑁𝑁𝑐𝑐𝑖𝑖𝑠𝑠𝑚𝑚2 + 𝑈𝑈𝐸𝐸𝐿𝐿,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2 + 𝑈𝑈𝑚𝑚𝑐𝑐𝑠𝑠2 (6.27) 
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7 CASE STUDIES 

The following two sections are based on results of studies conducted 

during this doctoral studentship. In Section 7.1, eight PV modules were 

imaged with the same camera system at different treatment steps. The 

analysis focussed on correlating EL images taken to measured 

performance parameters. To extract the impact of treatment steps, all EL 

images were corrected, statistically analysed and their features were 

extracted. 

The second case study in Section 7.2 gives a preview on the evaluation of 

the first international Round Robin based of the EL measurement method. 

Images submitted from 14 different camera systems are analysed. The 

result demonstrates a proof of concept of quantitative inter-comparison. 

The quality of the different camera systems (noise, sharpness, flat field 

correction) was compared and camera type dependent differences were 

extracted. 

 Thermo-Mechanical Load Experiment at NREL 

7.1.1 MEASUREMENT SETUP 

In a combined thermo-mechanical load experiment, eight modules (Table 

7.1) were tested. The measurements took place in July 2016 under the 

guidance of Peter Hacke at the National Renewable Energy Laboratory 

(NREL) in Golden, Colorado. The aim of that study was as follows: 

• Take EL images of those modules after different treatment steps. 

• Correct images and extract features, such as cracks and inactive areas. 

The abilities of the presented image correction and feature extraction 



Chapter 7: Case Studies 
Section: 7.1: Thermo-Mechanical Load Experiment at NREL 

 

 © Karl Bedrich - April 2017 227 

 

routines were tested and statistical information connecting the 

applied stress to module performance were obtained.  

Table 7.1: PV modules used in the NREL study 

ID Type Manufacturer Name 
Nominal 
Power 

Price per 
module 

M1…M4 Mono SolarWorld SW235 235 W 160$ 
P1…P4 Poly Astroenergy CHSM 6610P 230 W 115$ 

 

Within a 16 day period, the modules were either mechanically stressed or 

aged in a climate chamber with a humidity-freeze (HF) routine. In the HF 

routine the modules were cycled 10 times between -40° and +85°C at a 

relative humidity of 85% according to the procedure described in IEC 

61215 [117]. HF was chosen to age the module since it is suitable to 

develop cracks [118, 119]. In the treatment sequence (Table 7.2), the 

modules were first stressed and subsequently measured. Measurement 

methods included EL imaging, as well as dark and light I-V curve 

measurement (DIV, LIV). 

Table 7.2: Treatment steps executed on modules, listed in Table 7.1 

Date Treatment step Test Measurement 

06/07/2016 0 - EL, DIV 
06/07/2016 1 Mech. Stress 1 EL, DIV 

8/07/2016 2 HF  EL, DIV, LIV 
11/07/2016 3 HF EL, DIV 

12/7/2016 4 Mech. Stress 2 EL, DIV 
13/7/2016 5 HF EL, DIV 
15/7/2016 6 HF EL, DIV, LIV 
15/7/2016 7 Rough hand. 1 EL, DIV 
18/7/2016 8 2xHF EL, DIV 
20/7/2016 9 Rough hand. 2 EL, DIV 

20-22/7/2016 10 HF EL, DIV, LIV 
 

The aim of the mechanical stress experiments (Table 7.3, 7.4) was to 

introduce cracks at different positions (module centre, long edge).  
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Table 7.3: Setup ‘Mech. stress 1’  

Modules No. Bags Final load Description 

M1,P1 6x4 217 kg 
Bags dropped on module centre (fall 
height 23 cm) 

M2,P2 6x4 217 kg 
Successively stacked bags on module 
centre (Figure 7.1a,b) 

M3,P3 4x4 145 kg 
Successively stacked bags on long 
edge (Figure 7.1c,d) 

M4,P4 - - - 
 

Table 7.4: Setup ‘Mech. stress 2’  

Modules No. Bags Final load Description 

M1,P1 - - - 
M2 6x4 217 kg Same as ‘Mech. Stress 1’ 
P2 7x4 254 kg Same as ‘Mech. Stress 1’ 

M3,P3 4x4 145 kg 
Bags successively stacked on 
opposite long edge 

M4 5x4 181 kg 
Bags dropped on module centre (fall 
height 23 cm) 

P4 7x4 254 kg Same as M4 
 

Sand bags were placed successively on the modules. The maximum weight 

was achieved either when the module frame almost touched the floor or 

when more than five distinctive cracking sounds were heard. With a 

weight over 200 kg, the requirements of the mechanical load test (2400 

Pa  411 kg) IEC 61215 [117] were not matched. In contrast to this test, 

weights were not applied uniformly, but rather localised. Figure 7.1 shows 

the two different weight positions (centre, long edge).  
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Figure 7.1: Example weight positions (centre: (a,b), long edge: (c,d)) for 
‘Mono’ (a,c) and ‘Poly’ (b,d) modules 

‘Poly’ modules (b, d) bent less due to a more rigid frame. Therefore, the 

individual load required for these modules was generally higher. A 

dynamic load was applied to modules M1, P1 and M4, P4 in the first, 

respective second mechanical load experiment. Each individual bag was 

dropped from a height of 23 cm above the module surface.  

Whilst the mechanical load experiments attempt to emulate wind or snow 

loads, rough handling tries to imitate stress during module transport and 

installation [120]. Within ‘Rough handling 1,2’ the modules were once 

lifted and released, causing them to fall on a concrete floor (Table 7.5) or 

on two metal bars (Table 7.6). 

Table 7.5: Setup ‘Rough handling 1’ 

Modules Description Diagram 

M1, P1 

 

Short side lifted 114 cm, falling on 
short side  

M2, P2 
Upright on short side, falling on 
long side 

 

M3, P3 
Upright on long side, falling on 
opposite long side  

M4, P4 
Upright on short side, falling on 
opposite short side 
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Table 7.6: Setup ‘Rough handling 2’  

Modules Description Diagram 

M1-4, P1-4 

Upright on short side, falling on 
opposite short side. Two metal bars (4 
cm) placed where module corners would 
hit floor 

 

7.1.2 MEASUREMENT RESULTS 

This subsection presents and discusses the results obtained from 

dark/light I-V curve measurements and EL imaging. During the study, the 

modules were successively damaged and degraded (Figure 7.2).  

 

 
Figure 7.2: Example corrected EL images of modules ‘M1’ (a) and ‘P2’ 
(b); numbers correspond to treatment step in Table 7.2; black: initial EL 
image; green: EL after mechanical load; red: EL after humidity-freeze 
treatment; blue: EL after rough handling 

7.1.2.1 DARK/LIGHT I-V CURVE 

After every treatment step, a dark I-V (DIV) measurement was conducted 

using the same power supply as used for current control during EL 

imaging. At three treatment steps (2, 6, 10) the illuminated/light IV (LIV) 

curve was measured by flash test using the NREL ‘Spire 5600SLP IV’ 

System.  Figure 7.4 and 7.4 show the measured DIV and LIV curves for all 

the modules. For better comparability, the current measured in DIV 
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conditions (𝐼𝐼𝐷𝐷𝐻𝐻) was referenced relative to the short-circuit current (𝐼𝐼𝑆𝑆𝑐𝑐) 

obtained from the LIV measurement: 

 

𝐼𝐼𝐷𝐷𝐻𝐻∗ = 𝐼𝐼𝑆𝑆𝑐𝑐 − 𝐼𝐼𝐷𝐷𝐻𝐻 (7.1) 

 

The only remarkable change occurred in the last LIV measurement (light 

green). Both remaining LIV and all DIV curves have a similar slope. Due to 

the inverted view of the DIV curve it is apparent that an open-circuit 

voltage derived from DIV would be higher than the one obtained with LIV. 

The offset between both curves is similar amongst all ‘Mono’ and ‘Poly’ 

modules. In the aim of substituting LIV, this relationship will be later used 

to generate a pseudo LIV from DIV and EL measurement (Subsection 

7.1.2.3). 

 

 
 

 

Figure 7.3: All measured light-IV (green) and dark-IV (red) curves of 
‘Mono’ modules 
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Figure 7.4: All measured light-IV (green) and dark-IV (red) curves of 
‘Poly’ modules 
 

7.1.2.1.1 EXTRACTED PERFORMANCE PARAMETERS 

The measured LIV curves (Figure 7.4 and 7.4, green) were used to 

determine common PV performance parameters (description: Table 2.1, 

values: Table 7.7). LIV measurement at step (2) shows absolute values. 

Measurement steps (6) and (10) show the change relative to step (2): 

 

#6,10  =
#6,10 − #2

#2
⋅ 100% (7.2) 
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Table 7.7: PV performance values of all examined modules as obtained 
from LIV measurements  

  
Treat. 
step 𝑽𝑽𝒐𝒐𝒔𝒔 𝑰𝑰𝒔𝒔𝒔𝒔 𝑵𝑵𝑵𝑵 𝑽𝑽𝒎𝒎𝒑𝒑𝒑𝒑 𝑰𝑰𝒎𝒎𝒑𝒑𝒑𝒑 𝑷𝑷𝒎𝒎𝒑𝒑𝒑𝒑 

M1 

2 37.17 V 8.199 A 75.7 % 30.1 V 7.664 A 230.7 W 

6 0.0% -0.1% 0.1% 0.1% 0.0% 0.0% 

10 -0.3% -0.3% -3.4% -1.7% -2.4% -4.0% 

M2 

2 37.32 V 8.249 A 76.5 % 30.33 V 7.767 A 235.6 W 

6 0.0% -0.1% 0.4% 0.1% 0.2% 0.3% 

10 -0.3% -0.1% -3.4% -1.5% -2.4% -3.9% 

M3 

2 37.38 V 8.247 A 76.5 % 30.44 V 7.747 A 235.9 W 

6 0.1% 0.0% 0.1% 0.1% 0.0% 0.2% 

10 -0.4% -0.4% -4.8% -1.6% -4.0% -5.6% 

M4 

2 37.43 V 8.238 A 76.4 % 30.39 V 7.751 A 235.6 W 

6 0.2% 0.0% 0.7% 0.5% 0.4% 0.8% 

10 -0.7% -0.5% -5.0% -2.4% -3.7% -6.1% 

P1 

2 36.97 V 8.371 A 72 % 28.79 V 7.74 A 222.9 W 

6 0.2% -0.1% 0.1% 0.6% -0.3% 0.3% 

10 -0.3% -0.7% -10.3% -1.9% -9.4% -11.2% 

P2 

2 37.01 V 8.382 A 72.5 % 28.71 V 7.835 A 224.9 W 

6 0.1% 0.0% 0.1% 0.2% 0.0% 0.2% 

10 -0.5% -5.0% -11.3% -1.4% -15.0% -16.2% 

P3 

2 37.07 V 8.358 A 72.1 % 28.62 V 7.8 A 223.2 W 

6 0.1% 0.0% 0.3% 0.3% 0.1% 0.4% 

10 -0.5% -2.0% -13.9% -2.7% -13.7% -16.0% 

P4 

2 36.78 V 8.377 A 71.8 % 28.47 V 7.773 A 221.3 W 

6 0.0% 0.0% 0.1% 0.2% 0.0% 0.2% 

10 -0.3% -2.0% -8.4% -2.3% -8.3% -10.4% 
 

 

Both 𝐼𝐼𝑠𝑠𝑐𝑐 and 𝑉𝑉𝑐𝑐𝑐𝑐 remain unchanged or decrease less than 5% during the 

measurements. The greatest changes were observed in 𝑥𝑥𝑥𝑥  and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 . 

Whilst the measured power of ‘Mono’ modules was 4-6% less after all 

treatment steps, the power decrease was 10-16% for ‘Poly’ modules.  

7.1.2.1.2 EXTRACTED DIODE PARAMETERS 

Diode parameters were extracted from measured LIV and DIV curves 

(Figure 7.4 and 7.4) by fitting an I-V curve [14] following the single-diode-
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model (Section 2.1). The relatively low RMSE between measured and fitted 

curves of less than 0.8% for all curves indicates the validity of the model 

used. Figure 7.5-7.7 show extracted ideality factor, shunt and series 

resistance. The single and unconnected dots represent values obtained 

from LIV measurements whilst lines represent values from the respective 

DIV measurements. Unfortunately, the meaningfulness of these 

parameters is rather limited. The best agreement between parameters 

from DIV and LIV measurement can be seen for the ideality factor in 

Figure 7.5. Therein, all the modules showed a similar trend of increasing 

values from treatment step (0-10).  

Throughout all the treatment steps, the extracted series resistance 

remains too low. Higher values for ‘Poly’ modules are as expected due to 

the inferior quality of the bulk material. Whilst values from DIV suggest 

a positive trend, LIV values remain constant or even decrease. Since only 

three LIV measurements are available, this contrary trend remains 

questionable. It is assumed that a full I-V curve, which includes the 

negative voltage part, would result in values that are more credible. 

 

a)                  b)     
 

Figure 7.5: Ideality factor extracted from DIV (lines) and LIV (dots) 
curves for ‘Mono’ (a) and ‘Poly’ (b) modules 
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a)                  b)      
 

Figure 7.6: Series resistance for ‘Mono’ (a) and ‘Poly’ (b) modules 

The negative influence of shunt resistances above 100 Ω  is barely 

noticeable. Therefore, it was decided to use a logarithmic plot in Figure 

7.7. Nevertheless, agreement between DIV and LIV is not given and a trend 

cannot be identified. The results remain inconclusive. It is assumed that 

this is due to the nature of the single-diode-model were an increased 

shunt resistance can also be modelled with an increasing ideality factor 

or decreasing saturation current (not shown). 

 

a)                         b)  
 

Figure 7.7: Shunt resistance for ‘Mono’ (a) and ‘Poly’ (b) modules 
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7.1.2.2 ELECTROLUMINESCENCE IMAGING 

Two images were taken at 10% and 100% 𝐼𝐼𝑠𝑠𝑐𝑐 for each EL measurement. The 

exposure time was determined once and allowed signal-to-noise ratios 

(SNR) around 96 for 100% 𝐼𝐼𝑠𝑠𝑐𝑐 and 47 for 10% 𝐼𝐼𝑠𝑠𝑐𝑐 measurements. The SNR 

was measured using two consecutively taken EL images and was 

calculated with options ‘NLF2’ and ‘xBG’ as described in Section 3.2. The 

images were corrected as described in Chapter 4. Fully automated image 

correction, feature extraction and report generation (Appendix 4.1) were 

carried out.  

The initial corrected image 100% 𝐼𝐼𝑠𝑠𝑐𝑐 was used to determine cell positions 

and to rectify perspective (Subsection 4.7.1) for every module. Every cell 

was rescaled to 400x400 pixel resulting in an image size of 4000x2400. 

All images were first roughly aligned with its predecessor using pattern 

recognition (Subsection 4.7.2) and then precisely mapped using sup-pixel 

alignment (Subsection 4.7.3). Figure 7.8 shows the effect of both image 

rectification methods on the difference image between two treatment 

steps. It can be clearly seen that without intensity correction and 

perspective rectification, the actual differences between two EL images 

are superimposed by larger deviations next to cell borders, busbars and 

luminescence variations (especially for polycrystalline cells). 
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Figure 7.8: Influence of image correction of EL difference images on a 
mono (1) and polycrystalline module (2); a-b) Uncorrected EL images 
(treatment step 0, 1); c) corrected EL image of step (1); d) EL difference 
images of uncorrected images; e) (d) after perspective rectification;  
f) (e) after sub-pixel alignment 

Figure 7.9 shows the average operation voltages of all the devices, relative 

to its initial values. Throughout the entire treatment procedure voltage 

remained in a narrow range of ±2%. It can be seen that the trend points 

slightly upwards for EL measurements at 100% 𝐼𝐼𝑠𝑠𝑐𝑐 and slightly downwards 

for measurements at 10% 𝐼𝐼𝑠𝑠𝑐𝑐.  
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          100% 𝑰𝑰𝒔𝒔𝒔𝒔                                     𝟏𝟏𝟓𝟓% 𝑰𝑰𝒔𝒔𝒔𝒔 

a)      b)        
 

c)       d)        
 

Figure 7.9: Operation voltage relative to initial EL measurement [%] for 
every treatment step at 100% 𝑰𝑰𝒔𝒔𝒔𝒔 (a,c) and 10% 𝑰𝑰𝒔𝒔𝒔𝒔 (b,d) 

The following figures are the result of a statistical evaluation of EL images 

and therein detected features. It was observed that the brightness of 

cracked cells decreases. Heavily broken cells were often also the darkest 

in a module. Figure 7.10 plots the average cell intensity of all modules 

across all treatment steps over the crack length, relative to cell width 

(Equation 5.3). In particular for ‘Mono’ devices (Figure 7.10a,b) a 

correlation is evident. Subfigure (b) shows that a cell cracked thrice across 

its entire length (relative crack length=3) will be roughly 30% darker in the 

10% 𝐼𝐼𝑠𝑠𝑐𝑐 image. In the 100% 𝐼𝐼𝑠𝑠𝑐𝑐 image (a), it appears that the same cells only 

have a 10% decreased intensity.  

A contrary trend of negative intensity changes (and thereby brighter cells) 

over the crack length can be seen as well. This phenomenon is however 

caused by other (similarly cracked) cells connected in series after the 

respective cell. These cells caused a higher local voltage decrease and 

thereby a higher intensity. For ‘Poly’ modules, the correlation is less clear. 

Nevertheless for both types it can be observed that the intensity decrease 

97

99

101

103

0 1 2 3 4 5 6 7 8 9 10

M1 M2 M3 M4

97

99

101

103

0 1 2 3 4 5 6 7 8 9 10

M1 M2 M3 M4

97

99

101

103

0 1 2 3 4 5 6 7 8 9 10

P1 P2 P3 P4

97

99

101

103

0 1 2 3 4 5 6 7 8 9 10

P1 P2 P3 P4

Treatment step [-] Treatment step [-] 

Treatment step [-] Treatment step [-] 

Vo
lta

ge
 [%

] 
Vo

lta
ge

 [%
] 

Vo
lta

ge
 [%

] 
Vo

lta
ge

 [%
] 

Ty
pe

 ‘M
on

o‘
 

Ty
pe

 ‘P
ol

y‘
 



Chapter 7: Case Studies 
Section: 7.1: Thermo-Mechanical Load Experiment at NREL 

 

 © Karl Bedrich - April 2017 239 

 

is about three times higher for EL images taken at 10% 𝐼𝐼𝑠𝑠𝑐𝑐,  relative to the 

images at 100% 𝐼𝐼𝑠𝑠𝑐𝑐.  

 

      100% 𝑰𝑰𝒔𝒔𝒔𝒔                                             𝟏𝟏𝟓𝟓% 𝑰𝑰𝒔𝒔𝒔𝒔 

a)  b)   

c)  d)  

Figure 7.10: Average cell intensity decrease relative to initial values 
over relative crack length (Equation 5.3);  
a,b) ‘Mono’; c,d) ‘Poly’ modules 

With this statement the question arises, whether cell intensity deviations 

are in general more pronounced in 10% 𝐼𝐼𝑠𝑠𝑐𝑐. Indeed, as Figure 7.11 shows, 

the same cells will in general occur 3 times (or √10 = 3.162) darker at 10% 

𝐼𝐼𝑠𝑠𝑐𝑐 relative to 100% 𝐼𝐼𝑠𝑠𝑐𝑐. 

a)  b)  

Figure 7.11: Average cell intensity of all cells in all EL images at 10% 
and 100% 𝑰𝑰𝒔𝒔𝒔𝒔  relative to their initial intensity;                                                       
a) ‘Mono’; b) ‘Poly’ modules 

Ty
pe

 ‘M
on

o‘
 

Ty
pe

 ‘P
ol

y‘
 

Ty
pe

 ‘M
on

o‘
 

Ty
pe

 ‘P
ol

y‘
 



Chapter 7: Case Studies 
Section: 7.1: Thermo-Mechanical Load Experiment at NREL 

 

 © Karl Bedrich - April 2017 240 

 

When a cell is already broken, will it tend to break again or will the 

existing crack decrease mechanical stress and thereby stabilise the cell? 

Figure 7.12 plots the newly introduced crack length relative to the initial 

one. This initial crack length was defined as the cumulative sum of all 

new cracks, starting at zero (Table 7.8). 

Table 7.8: Example values for measured ‘introduced’ and derived 
‘initial’ crack length 

Treatment step 1 2 3 4 5 

Introduced and … 2 1 4 1 … 
Initial crack length 0 2 2+1=3 3+4=7 7+1=8 

 

a) b)  
Figure 7.12: Influence of existing (initial) cracks on newly introduced 
or extended cracks; a) ‘Mono’, b) ‘Poly’ modules 

Most values in Figure 7.12 accumulate along both axes. This can be 

interpreted as follows:  

• The probability for an unbroken cell to crack is noticeably higher 

than for an broken cell (x=0, y>0).  

• If a cell is broken once, is more likely to remain in its state than 

break again (x>0, y=0). 

The number of outliers (x>0, y>0) is higher for ‘Poly’ modules.  This allows 

the conclusion that cracked ‘Poly’ cells will more frequently break again 

than ‘Mono’ cells.  

On many cells, a similar behaviour was observed in EL: 

• Cells mostly broke during mechanical load (1,4) and rough 

handling (7,9) steps as opposed to the HF treatment steps. 

Mono Poly 
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• Humidity freeze treatment often did not develop cracks. It is 

assumed a wafer-drifting increased the series resistance of the 

cells. This caused areas next to cracks to darken during the course 

of all treatment steps. 

Figure 7.13 shows corrected EL images of four selected cells for every 

treatment step. Green boxes indicate breakage introduced. It can be seen 

that the intensity next to the cracks decreases with every step. In this 

example, only one area showed increased intensities (step 8, white box). 

 

 
Figure 7.13: Corrected EL image of selected cells for all treatment steps; 
green boxes: introduced cracks; white box: EL intensity increase 

An attempt to quantify these observations is shown in Figure 7.14-7.16. 

Figure 7.14 shows the per-step added inactive area on two different scales 

(top/bottom). The definition of inactive area can be found in Subsection 

5.2. In this section, no distinction is made between partly and fully 

inactive areas however. 

Subfigure (a,b) clearly shows that the mechanical load (1,4) steps and 

rough handling (7,9) steps were most influential on the results. Thereby 

loading around 200 kg on a module showed to be much less influential 

than letting a module fall on the ground. In the latter case, the inactive 

area was 10 to 30 times larger than after mechanical load.  The influence 
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of the remaining HF treatment (2,3,5,6,10) steps are more evident in 

Subfigure (c,d). Looking at steps (2->3), (5->6) and (10) it is evident that 

the amount of additional inactive area decreases successively. 

 

a)  b)  

c) d)  

Figure 7.14: Inactive area vs treatment step scaled 0-35% (top) and 0-
1% (bottom) for ‘Mono’ (left) and ‘Poly’ modules (right) 

A similar trend can be seen in Figure 7.15 for introduced crack length. 
 

a)  b)  

Figure 7.15: Relative crack length vs treatment step for                                  
a) ‘Mono’ and b) ‘Poly’ modules 
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The majority of cracks is generated during mechanical load (1,4) but even 

more during rough handling (7,9). The amount of breakage varied heavily 

between different modules. 

Similar conclusions can be made (Figure 7.16) regarding crack 

fragmentation (Equation 5.5). Crack fragmentation is largest for rough 

handling and remarkably not module type dependent. 

 

a)  b)  

Figure 7.16: Crack fragmentation vs treatment step for                                   
a) ‘Mono’ and b) ‘Poly’ modules 

A closer look at the crack lengths generated in step (1,4,7,9) (Table 7.9) 

shows which treatment was most influential. 

Table 7.9: Average crack length [%] generated in the treatment steps 
(1,4,7,9); values are colour-coded (highest: red, smallest: green) 

 Mech. Load Rough handling 

Mod. Step 1 Step 4 Step 7 Step 9 

M1 69.48 drop   - 26.18 

 

  290.29  
P1 8.02   12.46   206.58  

M2 5.52 centre 24.95 centre 7.81 
 
  
 

278.00 
 

  
P2 8.35 4.70 24.05   301.35  

M3 1.51 edge 6.45 edge 80.21 
 
  
 

253.28  
P3 4.75 4.84 74.14   424.66  

M4   - 35.43 drop 47.77 
 
  
 

283.30  
P4   15.90 108.52   288.98   
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In both mechanical stress steps dropping weights on the module centre, 

even from a small height, introduced most cracks. Stacking weights on 

the long edge of the module however caused low breakage. Looking at the 

two rough handling steps (7,9) it is evident that highest damage was 

created for upright modules falling on their long or short edge 

(M3,P3,M4,P4). In the second rough handling routine, every module was 

treated identically, causing similar breakages (excluding P3). 

The distribution of crack directions in the final measurement, averaged 

for all ‘Mono’ and ‘Poly’ modules is shown in Figure 7.17. Therein, the 12 

measured crack orientations are shown as polygon, built by all individual 

crack orientation vectors (Subsection 5.3.2). 

 

Mono                                                Poly 

a)  b)   

Figure 7.17: Distribution of crack propagation directions;  
colours correspond to crack length relative to maximum 

A cross-shaped polygon indicates cracks predominantly orientated in two 

directions. Every polygon is coloured according to the average cracks 

length at that position. Looking at colour distribution it is apparent that 

crack length is smallest at the module border and increases towards 

module centre for ‘Mono’ modules. However, no trend is visible for the 

more rigid ‘Poly’ modules. 

For ‘Mono’ modules cracks close to module edges tend to point towards 

the module centre. Within the module, centre cracks are in majority 

horizontal oriented.  

Although cracks in individual EL images of ‘Poly’ modules look rather 

random, most cracks propagate either horizontally or vertically through 

the cells. 
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7.1.2.3 DERIVING LIV CURVES FROM DIV AND EL 

The advantage of DIV to LIV measurement is that no light source (flasher 

or sun) is required to generate results. Measurements can be conducted 

outdoors and drones could be used to fully conduct automated scans of 

entire PV arrays. Though, the modules would have to be disconnected 

from their strings, or strings from the inverter. However, the current 

paths travelled in DIV measurement are in the opposite direction to those 

at normal operation or during LIV measurement (Figure 2.2, 2.5).  

During illumination, current is generated in the bulk of the cell and travels 

to the emitter in the top of the cell. It is then extracted from the cell 

through the fingers and busbars. In the absence of light (DIV) current is 

injected into the fingers and then travels towards the back contact. 

Thereby the travelled distance – and therefore the effective series 

resistance – is less than that of the illuminated case. Furthermore, 

electrically isolated areas in a PV module will not influence the DIV since 

the injected current will find other paths to the back contact rather than 

dissipating thermally due to high series resistance.  

In this section, it was attempted to reproduce LIV measurements using 

DIV together with EL and initial (such as manufacturers) LIV results. In 

Figure 7.4 and 7.4, I-V curves from DIV and LIV were plotted together 

using the short-circuit current ( 𝐼𝐼𝑠𝑠𝑐𝑐 , from initial LIV) to shift the DIV 

accordingly. As already discussed, 𝐼𝐼𝑠𝑠𝑐𝑐 remained almost constant during 

all treatment steps. In the next step, the voltage measured in DIV 

conditions (𝑉𝑉𝐷𝐷𝐻𝐻 ) will be scaled using the open-circuit voltage obtained 

from the initial LIV (𝑉𝑉𝑐𝑐𝑐𝑐) as follows: 

 

𝑉𝑉𝐷𝐷𝐻𝐻∗ = 𝑉𝑉𝐷𝐷𝐻𝐻 ∙
𝑉𝑉𝐷𝐷𝐻𝐻(𝐼𝐼𝑆𝑆𝑐𝑐 = 0)

𝑉𝑉𝑐𝑐𝑐𝑐
 (7.3) 

 
This is accompanied by the simplification that 𝑉𝑉𝐷𝐷𝐻𝐻 is overestimated due 

to a lower series resistance, which is module specific and will not change 

significantly during degradation. 
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As discussed, inactive areas cannot be detected in DIV. However, various 

papers [27, 101, 103, 119] claim that the inactive areas detected by EL 

reduce PV efficiency [103].  EL images at low current (10% 𝐼𝐼𝑠𝑠𝑐𝑐) were found 

suitable to differentiate between non-disconnecting (type B) and 

disconnecting cracks (type C) [103]. This is due to the assumption that at 

low current, series resistance effects can be neglected. The brightness of 

type C cracks would be around the background level, whilst type B cracks 

would have an intensity between background and average signal level 

[101].  

Using SPICE (Simulation Program with Integrated Circuit Emphasis) the 

impact of inactive areas was shown to be significant on the modules 

power loss [103]. However, a direct comparison between detected inactive 

area, simulated and measured LIV could not be found. Therefore a 

bespoke SPICE simulation, based on the Python package ahkab 

(https://github.com/ahkab/ahkab), was developed. It consists of 60 

series connected single-diode-modelled cells with three bypass diodes in 

parallel with cell numbers 1-20, 20-40 and 40-60.  

The diode parameters and 𝑉𝑉𝑐𝑐𝑐𝑐 were identical for all cells and their values 

were obtained from the initial LIV measurement from every module 

(Figure 7.5 et seq.). The generated photo current (𝐼𝐼𝑃𝑃ℎ) was calculated for 

every cell individually as a product of the measured short-circuit current 

(𝐼𝐼𝑠𝑠𝑐𝑐) and the ratio inactive area (𝐴𝐴𝑖𝑖𝑐𝑐𝑎𝑎𝑐𝑐𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚) versus cell area (𝐴𝐴𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐) as follows: 

 

𝐼𝐼𝑃𝑃ℎ = 𝐼𝐼𝑠𝑠𝑐𝑐 ∙ (1 −
𝐴𝐴𝑖𝑖𝑐𝑐𝑎𝑎𝑐𝑐𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚
𝐴𝐴𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐

) (7.4) 

 
The second part of Appendix 4.2 shows the corrected low current images 

of all eight modules at the top-left of every page.  

Figure 7.18 shows an example corrected EL image at 10% 𝐼𝐼𝑠𝑠𝑐𝑐. As Figure 

7.10 and Figure 7.11 indicate, extrinsic cell defects (such as cracks) lower 

the respective cell intensity about 3 times more than in the high current 

EL image. If it can be assumed that the signal peak is higher than the 

background peak, a simple division by the median cell value is sufficient 

https://github.com/ahkab/ahkab
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to correct for the inhomogeneity of cell intensities. The result is shown in 

Subfigure (b). A difference image (Equation 5.1) between the intensity 

corrected EL images at treatment step 0 and 8 is shown in (c). 

 

 
Figure 7.18: Example page from Appendix 4.1 displaying the module 
M1 at treatment step (8); a) Corrected EL image at 10% 𝑰𝑰𝒔𝒔𝒔𝒔; b) (a) after 
dividing every cell by its median; c) relative difference image 

It can be seen that inactive areas, although shown black in the corrected 

EL image, become visible at different intensities in the relative EL 

difference. To find out which threshold is most suitable to determine 

inactive areas, six different threshold conditions were tested (Table 7.10). 

Figure 7.20 and 7.20 compare the measured LIV and scaled DIV of the 

final treatment step (10) to the six different simulation results for every 

module. 

Table 7.10: Threshold criteria to determine inactive area 

Name Sim. 0 Sim. 1 Sim. 2 Sim. 3 Sim. 4 Sim. 5 

𝑨𝑨𝒊𝒊𝒊𝒊𝒂𝒂𝒔𝒔𝒊𝒊𝒊𝒊𝒗𝒗𝒓𝒓 = �𝑬𝑬𝑬𝑬𝑵𝑵𝒊𝒊 > ⋯ - 𝟐𝟐𝟓𝟓% 𝟓𝟓𝟓𝟓% 𝟑𝟑𝟓𝟓% 𝟗𝟗𝟓𝟓% 𝟗𝟗𝟓𝟓% 

 

a) b) 

c) 

 
Module: M1    Treatment step 8                                  (a) after intensity correction 
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Figure 7.19: Measured LIV and scaled DIV curve of the last treatment 
step (10) together with simulated I-V curves following different 
threshold criteria to determine ‘inactive’ areas for ‘Mono’ modules 
 

It can be seen that the threshold criterion is decisive for the current in 

the simulated I-V curve. Overall ‘Sim. 5’ gave results closest to the 

measured I-V curve. With increasing influence of the inactive areas, the 

steps in the I-V curve steepen. Although these steps can be found in 

several LIV curves (M4, P2, P3) the simulated steps are on average more 

pronounced and much steeper than the ones visible in LIV. 
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Figure 7.20: Same as Figure 7.19 for ‘Poly’ modules 

Therefore, reproducing I-V curves with a SPICE simulation incorporating 

cell mismatch due to different influence of inactive areas was not 

successful. Since the measured LIV curves deviate mostly in current, 

another SPICE simulation tried to establish a link between the measured 

crack length and decreasing shunt resistance. Similar cell intensity 

patterns (as observed in the analysed EL) can be found looking at EL 

images of modules before and after potential induced degradation (PID) 

tests [121]. Whilst PID is associated with shunting, it can be assumed that 

introduced cracks cause similar effects. 

The photo current was set to 𝐼𝐼𝑠𝑠𝑐𝑐  for every cell but the cells shunt 

resistance (𝑅𝑅𝑠𝑠ℎ,𝑖𝑖) was reduced by crack length (𝑙𝑙𝑐𝑐𝑐𝑐) as follows: 

 

𝑅𝑅𝑠𝑠ℎ,𝑖𝑖 =
𝑅𝑅𝑠𝑠ℎ,0

(𝑙𝑙𝑐𝑐𝑐𝑐,𝑖𝑖 + 1)²
 �
𝑅𝑅𝑠𝑠ℎ,0 = 15Ω  for Mono′ ′ 
𝑅𝑅𝑠𝑠ℎ,0 = 5Ω   for Poly′ ′  (7.5) 
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A lower 𝑅𝑅𝑠𝑠ℎ,0 for ‘Poly’ modules was assumed to be due to the influence 

of grain boundaries. Deriving a cell shunt resistance based on its 

extracted diode parameters was not possible since their results remain 

inconclusive (Figure 7.7).  Figure 7.22 to 7.24 again show LIV and scaled 

DIV together with the new simulation results for the second and final LIV 

measurement step (6, 10). The comparison with the previous Figure 7.20  

and 7.20 shows that the deviation of the simulated I-V curve is 

comparably smaller. 

 

 

 
Figure 7.21: Measured LIV and scaled DIV curve of treatment step (6) 
together with simulated I-V curves with cell-specific shunt resistance 
for ‘Mono’ modules 
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Figure 7.22: Same as Figure 7.21 for ‘Poly’ modules 
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Figure 7.23: Same as Figure 7.22 and 7.22 for last treatment step (10) 
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Figure 7.24: Same as Figure 7.23 for ‘Poly’ modules 

The approach to reproduce LIV curves using only DIV and EL can be 

concluded as follows: Although dark areas in EL images suggest the 

existence of inactive cell areas, a simulation could not verify that these 

areas are indeed electrically isolating.  

Crozier suggests that cracks also reduce shunt resistance. This causes 

more injected current to bypass the cells diode junction and therefore to 

decrease EL intensity [27]. A simulation incorporating this assumption 

(crack length influencing shunt resistance) shows a better agreement to 

the measured results. Decreased shunt resistance can also explain the 

homogenous intensity decrease for cracked cells.  

Köntges et al. correlate the number of cracks in a module or number of 

cracked cells in a module to power loss using only a few data points [103]. 

This approach does not consider crack length and is based on a rather 

loose definition of crack quantity, which will often require manual 
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counting. Since only three LIV measurements were available for every 

module in this study, Köntges approach could neither be verified nor 

disproven. It is however hoped that crack length as parameter enabling 

automated detection and as cause for decreased shunt resistance can be 

established. However, for more specific statements a spatially resolved 

SPICE simulation [122] together with a current-mapping method (such as 

LBIC) would be needed. 

7.1.3 SNAIL TRAILS 

All ‘Mono’ modules showed blue-discolorations (‘snail trails’) after HF 

tests at areas where cracks were visible in the EL images. This section 

details the image processing needed, to visualize these defects and will 

show that snail trails are indeed caused by cracks. 

Figure 7.2 shows images of the unbiased but illuminated device, taken 

with a mobile phone (a) and a high-end consumer camera (b,c). The snail 

trails were most visible at close distance and high angles of incidence. In 

order to prepare light image (b) for quantitative comparison, the 

perspective was corrected, as described in Subsection 4.7.1.   

 
Figure 7.25: Images of module ‘M4’ after HF treatment step (6);    
a) close up; b) total; c) (b) after perspective correction 

In the following steps the colour channels were separated and a spatial 

minimum filter (kernel size = 6 px) was applied to remove the disturbing 

influence of the high reflective fingers (Figure 7.26a-c). It can be seen that 

every colour layer has a slightly different base intensity. In addition, 

intensity gradients towards the top-left corner can be identified. This 
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influence is corrected by subtracting a pseudo-background image (Figure 

7.26d-f) from every channel.  

 

 
Figure 7.26: a-c) Separated colour channels of the light image, shown in 
Figure 7.2c; d-f) extracted pseudo-background from (a-c);  
g-i) (a-c) after pseudo-background subtraction; (a-c), (d-f) and (g-i) are 
scaled identically 

The pseudo-background image was generated using a large-kernel median 

filter (kernel size = 1000 px). To reduce the processing time of a filter at 

that kernel size only every 30th pixel was used for computation. The 

‘background-corrected’ colour layers can be seen in Figure 7.26g-i. 

A close-up of these images also indicates that snail trails might be best 

visible in the blue colour channel (Figure 7.27). This is as expected, since 

they are seen as blue discolorations. 

 

 
Figure 7.27: ROI of cell {5,2}-{7,3} of ‘background-corrected’ colour 
channels, shown in Figure 7.26g-i 
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In order to demonstrate that these features are caused by cracks, an EL 

difference image was calculated from an initial EL image taken after 

treatment step (6) (Figure 7.28a,b).  

 

 
Figure 7.28: a,b) Initial EL image and EL image after treatment step (6) 
of module M4; c) EL difference image (a)-(b);  
d) blue colour channel of light image; e) same with overlaid EL 
difference image as semi-transparent green layer 

Both images were taken at 100% 𝐼𝐼𝑠𝑠𝑐𝑐 and were corrected according to the 

procedure described in Chapter 4. A transparent–to-green colour map 

was then applied to the difference image. As the direct comparison of the 

light image with and without overlaid EL difference image shows, all 

features, visible as snail trails are also visible as cracks (Figure 7.28d,e). 

However, snail trails were only observed on ‘Mono’ modules. The ‘Poly’ 

modules, (although similarly stressed and aged) remained free from 

visible snail trails. 

Meyer et al. linked the formation of snail trails to silver nanoparticles 

accumulating in the encapsulation foil. It was assumed that this process 

is caused by environmental moisture, diffusing from the back sheet 

through cracks and detaching silver from grid fingers [123]. Snail trail 

imaging relies on specific devices and a sufficiently long ageing time for 

moisture to cause a visible decolouration. Therefore it is questionable, 
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whether snail trails (detected by light or UV-fluorescence imaging [109]) 

can be used as a simple alternative for on-field crack detection by EL.   

7.1.4 SECTION SUMMARY 

In this case study, eight PV modules (four monocrystalline ‘Mono’ and 

four polycrystalline ‘Poly’) were exposed to multiple mechanical load, 

rough handling and humidity-freeze routines. 

The quality of images, processed with the presented image correction 

routine (Chapter 4) was sufficient to allow quantitative analysis of relative 

difference images. Inactive areas and cracks were extracted. A statistical 

analysis showed a correlation between crack length and cell intensity. 

Cells were predominantly broken within mechanical stress routines and 

inactive areas were generated during HF treatment. In all ‘Mono’ modules, 

snail trails were visible at cracked locations. A SPICE simulation 

considering variable photo current generation from detected inactive 

areas was not able to reproduce the measured I-V curves. Instead, crack 

length (extracted from EL) was linked to decreasing shunt resistance. A 

simulation incorporating shunt resistance generated I-V curves similar to 

the measured ones. If the link between crack length and shunt resistance 

can be corroborated, PV performance can conceivably be estimated from 

only EL and DIV measurements.   

 First International Round Robin on EL Imaging 

From January 2016 to April 2017 ten PV modules and five 1-cell mini 

modules were shipped outgoing from CREST (UK) to 15 other laboratories 

across Europe and the USA. The number of labs and countries is listed in 

Table 7.11. Since the results are evaluated anonymous, laboratory names 

are substituted with letters. Several labs submitted results from multiple 

camera setups. Every lab-camera setup was assigned a different randomly 

assigned letter A-X. Setup IDs starting with ‘X’ indicate an InGaAs camera 
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sensor. In this work, only submitted raw images from 14 camera-setups 

were analysed. At time of writing, eight laboratories did not submit 

results.  

As the first one of its kind, the Round Robin (RR) aimed to find common 

criteria for the EL imaging method. This included measurement setup, 

camera calibration and image quality. Every lab was asked to perform a 

camera calibration (lens distortion and flat field as described in Section 

3.5 and 3.6.2.1). The devices were shipped in a wooden crate (Figure 

7.29a). To detect possibly critical impacts during shipment, three shock 

detectors were attached to the sides of the crate (Figure 7.29b).  At crate 

arrival, every lab was given the task to image every DUT twice at two given 

currents (100% 𝐼𝐼𝑠𝑠𝑐𝑐  and 10% 𝐼𝐼𝑠𝑠𝑐𝑐 ). For every different exposure time, two 

additional dark current images should be taken. Camera correction and 

image rectification were optional, since there was no standardised routine 

available.  

Table 7.11: Number of participant laboratories by country  

Number Country 

1 UK (CREST) 
1 Italy 
8 Germany 
1 Slovenia 
1 Cyprus 
2 USA 
2 Spain 

 

 

a)  b)  
Figure 7.29: a) Wooden crate, used to transport the ten modules and 
five mini-modules during the RR; crate dimensions: 
L185xB125xH132 cm; b) one of three shock detectors 
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The devices used in the RR cover five monocrystalline, three 

polycrystalline and two amorphous modules of dimensions up to 1.68 m 

(Figure 7.30). The one-cell mini modules were fabricated at CREST. They 

included one mono- and four polycrystalline cells. The modules were of 

different ages and tried to cover different defect types. The mini-modules 

were made from state of the art commercially available cells with 

different introduced extrinsic defects. 

 

 
Figure 7.30: Overview of Round Robin DUT; EL images are from camera 
system ‘B’ and are corrected according to Chapter 4 

The following results should be regarded as preliminary. They will focus 

on image quality (SNR, sharpness) of the submitted EL images as well 

vignetting and lens calibration. The number of evaluated images is shown 

in Table 7.12. Different numbers between EL and background images as 

well as vignetting and vignetting background calibration indicate missing 

data. Therefore before automated analysis it was attempted to find 

equivalent replacements for missing images. 

Table 7.12: Number of images evaluated in EL RR 

EL Background 
Lens 
calibration 

Vignetting 
calibration 

Vignetting 
background 

616 579 316 178 70 



Chapter 7: Case Studies 
Section: 7.2: First International Round Robin on EL Imaging 

 

 © Karl Bedrich - April 2017 260 

 

7.2.1 IMAGE QUALITY ANALYSIS 

The resolution of submitted images varied from 320x256 (InGaAs) to 

4096x4094 pixels. The distribution of camera resolution and aspect ratio 

is shown in Figure 7.31. It is remarkable that (excluding 8.3 MPixels) no 

resolution dominates and many less traditional aspect ratios were found. 

  

a) b)  

Figure 7.31: Distribution of resolution (a) and aspect ratio (b) of all 
submitted images 

7.2.1.1 INTENSITY 

Most submitted images were of file type TIFF. Images of type FIT and RAW 

were converted to TIFF before analysis. The depth of all submitted TIFF 

images was 16 bit. This is not surprising, since TIFF images can only be 

either 8 or 16 bit. To evaluate whether camera sensors were rather 8 or 

14 bit, the maximum value of every image was analysed. If this maximum 

value was ≤ 255 (16383) the bit depth was assumed to be 8 (14) bit.  

It was found that only 10% of all images were likely to have been created 

with a 14 bit camera sensor. The remaining 90% were done with a 16 bit 

sensor. Noting a probable non-linear charge of the camera sensor well at 

high fill rates, a maximum image intensity of 75% (for gain = 1) resp. 95% 

(for gain ≥ 1) was defined prior to the RR.  

To analyse the image intensity distribution, three parameters were 

extracted from all images: signal peak level (Figure 3.7) as well as lowest 

(i.e. background level) and highest 2% of image intensities. In Figure 

7.32a,b their levels are coloured red, green and blue respectively. They 



Chapter 7: Case Studies 
Section: 7.2: First International Round Robin on EL Imaging 

 

 © Karl Bedrich - April 2017 261 

 

are plotted relative to their maximum intensity, defined by bit depth 

(2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ − 1).  

Only a minority of images utilised the full depth resolution of the camera 

sensor. In comparison to EL images taken at 100% 𝐼𝐼𝑠𝑠𝑐𝑐, images at 10% 𝐼𝐼𝑠𝑠𝑐𝑐 

use even less of the available capacity. It is assumed that signal quality is 

diminished by short exposure times. Subfigures (c,d) analyse the 

distributions shown in (a,b) where an additional ‘Utilization’ ratio is 

displayed. It is calculated as follows: 

 

𝑈𝑈𝑡𝑡𝑖𝑖𝑙𝑙𝑖𝑖𝑧𝑧𝑎𝑎𝑡𝑡𝑖𝑖𝑈𝑈𝑛𝑛 =
𝑥𝑥𝑈𝑈𝑈𝑈2% − 𝐵𝐵𝐵𝐵 𝑈𝑈𝑒𝑒𝑎𝑎𝑘𝑘

𝑥𝑥𝑎𝑎𝑥𝑥. 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑛𝑛𝑈𝑈𝑖𝑖𝑡𝑡𝑦𝑦 − 𝐵𝐵𝐵𝐵 𝑈𝑈𝑒𝑒𝑎𝑎𝑘𝑘
 (7.6) 

 

100% 𝑰𝑰𝒔𝒔𝒔𝒔 10% 𝑰𝑰𝒔𝒔𝒔𝒔 

a)  b)  

c)  d)  
Figure 7.32: a,b) Levels of background and signal peaks (green, red) and 
the highest 2% (blue) relative to maximum image intensity [%]; c,d) 
Distribution of signal peak, highest 2% and utilization [%] 
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The median utilization of 20% (4%) for 100% (10%) 𝐼𝐼𝑠𝑠𝑐𝑐 EL images is lower 

than expected. Its effect on the signal-to-noise ratio is analysed in the 

following subsection. Although camera gain was not included in this 

evaluation, it is shown that the majority of labs did not use the full 

capabilities of their camera. 

7.2.1.2 SIGNAL-TO-NOISE RATIO (SNR) 

All labs were asked to submit two EL images and one background image 

per measurement. This had two advantages: single-time-effects could 

easily be removed (Section 4.1) and the noise-level-function, used to 

calculate the SNR could be obtained from the difference of both EL 

images. The used calculation and averaging scheme, named ‘NLF2,xBG’, is 

detailed in Section 3.2. All labs were asked to adapt gain and exposure 

time to achieve SNR averages greater than 25. The simplified SNR 

(Equation 3.16) was provided. The distribution of all individual SNR, listed 

for every camera system is shown in Figure 7.33. InGaAs based systems 

are shown separately due to their typically higher quantum efficiency 

within the emission waveband of EL.  

 

a) b)  
  

Figure 7.33: Distribution of signal-to-noise ratios, listed for all camera 
systems for (a) CCD and (b) InGaAs sensors; light-blue: Cell1-5; 
brown: Mod1-10 

Camera ID                                                                           Camera ID 
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It can be seen that (excluding camera A) the majority of images exceeded 

the given SNR minimum. Most SNR were around 70. Far ahead of the 

others, camera E achieved a median SNR above 370. On average, the SNR 

of the one-cell mini modules (Cell1-5) had a higher SNR than module 

based SNR. 

All labs were asked to provide the exposure time in the file name of every 

submitted image formatted for example ‘…_e20-3_...’ for an exposure 

time of 20.3 s. Accordingly, exposure times were extracted only from the 

submitted EL file names. Their distribution for EL images at 100% 𝐼𝐼𝑠𝑠𝑐𝑐 is 

shown in Figure 7.34. 

 

a) b)  
  

Figure 7.34: Distribution of exposure times for EL images at 100% 𝑰𝑰𝒔𝒔𝒔𝒔, 
listed for all camera systems for (a) CCD and (b) InGaAs sensors;      
light-blue: Cell1-5; brown: Mod1-10 

Remarkably, exposure times for CCD cameras imaging Cell1-5 (A,D,F,L) 

did not change. Popular times were 30, 60 and 200 s. Otherwise, exposure 

times were between one and two minutes, but could range up to 

10 minutes. Exposure times for InGaAs cameras were generally less than 

one second. If listed by device, the exposure time distribution appears 

more homogenous (Figure 7.35).  

Camera ID                                                                           Camera ID 

 



Chapter 7: Case Studies 
Section: 7.2: First International Round Robin on EL Imaging 

 

 © Karl Bedrich - April 2017 264 

 

No discrimination between the different cell-type devices is visible. For 

module-type devices, the comparably old monocrystalline Mod1 shows 

the highest spread in exposure times. 

 

 
  

Figure 7.35: Distribution of exposure times [s] for EL images at 
100% 𝑰𝑰𝒔𝒔𝒔𝒔, listed for all devices; only CCD systems are included 

The SNR performance can be evaluated by dividing all SNR values by their 

respective exposure time (Figure 7.36).  

 

 
  

Figure 7.36: SNR rate per second exposure time, listed for all CCD 
camera systems 

   DUT ID 

   DUT ID 



Chapter 7: Case Studies 
Section: 7.2: First International Round Robin on EL Imaging 

 

 © Karl Bedrich - April 2017 265 

 

With an SNR rate of about 13 𝑈𝑈−1, camera E clearly leads amongst all CCD 

type cameras. Performance differences can be influenced by camera lens 

diameter, sensor quantum efficiency and cooling temperature to name 

just a few. Their analysis however, is out of the scope of this work. 

The captured image intensity is roughly directly proportional to the 

applied current. In order to keep the SNR at the same level, one would 

expect that the exposure time of a 10% 𝐼𝐼𝑠𝑠𝑐𝑐 image would be 10 times longer 

than the one at 100% 𝐼𝐼𝑠𝑠𝑐𝑐. However, Figure 7.37 gives another impression. 

Instead of increasing the exposure times 10 fold for the 10% 𝐼𝐼𝑠𝑠𝑐𝑐 images, 

exposure times were only increased twice, whereby devices with generally 

longer exposure times caused smaller ratios. 

 

 
  

Figure 7.37: Exposure times ratio 
𝟏𝟏𝟓𝟓
𝟏𝟏𝟓𝟓𝟓𝟓

% 𝑰𝑰𝒔𝒔𝒔𝒔  images [-] for all CCD 

cameras, listed by device 

With no further details, the origin of this phenomenon is speculative. It 

could be that the achievement of short measurement times takes 

precedence over the aim of recording high quality images. Another reason 

might the opinion that 10% 𝐼𝐼𝑠𝑠𝑐𝑐  EL images do not require such a high 

quality. Looking at the distribution of exposure times for 10% 𝐼𝐼𝑠𝑠𝑐𝑐 images 

(Figure 7.38), it is apparent that half of all cameras did not change their 

exposure time. Most exposure times were less than 600 s (10 min) and 

3000 s (50 min) were never exceeded.  

   DUT ID 
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Figure 7.38: Distribution of exposure times for EL images at 10% 𝑰𝑰𝒔𝒔𝒔𝒔 
listed for all CCD camera systems 

7.2.1.3 SHARPNESS 

Knowing the image sharpness enables evaluating whether features (like 

cracks) can actually be resolved with the imaging system (Section 3.4). 

Within the context of the Round Robin the determination of image 

sharpness is also required to rate every imaging system and to calculate 

the blur-caused part of position uncertainty.  

However, labs were not asked to conduct one of the sharpness 

measurements methods, described in Subsection 3.4.4. To measure 

sharpness from an image set (Subsection 3.4.7), the sharpest image of the 

set must to be known. To find the imaging system with sharpest images, 

the Tenengrad operator (Section 3.3) was applied to all corrected EL 

images. Although this operator is scene dependent, its results can be used 

for inter-lab comparison because both image content and image intensity 

are equivalent of the corrected EL images.  

The Tenengrad, normalised to the maximum value amongst module- and 

cell-based imaging systems, is shown in Figure 7.39. At cell level 

Tenengrad is at maximum for camera A and on module level for camera 

B (red circle).  

  Camera ID 
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Figure 7.39: Imaging system comparison of normalised Tenengrad for 
normalised images of Mod2 and Cell2; Note that lines are only to guide 
the eye 

After measuring this relative sharpness, the absolute image sharpness 

was determined. The standard deviation of an equivalent Gaussian blur 

kernel (𝜎𝜎, [px]) is used as sharpness parameter. For the reference cameras 

A and B, 𝜎𝜎  was estimated by measuring the edge spread (Method A, 

Subsection 3.4.4.2) of four edges along busbars or cell edges of Mod2 and 

Cell1 (Figure 7.40). These edges were not ideal since they were at the same 

(vertical or horizontal) angle and the EL signal varied along the edges. 

Therefore, a precise determination of 𝜎𝜎  was not possible with this 

method. Fortunately, when measuring 𝜎𝜎  using the image comparison 

method (Subsection 3.4.7), this calculated reference sharpness only 

offsets the other obtained values. Differences between individual 

sharpness values remain.  

 

Camera ID 
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Figure 7.40: Schematic of sharpness estimation using edge spread 
measurement method A (3.4.4.2) for the two sharpest camera systems 
A,B 

The resulting values are 1.1 px (2.3 px) for Cell1 and camera A (Mod2, 

camera B). The sharpness level of the corrected images of one camera 

varies, if the ratio between original and corrected image changes as well 

across all ten modules and five cells. This scale is described by the 

resolution factor (𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠). It characterizes the ratio of pixel length and width 

(𝑤𝑤𝑐𝑐,ℎ𝑐𝑐 ) of the DUT within the original image to the resolution of the 

corrected image (𝑤𝑤𝑐𝑐,ℎ𝑐𝑐): 

 

𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠 = �
𝑤𝑤𝑐𝑐 ∙ ℎ𝑐𝑐
𝑤𝑤𝑐𝑐 ∙ ℎ𝑐𝑐

 (7.7) 

 

𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠 varies between 0.4 and 1, as shown for cameras A and B (Figure 7.41). 

From 𝜎𝜎𝑐𝑐𝑚𝑚𝑑𝑑 relative to 𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠, measured image sharpness of one corrected EL 

image can be transformed to the other images of a camera system (Table 

7.13). 
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Figure 7.41: Resolution factor (𝒇𝒇𝒓𝒓𝒓𝒓𝒔𝒔 ) between original and corrected 
(rescaled) EL images for cameras A and B across all devices 

Table 7.13: Reference sharpness (𝝈𝝈𝒓𝒓𝒓𝒓𝒇𝒇 [px]) 

Camera B Camera A 
Mod1 Mod2 Mod3 Mod4 Mod5 Mod6 Mod7 Mod8 Mod9 Mod10 Cell1 Cell2 Cell3 Cell4 Cell5 
2.2 2.3 1.7 1.7 1.3 1.1 1.7 1.4 1.0 1.6 1.1 1.1 1.1 1.1 1.1 

 

𝜎𝜎𝑐𝑐𝑚𝑚𝑑𝑑 enables the calculation of sharpness of corrected images from other 

camera systems using the method described in Subsection 3.4.7. The 

values obtained are however based on the sharpness of the corrected EL 

images ( 𝜎𝜎𝑐𝑐 ) and not the imaging system (𝜎𝜎𝑐𝑐 ). The imaging system 

sharpness is obtained from the median of all 𝜎𝜎𝑐𝑐,𝑖𝑖 divided by their device 

specific 𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠 (Figure 7.42): 

 

𝜎𝜎𝑐𝑐 = 𝑚𝑚𝑒𝑒𝑠𝑠𝑖𝑖𝑎𝑎𝑛𝑛(
𝜎𝜎𝑐𝑐,𝑖𝑖

𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠
) (7.8) 

 

 DUT ID 
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Figure 7.42: Schematic to obtain imaging system sharpness from image 
sharpness (𝝈𝝈𝒊𝒊) and resolution factor (𝒇𝒇𝒓𝒓𝒓𝒓𝒔𝒔) 

Figure 7.43 shows a sharpness comparison using the example of Mod2 

for ten different camera systems (A-XC). 

The first row shows the top left corner of Mod2 of the corrected images. 

To visualize the influence of different resolution factors, row two shows 

the same area but at the same resolution as in the original image. Row 3 

plots the corrected image sharpness and the last row the imaging system 

sharpness (Equation 7.8). 

With a corrected image sharpness 𝜎𝜎𝑐𝑐 > 14 the images with highest blur 

belong to camera XA. However, noting their low resolution, their imaging 

system sharpness is actually highest. Amongst all CCD camera based 

imaging systems lab C, I and A produced the sharpest images.  
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Figure 7.43: Sharpness comparison for all module-scale imaging 
systems modules for Mod2; note that values are discrete and lines are 
to guide the eye 

The same evaluation on cell-scale is shown in Figure 7.44. Therein again 

lab XA had the sharpest images amongst the InGaAs systems. For CCD-

based systems, camera L, A and I produced sharpest results. 

  

 
  

Figure 7.44: Sharpness comparison for all cell-scale imaging systems 
modules for Cell2 

Camera ID 

Camera ID 
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7.2.1.4 OBJECT-TO-IMAGE RATIO 

The minimum resolvable object size (𝑈𝑈𝑐𝑐𝑏𝑏𝑂𝑂) directly depends on the camera 

resolution and sharpness but also the size of the imaged object relative 

to the image plane. This named object-to-image ratio (𝐼𝐼𝑐𝑐𝑏𝑏𝑂𝑂) describes the 

ratio of the object area as an irregular quadrilateral (𝐴𝐴𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 ) vs image 

resolution (𝑈𝑈𝑒𝑒, 𝑈𝑈𝑦𝑦 ). 𝐴𝐴𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚  can be calculated using by the four clockwise 

ordered corner points (𝑈𝑈0…𝑈𝑈3) using the Shoelace formula: 

 

𝐴𝐴𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 = 0.5��𝑈𝑈2,𝑒𝑒 − 𝑈𝑈0,𝑒𝑒��𝑈𝑈3,𝑦𝑦 − 𝑈𝑈1,𝑦𝑦� + (𝑈𝑈3,𝑒𝑒 − 𝑈𝑈1,𝑒𝑒)(𝑈𝑈0,𝑦𝑦 − 𝑈𝑈2,𝑦𝑦)� (7.9) 

𝐼𝐼𝑂𝑂𝑏𝑏𝑂𝑂 =
𝐴𝐴𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚
𝑈𝑈𝑒𝑒 ∙ 𝑈𝑈𝑦𝑦

 (7.10) 

 
The object corner positions were detected in all 100% 𝐼𝐼𝑠𝑠𝑐𝑐 images using the 

algorithm described in Subsection 4.7.1.1. Figure 7.45 shows the 

distribution of resulting ratios sorted by camera systems. Looking at the 

narrow distribution, it becomes clear that camera E, F, H and L only 

imaged Cell1-Cell5. The otherwise wide spread values and low medians 

indicate that the camera focus was kept constant for all other devices. 

The majority of labs only used 50% of their cameras pixels to capture the 

EL signal. At cell-scale and with a median ratio higher than 90%, camera E 

achieved the best 𝐼𝐼𝑂𝑂𝑏𝑏𝑂𝑂. For modules, camera H leads with 65%. 
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Figure 7.45: Comparison of object-to-image ratios sorted by camera 
systems; light-blue: Cell1-5; brown: Mod1-10 

7.2.2 CALIBRATION IMAGE ANALYSIS 

7.2.2.1 LENS DISTORTION 

Each lab was given the task to take a minimum of 15 images either of an 

A1 or A5 chessboard pattern (Figure 7.46) in image plane. In every image, 

the pattern position and rotation were to be changed slightly. The routine 

to measure and remove camera lens distortion from these images is 

described in Section 3.5 and 4.6. 

 

 
Figure 7.46: Selection of submitted lens calibration images;  
green: valid image; orange: chessboard detection might fail;  
red: chessboard detection will fail because not all squares are visible 

Camera ID 
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From the lens distortion parameters obtained, the pixel displacement can 

be calculated with Equation (3.51)-(3.54). The displacement magnitude in 

x and y-axes is shown in   

Figure 7.47. With magnitudes around 0-1.5%, no camera systems have a 

distortion, which is be easily noticeable by the human eye. However, for a 

resolution of 4000x4000 pixels this distortion can shift features, like 

busbars up to 60 pixels along its extent. Correction for lens distortion is 

therefore advisable. 

 

 

 
 

  

Figure 7.47: Magnitude pixel displacement, relative to average image 
size and scaled 0-1% 

Looking at the displacement distribution (Figure 7.48) it is shown that 

camera J,A,F have the lowest and camera XC,G and D have the highest 

distortion. 

 

 
  

Figure 7.48: Magnitude displacement distribution sorted by imaging 
system 
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The calculation of both, deflection from lens distortion and re-projection 

error is described in Subsection 6.2.4 and 6.2.2. An uncertainty, based on 

these two factors is shown in Figure 7.49. All the camera systems have a 

position uncertainty far less than 1%. Its homogenous distribution is due 

to the major influence of the re-projection error. Due to its low values, 

the uncertainty from lens deflection and re-projection will be neglected 

for the uncertainty maps calculation. 

 

 

 
  

Figure 7.49: Position uncertainty 𝝈𝝈𝑵𝑵𝒓𝒓𝒊𝒊𝒔𝒔 [%], relative to the image size 

7.2.2.2 FLAT FIELD 

Of all the submissions, camera XB did not include flat field images and 

camera D and F delivered heavily overexposed images, which could not 

be used for flat field correction. Their flat field map was uniformly set to 

one. For all the other cameras, the flat field was calculated from multiple 

images of a homogenous red light source, placed directly in front of the 

camera lens (Subsection 3.6.2.1). Several labs did not deliver dark current 

images of the same exposure time. In this case, the background level was 

set to 1% of the cumulative distribution function of the raw flat field 

image intensities. The results are shown in   

Figure 7.50. In comparison to CCD, InGaAs cameras (XA, XB, XC) appear 

to be less influenced by vignetting. It is assumed that the firmware of 

those InGaAs cameras already implemented a flat field correction. All the 

Camera ID 



Chapter 7: Case Studies 
Section: 7.2: First International Round Robin on EL Imaging 

 

 © Karl Bedrich - April 2017 276 

 

submitted images from camera I show the same vertical gradient as the 

averaged flat field image in   

Figure 7.50. It is assumed that for camera I the flat field measurement 

itself was executed incorrectly – possibly due to a gap between the imaged 

light source and the camera lens. Only a few suitable images were 

submitted by camera A. The resulting flat field map caused a flat field 

overcorrection to such an extent that flat field correction was omitted for 

camera A. 

 

 

 
 

  

Figure 7.50: Calculated flat field maps 

Figure 7.51 shows line plots taken from the horizontal centre of the 

vignetting maps. It can be seen that flat field between image centre and 

edge varies between 0-80%. Camera A especially shows an inhomogeneous 

trend. This is due to the small number of submitted images and the 

(probably) missing movement of the light source.   

 

 
Figure 7.51: Line plots of the horizontal middle of all flat field maps 
shown in  Figure 7.50 

Camera ID 
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7.2.3 IMAGE COMPARISON 

In order to compare EL images of the same DUT (imaged by different 

cameras) quantitatively, the following correction algorithm (Figure 7.52) 

was implemented:  

1. Remove single-time-effects, dark current, flat field, image artefacts 

and lens distortion as described in Chapter 4. 

2. For all images from camera I, execute grid detection and 

rectification (Subsection 4.7.1) 

3. The resulting rectified images were used as reference image for 

step 4. 

4. Detect common features and calculate homography matrix used to 

rectify image (Subsection 4.7.2)  

5. Improve rectification using sub-pixel alignment (Section 4.8) and 

normalize intensity level of all rectified images of the same DUT 

(Section 4.9) 

6. Define reference images (camera B for Mod1-Mod10 and camera A 

for Cell1-Cell5) with measured image sharpness. 

a. Match the sharpness level of the reference image to every 

other image of the same DUT (Subsection 3.4.7). 

b. Create a difference image to that reference image. 

c. Mask cell edges and busbars using DUT mask obtained from 

grid detection (step 3). 

7. Calculate an intensity uncertainty map (Subsection 6.1.4.3) from 

original images and rectify the result (step 4). 

8. Use the rectified intensity uncertainty image to calculate the 

position uncertainty (Subsection 6.2.10). 
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Figure 7.52: Image correction schematic applied to all the images in the 
EL Round Robin  

A comparison of all the corrected EL images together with difference 

image and uncertainty maps can be found in Appendix 4.2.  

7.2.3.1 CELL INTENSITIES 

Before focusing on the illustration quality of features (like cracks and 

broken fingers), the intensity deviations of averaged areas in EL images 

need to be analysed. For this, average cell intensity was calculated for all 

crystalline devices Mod1-Mod8.  All other DUT were averaged regarding 

squares of 10% DUT width. The average intensities and standard 

deviations across all analysed imaging systems are shown in Figure 7.53.  

The standard deviation maps of Cell1-Cell4 show a similar pattern of 

highest deviations in the image centre. In addition, Mod9 and Mod10 

appear to have the highest deviations across all DUTs. 
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Figure 7.53: Mean and standard deviation of all DUT for all camera 
systems, averaged by cell, respective 10% image width 

A clearer representation of the range of DUT specific standard deviations 

is shown in   

Figure 7.54. With median values around 10% and 12%, the thin-film Mod9 

and Mod10 again show the highest deviations across the different camera 

systems.  

 

 
  

Figure 7.54: Boxplots of DUT specific standard deviations shown in 
Figure 7.53 
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All the other module-size DUTs deviated by 4-6% followed by the cell 

sized DUT with values around 6-8%. Using the mean cell intensities in 

Figure 7.53, a camera and DUT specific standard deviation was calculated 

(Figure 7.55). 

  

 
  

Figure 7.55: Relative difference [%] between averaged cell intensities 
imaged by a specific camera to the camera independent average, 
shown in Figure 7.53 

Boxplots generated from this data reveal the camera systems with the 

smallest and highest deviations, relative to mean (Figure 7.56).  

 

 
  

Figure 7.56: Boxplots of the distribution of standard deviations of 
averaged cell intensities for all camera systems 
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With standard deviations below 4% it is apparent that the average image 

intensities captured with camera J, H and A are closest to the mean DUT 

intensities. Their intensity differences agree to the estimated signal 

uncertainty of ~3.4% (Subsection 6.1.4).  On the other side, camera L,G 

and I deviate most from the average. 

Figure 7.53 encourages the suspicion that part of EL intensity deviations 

is not due to changed EL signal but rather due to residual flat field 

distortion from under- or overcorrected vignetting. In order to investigate 

this theory, for every camera the average DUT intensity grid from the 

corrected EL image was transformed to the original position of the raw 

image (Figure 7.57). 

 

 
Figure 7.57: Schematic of transforming cell averages of all DUT to their 
original position in the raw image 

It is assumed that the temporal average of all DUT cell averages cancels 

out individual cell deviations, similarly to the approach used to extract 

flat field from a series of images of different devices (Subsection 3.6.2.3). 

As Figure 7.58 shows, residual vignetting effects can be made visible for 

the majority of the camera systems, especially for camera E, F and L. 

 
  

Figure 7.58: Average of all normalised cell intensities after 
transformation to the original position in the raw image 
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7.2.3.2 IMAGE UNCERTAINTY 

Figure 7.59 shows an example comparison of corrected EL images and 

their corresponding uncertainty maps of one cell in Mod3. Images from 

all the other devices can be found in Appendix 4.2.  Due to the erroneous 

flat field correction (Subsection 7.2.3.1), the correction uncertainty (𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

was set 7%. For improved visibility, intensity uncertainty (𝑈𝑈𝑁𝑁𝑐𝑐𝑖𝑖𝑠𝑠𝑚𝑚) is shown 

as black-to-red colour layer. Its values are scaled 0-25%. Since EL signal 

and correction uncertainty were defined as constant throughout the 

image it is omitted in the displayed uncertainty image. Position-based 

uncertainty is shown as a black-to-green- colour layer, its values are 

scaled 0-100%.  

The EL uncertainty changes with the area size of the averaged pixels. The 

uncertainty of one pixel, a 40x40 pixels sized group and a cell average 

(400x400 pixel) is shown in Subfigure (b). Although pixel intensities 

deviate between the different analysed camera systems, all the intensities 

are within a range limited by their individual uncertainty. 

 

 
Figure 7.59: EL image comparison of Mod3 at 100% 𝑰𝑰𝒔𝒔𝒔𝒔 ;  
a) corrected EL image of camera B; b) Pixel values of single pixel or 
pixel groups, indicated by blue ROIs in (a);  
c) corrected EL image detail of blue ROI in (a); d) sharpness corrected 
difference image to (a); e) combined noise (red) and position (green) 
uncertainty map of (c)  
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7.2.3.3 FEATURE VISIBILITY 

All the corrected EL images for both 10% and 100% 𝐼𝐼𝑠𝑠𝑐𝑐  are shown in 

Appendix 4.2. In this section, only several remarkable differences of the 

representation of features within the different EL images are discussed. 

In general, after image correction the appearance of features is a function 

of: 

1. The local noise level 

2. Image sharpness 

3. Residual vignetting effects 

4. The cameras spectral response and 

5. Actual changes of the EL signal. 

As already discussed in Subsection 7.2.1.2, most images achieved an SNR 

above 25. The pixel-based image noise was on average less than 4% and 

can be neglected. To quantify individual changes, the difference images 

to the reference camera A (for cells) or B (for modules) were calculated. 

In order to remove the influence of different image sharpness levels, all 

the reference images were brought to the same sharpness level as the 

target image (Subsection 7.2.1.3). Residual vignetting effects were found 

to be a major influence of different intensities (Subsection 7.2.3.1). To 

reduce this effect in difference images, residual vignetting effects are 

removed as follows: 

• For Cell-Cell5 and Mod9,Mod10: calculate and remove pseudo-

background (similar to method in Subsection 7.1.3) 

• For Mod1-Mod8 (crystalline modules): divide pixel value of every 

cell by its cell median.  

After these corrections the difference image should only be influenced by 

EL signal changes and the cameras spectral response. As already 

mentioned, all the imaging systems were assigned a random letter in 

order to maintain their anonymity. Therefore difference images shown 

are not necessarily in chronological order and extrinsic defects, 

introduced during lab-to-lab transport, cannot be analysed. An example, 
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based on Mod1, is shown in Figure 7.60. Further examples, together with 

uncertainty maps are shown in Appendix 4.2. 

 

 
Figure 7.60: Comparison of EL images (100% 𝑰𝑰𝒔𝒔𝒔𝒔) and their (sharpness 
and flat field) corrected magnitude differences to the top EL image (B) 

Differences between relatively sharp and blurry images (‘B’ vs ‘XC’) can be 

analysed without disturbing high gradient variations due to the sharpness 

correction (Subsection 3.4.1). In Figure 7.60, the following EL signal 

changes can be observed:  

• Temporary reconnection along the right end of the top busbar in 

‘D’ and ‘G’ (blue circle). 
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• Intensity deviations in cell {2,2} (green circle) due to high contact 

resistance of top busbar. 

• ‘Doughnut’-shaped darkenings in most cell centres are more 

pronounced in InGaAs camera images (XA-XC). It is assumed that 

these areas occur darker due to spatially limited relaxation of the 

encapsulation. 

In the following qualitative comparison, image sharpness will be 

evaluated by the ‘smallest resolvable object size’ (𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 ) as defined in 

Equation 3.31. This equation is adapted to the known parameters: 

physical cell width (𝑤𝑤𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 ), cell resolution in x-axis (𝐼𝐼𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 ) and standard 

deviation of Gaussian image blur kernel (𝜎𝜎𝐵𝐵 ). The calculation of the 

resolution factor (𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠) as function of 𝜎𝜎𝐵𝐵 is described in Equation 3.43. For 

example camera A and Mod1, 𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 is calculated as follows: 

 

𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 =
𝑤𝑤𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐

𝐼𝐼𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐
∙ 𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠(𝜎𝜎𝐵𝐵) =

125 mm
400 px

∙ 𝑓𝑓𝑐𝑐𝑚𝑚𝑠𝑠(2.8 px) = 1.51 mm (7.11) 

 

The following comparison is structured as follows: A figure showing a 

DUT and a region of interest (cells, for crystalline DUT) as imaged by all 

different cameras. The following table evaluates the visibility of DUT 

features, like busbars or non-disconnecting cracks. For every camera and 

feature, a number (0-2) is assigned in the following Tables 7.14 et seqq. 

The numbers stand for: 

 0 – Feature not visible 

 1 – Feature ‘poorly’ visible 

 2 – Feature ‘good’ visible 

The differentiation between a ‘good’ and ‘poorly’ visible feature is highly 

subjective. Therefore, for both an example is highlighted in each figure 

(green/blue circles). A scatter plot finally compares visibility to 𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 with 

the aim of assigning a minimum 𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 for each feature for every device type 

(crystalline module, amorphous module, crystalline cell). In this section 
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only four DUTs at a specific short-circuit current are discussed. All the 

other images can be found in Appendix 4.2. 

A comparison of cell {3,2} from Mod1 in shown in Figure 7.61. In a blue 

circle, a suspected intrinsic defect is highlighted. Whilst this defect is 

comparably ‘good: 2’ visible for camera B, camera C shows a ‘poor: 1’ 

visibility and especially cameras D and XA-XC do not show the feature at 

all. In the same way, a non-disconnecting crack is highlighted with a green 

circle.   

 

 
Figure 7.61: Mod1 imaged at 100% 𝑰𝑰𝒔𝒔𝒔𝒔; resulting corrected EL images for 
different cameras shown for cell {3,2} 

Table 7.14 lists the visibility of the two features mentioned together with 

the visibility of busbars and fingers. On the left side the signal-to-noise 

ratio (SNR) averaged for the same area is shown. Image noise is clearly 

visible for camera A (SNR~5).  
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Table 7.14: Visibility of different features in cell {3,2} of Mod1 

Cam. 
ID 

SNR  
[-] 

𝒔𝒔𝑶𝑶𝒂𝒂𝒋𝒋 
[mm] 

Busbar Finger 
Intrinsic 

defect (blue) 
Non-disc. 

crack (green) 

A 5.17 1.51 2 1 0 1 
B 45.13 0.98 2 2 2 2 
C 32.30 1.17 2 2 1 1 
D 17.48 2.88 2 0 0 1 
G 45.54 0.73 2 2 2 1 
I 39.27 3.11 2 2 1 1 
J 33.89 1.90 2 2 1 1 

XA 778.91 9.50 1 0 0 0 
XB 16.45 2.74 2 0 0 1 
XC 22.01 6.88 1 0 0 0 

 

 

In the same way, Figure 7.62 shows a comparison of different corrected 

EL images for cell {6,4} of Mod7, imaged at 10% 𝐼𝐼𝑠𝑠𝑐𝑐. A line shaped structure 

in the middle of a darker cell is highlighted with a blue circle as 

representative for an intrinsic defect. The images taken by camera D, G 

and XB show an inactive area at the bottom right of the cell. The crack 

that caused this electrical isolation can also be found in the other images 

(green circle). Although at 10% 𝐼𝐼𝑠𝑠𝑐𝑐 EL emission is roughly 10% relative to a 

100% 𝐼𝐼𝑠𝑠𝑐𝑐  image, in most cases the exposure time was only doubled 

(Subsection 7.2.1.2). As seen for cameras I, D, A and XC the low SNR value 

impaired feature visibility. Again, Table 7.15 evaluates the visibility of 

four different features of the highlighted cell. 
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Figure 7.62: Mod7 imaged at 10% 𝑰𝑰𝒔𝒔𝒔𝒔; resulting corrected EL images for 
different cameras shown for cell {6,4} 

Table 7.15: Visibility of different features in cell {6,4} of Mod7 

Cam. 
ID 

SNR 
[-] 

𝒔𝒔𝑶𝑶𝒂𝒂𝒋𝒋 
[mm] 

Busbar Finger 
Intrinsic 

defect (blue) 
Non-disc. 

crack (green) 

A 6.15 1.93 2 0 1 1 
B 42.13 0.90 2 2 2 2 
C 15.42 1.50 2 1 2 2 
D 6.03 3.72 1 0 1 - 
G 17.26 0.93 2 2 2 - 
I 6.16 3.08 1 0 1 0 
J 36.12 2.43 2 1 2 1 

XA 1093.53 9.40 1 0 0 0 
XB 78.68 5.11 1 0 0 - 
XC 2.46 6.90 0 0 0 0 

 

A representative for instable EL signal (due to cracks) is shown in Figure 

7.63. Therein, different series resistance along several fingers caused the 
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EL signal to vary (dark: camera B, bright: camera A). The visibility of these 

disconnecting fingers (blue ellipse) is evaluated in Table 7.16. The branch 

of a larger disconnecting crack was selected as being representative of a 

non-disconnecting crack (green circle). 

 

 
Figure 7.63: Mod8 imaged at 100% 𝑰𝑰𝒔𝒔𝒔𝒔; resulting corrected EL images for 
different cameras shown for cell {6,3} 
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Table 7.16: Visibility of different features in cell {6,3} of Mod8 

Cam. 
ID 

SNR 
[-] 

𝒔𝒔𝑶𝑶𝒂𝒂𝒋𝒋 
[mm] 

Busbar Finger 
Disconnecting 
finger (blue) 

Non-disc. 
crack 

(green) 

A 18.87 1.91 2 0 2 1 
B 66.00 0.74 2 2 2 2 
C 46.65 1.49 2 1 2 2 
D 55.47 3.70 1 0 1 1 
G 54.06 0.92 2 2 2 2 
I 44.50 3.05 2 0 2 1 
J 34.97 2.41 2 0 2 1 

XA 996.27 9.32 0 0 0 0 
XB 61.01 5.07 1 0 1 0 
XC 114.75 6.83 1 0 1 0 

 

 

The object size and feature visibility of the recent Tables 7.14 - 7.16 were 

used to generate Figure 7.64. With the low number of evaluated features 

the trend of improved visibility for smaller object size is not clear 

(although visible). Therefore, the following minimum object sizes are a 

proof of concept and not robust guidelines. 

 

 
Figure 7.64: Visibility vs. object size for crystalline modules 
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Table 7.17 shows threshold values for a minimum object size (𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂,𝑚𝑚𝑖𝑖𝑐𝑐), 

required to resolve a given feature as those size causing an average 

visibility of 1.5. 

Table 7.17: Minimum object size required to resolve different features 
in crystalline modules 

Feature Busbar Finger 
Disconnecting 

finger 

Non-
disconnecting 

crack 

Intrinsic 
defect 

𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂,𝑚𝑚𝑖𝑖𝑐𝑐 

[mm] 
3 1.3 1.7 1.5 2 

 

In contrast to crystalline devices, the variations in the EL images of both 

thin-film modules (Mod9, Mod10) were much more pronounced (Figure 

7.65). In the warm-up experiment on a CIGS module (Subsection 6.1.4.1), 

the spatial homogeneity of EL signal decreased over time. Similar patterns 

can be seen in Figure 7.65. Whilst every lab was asked to ensure a warm-

up time of 10 minutes, the EL images of camera B, D, I and XC (highlighted 

green) might have been imaged without this warm-up time. Further 

investigation is required to corroborate this theory.  

 

 
Figure 7.65: Comparison of corrected EL images of Mod10 at 100% 𝑰𝑰𝒔𝒔𝒔𝒔 
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Figure 7.66a shows a moving-average-smoothed line plot (position 

indicated in Figure 7.65A). The trend of plots B, D, I and XC (bold plots) 

is steadier. As with most of the EL images in this test case, the image 

intensities were scaled between 2% and 98% of their cumulative 

distribution function (Section 4.9). Since all the images in Figure 7.65 

display the same device, it should not be expected to see darker (B, G, A) 

and brighter (I, XA, XB) images.  

In contrast to crystalline devices, the module consists of numerous 

narrow cells, which cause the image to be dominated by high gradient 

variations. Figure 7.66b shows part of the line plot of Subfigure (a) 

without smoothing. Depending on the image sharpness, gradients along 

the cells are barely visible (bold plots) or more pronounced.  

 

 
a) Smoothed by moving average 

 
b) Unprocessed middle area of (a) 

Figure 7.66: Vertical line plot of green line (Figure 7.65) of Mod10  

The same behaviour can be also observed in the EL images shown in 

Figure 7.67. When looking at images of the entire module one would guess 

that these cell-to-cell deviations average out. Since the average of white 

and purple is not yellow, the colour map used is not suitable however to 

assign the right colour to an average of extreme differences. 

To compare feature visibility in Figure 7.67, the subjective visibility of 

cells, a line-shaped intrinsic defect (blue, possibly caused by 

inhomogeneous crystallization) and a shunt (green) is observed. The 

results are listed in Table 7.18. 
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Figure 7.67: Mod10 imaged at 100% 𝑰𝑰𝒔𝒔𝒔𝒔 ; the resulting corrected EL 
images for different cameras are shown for the top-left area of the 
module (green box) 

Table 7.18: Visibility of different features in top right area in Mod10 

Cam. 
ID 

SNR  
[-] 

𝒔𝒔𝑶𝑶𝒂𝒂𝒋𝒋 
[mm] 

Cells 
Crystallisation defect  

(blue) 
Shunt 
(green) 

A 11.58 1.84 2 1 2 

B 18.41 0.68 2 2 2 

C 13.08 1.17 2 1 2 

D 18.41 3.11 1 0 1 

G 96.72 1.26 2 2 2 

I 49.13 3.16 2 1 2 

J 37.70 2.48 2 1 2 

XA 770.59 9.66 0 0 0 

XB 103.35 5.28 1 0 1 

XC 153.78 7.13 1 0 1 

 

In the same way, Figure 7.68 and Table 7.19 plot visibility vs 𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 and 

provide a minimum object size to resolve the features mentioned. Again, 
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it should be noted that, due to the small number of data points, the 

results should be only seen as a proof of concept. 

 

 
Figure 7.68: Visibility vs. object size for Mod10 

Table 7.19: Minimum object size required to resolve different features 
in Mod10 

Feature Cells Crystallization defect Shunt 
𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂,𝑚𝑚𝑖𝑖𝑐𝑐 [mm] 3.5 1.5 4 

 

Features of the polycrystalline Cell4 and Cell5 were analysed at cell-level. 

Figure 7.69 shows a comparison of a 400x400 pixel array of the bottom-

right of Cell4. In this and the following comparison of Cell5, a red box 

indicates a phenomenon only seen in one camera: reflected EL signal over 

busbars (camera E). It is assumed that this is due the inner walls of the 

measurement chamber allowing a back reflection of the emitted EL signal. 

This can introduce additional blur and distort the EL intensities. 
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Figure 7.69: Cell4 imaged at 100% 𝑰𝑰𝒔𝒔𝒔𝒔; resulting corrected EL images for 
different cameras shown for bottom right area of the cell (green box); 
red box: reflected EL signal 

The criteria for feature visibility were adapted to cell-level as follows: 

• Busbar: 2 - sharp edge, 1 – blurry edge 

• Finger: 2 – print marks visible, 1 – only intensity fluctuation due to 

fingers visible, 0 – no intensity fluctuations visible 

• Dislocations (blue circle): 2 – all structures resolved,  

1 – structures generally visible, 0 – no structure visible 

• Crack structure (green circle): 2 – two bright spots clearly visible, 

1 – spots hardly visible, 0 – no spots visible 
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Table 7.20: Visibility of different features in bottom right of Cell4 

Cam. 
ID 

SNR 
[-] 

𝒔𝒔𝑶𝑶𝒂𝒂𝒋𝒋 
[mm] 

Busbar Fingers 
Dislocations 

(blue) 

Crack 
structure 
(green) 

A 16.68 0.22 2 2 2 2 
E 297.56 0.66 2 1 1 2 
F 59.40 0.48 2 1 1 2 
H 70.57 0.22 2 2 2 2 
I 126.58 0.54 2 1 1 2 
J 38.57 0.61 2 1 1 1 
L 48.31 0.47 2 1 1 2 

XA 1008.97 1.29 1 0 0 0 
XC 112.37 1.01 1 0 0 0 

 

 

Equally, Figure 7.70 and Table 7.21 show a feature comparison for Cell5.  

 

 
Figure 7.70: Cell5 imaged at 100% 𝑰𝑰𝒔𝒔𝒔𝒔 ; the resulting EL images for 
different cameras are shown for top middle area of the cell (green box); 
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EL signal in V shaped crack area varies due to changing series 
resistance 

Table 7.21: Visibility of different features in top middle area of Cell5 

Cam. 
ID 

SNR 
[-] 

𝒔𝒔𝑶𝑶𝒂𝒂𝒋𝒋 
[mm] 

Busbar Fingers  
Dislocations 

(blue) 

Crack 
structure 
(green) 

A 16.82 0.21 2 2 2 2 
E 368.05 0.66 2 1 1 2 
F 62.01 0.47 2 1 1 1 
H 69.71 0.22 2 2 2 2 
I 17.12 0.53 2 1 1 1 
J 43.47 0.61 2 1 1 1 
L 50.01 0.47 2 1 2 2 

XA 1002.49 1.29 1 0 0 0 
XC 109.54 1.00 1 0 0 0 

 

Again, visibility vs. 𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂 and minimum object size are shown in Figure 7.71 

and Table 7.22. 

 

 
Figure 7.71: Visibility vs. object size for Cell4 and Cell5 

Table 7.22: Minimum object size required to resolve different features 
in Cell4 and Cell5 

Feature Busbars Fingers 
Dislocations 

(blue) 
Crack structure 

(green) 

𝑈𝑈𝑂𝑂𝑏𝑏𝑂𝑂,𝑚𝑚𝑖𝑖𝑐𝑐 [mm] 0.8 0.35 0.4 0.45 
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7.2.3.4 SERIES RESISTANCE MAPS 

It is to be expected that the influence of the cameras flat field cancels out, 

if an EL signal ratio and not the absolute EL signal is analysed. For series 

resistance imaging, the EL emission at 100% 𝐼𝐼𝑠𝑠𝑐𝑐  is corrected by a low 

current (often 10%  𝐼𝐼𝑠𝑠𝑐𝑐) calibration image. Its result is usually scaled in [Ω] 

or [ Ω
𝑎𝑎𝑐𝑐𝑚𝑚𝑎𝑎

] (Subsection 2.4.4.1). This simplifies both camera calibration and 

image correction because: 

• No flat field correction is necessary and  

• Brightness and contrast level of images do not need to be adjusted. 

The following results were obtained from images, corrected in the same 

fashion as described in Subsection 7.2.3 but excluding flat field correction 

and image intensity normalization. Figure 7.72 shows the resulting series 

resistance maps for Mod2. All images are scaled within the same 

boundary. Remarkably, for all images a high similarity can be found 

within the intensity range and distribution. However, the relative 

difference from the CCD camera average (Subfigure b) reveals that 

although the influence of flat field caused intensity deviation is reduced, 

remaining deviations of up to 30% can be seen. Furthermore, the 

difference image of camera B shows that the EL image must have been 

stitched together from two sub images, because two separate vignetting 

trends are visible.  

 

a)  b)  

Figure 7.72: Mod2; a) Series resistance maps;  
b) magnitude difference to average from camera A-J  
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A blue box (Figure 7.72b) highlights a single outstanding cell, which 

deviates more than its surrounding cells.  In particular cells emitting a 

low or no signal in the low current EL image can cause wrong results in 

the series resistance map (Figure 7.73).  

A physical interpretation of the obtained results is out of the scope of 

this work, due to the absence of more sophisticated measurement 

methods. 

  

 
Figure 7.73: Incorrect series resistance map (right) due to inactive areas 
in low current EL image (middle) 

7.2.4 SECTION SUMMARY 

At time of writing, this first Round Robin on electroluminescence 

measurement of PV devices is still ongoing. However, initial results from 

14 different camera systems are already presented. It was shown that 

most labs use a 16 bit CCD camera and EL images at 100% 𝐼𝐼𝑠𝑠𝑐𝑐 achieved a 

signal-to-noise ratio (SNR) of more than 50. In most cases however, 

maximum intensities were only at a third of the cameras bit depth. In 

most cases, the need for short measurement times supposedly prevented 

higher SNR. Hence, for 10% 𝐼𝐼𝑠𝑠𝑐𝑐 images exposure times were often only two 

(and not ten) times longer relative to the ones at 100% 𝐼𝐼𝑠𝑠𝑐𝑐.  

All labs were able to successfully image the chessboard pattern, used to 

determine lens distortion. It was found that deflection caused by lens 

distortion is on average less than 1.5% (relative to the image size). This 

lens distortion is not easily visible to the human eye.  

The position uncertainty due to lens correction and re-projection error is 

less than 0.5% (relative to image size). Therefore, it was omitted in the 

uncertainty analysis. Five labs were not able to provide usable flat field 

calibration images. As the comparison of averaged cell intensities shows, 
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deviations for silicon devices (5-7%) were mainly due to residual flat field 

distortion. Additionally, the instability of the EL signal of the two 

evaluated thin-film devices caused intensity deviations of 10-12%.  

Although image sharpness measurements were not part of the Round 

Robin, sharpness could be measured by comparison of the corrected EL 

images. Noting the DUT size in the original image this sharpness could be 

rescaled accordingly. Interestingly, the sharpest images were generated 

with low-resolution InGaAs cameras. The otherwise relatively high spread 

of sharpness levels underlines the need to optimize image focus using 

quantitative measures rather than the bare eye. 

At module-scale, the often constant camera focus caused the DUTs to not 

fill out the entire image plane. This caused on average 50% of the available 

pixels to remain unused.  

A direct comparison of several corrected EL images showed good 

agreement. The EL images deviated mostly due to different sharpness 

levels, residual vignetting, image noise and instable EL signal (mostly next 

to cracks). Contrast levels of intrinsic defects were also found to be 

slightly different between InGaAs and CCD cameras. 

This first international Round Robin on electroluminescence 

measurement of PV devices aimed to capture the state of the art and to 

demonstrate general comparability of results. It was not intended as a 

competition but rather a comparison. Nevertheless, it was found that 

amongst the participating camera systems and according to the discussed 

image quality criteria, camera XA and E produced best results. 

Further classification and ranking can be found in Table 7.23 and Table 

7.24. It is noted that the chosen criteria were not known to the 

laboratories and InGaAs and CCD cameras were not evaluated separately. 

Depending on the position of the best three camera systems within a 

category, three to one points were assigned. 
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 Table 7.23: Points assigned to top three camera systems 

 3 points 2 points 1 point 

Subsection 7.2.1.2: Signal-to-noise ratio    
Highest average SNR  XA E XC 
Highest average SNR rate [SNR/s], CCD only E I J 
Subsection 7.2.1.3: Image sharpness     
Module-scale – same resolution C I A 
Module-scale – same scale XA XB XC 
Cell-scale – same resolution H A I 
Cell-scale – same scale XA XC L 
Subsection 7.2.1.4: 
Highest Object-to-image ratio 

E H XB 

Subsection 7.2.3.1: Lowest EL intensity 
deviation relative to DUT average 

J H A 

Table 7.24: EL Round Robin camera ranking from points in Table 7.23 

Camera XA E H I A 

Position 1 2 3 4 5 
Points 9 8 6 5 4 
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CONCLUSIONS 
In this thesis, a set of tools has been presented to enable quantitative 

information to be extracted from electroluminescence (EL) imaging. The 

quantitative electroluminescence imaging (QEL) methods developed 

during this work aim to standardise and automate image capture, 

processing and analysis. An introduced signal-to-noise ratio (SNR) 

definition specifically applicable to EL measurements enables minimum 

exposure time for target quality thresholds. The metric and thresholds 

resulting from this work have been incorporated into an IEC standard 

draft on EL measurement.  

Background correction is often done through subtracting a background 

image from every EL image. To reduce measurement time and cost to the 

industry and to improve correction quality, different methods for 

creating one calibration background image rather than an extra image for 

every measurement have been developed as part of this work.  

For image artefact removal (especially for longer exposure times), it is 

proposed to take two shorter EL images, rather than a longer one.  

Image sharpness in EL imaging is currently measured along a slanted 

edge, created through masking a PV device. If the blur function defining 

the image sharpness is assumed radially variable, the measurement has 

to be repeated multiple times and still returns only a radially symmetric 

blur function. A novel method to measure a spatially resolved blur 

function is presented. 

Novel and precise vignetting measurement methods were presented and 

their correction quality was quantified. It was shown, that the currently 

applied vignetting measurement method of imaging a (red) LCD screen in 

front the camera lens is not suitable for vignetting correction. 

Perspective distortion in EL images is a common problem, especially for 

outdoor imaging. Methods to automatically detect and remove 

perspective have been discussed and evaluated. The correction algorithm 

was applied to two case studies, including the first international EL Round 
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Robin. Quantitative comparison of difference images obtained from PV 

devices (imaged at different times and with different equipment) became 

possible due to this work.  

For light-IV measurement the determination of measurement uncertainty 

is a standardised procedure to assess the quality of a measurement 

system. So far uncertainty was not calculated for EL measurements. This 

work presents routines to determine noise-, sharpness-, signal- and 

correction uncertainty. In result, the measurement error of a pixel and a 

pixel-area within an EL image can be estimated.  

Although this work focussed on EL, the majority of routines can also be 

applied to other scientific imaging techniques, such as 

photoluminescence and lock-in thermography.  

None of the presented methods are overly complex to implement and the 

source code written by the author and used to calculate and evaluate the 

results in this thesis is made available to the public. With dataArtist, an 

interactive graphical application for scientific image processing was 

developed. It focusses on EL imaging and provides tools for determining 

best focus and exposure time, camera calibration, image correction and 

comparison as well as feature extraction and series resistance imaging.  

Manual EL image analysis on all monitored PV systems in the field and in 

production is neither reliable nor profitable. This work provides tools to 

automate the process. Manufacturer and installer-based warranty cases 

will be detected at almost no time without extra costs for image 

processing. With this, both physical PV durability and financial reliability 

will be increased. 
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FUTURE RESEARCH 

AVENUES 
This work only discussed briefly possible feature extraction and 

performance analysis routines. To further validate and refine the results, 

the larger number of EL images need to be evaluated and correlated to 

other measurement methods, like laser beam induce current (LBIC). 

Further, more sophisticated (spatially resolved) simulations need to be 

conducted. In detail: 

Crack propagation within on-field modules need to be measured and 

modelled for different climate zones. Crack age and –length need to be 

correlated to performance data to get a better understanding regarding 

its influence for series- and shunt resistance. 

The measurement of inactive areas need to be revised. It was shown that 

identified inactive areas can reconnect again and that those areas can still 

be beneficial for current generation. Combined mechanical load and EL 

measurements might be useful to identify an ‘effective inactive area’.  

Moisture ingress in PV devices is a cause for performance degradation. 

Through evaluating time series of EL images, QEL will be used to model 

the related physical processes. 
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1 RESEARCH OUTPUT 

During the doctoral studentship from January 2014 to April 2017, the 

following scientific output was generated: 

Conference Papers 

• KG. Bedrich, M. Bliss, TR. Betts, R. Gottschalg, „Electroluminescence 

Imaging of PV Devices: Camera Calibration and Image Correction“, 

in IEEE PVSC43, June 2016 

• KG. Bedrich, M. Bliss, TR. Betts, R. Gottschalg, „Electroluminescence 

Imaging of PV Devices: Single-Time-Effect Statistics and Removal“, 

in PVSAT12, April 2016 

• KG. Bedrich, M. Bliss, TR. Betts, R. Gottschalg, „Electroluminescence 

Imaging of PV Devices: Uncertainty due to Optical and Perspective 

Distortion“, in EUPVSEC31, September 2015 

• KG. Bedrich, M. Bliss, TR. Betts, R. Gottschalg, „Electroluminescence 

Imaging of PV Devices: Determining the Image Quality “, in IEEE 

PVSC42, June 2015 

• KG. Bedrich, M. Bliss, TR. Betts, R. Gottschalg, „Module Scale 

Electroluminescence of PV Devices: Measurements and Image 

Quality “, in PVSAT11, April 2015 

Unpublished Work 

• Electroluminescence Imaging of PV devices:                                          

Determining the Signal-To-Noise Ratio 

• Electroluminescence Imaging of PV devices:                                          

Image Sharpness Measurement and Specification 

• Electroluminescence Imaging of PV Devices:                              

Advanced Flat Field Calibration 

• Electroluminescence Imaging of PV devices:                                          

Setup dependency of Effective Flat Field 
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• Electroluminescence Imaging of PV Devices:                          

Quantitative Inter-lab Comparison 

Contributions to IEC 60904-13 (draft Jan.2017) 

• Added 

o Section 4.2.1.2.2: Sharpness determination and classification  

o Section 4.3 Image correction and analysis’ (part Signal-to-

Noise ratio) 

o Annex B: Focus 

• Modified  

o Section 6: Reporting  

o Annex 1 Lens distortion 

Built Measurement Systems 

• Huge Luminescence Chamber ‘HuLC’ (Appendix 2) 

Produced Software 

• dataArtist – interactive scientific image analysis and processing 

(Appendix 3) 

• imgProcessor – Python-based image processing library (see 

https://github.com/radjkarl/imgProcessor) 

1st International Electroluminescence Round Robin (16 laboratories) 

• Planning, implementation and evaluation.  

 

 

 

https://github.com/radjkarl/imgProcessor
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2 HUGE LUMINESCENCE 

CHAMBER ‘HULC’  

The ‘Huge Luminescence Chamber’ (HuLC) (Figure 2.1) consists of an 

aluminium cage, assembled by 40x40 and 80x40 mm profiles. Its walls 

are built by two layers of 5 mm polypropylene sheeting. On the ceiling of 

the camber, a 16 bit CCD camera is mounted on a linear slide. This enables 

images to be taken at three (or more) different positions. The module 

mount accepts variable module sizes up to 1.2x2.4 m. Camera, power 

supply and thermo couple for measuring the chamber temperature are 

operated using the LabView executable ‘HuLC_control.exe’. Current and 

voltage maxima, determined by the power supply, are 34 A and 150 V. 

Two light sources are mounted in the chamber: Left middle: cold white 

LED. Bottom middle: IR light bulb 

Both lights can be switched on/off manually from the power strip 

between both monitors.   

 

   

Figure 2.1: Equipment: Dark chamber (1); TKD Lambda GEN150-34 (2); 
Module mount (3); Control PC with software (Labview) 
‘HuLC_control.exe’ (4); …and Image analysing and processing program, 
‘dataArtist.exe’ (5); Temperature sensor (6); Connector cables for 
clamp-able, MC3 or MC4 connected modules (7) 

3 

1 

2 

4 
5 

6 

7 
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 Operation 

Door open: To open the chamber first pull gently the smaller door handle 

Figure 2.2(1) until the first two sections build an angle of ~20°. Then take 

the main door handle (2), lift it gently and push the door open. Door 

opening and closing should work smoothly without excessive force.  

 

 
Figure 2.2: HuLC: Two-hinged folding door 

Mounting a module: The module mount consists of one fixed ledge (Figure 

2.3(1)) and one movable ledge (2). The left ledge can be adjusted to the 

frame length using fixing handles (3a,b). 

 

 
Figure 2.3: HuLC: Module mount 

1 
2 

3a 

3b 

1 

2 
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The maximum imaged size [in ledge direction] is 1.2 m. If a module 

exceeds this size is has to be turned 90°. There are two different ways of 

safely mounting a PV module in HuLC.  

1. Open the chamber door completely. 

2. Adjust left ledge to roughly match the module length. 

3. Take module (two persons, one per end). 

4. Walk into the chamber (MIND THE STEP). 

5. Place the module on the right mount ledge. The person on the 

right than walks over to the person on the left, which is still 

holding the module in place. The former right person brings the 

left mount ledge into position and the left person puts down the 

module. 

Alternative: 

1. Open the chamber door completely  

2. The left ledge is set to the exact length of the module (using a 

ruler at the rear end of the mount).  

3. Use fixing handles to fix left ledge.  

4. Take module (2 people again) 

5. Place the end of the module on both ledges and slide the module 

in position. 

Make sure that the module fits properly. Since EL images for devices 

wider than 90 cm are stitched together from 2-3 individual images, a 

remaining rotational angle might impede the later image stitching 

process. 

The imaged area (depending on the camera height) is marked on the 

outer side of the right arm. Please make sure that the module is within 

given range. 

Module connection: There are currently three different adapters 

available to connect module and power supply: MC4, MC3 and clamp. 

These adapters are attached to the rear inner wall (Figure 2.4). 
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Figure 2.4: HuLC: PV device adapters 

To connect the module… 

1. Make sure that the power supply displays ‘POWER OFF’. 

2. Choose the right adaptor cable. 

3. Connect the adaptor cable to the universal connector. The 

connector screws need to be on the same side. 

4. Connect the individual connectors to the module. For the clamp 

connector, check polarity first. 

Door close: To close the chamber, take the main door handle, lift it gently 

and pull it until the first two sections are straight. Then push the smaller 

door handle till the first two sections lock. Finally push the main door 

handle until the door is completely closed. There are two clamps for 

locking the door. Their use is optional – closed clamps can indicate others 

that the chamber is in use. 

 Test Procedure 

2.2.1 DEVICE STORAGE 

Store modules as described in ‘CREST AP 05 Handling Calibration and 

Test Samples’. Ensure that glass-glass unframed modules are never in 

direct contact with hard floors. 
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2.2.2 PREPARATION (HOURS BEFORE MEASUREMENT) 

Clean the modules if necessary (water + non-abrasive cloth).  

Bring modules into the measurement room. To stabilize temperature, 

allow airflow around device. 

2.2.3 IMAGING 

1. Place the module in the chamber (Section 2.1). 

2. Switch on main supply for camera, motors, light etc. (“HuLC main”). 

3. Switch on control PC. 

4. Login using login credentials located under the left monitor. 

5. Before starting an imaging routine, make sure that camera (socket 

‘camera’) motors of the linear slides (socket ‘motor’) and the proximity 

switches (socket ‘proxi’) are switched on and all lamps (socket ‘lamp’) 

in the chamber are switched off.  

6. (A) Click on the ‘HuLC’ logo in the task bar to start ‘HuLC_control.exe’ 

(Figure 2.5). 

7. (B) Change image folder to desired path (for example 

E\measurements\NAME\DATE) 

8. (C) Change image NAME. Images will be saved as for example: 

o ‘NAME_e120_g4_b1_V48-362_I5-280_T20-062_p1-2_n0__0.tif’ 

o That corresponds to … 

 120s exposure time 

 Gain =4 

 Binning =1 

 48.362 Volt 

 5.280 Ampere 

 20.062 °C (Temperature above module) 

 Camera position 1 of 2 

 Image number at current position = 0 

 Absolute image set number = 0 

 



Appendix 2: Huge Luminescence Chamber ‘HuLC’ 

 © Karl Bedrich - April 2017 326 

 

 
Figure 2.5: HuLC_control.exe 

There are two proposed imaging regimes: 10% of the devices short-circuit 

current (𝐼𝐼𝑠𝑠𝑐𝑐) and 100% 𝐼𝐼𝑠𝑠𝑐𝑐. 

o Why 100% 𝐼𝐼𝑠𝑠𝑐𝑐:  

 Shorter exposure time. 

 Series resistance effects are more pronounced. 

o Why 10% 𝐼𝐼𝑠𝑠𝑐𝑐: 

 Cell intensity decrease due to shunt resistance √10 times 

higher, relative to 100%. 

 Negligible series resistance effects, therefore more 

homogenous EL emission. 
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o Why both: 

 To calculate a series resistance map. 

Exposure time (Figure 2.5 G) should be defined as that time that… 

• Results on averaged SNR>=50 … 

• Does not create overexposed areas … 

…in the captured EL image. 

For the used camera an averaged image intensity of 22,000 corresponds 

roughly to an SNR=50. The image processing software ‘dataArtist’ 

(Appendix 3) provides a tool for determining exposure time. 

If exposure time is higher than 2 minutes, respective the averaged 

SNR<30, consider capturing 2 images (F) at every position and current to 

enable removal of temporary imaging artefacts (single-time-effects). 

Power supply (H1): Switch toggle button to ‘on’ to use power supply. If 

device should be kept biased after image is taken switch on toggle (H2). 

This is useful to keep module temperature constant. Be aware to manually 

switch off power supply if using this feature.  

Background image (image under open circuit) is OPTIONAL. Background 

images can be calculated as fn(exposure time) in dataArtist (D). 

Positions (J): If a module width > 90 cm the final EL image will be stitched 

from up to 3 sub-images, between 90-160cm: position 1-2, 160-240cm: 

position 1-3 

Warm-up: To stabilize EL signal, a warm-up time of 10 min in prior to 

each measurement is suggested. 

Voltage (I): Both current and voltage are limited to the respective 

threshold. It is proposed to set voltage to 120% of the devices open-circuit 

voltage to ensure that the given current (max. 100% 𝐼𝐼𝑠𝑠𝑐𝑐) is reached.  

Advanced (K1): 

Gain (K2): Leave at 4 – this ensures short exposure times and a 

linear behaviour of the CCD well. 

Binning (K2): Leave at 1 – increasing this value reduces exposure 

time but also image resolution. 
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Position shift (K2): For every imaged position, the camera moves 

78 cm by default. If a different distance is required change that 

parameter. 

Example setup: 

N 
images 

Exp. 
time [s] 

Camera 
on 

Power 
supply 
on 

Current Voltage Binning Gain Positions 

1 600 0 1 [100%Isc] [>120%Voc] 1 4 1 

2 30 1 1 [100%Isc] [>120%Voc] 1 4 1-2 

1 600 0 1 [10%Isc] [>120%Voc] 1 4 1 

2 300 1 1 [10%Isc] [>120%Voc] 1 4 1-2 

 

Import from Excel (L): All parameters (Number->Binning) can be imported 

from an Excel sheet. Start and end cell limit bounding box containing 

these parameters in the same order as in the program. 

2.2.4 IMAGE ANALYSIS AND POST PROCESSING 

All image processing (removal of background, flat field, lens distortion, 

perspective, and image stitching …) is done in dataArtist (D). In order to 

auto-import all newly created images into the software, right click on the 

‘dA’ icon (black face, coloured glasses) and open the session 

‘EL_imaging.da’. In introduction of dataArtist gives Appendix 3. 

The current display in the opened dataArtist session contains various 

scripts used to execute common image corrections. 

2.2.4.1 SHUT DOWN 

1. Switch off power supply. 

2. Close ‘dataArtist’ and ‘HuLC_control’. 

3. Shut down PC. 

4. Switch of both monitors. 

5. Switch off ‘HuLC main’ power supply. 
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3 SCIENTIFIC IMAGE 

PROCESSING WITH 

‘DATAARTIST’ 

The analysis of EL images and similarly photoluminescence images 

requires dedicated and specialised software. For common image 

processing problems such as geometric measurements, filtering and edge 

detection, the Java-based open source program imageJ, is frequently 

used [27, 82, 124]. Others have created own routines based on MATLAB 

[37] or LabView [43, 47].  

The scope of image processing on EL/PL images can be separated into the 

following problems: 

• Images correction (camera calibration, perspective, intensity, 

artefacts) 

• Automated detection of material/electrical defects (such as cracks) 

[101, 125–127] 

• Prediction of electrical properties including localised series 

resistance and saturation current [37, 128, 129] 

Only few programs have their own graphical user interface (GUI) [126] 

and are commercially available [127, 129, 130].  

For EL applications, no software tool could be found dedicated to camera 

calibration and the removal of EL signal distortions, essential for 

quantitative analysis and inter-lab comparison. This was the motivation 

for creating an individual software solution, called dataArtist. 

dataArtist is an interactive program for scientific image processing, 

specialised on EL imaging (Figure 3.1). It was built to analyse and process 

EL images created during the doctoral studentship.  



Appendix 3: Scientific Image Processing with ‘dataArtist’ 

 © Karl Bedrich - April 2017 330 

 

 

 
Figure 3.1: Usage of dataArtist to analyse EL images  

Some of its features are… 

• Drag and drop file import (local and from internet browser). 

Currently supported file types are: 

o Images: TIF, BMP, PNG, JPG, CSV, TXT, MAT 

o 2D Graphs: CSV, TXT 

o Python ‘Numpy’ arrays, saved as NPY  

o Text and tables for instance from Excel, Word, Notepad 

• Auto-import from ‘watched’ folders. 

• Commonly used processing algorithms can be accessed by tools in 

the top of the window. 

• Automation and direct access on image data using a built-in Python 

console. 

• Interaction with other programs using RabbitMQ file server. 

The source and executables for Windows 7/10 can be found at GitHub 

(https://github.com/radjkarl/dataArtist). A video tutorial can be found at 

https://www.youtube.com/playlist?list=PLKyzYL-

Q8Rcl6tHN1PjB3FiIfI24pdLLb.  

https://github.com/radjkarl/dataArtist
https://www.youtube.com/playlist?list=PLKyzYL-Q8Rcl6tHN1PjB3FiIfI24pdLLb
https://www.youtube.com/playlist?list=PLKyzYL-Q8Rcl6tHN1PjB3FiIfI24pdLLb


Appendix 3: Scientific Image Processing with ‘dataArtist’ 

 © Karl Bedrich - April 2017 331 

 

 Importing Data 

The usual way for importing data is by 

drag-and-drop one or multiple selected files 

or folders into dataArtist. Alternatively, 

the file import dialog can be opened using 

the menu bar: FileImport data. If not deactivated, the shown window 

pops up. The selected files are only imported, if the ‘Done’ button {3} is 

pressed. In import can be cancelled by clicking on the close button {1}. 

Three options are available when importing multiple files at the same 

time {2}: 

• Together 

o All files are stacked in one display. For this, files need to be 

of the same type and shape (for images: same resolution). 

• Separated 

o Open a new display for every single file. 

• In display 

o Add all files as new layers in the current or another display. 

Importing many or huge files can take time or slow down the computer. 

Do avoid this or to change the preferences for importing files in prior it 

might be useful to not automatically load files into memory {5}. The 

imported files can be loaded later by clicking on the green ‘update’ button 

(first button on the left of the tool bar). Some tools also work on unloaded 

files. For those tools, files can remain unloaded. The shown import dialog 

will pop up every time when new files are dropped into dataArtist. To 

avoid this and to load files with the last preferences, uncheck {4}.   



Appendix 3: Scientific Image Processing with ‘dataArtist’ 

 © Karl Bedrich - April 2017 332 

 

 Program Layout 

dataArtist starts as an empty 

window. Through draw/drop 

files can be imported or a 

saved session can be loaded 

(FileLoad Session) 

  

An image, imported in 

dataArtist, opens some 

general-purpose tool bars. At 

the right side of every display, 

an image histogram and a 

colour bar are shown. Both can 

be used to interactively change 

contrast, brightness and colour 

map. If multiple images are 

imported, a time line at the 

display bottom enables to slide 

through every image layer tool 

bars at the top of the window.  

 

Two sliders on the left and 

bottom can be used to show 

the current display preferences 

(including built-in console) and 

the output messages. 
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3.2.1 PROGRAM COMPONENTS 

3.2.1.1 SESSIONS 

All imported and displayed input data, visual and layer 

settings as well as tool parameters built up a 

dataArtist session. A session can be saved and 

restored using the Menu bar FileSave Session/Open 

Session or using the shortcuts CTRL+S or CTRL+O. The 

file format for dataArtist sessions is DA. A saved 

session can also be opened by drag-and-drop the DA-file into an opened 

dataArtist window or directly by double clicking on it. For the latter 

option, “open *.da files with dataArtist” must to be checked in the “first-

start” window. 

3.2.1.2 STATES 

A dataArtist session can contain multiple states 

(respective temporal version or revision) which 

display the currently visible data and settings. The 

maximum number of sates to be saved in a *.da file 

can be chosen in the preferences menu as follows: 

 Menu barFilePreferencesSession 

 By default, each state is named with its state number. In individual name 

can be defined in the Menu bar: State->Rename 

When a maximum number of states is reached, new saved states override 

older ones. When a dataArtist session is opened, the latest state is 

loaded. To change the currently displayed state, use the 

Menu bar: StateSet. 
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3.2.1.3 WORKSPACES 

Especially when many different input 

files are shown, dataArtist can look 

messy. Instead of opening dataArtist 

another time one can add another 

workspace. A Workspace can be compared with the desktop of your OS. 

If there are too many windows, you move to an empty (virtual) desktop 

or you change between desktops, specified for specific tasks. To change 

between dataArtist workspaces, use the menu bar: 

WorkspacesNext/Previous or use the shortcuts Ctrl+PgUp or 

Ctrl+PgDown.  

Workspaces can be added or removed using the menu bar: 

WorkspaceAdd/Remove or using the shortcuts: Ctrl+W or Ctrl+Q. To 

move a display to another workspace, use the menu bar: DocksMove 

current dock to other workspace. 

3.2.1.4 DISPLAY DOCKS 

Every dataset loaded into dataArtist opens a new 

display dock. These docks are similar to windows in 

your OS. Multiple docks are tiled or tabbed on top 

of each other. The docks position can be changed by 

clicking on a docks decorator (top label) and drag 

and drop it to its destination. 

Every dock can only represent data of the same file type. 

Like windows, docks can be closed, minimised and maximised using the 

dock decorators on the top-right of each dock. To show a dock in full 

screen double click on its label on the top of every dock. Press ESC to exit 

full screen. Right click on the dock label to rename the current display 

dock. 

The label colour of a display dock indicates whether it is selected or not. 

The currently selected display dock also changes the visible display tools 
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on the top and the display preferences on the left of the window. A new 

and empty dock can be added in the menu bar: AddDisplay. 

Right clicking on the dock label gives the options: 

• Pop out: show the dock in an extra window in front of other 

windows. 

• Full screen: show the dock in full screen (Press Esc to go back). 

• Set name: rename the dock. 

3.2.2 IMPORT AND REPRESENTATION OF EL IMAGES 

Greyscale and colour images of different formats (TIFF, JPEG, PNG, BMP 

etc.) can be imported by drag and drop. They are shown in ‘displays’ 

within the program. These displays can be tiled and stacked to allow an 

intuitive comparison. Multiple images of the same size can also be 

stacked within one display. Each image layer can be shown individually. 

Scale, size, aspect ratio and colour map can be chosen freely. 

Image analysis and processing can be conducted by tools in the toolbar. 

Regions of interests (ROI) can be analysed individually or averaged in X 

or Y dimension, allowing a line cut or spatial averages. In the same way, 

image histograms can be created. Distances can be measured and used to 

scale axes to physical dimensions. 

Individual routines and process automation can be developed using a 

built-in Python 3 console with an extended namespace for easy and fast 

access to the image data. The created scripts can be triggered manually 

or after changed or added image data. The following examples 

demonstrate the implementation of common image processing problems 

within the built-in console: 

 

#subtract layer 2 from layer 1 in the  

#current display: (d … display,  l … layer) 

d.l1 -= d.l2 

 

#set layer 1 on display 4 to the sum of  
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#layer 3 and 4 in the current display: 

d4.l1 = d.l3 + d.l4 

 

#average all layers of the current display 

d.l = d.l.mean(axis=0) 

 

#print the average of an ROI of the size of  

#10x10 pixels at position (100,200) of  

#layer 3: 

print(d.l3[100:110,200:210].mean()) 

 

#import and execute a filter from the  

#library ‘scipy’: 

from scipy.ndimage.filters import median_filter 

d.l = median_filter(d.l, 3) 

 

One dimensional plots for instance created from a line cut can be 

manipulated correspondingly: 

 

#add the Y-component of two plots in different displays: 

d.l1 = d2.l0 + d4.l2 

 

#print all x-values of all plots within  

#the current display: 

print(d.l.x) 

 

#divide all plots in the current  

#display by their average: 

avg = d.l.y.mean() 

d.l /= avg 

 

Although dataArtist can be fully automated, it might be more useful to 

access certain image processing algorithms directly without using a 
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graphical interface. Many algorithms are implemented in the Python 

library imgProcessor. A description of their classes and functions can be 

found at http://radjkarl.github.io/imgProcessor/.  

3.2.3 IMAGE RECTIFICATION USING CAMERA CALIBRATION 
FILE 

This section demonstrates the implementation of the image correction 

routines detailed in Chapter 4 in dataArtist. Data required for dark 

current-, lens- and flat field removal is stored in CAL files. The generation 

of these camera calibration files with dataArtist is explained in 

https://www.youtube.com/channel/UCjjngrC3jPdx1HL8zJ8yqLQ. 

Camera correction in dataArtist is embedded in the tool 

CorrectCorrectCamera. Tool preferences, as well an EL image before 

and after correction are shown in Figure 3.2. 

 

 
Figure 3.2: dataArtist screenshot - correction of camera based 
distortions; Corrected image: bottom; red box: executed tool; green 
box: tool for managing camera calibrations 

Two different tools allow rectifying perspective distortion in EL images. 

With CorrectPatternRecognition images can fitted relative to reference 

images (Figure 3.3).  

http://radjkarl.github.io/imgProcessor/
https://www.youtube.com/channel/UCjjngrC3jPdx1HL8zJ8yqLQ
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Figure 3.3: dataArtist screenshot - Perspective correction using 
pattern recognition; Template image: middle; red box: executed tool; 
corrected image: bottom 

If no reference image is given, perspective can be determined manually or 

with automated object corner detection (Subsection 4.7.1.1). Optionally, 

the intensity of the tilted device can be corrected. 

 

 
Figure 3.4: dataArtist screenshot – Perspective correction from 
detected corners; Red box: executed tool; corrected image: bottom  
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4 ADDITIONAL MATERIAL 

 Thermo-Mechanical Load Experiment at NREL 

Please see provided files ‘NREL_EL_IMAGES_100ISC.pdf’ and 

‘NREL_EL_IMAGES_10ISC.pdf’ for a list of corrected images, extracted 

features and detected inactive areas for modules M1-M4, P1-4 and for all 

treatment steps (1-10). 

 First International Round Robin on EL Imaging 

Please see provided file ‘EL_RR_init.pdf’ for a listing of corrected EL 

images, their differences to a reference image and uncertainty maps for 

all modules and 1-cell-mini modules evaluated within the EL Round Robin. 

Images only include submissions before February 2017.  

 

 V-Cut Sharpness Measurement (Method B) 

This section is an extension of the sharpness measurement method, 

introduced in Subsection 3.4.4.3.   

The measurement uncertainty of the V-cut method depends on the image 

signal-to-noise ratio (SNR), the number of measured V-cuts and the V-cut 

angle. The influence of the latter two factors is evaluated hereinafter. For 

this purpose, V-cuts in random orientations were synthesised on an image 

of 501x501 pixels and a SNR of 30. The image was blurred with a Gaussian 

PSF of a standard deviation of 0.75, 1.5 and 3 px.  
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4.3.1 INFLUENCE OF MEASUREMENT NUMBER 

The root mean square error (RMSE) of a MTF generated from the V-cut 

measurement was compared for 1-20 measurements relative to the final 

average from 20 measurements. The experiment was then repeated 50 

times to average out individual deviations (Figure 4.1). Since the 

meaningfulness of a MTF generated from the V- cut method below 50% is 

limited (see Thesis, Subsection 4.3.3) the RMSE was only calculated for 

𝑦𝑦𝑀𝑀𝑇𝑇𝑁𝑁 > 50%.  The opening angle 𝛼𝛼 was set to 5°. 

The seceding trend in Figure 4.1 is as expected. If more than 5 

measurements are used to calculate the MTF, the deviation relative to a 

result using 20 measurements is below 2%. Therefore, it is suggested to 

measure at least five V-cuts. 

 

 
Figure 4.1: RMSE of MTF for different number of averaged 
measurements relative to a result using 20 average V-cut  

4.3.2 INFLUENCE OF OPENING ANGLE  

In order to determine the best cut opening angle (𝛼𝛼 ), the MTF was 

measured on the same synthetic pattern and averaging 50 measured cuts, 

each with opening angles ranging from 0.3° to 14°. In contrast to Figure 

4.1, the RMSE was calculated relative to the MTF calculated from 𝜎𝜎𝐵𝐵 using 

Equation 3.24. Figure 4.2 shows that the opening angle resulting in the 

lowest error is between 3-5°. This corresponds to a cut-width of 0.5-0.9 

cm for a cut length of 10 cm. In particular for sharp images (𝜎𝜎𝐵𝐵~0.75 𝑈𝑈𝑥𝑥) 

𝑥𝑥𝑀𝑀𝑇𝑇𝑁𝑁 only consists of a few values. This results in RMSE > 10%. 
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Figure 4.2: RMSE for an MTF obtained with the V-cut method for 
different cut angles 

By analysing the influence of measurement number and opening angle, it 

can be concluded that at least five measurements should be taken at an 

opening angle (𝛼𝛼) of 3-5°. 

4.3.3 SCALING 𝑥𝑥𝑀𝑀𝑇𝑇𝑁𝑁 TO ALIGN WITH THEORETICAL MTF 
SLOPE 

With only one bright line blurring into its dark surrounding, the V-cut 

measurement has a different measurement setup than measurements 

using a spoke target. For V-cut measurements, the image intensity at the 

actual cut intersection is darker than the mean between bright and dark 

line. The detected edge lines (𝑁𝑁1, 𝑁𝑁3) can also deviate from their actual 

position due to blurring. Unsurprisingly, measured MTF deviate from the 

ones calculated directly from a Fourier transformed LSF (Thesis, Figure 

4.3).  

 
 

Figure 4.3: MTF obtained with V-Cut method; a) without correction; 
b) with scaling 𝟒𝟒𝐌𝐌𝐌𝐌𝐌𝐌 using Equation 4.1; continuous lines: as measured 
with V-cut; dashed lines: theoretical MTF, as calculated using Equation 
3.24 

0
10
20
30
40
50

0 2 4 6 8 10 12 14RM
SE

( M
TF

>0
.5

 ) 
[%

]

gap angle 𝛼𝛼 [°]
σ_G=0.75 σ_G=1.5 σ_G=3

0
20
40
60
80

100

0 0.1 0.2 0.3 0.4 0.5

Co
nt

ra
st

  [
%

]

spatial frequency [cy/px]a)

0
20
40
60
80

100

0 0.1 0.2 0.3 0.4 0.5

Co
nt

ra
st

  [
%

]

spatial frequency [cy/px]b)



Appendix 4: Additional Material 

 © Karl Bedrich - April 2017 342 

 

It is possible to fit measured and actual MTF by scaling their X values: 

 

𝑥𝑥𝑀𝑀𝑇𝑇𝑁𝑁_𝑠𝑠𝑐𝑐𝑎𝑎𝑐𝑐𝑚𝑚𝑚𝑚 =  
𝑥𝑥𝑀𝑀𝑇𝑇𝑁𝑁 − 𝑎𝑎(𝑚𝑚)

𝑏𝑏(𝑚𝑚)
 (4.1) 

 
Both scale parameters (𝑎𝑎, 𝑏𝑏) are a function of the MTFs slope (𝑚𝑚) between 

90% and 50%, this this case defined as: 

 

𝑚𝑚 =
0.4

𝑥𝑥𝑀𝑀𝑇𝑇𝑁𝑁(𝑦𝑦𝑀𝑀𝑇𝑇𝑁𝑁=50%) − 𝑥𝑥𝑀𝑀𝑇𝑇𝑁𝑁(𝑦𝑦𝑀𝑀𝑇𝑇𝑁𝑁=90%)
 (4.2) 

 
Figure 4.4 shows 𝑎𝑎, 𝑏𝑏  for different slope values. For an MTF slope 

(m=5…19) it is shown that both values can be described by the following 

function: 

 

𝑎𝑎(𝑚𝑚),𝑏𝑏(𝑚𝑚) =
𝑖𝑖
𝑚𝑚𝑂𝑂 + 𝑘𝑘 (4.3) 

   Where: 

 𝒂𝒂 𝒂𝒂 

i 0.1810 1.8029 

j 1.8021 1.4615 

k 2.560e-4 0.0147 

 

 
Figure 4.4: Scale parameters (𝒂𝒂,𝒂𝒂) obtained by fitting measured and 
actual MTF using Equation 4.1. Dashed lines: Functional fit using 
Equation 4.3 

Note that this method should only be used to measure the spatial 

frequency at image contrast levels greater than 50% since values below 

that threshold will be highly underestimated. 
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